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ABSTRACT

The aim of this thesis is to investigate the optimal Trust System Placement (TSP)
method for smart grid Supervisory Control And Data Acquisition (SCADA)
networks. At present, as SCADA networks are connected to the internet the scope of
cyber-security concerns becomes much wider. Trust Systems (TSs) are deployed to
provide the cyber-security of SCADA networks. TS are used to detect and block
malicious activities. Optimal TSP problem is used to minimize the cost and
maximize the security by selecting minimum number of TSs. Segmentation is the
main part of the optimal TSP problem. Segmentation is used to divide the SCADA
graph to small segments and ideal segmentation problem uniforms the size of the
segment. Linear Programming Problem (LPP) is used to assign the TSs to some
nodes among the bordering nodes and its constraint is that all inter-segment links are

connected to at least one trust node.

The experiments are conducted on five IEEE test system topologies. The IEEE test
system is categorized into small and large networks. The obtained results show that
by increasing the quantity of segments the required quantity of TSs increases and

small networks are more balanced than the large networks in size of segments.

In optimal TSP problem TS number per segments are not uniform over the segments.
It may deteriorate the security of the segments and more delays happened to the
inter-segment links. We propose optimal TSP uniformity problem to maximize the
security and minimize the operational expenditure by distributing TSs over the

segments.



After executing the optimal TSP uniformity on IEEE BUS 14, the distribution of TSs
over the segments is improved by 100% with 3 segments and 5 segments and it is

improved by 81% with 4 segments and it is improved by 35% with 6 segments.

Keywords: Smart grid Supervisory Control and Data Acquisition (SCADA)
network, cyber-security, trust node, Minimum Spanning Tree (MST), Linear

Programming Problem (LPP), segment, bordering node, uniformity problem.
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Bu tezin amaci, akilli sebeke Denetleme Kontrolu ve Veri Toplama (DKVVT) aglari
icin optimal Guven Sistemi Yerlestirme (GSY) yontemini arastirmaktir. Su anda,
DKVVT aglar1 internete bagl oldugundan, siber guvenlik endiselerinin kapsami
daha da genislemektedir. DKVVT aglarmin siber giivenligini saglamak igin Gliven
Sistemleri (GS'ler) kullanilmaktadir. GS, kot niyetli etkinlikleri tespit etmek ve
engellemek i¢in kullanilir. En diisiik GS sayisin1 segerek maliyeti en aza indirmek ve
givenligi en (st dlzeye c¢ikarmak icin en uygun GSY sorunu kullanilir.
Segmentasyon, optimum GSY probleminin ana pargasidir. Segmentasyon, DKVVT
grafigini klgUk pargalara bdlmek icin kullanilir ve ideal segmentasyon sorunu,
segmentin boyutunu dlzenler. Dogrusal Programlama Sorunu (DPