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ABSTRACT 

Many postural analysis techniques are developed to reduce the risk of musculoskeletal 

problems recently. Methods such as Rapid Entire Body Assessment (REBA) are 

capable of analyzing the static or awkward positions, but the selection of these postures 

is subjective. To make an objective postural analysis, devices such as Electro Magnetic 

Trackers (EMTs) can be used continuously during the job task, but utilizing such 

devices is costly. Other methods such as Red, Green, Blue, and Depth (RGB-D) 

cameras and Microsoft Kinect have also been used in multiple studies to continuously 

track human posture. However, the mentioned methods are only capable of 

representing a single joint angle for body segments. Therefore, in this study a cost-

effective marker-based video processing algorithm is developed for measuring 3-

Dimensional (3D) information regarding both the location and the orientation of 

human posture. The checkerboard pattern is selected as the markers to be detected in 

the video frame and relevant 3D location and orientation are calculated based on the 

Perspective n Point (PnP) approach. This study also investigates the precision of the 

measurements. Thus, an experiment was designed to capture markers in different 

known locations and orientations. Moreover, to validate the method of measurement, 

the second experiment is designed to compare the outcome of the proposed algorithm 

with the outcome of EMTs provided in another study. According to the result of the 

first experiment, overall, the algorithm was capable of measuring the 3D location and 

orientation of the markers with precision of 2.88 mm and 1.34° on average, 

respectively. Furthermore, the precision of the algorithm is found to be significantly 

affected by the marker pattern (p < 0.001). The higher the number of rows and columns 

showed a more precise measurement. The result achieved from the second experiment 
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shows no significant difference between the measured value of the algorithm and 

EMTs (p = 0.880). Although some of the limitations of the proposed algorithm such 

as undetectable checkerboards at extreme angles relative to the camera, and limited 

field of view of the camera, promising results are achieved with a low cost of 

implementation. 

Keywords: 3d posture tracking, marker-based posture tracking, ergonomics, video 

processing, continuous posture analysis. 
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ÖZ 

Günümüzde diye başlayabilirisin kas-iskelet sistemi sorunları riskini azaltmak için 

birçok postural değrlendirme yöntemleri geliştirilmiştir. Hızlı Tüm Vücut 

Değerlendirmesi (HTVD) gibi yöntemler, en sabit veya farklı pozisyonları analiz etme 

yeteneğine sahiptir, ancak bu duruşların seçimi özneldir. Objektif bir duruş analizi 

yapmak için Elektro Manyetik İzleyiciler (EMTr) gibi cihazlar iş görevi sırasında 

sıklıkla kullanılabilir, ancak bu tür cihazları kullanmak maliyetlidir. Kırmızı, Yeşil, 

Mavi ve Derinlik (RGB-D) kameraları ve Microsoft Kinect gibi diğer yöntemler de 

insan de insan postur analizi için birçok çalışmada kullanılmıştır. Bununla birlikte, 

bahsedilen yöntemler, vücut bölümleri için yalnızca tek bir eklem açısını temsil etme 

yeteneğine sahiptir. Bu nedenle, bu çalışmada, insan duruşunun hem konumu hem de 

yönelimi ile ilgili 3 Boyutlu (3B) bilgileri ölçmek için uygun maliyetli işaret tabanlı 

bir video işleme algoritması geliştirildi. Video karesinde algılanacak işaretçi olarak 

dama tahtası deseni seçilmiş ve perspektif n nokta yaklaşımına göre ilgili 3B konum 

ve yönlendirme hesaplandı. Bu çalışma aynı zamanda ölçümlerin kesinliğini de 

araştırmaktadır. Bu nedenle, bilinen farklı konumlarda ve yönlerde işaretleyicileri 

yakalamak için bir deney tasarlandı. Ayrıca, ölçüm yöntemini doğrulamak için ikinci 

deney, önerilen algoritmanın sonucunu başka bir çalışmada sağlanan EMT'lerin 

sonucuyla karşılaştırmak için tasarlanmıştır. İlk deneyin sonucuna göre, genel olarak, 

algoritma işaretçilerin 3B konumunu 2,88 mm hassasiyetle ve işaretçilerin 3B 

yönelimini ortalama 1,34° hassasiyetle ölçüldü. Ayrıca, algoritmanın kesinliğinin, 

işaretleyici deseninden önemli ölçüde etkilendiği bulundu (p < 0,001). Satır ve sütun 

sayısı ne kadar yüksek olursa, daha hassas bir ölçüm göstermiştir. İkinci deneyden elde 

edilen sonuç, algoritmanın ölçülen değeri ile EMT'ler arasında önemli bir fark 
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göstermemektedir (p = 0.880). Önerilen algoritmanın kameraya göre aşırı açılarda 

algılanamayan dama tahtası ve kameranın sınırlı görüş alanı gibi bazı sınırlamalarına 

rağmen, düşük bir uygulama maliyeti ile umut verici sonuçlar elde edilmektedir. 

Anahtar kelimeler: 3B duruş takibi, işaretçi tabanlı duruş takibi, ergonomic, video 

işleme, sürekli duruş analizi. 
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Chapter 1 

1 INTRODUCTION 

1.1 Background Study 

The importance of human body posture and its impact on musculoskeletal health has 

been mentioned in several studies in recent decades (Baker & Mansfield, 2010; 

Grobler, Mostert, & Becker, 2018; Mani, Milosavljevic, & Sullivan, 2015; Nazerian, 

Korhan, & Shakeri, 2018; Pal & Dhara, 2018; Scaramuzza, Martinelli, & Siegwart, 

2006; Sottimano et al., 2018; Wagner, Kirschweng, & Reed, 2009; Zhu et al., 2017). 

For instance, Grobler et al. (2018) investigated the impact of sitting versus stand-up 

posture among 123 sewing machine operators in four and a half years quantitative, 

retrospective, longitudinal study. His findings show a significant reduction in spinal 

injuries for the stand-up posture compared to the sitting posture.  

Therefore, in order to evaluate body postures in a variety of conditions, many postural 

assessment techniques are investigated by researchers. Accordingly, many standards 

such as range of motion between the joints and overall body posture has been 

introduced through-out the literature (Buchholz et al., 1996; Hignett & McAtamney, 

2000; McAtamney & Corlett, 1993). Quantification of body posture is a challenging 

problem and lack of accurate measurement can be observed in many of these 

techniques.  
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For example, Rapid Entire Body Assessment (REBA) technique uses still 2-

Dimensional (2D) photos of the most awkward or prolonged positions to investigate 

the body segment angles. These angle measurements are estimated by the ergonomics 

experts. Furthermore, the selection of the critical posture in the above-mentioned 

technique is handled by the ergonomics expert as well. Therefore, both the selection 

and angle measurement of the body posture is vulnerable to human error. 

1.2 Motivation to Solve the Problem 

In order to compensate the subjective analysis, a method is required to continuously 

track the human posture and represent quantitative measurements for the targeted body 

segments. For this purpose, Electromagnetic Trackers (EMTs) are commonly used for 

tracking the human posture continuously using electromagnetic sensors. These devices 

are capable of representing 6 Degrees of Freedom (DF) information regarding the 

sensor 3-Dimensional (3D) location and orientation more than 30 times per second. 

By attaching these sensors to human body segments, the data represented by the EMTs 

can be used as a good interpretation of body segment position and orientations. 

Although such devices are perfectly capable of tackling the continuous human posture 

tracking, they are cost intensive and very hardware dependent.  

Therefore, in this study, using computer vision, image and video processing 

techniques, and checkerboard patterns as trackers, an algorithm was developed to track 

human posture continuously as a lower cost and less hardware dependent alternative 

to EMTs. 

1.3 Aims and Objectives 

Two dimensional methods which are exposed to human error are applied in the 

literature. So, in order to close this gap in this field, this study considers an assessment 
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from 6 DF in 3D space. The main objective of this study is to represent 6 DF 

information, namely x y z location and x y z orientation in 3D space, for body joints 

continuously and with acceptable precision. The developed algorithm can both lower 

and the accessibility of postural tracking for future studies related to posture tracking 

and analysis. This technique can also be a useful utility for ergonomists and 

therapeutical practitioners for posture analyses in empirical cases of industry and 

clinical treatments, respectively. 

1.4 Hypotheses 

Throughout the study, validity and reliability experiments will be conducted to 

measure the accuracy and precision of the algorithm, and the following hypotheses 

will be tested. 

Validity Hypothesis (H): 

• There is evidence of significant differences between the data gathered using the 

developed algorithm and data measured using EMTs. 

Reliability hypotheses: 

• H1: The corner point pattern of checkerboards significantly affects the precision 

of orientation measurement. 

• H2: The corner point pattern of checkerboards significantly affects the precision 

of location measurement. 

• H3: The video resolution significantly affects the precision of orientation 

measurement. 

• H4: The video resolution significantly affects the precision of location 

measurement. 
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• H5: The axes significantly affect the precision of orientation measurements. 

• H6: The axes significantly affect the precision of location measurements. 

1.5 Research Methodology 

MATLAB version 2018b was employed to develop the algorithm in this research. This 

study uses checkerboard textures as markers that can be attached to different body 

sections for continuous 3D postural analyses. Then, using a Perspective-n-Point (PnP) 

problem approach, which is one of the methods that can determine the 6 DF 

information regarding an object in a perspective view, the algorithm detects corner 

points of the checkerboards in the images and returns the location and orientation of 

the board (Gao et al., 2003). 

Since a video contains a chain of images (frames), the algorithm selects the frames one 

by one and analyzes them separately. Depending on the duration and frame rate of the 

video, the calculation time could vary significantly. In the following, explanations 

regarding the development of the algorithm and hardware specifications are 

demonstrated. 

1.6 Structure of the Thesis 

This thesis consists of 6 chapters with the first chapter being the introduction. In the 

second chapter a literature review of the previously relevant studies is discussed and 

literature gap are mentioned. To address the gap, in chapter 3 the method of the 

algorithm as well as validity and reliability are explained in details. Next, in chapter 4, 

relevant outcome of the studies is shown and appropriate statistical tests are 

demonstrated. A discussion chapter is provided after the fourth chapter to compare the 

achieved results with the results represented in the literature. Furthermore, limitations 
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of the studies are mentioned and possible future studies are revealed. Finally in the 

conclusion chapter significant findings their impacts are represented. 
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Chapter 2 

2 LITERATURE REVIEW 

2.1 Importance of Body Posture 

In recent decades, many studies have mentioned the importance of human body 

posture and its impact on musculoskeletal health (Grobler et al., 2018; Pal & Dhara, 

2018; Sottimano et al., 2018).  

In a literature study conducted by Vieira and Kumar (2004), the importance of posture 

analysis is discussed extensively. In their research, the authors specifically focused on 

quantitative postural analyses. Their findings show the relationship between Work-

related Musculoskeletal Disorders (WMSDs) and postural habits in variety of careers. 

Zhu et al. (2017) developed an ergonomic job analysis tool to measure the necessary 

requirement for performing surgery while minimizing the needed instruction for the 

surgent in the operation room. In their study they used real time ErgoPART assessment 

tool to evaluate the common posture of surgent during the operation. ErgoPART is a 

software which was developed based on continues iteration of data collection about 

the operating process and the data which was transferred between ergonomic experts 

and medical staff during the process (Zhu et al., 2017). Similarly, Baker and Mansfield 

(2010) investigated the impact of Whole-Body Vibration (WBV) on standing posture 

among sixteen individuals. These individuals were instructed to perform a timed paged 

board task while being exposed to WBV as frequent as 4 Hz in the standing position. 



 

7 

Furthermore, Wagner et al. (2009) evaluated the postural behavior of automotive 

assembly operators based on investigating their foot placement. in order to pursue with 

their research, they used video recording technique to record 529 pickup and 

transporting task of workers in 32 assembly lines to measure the reaching angle, 

departure angle, hand or hands used for the task, handling height and forms of 

footpaths.  

Kumar, Kumar, and Baliga (2013) conducted a cross sectional research on the 

prevalence of WMSDs among Indian dentists. They included 646 participants of the 

mentioned occupation in their study, and among their findings they stated a significant 

correlation between sustained work postures and reported musculoskeletal 

discomforts. These studies and many more are representing the importance of postural 

analysis in the ergonomics.  

Therefore, in order to evaluate body postures in a variety of conditions, many postural 

assessment techniques are investigated by researchers in order to quantify different 

body positions. 

2.2 Common Posture Analysis Methods 

REBA, Rapid Upper Limb Assessment (RULA), the Ovako Working Posture Analysis 

System (OWAS), Posture, Activity, Tools and Handling (PATH) and Occupational 

Repetitive Action (OCRA) are some of the assessment techniques for postural analysis 

(Buchholz et al., 1996; Hignett & McAtamney, 2000; Karhu, Kansi, & Kuorinka, 

1977; McAtamney & Corlett, 1993; Occhipinti & Colombini, 1996; Pillastrini et al., 

2010).  
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Al Madani and Dababneh (2016) have represented an extensive literature-based study 

on REBA. In their study, they emphasized on the conveniency and robustness of the 

tool, and they have also investigated the validity of the method by mentioning studies 

which compared the result of REBA with other observational and direct methods. 

Similar to REBA, RULA is another common tool for posture analysis which has been 

extensively used in studies where the upper bodies posture plays and important role. 

For instance, Golchha et al. (2014) used this technique to analyze the upper body 

posture of 104 dentists in India. Moreover, Dockrell et al. (2012) assess the body 

posture of 24 school children while they were using computers. Additionally, 

Namwongsa et al. (2018) investigated the body posture of 30 smart phone users using 

RULA technique. 

Even though many of these assessments are being utilized frequently for postural 

analysis in many research studies, they are limited to instances of time when the most 

awkward or prolonged positions happen (Hignett & McAtamney, 2000; Nazerian, 

2016). In order to take into account every instance of a job task, observations are 

required to be video recorded and every frame needs to be assessed separately. In order 

to be more specific, Brodie and Wells (1997) emphasized on the unreliability of some 

posture analysis techniques such as RULA, and Occupational Safety and Health 

Administration (OSHA) upper limb and lower back stress analyses check list (Vieira 

& Kumar, 2004). Furthermore, Vieira and Kumar (2004) point out the unreliability, 

bias effect of the ergonomic expert opinion, low precision measurement of body 

segments, and the extended time of analyses as the disadvantage of commonly used 

qualitative postural analysis methods. 
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2.3 Continuous Postural Analysis 

Assessment of every video frame for postural analysis is very time consuming; 

moreover, the likelihood of measurement errors should be taken into account.  

Many researchers applied new techniques to keep track of the location and orientation 

of body parts automatically (Balaraman et al., 2018; Bhatt & Skm, 2018; Buzzi et al., 

2017; Masaki et al., 2018; Nguyen et al., 2018; Perera et al., 2016; Suzuki et al., 2019). 

Techniques and utilities such as body area network sensors, Electromagnetic Trackers 

(EMTs), and Optical posture tracking are commonly used in variety of studies for the 

purpose of continues posture tracking. 

In order to be more specific, Lemmers et al. (2018) used EMTs to measure the 3D 

kinematic of active lateral bending and flexion-extension movement of 35 participants 

with non-specific neck pain as well as 100 individuals as the control group. 

Furthermore, Hoppes et al. (2018) studied 15 patients suffering from visual vertigo in 

virtual reality environment. In their research they utilized EMT to track and record the 

position of the participants’ head and center of the mass during the experiment. 

Moreover, Gascon et al. (2018) investigated the effect of different garment on the 

position of the scapular kinematic of 40 females. They measured the scapula 3D 

position, these researchers used EMT as well. These approaches help the researchers 

in the field of ergonomics to measure body posture continuously, faster and more 

precisely. 

2.3.1 Body Area Network 

One of the devices used to represent the body posture of an individual is body area 

network. This device take advantage of accelerometer and gyroscope sensors to 

https://www.sciencedirect.com/topics/engineering/body-area-network
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represent acceleration and orientation of a specific body segment after attachment 

(Sivanathan, 2014). 

Valero et al. (2017) developed a robust system to illustrate motion-related information 

for posture and biomechanical analysis of the individual’s body using body area 

network sensors. In their study, the used construction trade workers as their subject 

and participants were asked to perform bricklaying activity while 8 sensors attached 

to their body segment. The authors introduced 16 primary body positions in their 

system and these positions were represented simultaneously as the workers were 

performing the task. The method emphasizes specifically on the intuitive and easy to 

understand information related to posture analysis. 

Apart from representing and in-depth review about the postural investigations for 

constructional workers, Valero et al. (2016) utilized their developed software for the 

purpose of posture analysis of material handling among construction workers using 

body area network sensors. In their study they concluded that the current practice of 

posture analysis in construction industry is mostly based on visual representation 

which lacks the precision and accuracy requirement of assessment. Therefore, taking 

advantage of electronic based devices such as body area network is necessary for more 

reliable postural assessment. 

Dong et al. (2015) also used the body area network sensors to assess the kinematic 

data related to patients who are suffering from Parkinson’s disease. This research 

focused on understanding the environmental location and activity specifications when 

freezing of gait happens in these patients. Freezing of gait is a disability where briefly 

people with Parkinson’s disease lack the ability to perfume the stepping task for a short 
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period of time (Nutt et al., 2011). Dong et al. (2015) attached 6 sensors on chest, wrists, 

hips, and ankles of the patients and asked them to perform basic tasks such as walking, 

sitting, and lying down. Similarly, they measured the same actions using healthy 

individuals for the purpose of data comparison. 

Although body area network device is capable of representing data related to 

acceleration and orientation of the body segments, the 3D coordinates and rotation of 

these body segments cannot be measured (Valero et al., 2017). 

2.3.2 EMTs Application 

EMTs are one of the most commonly used devices in continuous postural analysis 

techniques. These devices consist of several electromagnetic sensors and a source. 

Each sensor represents its 3D coordinate and orientation relative to the source, and 

therefore, by attaching these sensors to the targeted body parts, the location and 

orientation of the body parts can be estimated in 3D space. EMTs are capable of 

representing 6 DF information, which are x, y, z values and x, y, z Euclidean angles, 

up to approximately 240 times per second with an accuracy of 0.8mm for location and 

0.15° for orientation (Balaraman et al., 2018). While EMTs are very accurate for 3D 

pose estimation, based on the literature, they are costly and less common among non-

clinical studies such as ergonomics studies. 

Suzuki et al. (2019) used EMTs to investigate the effect of thoracic position on 

scapulothoracic and glenohumeral activities during eccentric shoulder external 

rotation. Moreover, Habechian et al. (2016) used the same device to examine the 

gender-specific differences of scapular kinematics during arm elevation among 

children and adults. Likewise, Learman et al. (2016) studied the trunk reposition error 

of individuals with acute stroke using EMTs. 
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In a study conducted by Geisbüsch et al. (2017) the application of EMT was 

investigated for the purpose of de-rotation angle measurement in adults with internal 

rotation gait diagnosis. The authors compared EMT measurement for de-rotation with 

the traditional method of using Computed Tomography (CT) scan. In their experiment 

they attached the EMT to the patient pre, under, and post-surgery for the purpose of 

measurement. Then after, the compared the deviation of pre, and post-surgery 

measurements with the result of the CT scan as the reference. Their finding shows a 

precise measurement with deviation of only 2.6 degrees. The purpose of this study was 

to find a better alternative measurement device than using CT scan to limit the 

exposure to radiation. 

Recently, Geisbüsch et al. (2021) used EMTs for femoral de-rotation osteotomy 

operation. The device was utilized to dynamically monitor the angle of de-orientation 

during the surgery. Before the surgery basic measurements was done using CT scan 

and MRI, and after the rehabilitation period postoperative gait analysis was done on 

the patients to measure the static changes of the operation. 

 

 

 

Woodburn  et  al.  (1999) used  EMTs  for  3D    measurement  of  the    kinematic 

specification of angle joint complex. In their study, ten participants who were suffering 

from rheumatoid arthritis and joint angle instability and deformability were selected 

for  their  experiment.  Moreover,  ten  more  healthy  participants  with  no  record  of 

musculoskeletal  diseases  or  trauma  in  the  lower  limb or  feet  were  selected  for  the 

control group. Both groups were undertaken the gait analysis and promising data was 

achieved  in  comparison  with  several  published  studies (Kobayashi  et  al.,  1997;

Moseley et al., 1996; Rattanaprasert et al., 1999).  
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Another study conducted by Woodburn, Helliwell, and Barker (2003) took advantage 

of EMTs to assess the effectiveness of custom foot orthoses for the individuals who 

are struggling with rheumatoid arthritis. Using EMTs on the ankle joint complex, 3D 

kinematic information was recorded for a period of 30 months and compared with 

healthy people with no issue in their feet. They stated the effectiveness of continuous 

use of foot orthoses for the deformity correction and functionality optimization of joint 

ankle complex among these patients. 

Since EMTs can be produce in small form factor, a study conducted by Kellermeier et 

al. (2017) used these small sensors for the purpose of clinical evaluation study on 

catheter navigation in interstitial high dose rate brachytherapy. The utilization of 

EMTs achieved the maneuver precision with the range of 0.17 up to 0.13 mm 

depending on the type of table the task was performed. 

The application of EMTs is not solely limited to ergonomics and clinical based studies. 

In fact, these sensors are found to be useful in the sports industry as well. Cerrito et al. 

(2018) investigated the kinematic behavior of cervical spine of rugby players while 

performing union scrumming. The study was designed to specifically test the 

reliability of measurements using interclass correlation coefficient, standard error of 

measurement, and minimum detectable change. Results shows promising precision of 

measurement for utilizing this device for the purpose. 

Being capable of representing 6 DF of information, EMTs have the variety of usages 

in the field of posture tracking. However, considering the cost and accessibility of the 

device, many researchers look for other cheaper and more accessible alternatives for 

their experiments. 
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2.3.3 Optical Posture Tracking 

Another common method recently used for 3D postural tracking is optical tracking 

also known as kinematics computer vision (Buzzi et al., 2017; Dang et al., 2017; Jones 

et al., 2016; Wang et al., 2018; Xu & McGorry, 2015). Utilizing computer vision 

techniques to recognize a 3D object has recently gain popularity in many industries. 

In order to fully grasp an understanding about the computer vision the following 

definition is quoted: 

Computer vision is the science and technology of making machines that see. It 

is concerned with the theory, design and implementation of algorithms that can 

automatically process visual data to recognize objects, track and recover their 

shape and spatial layout (Cipolla, Battiato, & Farinella, 2010, p. VII). 

In their book the divided the concept of vision in to two main frame works. A 

photometric framework which is the reconstruction of an image on a 2D Euclidean 

plane, and a special frame work which focuses on the configuration of a shape, 

possibility of displacement and 3D special features (Cipolla et al., 2010). 

Transition between these two frameworks, although challenging, have many 

applications in different sciences and industries such as physics, robotic, health science 

and art. Thanks to light-sensitive crystals in photographic films as well as charge-

couple device, active pixel sensor and metal-oxide-semiconductors transistors in 

digital camera sensors, nowadays projection of 3D objects can be recorded as 2D 

image in a fraction of time (Janesick, 2001; Keller et al., 2000). On the other hand, 

reconstructing the information of a 3D object from a 2D image has many challenges 

to be overcame. When transition from a 3D space (object) to a 2D space (image) 

information related to the depth will be lost; and therefore, retrieving the information 

requires further computation and analysis. 
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One way to address the issue is to use the triangulation technique. In this respect, an 

object depth can be calculated from two images taken from the object with different 

points of view. It should be mentioned that, the points of view or the distance, and the 

orientation between them should be a known factor to do the calculation (Hartley & 

Sturm, 1995). The application of stereo or multiple camera posture tracking is 

available in many studies which is discussed in more details later on this chapter. (Liu, 

Han, & Lee, 2016; Pellegrini & Iocchi, 2007). 

The basic concept of triangulation in a 2D plane is demonstrated in Figure 1. Given 

the information about positions, orientations, and angles of view of the camera 1 and 

2 in the mentioned figure, the angles of α and β can be calculate.  

 
Figure 1: Triangulation for 3D Object Detection 

Let’s consider (x, y) coordinates as the position of camera 1 and (x′, y′) coordinates of 

camera 2. In order to calculate the distance between two cameras, Euclidean distance 

equation is used (Guichard et al., 2020). Considering the known α and β angles, ɣ can 

be calculated using Equation 2. Next with known α, β, and ɣ angles as well as C, the 
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opposite side of each angle can be calculated using the law of signs (Beveridge, 2014). 

Accordingly, equation 3 is demonstrated. Finally, the distance of the object H 

perpendicular to line between camera 1 and camera 2 can be calculated using equation 

four. 

2 2( ) ( )C x x y y = − + −         (1) 

180 ( )  = − +          (2) 

sin sin sin

A B C

  
= =   (3) 

sin( ) sin( )H A B =  =    (4) 

Although the above-mentioned calculations are seemed to be accurate and requires 

low amount of computation in 2D, expanding it to the 3D world introduces many 

challenges. For instance, measuring the camera location and orientation in 3D space is 

difficult and exposed to many errors. Moreover, having a clear reading of the image 

of the object from the camera sensor and image distortions in variety of camera lenses 

can introduce many issues for estimating the angle of the object relative to the camera 

(Hartley & Sturm, 1997). In order to address image distortion issue, Hartley and Sturm 

(1997) considered a Gaussian noise in the coordinates of the images and attempt to 

minimize the square error for the estimation. Furthermore, to solve the sensitivity to 

proper initialization, nonlinearity, and spatial distribution of the special points also 

known as world points cloud, Alsadik (2016) introduced a modified solution for the 

3D triangulation problem using inclined angles which were calculated based on the 

image coordinate systems as well as spherical trigonometry rules and vector geometry. 

With all the above-mentioned approaches to resolve the complexity of stereo or multi-

camera triangulation, precise measurements of the orientation and location of the 

cameras play significant role on the precision of the 3D demonstration. 
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The other way to estimate the depth information of a 2D image is to use PnP. With 

known location of some known 3D location of selected world points as well as their 

equivalent image point coordinates, PnP methos is capable of determining both the 

location and orientation of the camera relevant to the points(Youyang et al., 2019). 

Determining the coordinates and the orientations of camera relative to an object solely 

does not satisfy the purpose of postural tracking. However, when the relative 

coordinates and orientations are determined, the basis of the coordinate system can be 

changed to put the camera in the basis and the object in the perspective of the camera. 

This feature, was selected for this study specifically since compared to stereo vision 

technique, the number of cameras required to follow with the procedure of postural 

tracking reduces to only one which accordingly would make the system less hardware 

intensive. 

The PnP uses equation five as the main structure of the concept. 
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  (5) 

Where u′i and v′i are the pixel coordinates of image point i, Xi, Yi, and Zi are the 3D 

world coordinates of point i, and si is the scale factor of the picture (if any). The 3×4 

matrix in the equation are the 12 unknown variables that need to be determined to 

represent the transformation matrix for the location and orientation of the camera 

(Youyang et al., 2019). Given the fact that equation 5 does not consider the camera 

specifications including the focal length and principal point of the camera, a third 

matrix can be inserted in the equation 5 to represent (see equation 6) (Hartley & 

Zisserman, 2003). 
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Where fx and fy are the focal length of the camera based on the lens, ɣ is the skew factor 

which in case of absence would be set to zero, and u0 and v0 are the principal point of 

the image sensor. the camera parameter mentioned in equation 6 usually are pre-

determined using various camera calibration techniques (Hartley & Zisserman, 

2003).With known camera parameters, 3D coordinates of a world point, and its relative 

image coordinates, 12 unknown variables are remained undetermined. Equation 6 can 

be transformed into 3 homogenous linear equation with mentioned 12 unknown 

variables. Therefore, at least 4 points are required to determine the variables. After 

determining the variables r11, r12, r13, ..., r33 as well as t1, t2, and t3. they can be 

interpreted as the 3D transformation matrix of the camera where rij for i = 1. 2, and 3, 

and j = 1, 2, and 3 represent the 3D rotation matrix and ti for i = 1, 2, and 3 represent 

the 3D coordinates of the camera (Bar-Itzhack, 2000). 

Even though determining the object location and orientation using PnP is not depend 

on very advanced measurement devices, existence of noise and unsureness about the 

true location of both world points and camera point is causing the calculation to be 

vulnerable to some degree of uncertainty. In order to compensate for this issue, 

techniques such as Random Sample Consensus introduced by Fischler and Bolles 

(1981) are utilized for 3D location and orientation estimation. Similarly, Youyang et 

al. (2019) has address the issue of none-scaled measurements through 3D axes of the 

world point. In order to eliminate this effect, Youyang et al. (2019) suggested a 

normalized technique to make the X, Y, and Z axes values on the same scale. According 
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to their findings, significant improvement is achieved on estimating the correct 

location and orientation of the object after normalization. 

Recently, Seo et al. (2019) investigated three different motion capture approaches for 

postural analysis. Accordingly, they have categorized these approaches: (a) Red, 

Green, Blue and Depth (RGB-D) sensor-based approach (Han et al., 2013); (b) stereo-

vision camera-based approach (Starbuck et al., 2014); (c) multiple camera-based 

approach (Alwasel et al., 2013). 

A study conducted by  Abobakr  et al.  (2017)  used the combination of Kinect RGB-

D sensor and convolutional deep neural network to predict 29 joint angles based on 

the RULA method. In their study, they generated two hundred thousand images using 

3D human models, initially captured from a participant doing assembly procedure, for 

their convolutional neural network model. To represent the model as an input data, 

they used a 3 layer of RGB for every pixel with the color representing the depth 

information. Their findings show root mean square error of 6.64 ± 2.73 degrees. It 

should be mentioned that the estimated angles from their models is specifically related 

to those required in RULA method and the Euclidian 3D angles are not represented. 

Later on, the study was published with higher accuracy of angle measurements, as well 

as 89% RULA score accuracy (Abobakr et al., 2019). 

The RGB-D tools is not limited to posture tracking for ergonomics purposes. 

Khosrowpour et al. (2014) used the RGB-D sensors to classify actions of indoor 

construction workers based on their body poses. The main application of their research 

was to identify possible bottle necks in the work process of the targeted occupation as 

well as analyzing and assessing the workers productivity in the job. For this reason, 
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they used kernel density estimation technique to classify bag of poses based on the 

series of RGB-D data captured in the work environment. Their model consists of poses 

such as walking, measuring, idling picking up, and putting down in the timeline of the 

job task. Their clustering algorithm detects the mentioned poses during the timeline 

automatically to represent the overall activity summary of a job task with 81% 

accuracy. 

In order to test the validity and accuracy of using RGB-D sensors for the purpose of 

action classification in construction workers, Han et al. (2013) conducted a 

comparative study between RGB-D sensors and more accurate marker-based motion 

recording device. In their study, they considered the data received from the marker-

based device as the ground truth and assessed the measurement offsets of the RGB-D 

sensors accordingly. Their findings show 10.7 Cm and 16.2 degrees deviation from 

the ground truth in the location and angle measurement, respectively. However, they 

stated that such discrepancy in the measurement is not concerning for its purposed job 

in construction industry. 

In order to expand the application of RGB-D sensors even further, Patruno et al. (2019) 

developed a method to utilize the sensor for the re-identification purposes based on the 

subject posture. They considered skeleton standard posture to create specific 

signatures for people’s biometric body postures. It should be mentioned that, using 

RGB-D for this purpose is not solely investigated in the mentioned study, and other 

researchers have assessed the method as well (Ahmed, Jones, & Marks, 2015; Ren et 

al., 2017; Schumann & Stiefelhagen, 2017). 
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Seo et al. (2019) described the RGB-D approach as sensitive to sunlight and suitable 

for an indoor environment. This device is equipped with an infrared sensor and is able 

to provide the depth information of the 2D images. Moreover, the stereovision camera-

based approach uses two cameras to extract point clouds of similar images from two 

different angles of view. Using triangulation, the method calculates 3D locations of 

the point clouds and, consequently, computes optical depth information. On the other 

hand, the multiple camera-based technique is less hardware dependent, can be applied 

using ordinary cameras and is suitable for an outdoor environment. The drawback of 

this method is the calculation time for estimating body joint angles. 

Other than RGB-D technique, stereo vision has also been utilized in several studies for 

the purpose of postural tracking. For instance, Starbuck et al. (2014) raise the issue of 

sunlight and existed heat in the construction sites for postural tracking of the 

construction workers. Since the RGB-D cameras use infra-red signals to track human 

posture, they are not a good fit when it comes to long distance tracking and outdoor 

environment where the sun hit interfere with cameras’ sensor. Thus, to solve the 

problem, they suggested utilizing stereo camera vision instead to cover bigger area for 

tracking and eliminate the outdoor limitation of RGB-D. In their study they suggested 

the usage of currently existing 3D kinematic tracking systems for such environment. 

Moreover, in a study conducted by Lee & Park (2019), stereo camera vision was used 

to track not only single but also multiple construction workers within the site. In order 

to track each worker separately, rather than using specific postural feature, they 

utilized entity tracking procedure which uses workers position and direction of 

movement across multiple cameras differentiate each person from their workmate. 
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According to their findings, their method is capable of capturing 96% of actual 

movements within 0.8-meter error in estimation of their location.  

In order to monitor and prevent occupational accidents and injuries, Liu et al. (2016) 

developed a close to real time 3D skeleton feature extraction algorithm by two 

streaming cameras. Basically, instead of locating the 3D joint location of the 

participants, their algorithm tracks the body joints in one camera steam through 

successive frames and then identify the tracked joints in the secondary stream to 

construct the 3D motion of the skeleton joints. In their study they stated that, their 

algorithm is capable of being utilized in construction sites and it also requires two 

smartphones for video capturing. 

Apart from the ergonomics application of the stereo vision technique, many studies 

used the method for robotic and even surgical instrument navigation. As an example, 

a research done by Zhou et al. (2017) used the stereo vision technique to navigate 

common and/or small sized instruments used in surgeries to track the device in 3D 

space for a better and more precise application. In their approach, they installed 

infrared LEDs on the instruments as the marker as well as near infrared filters in front 

of the stereo camera lenses to track the instruments. It should be mentioned that the 

study was developed using simulation techniques. According to their findings, high 

stability and precision is achievable with this technique. 

Throughout the literature search, no study was found to use PnP approach for postural 

tracking in ergonomics field. Since this approach has the potential to provide 3D 

rotation and orientation, this study has used it to provide a new algorithm accordingly. 
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Even though all three approaches are known as marker-less optical trackers that reduce 

interference for postural analysis, they can only estimate a single angle for joint 

position. Consequently, when it comes to joints with more than one axis of rotation, 

such as the hips and shoulders, these optical methods are not suitable (Seo et al., 2019). 

2.4 Research Contribution 

According to the information provided in this literature, techniques that are commonly 

used in the continuous posture analysis include digital inclinometers, Body Area 

Network, RGB-D, and EMTs have some limitations individually. 

Attaching digital inclinometers on the human body is very challenging and in order to 

measure different joint orientation of a subject it may require multiple inclinometer 

attachments at different locations around the target joint. Moreover, Body Area 

Network ad RGB-D techniques are capable of tracking the human posture 

continuously and instantly. The RGB-D method also has the advantage of being 

marker-less approach to track the posture which reduces the job interference 

significantly. However, if the intended analysis requires 6 DF information regarding a 

body joint, both methods cannot provide such information. On the other hand, EMTs 

not only are capable of providing information regarding 3D location, but also 3D 

orientation of the targeted muscle. Although this feature makes the EMTs the best 

candidate to be used in continuous posture analysis with 6 DF information as 

requirement, they are expensive and, in many cases, where the budget of assessment 

is insufficient, other alternatives would be considered. 

Based on the aforementioned literature, for continuous body posture analyses, methods 

are either cost intensive or lack 6 DF information regarding the 3D position (Dartt et 
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al., 2009; Gold et al., 2012; Jackson, Mathiassen, & Liv, 2016; Plamondon et al., 2007; 

Rezagholi, Mathiassen, & Liv, 2012). According to the literature, no previous study 

was found that uses a video processing algorithm which continuously assess 3D 

coordinate estimate and orientation of the body joints using a camera.   
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Chapter 3 

3 METHODOLOGY  

Given the fact that common continuous posture tracking methods either very costly to 

be used or are not capable of representing 6 DF information about the location and 

orientation of the body segments, this study aims to develop an algorithm to overcome 

both measurement errors and time consumption for continuous postural analysis; 

meanwhile, cost-effectiveness and minor hardware dependency have been considered 

throughout this study in order to make the approach easier than current methods for 

further research studies. MATLAB (2018b) software was employed to develop the 

algorithm in this research. Furthermore, this study uses checkerboard textures as 

markers which can be attached to different body sections for continuous 3D postural 

analyses. Then after, by using Perspective n Point (PnP) problem approach, which is 

one of the methods that can determine the 6 DF information regarding an object in 

perspective view, the algorithm detects corner points of the checkerboards in the 

images and returns the location and orientation of the board (Gao et al., 2003).  

Since video contains a chain of images (frames), the algorithm selects the frames one 

by one and analyzes them separately. Depending on the duration and frame rate of the 

video the calculation time could vary significantly. In the following, explanations 

regarding the development of the algorithm and hardware specifications are 

demonstrated.  
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3.1 Checkerboard Preparation 

Given the fact that the algorithm is based on PnP calculation, using a checkerboard 

pattern as the marker includes many advantages. Checkerboard pattern are easy to be 

produced. To be more specific, generating such patterns can be easily handled by using 

tables in MS Word and setting the row and column sizes to the desired dimensions. 

Then, every other cell of the table in black the checkerboard pattern was printed using 

a black and white printing device. Moreover, it is common to look for intersection 

points in an image where there is a high amount of contrast in the image. This point in 

fact is described as the corner points in this research. It is a good practice to measure 

the size of the squares after they being printed to make sure they are not rectangle due 

to the printing setting and represent the intended dimension as was set up in the 

computer. 

The corner points detected in the frames are actually the inner corner points. Therefore, 

from now on, we will represent the number of corner points by the number of inner 

points in rows and columns. It should be mentioned that the combination of the points 

is supposed to be odds in rows and even in columns or vice versa in order to be 360° 

asymmetric. Figure 2 emphasizes more about the importance of board properties.  

 
Figure 2: Checkerboard Properties 
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Figure 2 illustrates that a combination two by four corner points which leads to 

symmetricity of the shape for rotations more than 90°. From left to write checkerboards 

first and third, as well as, second and fourth are similar respectively, even though it 

has been rotated by 180°. Also, a combination of two by five corner points which does 

reveal an asymmetric feature to the board (marked with gray color). This property 

leads to rotational uniqueness from 0° to 360°. (Note) The gray circle markers show 

the corner points detected by the algorithm. 

In order to emphasize more on the concept of symmetricity, in figure 2 part a 3 by 5 

checkerboard pattern is represented. Accordingly, from left to right after rotating the 

checkerboard by two 90 degrees, similar pattern can be achieved. This means that at 

each instance of the measurement, there are two solutions for the orientation of the 

checkerboard which are 180 degrees apart. In order to eliminate this uncertainty, 

considering the patterns of combination of odd and even rows and columns such as, 3 

by 4, 3 by 6, or 5 by 6 is recommended. 

The size and the number of the corner points in each checkerboard pattern my play a 

significant role on the precision of the measurement. As discussed in the literature 

chapter, in order to solve the PnP problem, at least 12 points should be selected. 

However, considering the uncertainty of exact location of the corner points due to 

subpixel estimations and noises, it is recommended to select the pattern with higher 

number of corner points to limit the unwanted factors on the measurement. On the 

other hand, having a small size of squares concentrate all the selected points in to the 

certain region of the image and depending on the distance of the checkerboards from 

the camera, less precise location of the corner points is expected. Therefore, to have a 

better estimation of the corner points in the image, it is a good practice to provide 
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patterns with bigger square size to cover further distances. With all of that being 

mentioned, bigger square size and more corner points require more occupied space for 

the markers and this expansion is feasible up to a certain pattern. In order to investigate 

the relationship between the checkerboard pattern and the precision of the 

measurement, an experiment is designed which is explained in detail further in this 

chapter. 

In order to attach these checkerboards in different body sections, the checkerboards 

were printed and attached to a hard thin polystyrene panel by glue. The reason to select 

this material is to making sure that the patterns are flattened correctly and are not 

warped. Furthermore, polystyrene is light weight and is a good candidate for the 

practical usage of this technique. The panel was attached to an elastic strap and was 

glued by a small piece of panel behind as the support. The purpose of using elastic 

straps is for making sure that they will put pressure equally around the body surface 

such that it would not block the blood flow or causes any discomfort to the participant, 

while fixes the panel firmly to reduce the noise due to body movements. Moreover, 

the elastic bands are adjustable for different body parts and sizes. After the preparation 

of these markers, they will be attached to locations of interest in order to be detected 

on the image and thus 6 DF information about the targeted joints can be calculated 

accordingly.  

3.2 Camera Preparation 

A smart phone video camera capable of recording videos with pixel resolution of up 

to 4000×3000 at 24 Frames Per Second (FPS) or up to 1920×1080 at 120 FPS, physical 

sensor size of 51×68 mm, and the focal length of 3.99 mm, is used for this study. 

However, each camera has its own specifications which for the accuracy of the results 
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must be taken into account. These specifications are mainly the focal length of the lens, 

the amount of distortion due to curvature of the camera lens, resolution, frame rate, 

aperture, shutter speed and International Organization for Standardization (ISO) value. 

ISO is the shortened term of ISO 5800:1987 commonly used to mention the sensitivity 

of the camera sensor to the light coming through the lens ("ISO 5800:1987(en) 

Photography — Colour negative films for still photography — Determination of ISO 

speed.," 2016; Thai, Cogranne, & Retraint, 2013). 

There are three variables which are controlling the amount of exposure to the sensor 

of the camera. Shutter speed, ISO value, and the aperture can control the amount of 

light hitting the sensor of the camera. Other than the exposure, each one of these factors 

play an important role in the checkerboard detection and the precision at which the 

corner points will be detected. 

In order to estimate the 3D location an orientation of an object using PnP problem, 

given the projected points on a 2D image, relevant cloud points with correct scales 

need to be presented in 3D space. This cloud points are called world points (Li, Xu, & 

Xie, 2012). For the first two specifications, MATLAB version 2018b software includes 

an application which not only calculates the focal length of the camera and distortion 

using a checkerboard pattern, but also is able to generate world point cloud of 

checkerboard corners in 3D space given the size of the checkerboard squares(Fu, 2004; 

Heikkila & Silven, 1997; MATLAB, 2017; Scaramuzza et al., 2006; Urban, Leitloff, 

& Hinz, 2015). 

Shutter speed which controls the amount of time the sensor is exposed to the scene per 

each frame can limit the amount of time the camera receives light. The higher the value 
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of the shutter speed, the darker the image gets. Depending on the light available in the 

scene, the shutter speed will be adjusted to set the correct exposure of the frame. 

Although low shutter speed can make an image brighter, while the shutter is open in 

front of the sensor, any motion happening can cause a blurry image being captured for 

the frame which is called motion blur. To demonstrate the effect of motion blur in an 

example, figure 3 is provided.  

 
Figure 3: Sharpness of the Frames with Different Shutter Speeds 

In figure 3, a checkerboard was captured while having a horizontal motion in front of 

the camera sensor. In part (a), the camera shutter speed was set to one thirtieth of a 

second which means that the shutter of the camera was open for 3.3 milliseconds. This 

has caused the motion blur to be occurred in the capture frame. On the other hand, on 

part (b) the same movement was capture but with the shutter speed of one two 

hundredth of a second. With the faster shutter speed close to no motion blur was 

introduced while capturing the frame. Clearly, detecting the corner points in the part 



 

31 

(b) is more precise than part (a).  It should be mentioned that, for part (b) more intense 

lighting was used to capture the motion in order to have the same exposure of the 

checker board compared to part (a). 

Another factor that plays an important point in the precision of the corner point 

detection is the ISO value. ISO can be considered as an amplification of the signal sent 

from the camera sensor after receiving the light through the camera lens. Each pixel of 

the camera sensor sends an electricity current to demonstrate the amount of brightness 

of the relevant image pixel. Sometimes, due to low light condition, an amplification of 

the signal is required to capture the pixel exposure correctly. Hence, the higher the 

amplification or the ISO value, the brighter the image gets. However, increasing the 

ISO value introduces some artifacts named salt and pepper noise. In order to observe 

such artifacts, Figure 4 is demonstrated. 

In figure 4 part (a) the image was captured at ISO of 12800 while in part (b) the ISO 

was set to the lowest value of 100. As can be seen, there are many noises introduced 

to the image captured in part (a). These noises are produced as some image pixels 

representing the wrong value due to the amplification of the signal. In order to reduce 

the camera ISO value, more intense light is required to capture the image with the right 

exposure. 
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Figure 4: The Effect of ISO on Clarity 

Last but not least, aperture is the other factor affecting the exposure of the image. 

Aperture is a variable gate located in the camera lens and is capable of controlling the 

amount of light that passes through from the lens to the camera sensor. Usually, the 

mechanism consists of several blades that are arranged in a circular pattern to act as 

circular gate with variable diameter. Increasing and decreasing the diameter of the 

aperture increases and decreases the amount of light passing through the lens, 

respectively. However, the bigger the size of the aperture, the shallower the depth field 

gets. The depth of field is the depth at which the capture image is in focus. In order to 

demonstrate the effect of aperture in the focus depth of an image figure 5 is provided.  
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Figure 5: The Effect of Aperture on the Sharpness. 

According to figure 5, in part (a) the camera aperture is set at the widest position. As 

can be seen the area in focus is very narrow and some part of the checkerboard is out 

of focus. The out of focus area causes a gaussian blur in the image which makes it 

harder to located the correct corner points locations in the image. On the other hand, 

in part (b) the aperture is adjusted to a less wide position and as the matter of the fact 

more area of the image is captured in focus. 

All in all, higher shutter speed, lower ISO value, and closer aperture result in much 

sharper and cleaner frame being captured. However, to adjust all of these three settings 

to the desired values needs more intense light in the scene. Setting up this preparation 

for the camera might seem very time consuming, but nowadays consumer cameras are 
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adjusting these variables automatically based on the amount of light shining on the 

scene. Therefore, in order to have a good combination of these three factors, for the 

practical purposes of this set up, making sure enough light is available in the scene is 

important. 

Resolution represents, the number of pixels the camera sensor is recording as an image 

inside the frame. The higher the resolution the more details can be captured on each 

frame. On the other hand, image compressions and noisy art effects due to encoding 

in the video camera can reduce the accuracy. Higher resolution needs higher data 

processing in the camera and to compensate, the device will compress the image more 

aggressively. Thus, several resolutions for the above-mentioned experiment are 

considered in order to find their effects on the precision and accuracy of the results. 

3.3 Algorithm 

The developed algorithm includes 6 steps. After recording the video of the person of 

interest for the posture analysis, in the first step the video as well as information 

regarding the checkerboard specifications video camera, namely focal length, 

distortion and resolution, are inserted as variables in the algorithm.  

In the second step, video frames are recalled one by one for checkerboard detection. 

At the primary stage, in order to have more accurate measurement, built in MATLAB 

‘undistortImage’ function  is used on each frame (MATLAB, 2018b). Then after, the 

built in MATLAB ‘detectCheckerboardPoints’ function is utilized to check any 

checker board pattern in the frame (Geiger et al., 2012; MATLAB, 2018a). The 

function returns board size, rows and columns in which the corner points were 

detected. However, this function is design to find the best-chosen checkerboard pattern 
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in a frame. Therefore, when it comes to multiple checkerboards in one frame, the pixel 

range of corner points are masked out by setting the equivalent red, green, and blue 

pixel values to zero. Then after, again the “detectCheckerboardPoints” function is 

utilized to detect the next checkerboard. This process continues until all the expected 

checkerboards are detected.  

The placement and order of the detected checkerboards varies from frame to frame; 

therefore, in the third step, the algorithm matches the checker boards. For this purpose, 

first, the algorithm shows the first frame with marked detected checkerboards and asks 

the user to specify the checkerboards one by one using color codes. Then, the algorithm 

calculates the pixel distances between specified checkerboards in the first frame with 

the ones in the next frame and arrange the checkerboards in the second frame based on 

closest distance of pixels. This process continues until the last frame is matched.  

For the frames with less or no detection of checkerboards, the algorithm selects the 

previous and the next frames in which the checkerboards are detected and using linear 

interpolation on the coordinates of pixels in the frame, the algorithm fills out the 

missing corner points. 

In the fourth step, the algorithm calculates the 6 DF of every checkerboard in every 

frame using ‘extrinsics’ function (Hartley & Zisserman, 2003; MATLAB, 2013; 

Zhang, 2000). The function returns a 3 by 3 rotation matrix as well as a 1 by 3 

translation vector of the checkerboards given the image corner points, world points 

and camera parameters as inputs. The mathematical calculations regarding the 

extrinsics function are based on the PnP method. 
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Working with transformation matrices as the representer of 6 DF information may 

result in challenging conditions while rotating around the axes. One of the most 

common challenges is the Gimbal lock. The limitation happens when an object rotates 

around a certain axis by 90 degrees and loses one DF as the result of such action. In 

order to prevent the process from the gimbal lock complication, these transformation 

matrices will be converted to quaternion system using MATLAB ‘rotem2quat’ built-

in function (Bar-Itzhack, 2000). Not only the quaternions system overcomes the 

gimbal lock issue, but also reduces the complexity of calculations significantly. 

However, it should be mentioned that in the quaternion system, location presentation 

is not included and the mentioned system is only capable of representing the 

orientation. Hence, an array of three elements is assigned for each checkerboard to 

track the x, y and z values representing the location separately.  

In order to measure joint angles with the algorithm, relative angles are used for better 

presentation of orientation. For instance, as demonstrated in figure 6, in order to 

measure abduction, adduction, flexion and extension of the wrist joint, a marker plane 

is installed on the elbow above the wrist joint as the reference plane; and, another 

marker is placed on the posterior part of the hand as the active plane. Relative angle 

changes between the reference and active planes can represent the angles of abduction, 

adduction, flexion and extension. 



 

37 

 
Figure 6: Active and Reference Planes for Wrist Joint Orientation 

Quaternions and cartesian locations recorded in the previous step have the basis of the 

camera. To measure the relative orientation of the active plane, the basis should be 

change from the camera point of view to the reference plane. For better illustration see 

figure 7. For changing the basis from the camera point to the reference plane equation 

7, is applied in the algorithm. 

 
Figure 7: Change of Basis from Camera Lens (a) to Reference Plane (b) 

1

new Reference ActiveQ Q Q−=    (7) 
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Where 
newQ is a one by four matrix representing quaternion numbers of the plane in the 

new basis. 
1

referenceQ−
 is the inverse matrix of one by four matrix representing quaternion 

numbers of the reference plane, and 
ActiveQ is the one by four matrix representing 

quaternion numbers of the reference plane.  

In the fifth step, with the help of the user, the algorithm applies zeroing technique to 

compensate the offset angles of planes for further analysis. For this purpose, at the 

beginning of recording video the participants were asked to be in the rest position 

where the orientations should be considered at their zero value. The algorithm asks the 

user to enter the rest or default angle of joints in order to compare them with the first 

frame of the video. In case of any offset from the entered value, the algorithm considers 

the difference as an offset value and adjust the rest of the measurements accordingly. 

In the last step, since reading quaternion values are difficult, the algorithm converts 

these values to Euclidean angles and cartesian coordinates. Moreover, for 

demonstration of the process, a subplot is provided where the orientation values are 

illustrated as a line chart as well as the recorded video with detected checkerboards 

and a 3D simulated space of the movement. For better understanding of the algorithm 

a detailed flow chart is provided in Appendix A. Moreover, the following is 

pseudocode of the developed algorithm: 

1. Begin 

2. Input camera calibration parameters as variable cam 

3. Input the video file as variable vid 

4. Save the total number of video frames from vid as variable n 

5. Input the total number of checkerboards in each frame as variable numOfCB 
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6. Save the world points 3D coordinates from the cam into variable wP 

7. Input the number of rows and columns to be detected in variable bSize 

8. Set i = 1 as the loop counter 

9. Initialize cell variable bPs  

10. While i <= n, repeat steps 10 to 22 

11. Save frame i from vid as variable f 

12. Make frame undistorted using cam and save into variable im 

13. Set j = 1 

14. If j > numOfCB go to step 22 

15. Save the pixel point values from detected checkerboards of im into variable imP 

16. If imP = bSize, then go to step 16, elseif imP = 0, then set bPs(i, j) to Nan (Not a 

number) and go to step 22, else go to step 19 

17. Append imP into bPs(i, j) 

18. Save inner points in variable bP 

19. Set pixel values of im image to zero within the range of bPs 

20. j = j+1  

21. Go to step 14 

22. i = i+1 

23. Save frame 1 in f 

24. Put markers on f according to bPs(1, from 1 to numOfCB) pixel locations 

25. Display f and the markers 

26. i = 1 

27. Initialize cell variable name 

28. If i > numOfCB, then go to step 34, else, 

29.  Output “Name checkerboard I” 
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30. Input the user respond into name(i, 1) 

31. Output “Click on the” + name(i, 1) + “checkerboard” 

32. Input the mouse click x, and y coordinates intro name(i, from 2 to 3) 

33. i = i+1 and go to step 28 

34. Calculate the centroid of the image points for each checkerboard in each frame  

35. Set i = 2 

36. If i > n, then go to step 40 

37. Calculate Euclidian distances between each checkerboard location at frame i and 

frame i -1 and save the values in oBPs 

38. Reorder checkerboards based on the minimum calculated distances in oBPS 

39. i = i+1 and go to step 36 

40. set i = 1 

41. If i > n, then go to step 47  

42. Set j = 1 

43. If j > numOfCB, then i = i+1 and go to step 41 

44. Save rotation and translation matrices from oBPs(i, j) into rotM and trM variables 

using wP, cam variables and extrinsics built-in function 

45. Save the quaternion transform of rotMat into cell variable Quats(i, j) 

46. j = j+1 and go to step 43  

47. Change the basis from center of the camera to the reference checkerboard 

48. Create multi-layer output variable matrix of n by 6 by numOfCB 

49. Transform quaternion values to x, y, and z Euler angles and save as variable Angles 

50. Set variable dif as [0, 0, 0] – trM of reference checkerboard 

51. Save trM+dif into variable newTrMs 
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52. Append newTrMs in outPut multi-layer matrix variable columns 1 to 3 and append 

relevant Euler angels in columns 4 to 6, each layer of the matrix variable 

representing a checkerboard 

53. Output as Comma Separated Values (.csv) 

54. Export a video with 3D simulation of checkerboards, the video it self and x y z line 

chart in a subplot environment 

55. End 

3.4 Reliability Test Experiment 

To analyze the precision of the algorithm measurements many dependent and 

independent factors are involved. Therefore, in this study an experiment is designed to 

analyze the algorithm performance. 

This experiment investigates the effect of combination of corner points with different 

square sizes of the checkerboards and video resolution, on the precision of 3D 

locations and orientations. The experiment has three independent factors and two 

dependent factors. Table 1 demonstrates types of independent variables with their 

levels of treatments. In order to select the potential combination of the corner points 

for the experiment, the size limitation of the markers has been considered to be less 

than or equal to 6×7 cm in order for the markers to be usable for smaller body parts 

such as forehead or posterior part of the hand for posture tracking. Moreover, the 

combinations were considered as odd number in one direction and even number on the 

second direction in order to keep the markers asymmetry as explained in section 2.1. 

Furthermore, the selected frame resolutions were based on the current smart phone 

camera capabilities in order to avoid involving professional camera equipment as a 

necessity for utilizing this algorithm. It should be mentioned that the aspect ratios of 
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selected resolution are set to 4×3 rather than 16×9 in order to capture more information 

on each frame and have a wider angle of view. 

Table 1: Representation of Experiment 

Variable Type Treatment level 

Corner points Categorical 

Pattern: 3×4, Square side size of: 8 (mm) 

Pattern: 4×5, Square side size of: 8 (mm) 

Pattern: 5×6, Square side size of: 8 (mm) 

Pattern: 3×4, Square side size of: 10 (mm) 

Pattern: 4×5, Square side size of: 10 (mm) 

Pattern: 5×6, Square side size of: 10 (mm) 

Pattern: 3×4, Square side size of: 12 (mm) 

Pattern: 4×5, Square side size of: 12 (mm) 

Resolution (Pixels) Categorical 

1920×1440 

2560×1920 

3200×2400 

4000×3000 

Axes Categorical 

x axis 

y axis 

z axis 

To run the experiment, a 60×60 cm2 platform is designed to contain 25 checkerboards 

in different locations and orientations. This platform is located in front of a camera at 

the distance of 110 cm and the video is recorded at 24 frames per seconds for every 

combination of independent variables. Videos are recorded for 4 to 5 seconds in every 

test run in order to collect approximately 100 measurements of 6 DF for each 

checkerboard. It should be mentioned that, each video frame is one instance of 

measurement for 6 DF of each checkerboard. The videos are recorded indoor, placed 

close to windows to utilize enough exposure from sunlight. In order to minimize the 

error due to camera shakes, the camera is installed on a tripod and remotely controlled 

for collecting videos. The recorded videos are analyzed by the algorithm and 

respective data regarding orientations and locations of the checkerboards are gathered.  
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Figure 8 illustrates the design of the platform. The checkerboards are marked from A1 

to E5. Table 2 represents the 6 DF true values measured by ruler and protractor. 

 
Figure 8: Designed Platform for the Experiment 

For testing the precision of the measurement as the dependent variable, the Standard 

Deviations (SDs) of approximately 100 data points of 6 DF of each checkerboard in 

each video are calculated. The measurements during the 4 to 5 second video recording 

are supposed to be constant given the fact that in every video, both camera and the 

checkerboards are at the same position during the recording. Therefore, in order to find 

the measurement variations from the true value, the SDs of the mentioned 100 data 

points of 3D locations and orientations, are selected as the factor showing the precision 

of the algorithm measurements.  
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Table 2: Relative Orientation and Location of Each Checkerboard 
Plane x (mm) y (mm) z (mm) x° y° z° 

A1 -220 220 76 0 50 0 
B1 -110 220 76 0 30 0 

C1 0 220 76 0 10 0 

D1 110 220 76 0 -10 0 
E1 220 220 76 0 -30 0 

A2 -220 110 76 0 -50 0 

B2 -110 110 76 50 0 0 
C2 0 110 76 30 0 0 

D2 110 110 76 -10 0 0 

E2 220 110 76 10 0 0 
A3 -220 0 0 0 0 60 

B3 -110 0 0 0 0 0 

C3 (Reference) 0 0 0 0 0 0 

D3 110 0 76 -50 0 0 

E3 220 0 76 -30 0 0 

A4 -220 -110 0 0 0 360 
B4 -110 -110 0 0 0 300 

C4 0 -110 0 0 0 240 

D4 110 -110 0 0 0 180 
E4 220 -110 0 0 0 120 

A5 -220 -220 110 0 0 0 
B5 -110 -220 160 0 0 0 

C5 0 -220 210 0 0 0 

D5 110 -220 260 0 0 0 
E5 220 -220 310 0 0 0 

Regarding the statistical test, the distributions of the dependent variables are analyzed 

and accordingly, Kruskal-Wallis statistical tests applied. It should be mentioned that 

even though the measurement were done on the same platform after each video at least 

one of the treatment levels of the independent factors namely resolution of the video 

or pattern of the checkerboards which are mentioned Table 1 is changed in order to 

make the measurements data independent from each other. The following hypotheses 

are assumed for the statistical analyses. 

• H1: The corner points pattern of checkerboards significantly affects the precision 

of orientation measurement. 

• H2: The corner points pattern of checkerboards significantly affects the precision 

of location measurement. 

• H3: The video resolution significantly affects the precision of orientation 

measurement. 
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• H4: The video resolution significantly affects the precision of location 

measurement. 

• H5: The axes significantly affect the precision of orientation measurements. 

• H6: The axes significantly affect the precision of location measurements. 

Related to the first 2 hypotheses, the corner points pattern of checkerboards is 

considered as the number of rows and columns of inner points of the checkerboard and 

the distance of the points from each other in the video frame as mentioned in Table 1. 

It is hypothesized that the greater the number of inner points and the further the 

distance of them from each other provides a more precise 3D representation of 

checkerboard locations and orientations. Moreover, related with the third and fourth 

hypotheses, it is anticipated that higher resolution of video could results in a more 

precise location of the detected inner points and consequently more precise results for 

3D representation. Regarding the last two hypotheses, it is conjectured that the 

measurement precision might differ in z axis as shown in figure 7. To be more specific, 

since the z axis represents the location depth of a 2D image, lower precision is expected 

compare to x and y axes. On the other hand, since rotation around z axis can have the 

range of 360 degrees as demonstrated in figure 2, it is anticipated that the rotation 

around this axis will be more precise than x and y. 

3.5 Validation of the Algorithm 

To validate the utilization of the algorithm for the purpose of real-life posture analysis, 

an experiment is selected based on the study conducted by Roby-Brami et al. (2020). 

In their study, they used EMT device to compare head and trunk orientation during 

pointing and looking at an object. For this purpose, they provided 8 evenly distributed 

targets along the circumference of a circle with the radius of 32 cm. Targets were 
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placed at 95 cm distance from 10 participants. Then participants were asked to both 

point at and look at each of the targets in 3 blocks of nine movements, in random 

orders. Thus, 27 movement of pointing and 27 movements of looking was recorded 

from each participant using four electromagnetic sensors. 

In order to conduct the same experiment for the purpose of validation, similar target 

board was created. Ten participants aged between 29 and 38 volunteered to partake in 

the experiment similar to the mentioned study. One checkerboard was attached to the 

forehead, one attached to the skin over the manubrium and one was attached separately 

on a surface in front of the participant as the reference board.  

The ethical approval was granted to the study by Ethic Board of Engineering at Eastern 

Mediterranean University for the protection of the individuals participating in the 

experiment (Ref. No. ETK00-2021-0063 date 26.03.2021). All participants provided 

informed consent form prior to the experiment. 

A camera was fixed on a tripod in front of the participants and align to put all the three 

checkerboard markers in the frame. Since the reference study set the frequency of data 

gathering at 30 Hz, in this study the camera was set to 30 frames per second. Prior to 

the experiment, camera was calibrated using one of the checkerboard markers 

according to section 2.2. 

After attaching the checkerboard markers, participants were asked to algin their feet, 

at the malleoli, to a marked line 95 cm away from the target board. Then, based on the 

height of each individual, the height of the target board was adjusted in order to keep 

the center of target board in the line of sight at upright standing position. In order to 
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keep the content within the scope of the study and fulfill the objective of the 

experiment, in this study only looking at the target was included in the experiment. 

Therefore, while recording with the camera, the participants were asked to look at the 

center at the beginning of the experiment and after the completion of each block for 

the purpose of zeroing. Participants, looked at 9 random targets, instructed by the 

experimenter, and repeat the task for three blocks in total, similar to the reference 

study.  

In order to measure the head orientation along the three axes, after zeroing and aligning 

the axes of chest and head checkerboards to the reference board, basis was changed 

from the center of the camera lens to the checkerboard attached to the chest using 

equation 1. Relative head checkerboard orientations along x, y and z axes were 

assigned to Anteroposterior tilt, Axial rotation and Lateral tilt, respectively. In order 

to compare the data gathered from this study with the reference study, average 

difference of x, y and z angles, recorded by the developed algorithm and the data 

presented in the study was calculated. Additionally, one sample T-test was used to 

check whether there is a significant difference between the data recorded by the 

developed algorithm and the data recorded in the reference study.  
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Chapter 4 

4 RESULTS  

After developing the algorithm, in order to test it, two checkerboards are installed 

according to the fourth step in the methodology section. A video was recorded while 

a participant applied flexion, extension, abduction and adduction on his wrist. Relative 

angles were calculated using the algorithm and a synchronized version of the action 

(top right), 3D simulated spaces (Top Left) and joint relative angles (Bottom) was 

exported and is shown in the exported video provided in figure 9. 

 
Figure 9: Algorithm Results for Measuring Wrist Angle Joints 

The video taken from the action is shown in the figure 9, at the top right section. 

Detected corner points which are marked with green color demonstrates the active 

plane and detected corner points were marked with red color represent the reference 

plane. In the top left section, a 3D environment related to the movements of the planes 
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simulated. The green checkerboard represents the active plane and the red 

checkerboard represents the reference plane. In the bottom section of the figure, 

Euclidian angles measured between to checker boards which represent the angles of 

the wrist joint are illustrated as a line graph. In the mentioned graph, red line shows 

the angle of x axis on the basis of the reference plane which is equivalent angle of wrist 

extension if the x value is positive or wrist flexion if the x value is negative. Similarly, 

the blue color shows the angle of z axis on the basis of the reference plane which is 

equivalent angle of wrist adduction if z value is positive or wrist abduction if the z 

value is negative. Likewise, the green color represents the pronation and supination 

angles. It should be mentioned that considering the checkerboard set up of the figure 

the algorithm is incapable of measuring any pronation or supination in the wrist joint 

as such actions is generated from Ulna and Radius bones in the lower arm region. In 

order to measure any pronation or supination, another checkerboard needs to be 

installed above the elbow for the necessary measurements. Finally, at the time instance 

which the frame of figure 4 is captured, the participant is returning to the rest position 

from an extension action on the rest and in the line chart, the graph shows a close to 

40-degree angle for the x value.  

Regarding the performance analysis, 32 videos were taken from each combination of 

resolutions and corner points pattern. According to table 1 in the Methodology chapter 

there are 8 corner point patterns and 4 video resolution. At every run of the experiment 

the checkerboards of one corner point pattern were attached to the platform and for 

each of the patterns 4 videos were taken each at different resolution. Thus, totally 32 

videos were taken from each combination of the mentioned independent factors. The 

duration of each video was between 4 and 5 seconds at 25 FPS. Both camera and the 
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checkerboards were fixed at the distance of 1 meter apart from each other. The 

difference between measured orientation and location of the checkerboards and the 

expected distances from table 2 was calculated. Then to find the precision of the 

algorithm, SD of each checkerboard was calculated for 6 DoF in each video.  

Three independent variables with eight, four and three different levels of treatments 

plus 24 measurements (25 checkerboards as shown in figure 8 minus checker board 

C3 which was considered as the reference and basis) of each combination as 

replications gave us 4800 data for statistical analyses. For the necessary statistical 

analyses, this study used the SPSS software of version 22.0. In order to investigate the 

distribution of the mentioned data, the histogram of the data (see figure 10) as well as 

Q-Q plots (see figure 11) are illustrated for location precision in mm. Moreover, figure 

12 and 13 present the histogram and Q-Q plot of the orientation precision in degrees, 

respectively. 

 
Figure 10: Histogram of Location Precision Distribution 
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According to the histogram provided in figure 10, the distribution of the location data 

is highly skewed to the right while the frequency of the data picking at a value close 

to zero. This is due to the fact that the SD of each measurement was considered as the 

precision value which cannot result in any negative value. 

 
Figure 11: Normal Q-Q Plot for Location Precision Distribution 

In figure 11, normal Q-Q plot of the same data is presented. This figure is provided to 

present the values at extreme in a clearer illustration as well as investigating the 

possibility of the data presenting a logarithmic normal distribution. According to this 

figure, a significant divergence of the data is observable in comparison with an 

expected 45° reference normal line. 
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Figure 12: Histogram of Orientation Precision Distribution 

Figure 12 present the distribution of the SD of the orientation measurement from the 

true value. Similar to Figure 10, the distribution is highly skewed to the right with the 

a few extreme values beyond 10° on the right side. 

 
Figure 13: Normal Q-Q Plot for Orientation Precision Distribution 

Because, the extreme values are not presented clearly on figure 12, figure 13 is 

provided. The figure presents the normal Q-Q plot of the calculated orientation SDs. 

Similar to figure 11, the measured data is not following the 45° reference line. 
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As mentioned, the gathered data is describing precision and it is highly skewed to the 

right, a log normal distribution pattern is been expected. Therefore, the logarithmic 

values of the data were calculated and once more histograms and normal Q-Q plots are 

illustrated (see figures 14 to 17). 

 
Figure 14: Log Histogram of Location Precision Distribution 

Figure 14 presents the logarithmic values provided in figure 10. The base of the 

logarithm is set to the Euler’s number (e ≈ 2.718). Accordingly, this modification 

provides a histogram which closely follows the normal distribution. However, further 

statistical tests are provided later on this chapter which shows a significant difference 

between the normal distribution and the lognormal values. 
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Figure 15: Log Normal Q-Q Plot for Location Precision Distribution 

In figure 15, the normal Q-Q plot of the ln of the location data is illustrated. According 

to the figure, the data lies closely on the 45° reference line with less values at extreme. 

 
Figure 16: Log Histogram of Orientation Precision Distribution 

Similar to figure 14, figure 16 demonstrates the natural log of the orientation data. This 

modification brings the distribution curve closer to a normal distribution. However, in 

comparison with location data a left skew is observable in the histogram. 
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Figure 17: Log Normal Q-Q Plot for Orientation Precision Distribution 

Figure 17, represents the normal Q-Q plot of the ln of orientation data. Less values at 

extreme are observable in this figure. However, the data values do not completely lie 

on the 45° reference line and the end tail of the data at the top right of the figure show 

a divergence towards left. 

Even though the distribution patterns got closer to normal distribution, the 

Kolmogorov-Smirnov and Shapiro-Wilk tests of normality both had the p < 0.005 with 

test statistics 0.036 (location), 0.102 (orientation) and 0.0995 (location), 0.0690 

(orientation), respectively. Thus, for statistical analyses, non-parametric independent-

samples Kruskal-Wallis test was applied (see table 3). It should be mentioned that the 

selected test is incapable of measuring significant intersection between factors. 

However detailed pair comparison of each level is provided in tables 4, 5, and 6 for 

corner point pattern, resolution, and axes factors respectively. Furthermore, for 

demonstrating the significant effect of each level of treatment, box plot of corner point 

pattern, resolution, and axes factors are provided on figures 18, 19, and 20, 

respectively. 
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Table 3: Independent-Samples Kruskal-Wallis Test Result 
Hypothesis Test p Independent factor Dependent factor 

H1 <0.001 Corner points pattern Orientation precision 

H2 <0.001 Corner points pattern Location precision 

H3 0.005 Video Resolution Orientation precision 

H4 0.112 Video Resolution Location precision 

H5 <0.001 Axes Orientation precision 

H6 <0.001 Axes Location precision 

According to table 3, and considering the type I error of 0.01 percent, except H4 which 

tests the significant effect of video resolution on the location precision, all other 

independent factors significantly affect the precision of both location and orientation. 

Table 4: Pair Comparison Test for Corner Pattern 

Comparison 
Location Orientation 

Test statistic p-value Test statistic p-value 

3×4-08mm vs 3×4-10mm 68.16 0.209 204.44 >0.001 

3×4-08mm vs 3×4-12mm 315.46 >0.001 641.13 >0.001 
3×4-08mm vs 4×5-08mm 252.4 >0.001 303.53 >0.001 

3×4-08mm vs 4×5-10mm 341.9 >0.001 691.78 >0.001 

3×4-08mm vs 4×5-12mm 442.98 >0.001 817.96 >0.001 
3×4-08mm vs 5×6-08mm 300.85 >0.001 654.13 >0.001 

3×4-08mm vs 5×6-10mm 680 >0.001 1180.25 >0.001 

3×4-10mm vs 3×4-12mm 247.3 >0.001 436.69 >0.001 
3×4-10mm vs 4×5-08mm 184.24 0.001 99.09 0.068 

3×4-10mm vs 4×5-10mm 273.74 >0.001 487.33 >0.001 

3×4-10mm vs 4×5-12mm 374.81 >0.001 613.51 >0.001 
3×4-10mm vs 5×6-08mm 232.69 >0.001 449.69 >0.001 

3×4-10mm vs 5×6-10mm 611.84 >0.001 975.8 >0.001 

3×4-12mm vs 4×5-08mm -63.05 0.245 337.6 >0.001 

3×4-12mm vs 4×5-10mm 26.44 0.626 50.65 >0.001 
3×4-12mm vs 4×5-12mm 127.52 0.019 176.83 0.001 

3×4-12mm vs 5×6-08mm -14.61 0.788 539.12 >0.001 

3×4-12mm vs 5×6-10mm 364.55 >0.001 539.12 >0.001 

4×5-08mm vs 4×5-10mm 89.5 0.099 388.25 >0.001 

4×5-08mm vs 4×5-12mm 190.57 >0.001 514.42 >0.001 

4×5-08mm vs 5×6-08mm 48.44 0.372 350.6 >0.001 
4×5-08mm vs 5×6-10mm 427.6 >0.001 876.71 >0.001 

4×5-10mm vs 4×5-12mm 101.08 0.063 126.18 0.02 

4×5-10mm vs 5×6-08mm -41.05 0.449 37.65 0.488 

4×5-10mm vs 5×6-10mm 338.11 >0.001 488.47 >0.001 

4×5-12mm vs 5×6-08mm -142.13 0.009 163.83 0.003 

4×5-12mm vs 5×6-10mm 237.03 >0.001 362.29 >0.001 

5×6-08mm vs 5×6-10mm 379.16 >0.001 526.12 >0.001 

Table 4, presents the pair comparison of different levels of corner point patterns. 

Accordingly, the p values less than 0.01 points out that there is a significant difference 

between the selected two levels. Negative values of the test statistic column in this 
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table demonstrate higher precision of the left primary level in comparison with the 

secondary level (referring to the first column of the table). 

Table 5: Pair Comparison for Resolution 

Comparison 
Orientation 

Test statistic p-value 

1920×1440 vs 2560×1920 45.71 0.234 

1920×1440 vs 3200×2400 47.39 0.217 

1920×1440 vs 4000×3000 68.86 0.073 

2560×1920 vs 3200×2400 1.67 0.965 
2560×1920 vs 4000×3000 114.58 0.003 

3200×2400 vs 4000×3000 116.25 0.002 

Same as table 4, table 5 shows the pair comparison result of the resolution factor for 

orientation. No pair comparison is provided for location in this table since there is no 

significant difference between the levels. However, in location significant differences 

are shown for 2560×1920, and 3200×2400 resolutions, in comparison with 4000×3000 

resolution. Given the fact that the negative values were observed in the test statistic 

column for the mentioned levels, less precise orientation data are measured with 

4000×3000 resolution. 

Table 6: Pair Comparison for Axes 

Comparison 
Location Orientation 

Test statistic p-value Test statistic p-value 

x vs y 67.51 0.042 154.23 >0.001 

x vs z 932.41 >0.001 1011.52 >0.001 
y vs z 864.90 >0.001 857.29 >0.001 

Lastly, table 6 shows the pair comparison result of the axes factor on both locations 

and orientations. According to this figure, z-axis significantly effects the precision of 

both location and orientation measurements. For location measurement, the positive 

values present a more precise measurement when comparing x-axis and y-axis to the 

z axis while opposite results are presented regarding the orientation measurement. 
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Additionally, significantly more precise orientation measurement is achieved on the x-

axis in comparison with the y-axis. 

 
Figure 18: Box Plot of Corner Point Pattern Factor 

In order to provide a better representation of the difference in corner point patterns, 

both location and orientation box plots are provided in figure 18 for each pattern. Based 

on the figure, the more rows and columns in the pattern and the bigger the size of the 

squares the more precise measurement is achieved. It should be mentioned that the 

vertical axes units are increased logarithmic rather than linearly in order to provide a 

more readable figure. 
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Figure 19: Box Plot of Resolution Factor 

Figure 19, demonstrates the spread of data precision in different resolution level. Based 

on the figure as well as table 3, location precision does not significantly differ along 

different levels. However, significantly less precise measurement is observed on the 

orientation plot. Similar to figure 18 the horizontal axis follows a logarithmic 

distribution for better data presentation. 

 
Figure 20: Box Plot of Axes Factor 
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Lastly, box plot of location and orientation precision along different axes of the 

reference plane is provided in figure 20. Even though, more precise measurement was 

achieved along x and y axes compared to the z axes locations, contradictory results are 

shown for orientation precision.  

In order to measure the power of the test Operating Characteristic (OC) curve method 

was used. Given the fact that no intersection was statistically assessed, each of the 

three factors were considered as a single factor factorial experiment design. 

Accordingly, table 7 shows the related test power of each factor. It should be 

mentioned that for the calculation of the power, overall mean of the location and 

orientation precisions are 1.263mm, and -0.78044°, respectively. Moreover, overall 

variances of location and orientation precisions are 385.359 and 27.095, respectively. 

Apart from the none parametric statistical test, error of the data was calculated from 

the true values of the platform. In comparison with the precision data, the distribution 

of calculated error data is much closer to a normal distribution.  

In order to demonstrate the distribution of error values, the histograms of the data are 

illustrated in the appendices section. Thus, Appendix B, and C illustrate the histograms 

of error data based on different corner point patterns for location, and orientation, 

respectively. Furthermore, Appendix D shows the histogram data based on the 

resolutions factor. The left side shows the distribution of location error in mm and the 

right side shows the distribution of orientation error in degrees. Similarly, the 

Histograms of axes are provided in Appendix E. 
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Table 7: Test Power of the Factors 
Factor Level mean n Φ2     Φ a(n-1) β Power 

Corner point pattern         

For location 4x5-08mm -0.74 264 12.84 3.58 2104 <1% >99% 

 4x5-10mm 1.05 261 12.70 3.56 2080 <1% >99% 

 4x5-12mm 0.98 270 13.14 3.62 2152 <1% >99% 

 5x6-08mm -0.36 267 12.99 3.60 2128 <1% >99% 

 5x6-10mm 11.79 282 13.72 3.70 2248 <1% >99% 

 5x6-12mm -2.75 276 13.43 3.66 2200 <1% >99% 

 6x7-08mm -2.56 282 13.72 3.70 2248 <1% >99% 

 6x7-10mm 2.40 273 13.28 3.64 2176 <1% >99% 

For orientation 
4x5-08mm -2.15 264 20.03 4.48 2104 <1% >99% 

 4x5-10mm -2.07 261 19.80 4.45 2080 <1% >99% 

 4x5-12mm -1.79 270 20.48 4.53 2152 <1% >99% 

 5x6-08mm -1.07 267 20.26 4.50 2128 <1% >99% 

 5x6-10mm 2.31 282 21.40 4.63 2248 <1% >99% 

 5x6-12mm -0.36 276 20.94 4.58 2200 <1% >99% 

 6x7-08mm -1.66 282 21.40 4.63 2248 <1% >99% 

 6x7-10mm 0.35 273 20.71 4.55 2176 <1% >99% 

Resolution         
For location 1920x1440 1.04 531 0.05 0.23 2123 >99% <1% 

 2560x1920 0.97 549 0.05 0.23 2195 >99% <1% 

 3200x2400 1.37 546 0.05 0.23 2183 >99% <1% 
 4000x3000 1.66 549 0.05 0.23 2195 >99% <1% 

For orientation 
1920x1440 -0.93 531 0.11 0.34 2123 >99% <1% 

 2560x1920 -0.70 549 0.12 0.34 2195 >99% <1% 

 3200x2400 -0.66 546 0.12 0.34 2183 >99% <1% 
 4000x3000 -0.83 549 0.12 0.34 2195 >99% <1% 

Axes         

For location X -2.80 725 7.82 2.80 2172 3% 97% 

 Y 1.24 725 7.82 2.80 2172 3% 97% 
 Z 5.35 725 7.82 2.80 2172 3% 97% 

For Orientation 
X -0.83 725 12.79 3.58 2172 <1% >99% 

 Y -2.14 725 12.79 3.58 2172 <1% >99% 

 Z 0.63 725 12.79 3.58 2172 <1% >99% 

According to table 7, the power of the tests was calculated. Except the resolution 

factor, above 95% of power was observed for each factor. The necessary equations for 

the calculation of test power is provided in the book of Montgomery (2017). It should 

be mentioned that the power estimation requires the normality assumption to be held. 

However, due to the highly skewed distribution of the sample data the achieved power 

tests are not significantly reliable and needs further investigation. 

Regarding the validation experiment, all the data was analyzed with the developed 

algorithm. Head orientations were collected for each target from the frame which head 

reached the maximum rotation and stopped at target, to the frame which the head starts 
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moving towards the next target point. The average of x, y and z values were calculated 

in order to record the amount of Anteroposterior tilt, Axial rotation and Lateral tilt of 

each target in degrees. Figure 10 demonstrates the average data measured with the 

developed algorithm compare to the data measured with EMT device in the reference 

study. Finally, mean and SD of all the recorded targets was recorded and presented in 

Table 4, followed by the values presented in the reference study conducted by Roby-

Brami et al. (2020). Furthermore, in order to use one sample T-test for statistical 

analysis, the differences of mean values are provided on Table 4.  

 
Figure 21: Comparison between this Algorithm and the Reference Study 

Figure 21, demonstrate the comparison between the orientation measurement of the 

neck relative to chest collected using algorithm and the reference study (Roby-Brami 

et al., 2020). Even though very close measurements are observable in all orientation 

axes, slight divergence is observable in A/P tilt, and AR when it gets close to 20° of 

rotation. It should be mentioned that E, N, NE, NW, S, SE, SW, and W stand for East, 

North, North East, North West, South, South East, South West, and West directions, 

respectively. Furthermore, detailed values of mean and SD as well as the difference 
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between the measurement of the algorithm and the reference study is provided in Table 

4. The direction abbreviations in the table follow the same rule as figure 21. 

Table 8: Relative Head Orientation Compare to the Reference Study 
Method   E NE N NW W SE S SW 

This study A/P tilt Mean 1.1 15.8 19.3 13.6 -1.5 -12.9 -16.5 -12.3 
SD 1.4 4.7 5.7 4.5 2.4 2.2 2.1 2.5 

AR Mean -16.8 -10.8 3.9 17.8 22.7 16.9 2.8 -10.9 

SD 4.3 3.4 1.2 2.7 2.5 2.8 1.3 3.6 

Lateral tilt Mean 5.7 2.6 0.3 -4.4 -7.0 -5.1 0.7 5.2 
SD 3.9 1.4 0.9 4.4 6.0 3.8 1.0 3.7 

Reference Study A/P tilt Mean -0.7 10.2 16.6 9.0 -0.4 -8.8 -12.2 -8.2 

SD 1.6 1.4 1.3 1.2 1.6 2.3 2.4 2.2 

AR Mean -12.0 -4.6 2.8 12.5 19.7 14.9 4.1 -9.3 

SD 1.9 1.8 1.3 1.4 1.4 1.4 1.2 1.7 

Lateral tilt Mean 6.0 4.8 -1.6 -7.5 -8.3 -2.7 -0.2 1.7 

SD 1.0 1.1 0.7 1.0 8.3 1.0 0.7 0.8 

Difference A/P tilt Mean 1.8 5.6 2.7 4.6 -1.1 -4.1 -4.3 -4.1 
AR Mean -4.8 -6.2 1.1 5.3 3.0 2.0 -1.3 -1.6 

Lateral tilt Mean -0.3 -2.2 1.9 3.1 1.3 -2.4 0.9 3.5 

The calculated differences are inserted for all the three rotations to SPSS and 

statistically compared to the mean value of zero. According to the one sample T-test 

results, there are no evidences of significant differences between the data gathered 

using checkerboard and data demonstrated in the reference study. Accordingly, test 

results for Anteroposterior tilt (test value = 0.156, p = 0.880), Axial rotation (test value 

= -0.570, p = 0.584), and Lateral tilt (test value = 0.847, p = 0.421) are collected. 

In order to test the consistency and reliability of measurement between the 10 subjects, 

results of the measurements for each participant, at each marker, and in all three 

orientations of the neck was tested using Cronbach’s alpha. For the necessary 

calculations, Minitab software (version 20.4) was used. Accordingly, Table 9 

represents the Cronbach’s alpha calculated for this experiment. 

Table 9: Cronbach’s Alpha of Neck Orientation 
Orientation Cronbach’s Alpha 

A/P tilt 0.995 

AR 0.996 

Lateral Tilt 0.941 
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After conducting the validity experiment with 10 participants each at 3 blocks of 

random 8 directions 240 samples were collected for each orientation of the neck. In 

the following the necessary calculation of the sample size using Yamane’s method, 

and the power of the one sample T-test is provided. According to Islam (2018), for 

population size > 100000, and at the precision of ±10%, 100 samples are required. 

Furthermore, reducing the precision value to ±7%, ±5%, and ±3% would result on 

bigger sample sizes of 204, 400, and 1111 participants, respectively. Furthermore, in 

order to calculate the power of the one Sample T-test, Minitab software was used. 

Table 10 represents descriptive characteristics of the experiment measurements. 

Table 10: Data Descriptive 
Direction n Mean SD Standard Error 95% CI 

A/P tilt 10 0.20 3.81 1.27 (-2.73, 3.13) 

AR 10 -0.74 3.87 1.29 (-3.71, 2.24) 

Lateral tilt 10 0.23 1.01 0.34 (-0.54, 1.00) 

For the calculation of the test power, sample size and SDs for each orientation of neck 

was inserted into the software. According to Minitab (2021), the “Differences” 

argument required for power calculation of one sample T-test, defined as the smallest 

value of precision that has practical consequences. Hence, in order to provide a 

comprehensive information with regards to test power of the experiment, a range of 

Differences’ values are provided in table 11 with their respective power test.  

Table 11: Power of the One Sample T-test 

Orientation n SD 
Differences 

1° 2° 3° 4° 5° 

A/P tilt 10 3.81 0.11 0.31 0.60 0.84 0.96 

AR 10 3.87 0.11 0.31 0.59 0.83 0.95 

Lateral tilt 10 1.01 0.79 >0.99 >0.99 >0.99 >0.99 
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Chapter 5 

5 DISCUSSION   

Based on the findings provided in the Results chapter, the algorithm successfully 

measured 6 DF information of every checkerboard in the video frame. Attaching 

checkerboards to the human body in different setup combinations gives the algorithm 

the advantage of providing detailed information about different body segment 

orientations. Moreover, in comparison with traditional methods such as REBA and 

RULA, rather than assessing human position based on the most awkward or static 

posture, the algorithm is capable of providing objective values continuously with high 

precision (Hignett & McAtamney, 2000; McAtamney & Corlett, 1993; Namwongsa 

et al., 2018). 

According to the result of the precision experiment, overall, the algorithm can measure 

the 3D location with 19.19 mm precision and the 3D orientation with 5.10° precision. 

The precision values are calculated based on the standard deviation of the total 

experiment without considering the effect of the independent factors. Considering the 

best outcome of the experiment, where the checkerboard pattern is set to 6×7-10mm, 

the data get significantly more precise to the values of 15.88mm for location and 2.88° 

for orientation. Since the algorithm includes a zeroing step for initialization of the 

posture tracking, any value assigned to it will be considered as the true value of the 

checkerboards’ location and orientations. Therefore, the precision could be a good 

indicator of the measurement accuracy as well. In comparison with the EMT device in 
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Balaraman et al. (2018) study, lower accuracy was achieved. Furthermore, the 

precision of state-of-the-art EMT devices is presented by Root Mean Square values. 

In order to provide the equivalent values, the study conducted by Suzuki et al. (2019) 

used FASTRACK EMTs and according to the data provided by the company, the static 

precision of the mentioned device is 0.76mm Root Mean Square Error (RMSE) in 

location and 0.15° RMSE in orientation (Polhemus, 2022). Overall RMSE of the 

proposed algorithm is 9.87mm in location and 3.15° in orientation. Considering the 

best checkerboard pattern, RMSE of 7.07 for location and 2.06 for orientation are 

achieved. 

Compared to the EMT trackers, less precise information is expected from the 

algorithm. However, less hardware dependency and cost-effectiveness of this 

algorithm can make it useful for many non-clinical ergonomics studies as well as real-

life applications in both industrial and computer workstation posture analysis. 

Both location and orientation precisions can be affected significantly by the pattern of 

the checkerboards (p < 0.005). Accordingly, the more the number of rows and columns 

and the bigger the size of the squares, the higher precision is expected in the 

measurements. But the size of the checkerboards is limited to the location of 

attachment and type of the task. Histograms of measurement errors provided in the 

appendix section of this study also demonstrate much detailed information about the 

factors which are affecting the consistency of the measurement. In order to be more 

specific, in appendix B which is related to the distribution of the location error from 

the true value, a higher number of corner points present more reliability in the 

measurement of the constant objects. Moreover, the higher number of corner points 

reduces the chance of extreme outlier values. For instance, comparing 4×5-08mm with 
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6×7-08mm checkerboard patterns, it is clear that the latter corner point pattern shows 

a more precise measurement for location. Similarly, more spread data points are 

observable for the lower number of corner points in the orientation measurement 

histograms of appendix C. Another factor that shows to some extent a positive 

contribution to the precision of both location and orientation is the size of the squares 

of the checkerboard pattern. Based on appendices B and C, the bigger the size of the 

checkerboard squares the more precise measurement is expected. A similar result can 

be observed on the box plot provided in figure 18. 

Even though the corner point pattern factor played a significant role in the precision 

of the measurement, the resolution factor shows a more randomized outcome in this 

study (see appendix D, and Figure 19). As supporting evidence, the Kruskal-Wallis 

test shows an insignificant difference between the data distribution based on the 

resolution in location precision. Significantly less reliable measurements are 

observable in the precision orientation measurement at 4000×3000 resolution (p = 

0.112). No rational or clear reasoning is available for such abnormality related to this 

spike but it is suspected that heavy data compression applied to the video frames inside 

the video camera caused the lower precision at this frame resolution. This yet is not 

supported by any data and more investigation is required for any definitive conclusion. 

Generally, with the current setup of the experiment, it is recommended to select a lower 

chosen resolution since it has a limited effect on the precision of the measurement and 

it takes less computation time to detect the checkerboards per frame. 

In addition to the pattern and the resolution, axes measurement precisions differed 

significantly in both orientation and location. As illustrated in Figure 20 and Appendix 

E the algorithm measured the x and y axes' location significantly more precise than the 
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z-axis (p < 0.005). Based on the reference plane setup, this axis is pointed towards the 

camera direction, providing information regarding the depth of the 2D image. To be 

more specific, the reference checkerboard in the experiment was positioned in front of 

the camera and the z-axis of the camera and reference plane were parallel. On the 

contrary, the z-axis was found to be the most precise one in orientation measurements. 

According to the methodology chapter, during the selection process of the corner point 

patterns, the asymmetricity of the pattern was taken into account and according to the 

finding of the precision experiment, the algorithm successfully was capable of 

measuring 360 degrees of orientation in the z-axis with high precision. 

As mentioned in the second chapter of this thesis, other alternative methods have been 

utilized to continuously track human posture in the literature. Therefore, in the 

following necessary comparison between the proposed algorithm and such alternatives 

are provided. 

One of the methods to continuously track the body posture is to use digital or electronic 

inclinometers (Afshari et al., 2014; Palm, 2017; Paquet, Punnett, & Buchholz, 2001). 

While such devices are capable of providing accurate measurement of the body joint 

angles, attachment and assessment of the data are challenging (Palm, 2017). Moreover, 

each inclinometer is capable of providing from 1 to 3 DF information with regards to 

orientation only. Not to mention the high cost of purchasing such devices, the proposed 

method of this study is capable of providing extra information regarding the 3D 

location of its markers, and there is no need for cable routing in the subjects’ body. 

However, it should be mentioned that the digital inclinometers are capable of 

providing more accurate orientation measurements.  
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The second option for continuous posture analysis is the Computer-assisted Recording 

and Long-term Analysis of Musculoskeletal Loads (CUELA) measuring systems 

(Ellegast, Hermanns, & Schiefer, 2009). This wearable device not only is capable of 

capturing 3D motion of the trunk, but also can detect the heavy workloads lifted by 

the individuals using pressure sensors located at the bottom of their feet. All the data 

is logged inside the memory card and after the action is transferred to a computer for 

further analysis. CUELA is suitable for continuously tracking the motion of the subject 

especially in the trunk and lower extremity areas. However, it cannot provide sufficient 

information about majority of joints located in upper extremity region, namely 

shoulders, arms, wrists, and neck. Even though, both CUELA measurement systems 

and the proposed algorithm can provide useful information with regards to continuous 

posture tracking, each provide different types of information that cannot be directly 

compared. No information regarding the weight of an object can be provided by the 

proposed algorithm while CUELA is capable of providing accurate information in this 

regard using pressure sensors (Ellegast et al., 2009). On the other hand, CUELA lacks 

the necessary information about the axis of rotation of the joints and can only provide 

a single angle of rotation.  

Another alternative to continuously track human body posture is to use the Body Area 

Network system. While such devices are capable of providing accurate representation 

of the human body, the focus of their application is on the entertainment industry and 

human body gesture simulation. There have been several studies utilizing these 

wireless sensors for posture tracking and posture analysis in the field of ergonomics 

(Dong et al., 2015; Sivanathan, 2014; Valero et al., 2017). One of the benefits of this 

method is the small sized tracking markers that can be attached on body parts with low 
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surface for installments. Small tracking markers are mainly used for capturing facial 

expression of a person in details. However, one of the useful applications of these 

sensor in the field of ergonomics is to track the small body parts such as fingers. 

Although such small sensor and fast calculation of 3D position of each tracker, thanks 

to triangulation technique, gives this technique an edge compared to the developed 

algorithm, the method requires multiple cameras and can only represent the 3D 

location of the markers and no information about the orientation. The latter drawback 

consequently can only represent a single angle of orientation on the body joints which 

may not be sufficient in particular cases. 

   

 

One more marker-less and affordable alternative which, is used in several studies, is 

the Microsoft Kinect device  (   Abobakr et al., 2017; Han et al., 2013; Khosrowpour

et al., 2014). Similar to the Body Network Area method, this device and similar RGB- 

D devices are only capable of showing a single angle of orientation for the joint. Also, 

although affordable, such devices require specific camera equipment to be purchase 

while,  the  developed algorithm  can  use  cell  phone  camera  as  the  main  source  of 

measurement. 

Last but not least, EMTs are capable of providing 6 DF information similar to the 

developed algorithm faster, with more resolution in terms of data per second, more 

accurately, and more precisely (Cerrito et al., 2018; Kellermeier et al., 2017). But, the 

cost of using this method in comparison with the proposed algorithm is significantly 

higher. Generally, the cost factor is an important indicator of the advantage of the 

proposed algorithm which can open more opportunity for the researchers to conduct 

their study cheaper with acceptable precision. 
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One of the potentials of using this algorithm can be in the computer workstation where 

the majority of body movements are located in the upper extremity. For example, 

determining the angle keyboard levitation for ergonomic design of a keyboard or the 

mouse tilt angle and its effect on prevention of forearm pronation can be measured by 

attaching markers on the upper arm, forearm, and posterior part of the hand and 

recording video of the participant in a top-down angle view.  

Another potential of the algorithm in the computer workstation could be measuring 

different neck orientations namely, anteroposterior tilt, axial rotation, and lateral tilt 

and its correlation with the position and the size of the monitor. Attaching the 

checkerboard markers similar to the validity experiment of this study can provide 

results no different than EMTs, but with less precision. 

Finally, it is good to mentioned that the algorithm was capable of providing similar 

result, at a lower precision, to the experiment conducted by Roby-Brami et al. (2020).  

It can be argued that in the field of ergonomics, such accurate measurement is not 

necessary and visual estimations are enough to conduct an assessment in the work 

place. In respond, it can also be argued that designing a product such as chair, mouse, 

or keyboard ergonomically requires detailed measurement of body segment orientation 

and such measurements are usually done using expensive equipment. Using the 

developed method can reduce the cost of product design effectively which 

consequently results in more affordable ergonomic products in the market. Moreover, 

the developed algorithm gives more researchers in the field of ergonomics the 

accessibility of continuous 6 DF information regarding human posture which increases 

the potential of progress and development of new continuous posture analyses 



 

72 

methods. The importance of the latter arguments can be supported by the study 

conducted by Bao et al. (2007) which investigated the difference between event-based 

and time-based measurement of the RULA method on 733 subjects. According to their 

findings, the results of the assessments were not cohesive and there were differences 

in measurement between event-based and time-based methods. 

Representing 6 DF of information, give the algorithm an edge in comparison with its 

competitors (Buzzi et al., 2017; Dang et al., 2017; Jones et al., 2016; Seo et al., 2019; 

Wang et al., 2018). To be more specific, techniques such as REBA and RULA which 

require 6 DF information to analyze human postures, can be utilized on the algorithm 

to track the posture continuously during different job tasks (Hignett & McAtamney, 

2000; McAtamney & Corlett, 1993). 

5.1 Limitation of the Study 

As discussed in the methodology chapter, having enough light for capturing the video 

is an essential part of the experiment. And in the environment where light is limited, 

noise and motion blur will be introduced to the captured footage. The mentioned 

parameters can affect the accuracy and precision of the measurement and other 

approaches should be considered in such an environment. Higher-end cameras and 

lenses which are capable of recording in low light conditions can be utilized for 

measurement. But it would make this approach costly for analysis and devices such as 

EMT would be more suitable. On the other hand, in comparison with other methods 

such as RGB-D, and Microsoft Kinect, where the outdoor environment is a negative 

factor for measurement, the proposed method can have an edge in capturing video 

frames in environments with high light exposure namely outdoor places and 

construction zones (Ahmed Abobakr et al., 2019). Thanks to the well-lit frame, 
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aperture, ISO, and shutter speed of the video camera can be adjusted in favor of a 

sharper image for corner point detection. 

Another limitation of this algorithm is the intensive computations. During the 

experiment, it was observed that the time of computation heavily depends on the video 

resolution, number of checkerboards, and computer hardware available for the 

analysis. In order to reduce the time of calculation for analysis, it is necessary to reduce 

the time of calculation per frame to a portion of a second.  

Moreover, attaching the checkerboard markers to body parts can limit the freedom of 

movement. For tasks where freedom of movement is an essential part, utilizing this 

method is not appropriate. 

Finally, being limited to a single point of view, this algorithm cannot correctly measure 

checkerboards at extreme orientations or blocked an object. It should be mentioned 

that such problems are possible in observational approaches as well (Trask, 

Mathiassen, & Rostami, 2015). To compensate for this limitation, as a future study, 

stereo camera techniques can be applied. Accordingly, rather than observing the 

checkerboard from a single point of view, multiple cameras could be utilized at 

different locations and orientations to track the target participant at a higher range of 

movements. For example, if the participant requires to turn away from the camera 

during a specific job task, the second camera could be positioned behind the subject to 

eliminate the loss of track of the checkerboards attached to the body of the subject. 
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5.2 Future Work 

Commonly available cell phone devices in recent years’ market are capable of 

recording video with at least 24 frames per second in good resolutions and some of the 

more advanced devices can also record 120 or 240 frames per second. Each frame 

recorded as a video can be a timestep of measurement and being able to measure body 

position 120 and 240 times in one second can also extend the usage of the algorithm 

for sports industries. 

Detecting the checkerboard patterns in the video frames is a time-consuming task and 

depending on the number of checkerboards to be detected as well as the video 

resolution and the computer hardware, each frame may require more than one minute 

of computation in worst-case scenarios. However, after the detection, the entire PnP 

computations, 3D basis transformation, Euclidean to quaternion transformation, 

quaternion to Euclidean transformation, and 6 DF data extraction could be calculated 

in fractions of a second. Therefore, as a future study, utilizing the Convolutional 

Neural Network (CNN) method and Graphical Processing Unit GPU computation for 

checkerboard detection could reduce the processing time of the entire algorithm down 

to less than a second. Consequently, CNN can shift the current state of the algorithm 

from a post-action assessment method to a live assessment method. Especially because 

common limitations of the algorithm are the perspective range of camera observation 

and extreme angles of the checkerboard, the live assessment method can give the 

researchers the advantage to hold and navigate the camera in person and get a live 

reading of the body angles at any position. Furthermore, other approaches such as 

narrowing down the location of each checkerboard in the current frame, for the next 

frame would reduce the algorithm search for the same checkerboard in the next frame 
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significantly. For instance, if a checkerboard is located at x and y pixel coordinates in 

a frame, given the entire size of the checkerboard with a certain offset due to 

checkerboard movement, this algorithm can search only in the expected location area 

on the next frame rather than the entire frame. Narrowing down the expected location 

of the checkerboard in the frame also has the advantage of reducing the probability of 

miss detection since many objects in a frame could represent a checkerboard-like 

pattern. This, however, might cost even more computation power to analyze the 

mentioned offset, and thus, defeat the main purpose of reducing the total process time 

per frame.  
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Chapter 6   

6 CONCLUSION 

Based on the result achieved in this study, given the right condition such as light and 

job task specifications, this cost-effective marker-based algorithm can be utilized as a 

tool for 3D postural analysis and posture tracking with acceptable precision. In 

comparison with other similar methods, this algorithm can be implemented without 

the need for advanced utilities at a much lower cost. Thus, it could be a reasonable tool 

to be considered for future studies. 

According to the outcomes of the first experiment, the checkerboard pattern 

significantly affects the precision of both location and orientation (p < 0.001). Using 

the PnP technique to extract 6 DF information favors a greater number of corner points 

on each marker. Similarly, the size of the checkerboards plays an important role in 

achieving significantly higher accuracy in both location and orientation measurements 

(p < 0.05). 

The effect of video resolution on the orientation precision is significant (p = 0.005). 

To be more specific, comparing the resolution of 2560×1920, and 3200×2400 with 

4000×3000 they show significantly higher precision measurements (p < 0.005). The 

same conclusion does not hold for the location precision on this factor. 
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The precision of the location and orientation measurement significantly varies based 

on the axis at which the information is extracted (p < 0.001). Regarding the orientation 

precision, values measured along the z-axis are more precise than values measured 

along the x and y axes (p < 0.001). On the contrary, regarding the location precision, 

location precision was found to be much lower along the z-axis compared to other axes 

(p < 0.001). Therefore, during the experimental design attaching the markers to the 

body segments requires the examiners’ attention. 

Related to the type II error and power test calculations, the corner point pattern factor 

shows a power test of more than 99% for both the location and the orientation. The 

resolution factor, on the other hand, shows an extremely high value for type II error (> 

99%) for both location and orientation. This indicates the lack of enough evidence for 

any conclusive decision on this factor. Regarding the axes factor, power tests of 97% 

and >99% are measured for the location and orientation precision, respectively. 

Finally, according to the outcome of the study, the measurement although less precise 

does not significantly differ from the other common methods such as using EMTs (p 

> 0.4). Postural analysis in the field of ergonomics plays a vital role. Additionally, the 

bad implementation of job tasks in the working environment without considering the 

human body restrictions put employees in the danger of prolonged musculoskeletal 

disorders. Therefore, in order to eliminate the prevalence of such discomforts, further 

studies are necessary. Making the assessment methods of posture analysis more 

reachable to the hand of researchers could be a good initiative to encourage scientists 

in the field of ergonomics to devote more time to detecting risk factors and providing 

a better solution to the common challenges in the industry. Hence, providing solutions 

such as the algorithm of this study could help with the matter. 
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Considering all the limitations of the proposed technique, the algorithm is capable of 

continuously tracking the posture of the subjects at reasonable precision and providing 

6 DF information several times a second. The frequency and type of the data provided 

by this approach may open many opportunities for future assessment techniques of 3D 

postural tracking as well. 

According to the precision experiment of the study, many factors can make or break 

the process of posture tracking using this algorithm. Hence, deciding on the 

measurement approach and considering factors such as environment, marker, and 

video specifications are very crucial to achieving a desirable outcome. Therefore, it 

would be very helpful to understand and narrow down what exactly need to be 

measured, and what type of movement is expected to implement the algorithm 

properly. For instance, bigger sizes of checkerboards can be used if the intended 

purpose is to measure the orientation of the hips in comparison with the wrist. 

With recent technological advancements and the shift of industries towards automation 

and industry 4.0, many of the common tasks are being handled with software and 

computer programs. Therefore, the authors hope this algorithm would contribute to the 

ergonomic-related research and further analysis of human body posture, especially in 

computer workstations. 
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Appendix A: Flow Chart of the Algorithm 
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Appendix B: Histograms for Location Error of Pattern 
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Appendix C: Histograms for Orientation Error of Pattern 
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Appendix D: Histograms for Error of Resolution 
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Appendix E: Histograms for Error of Axes 

 


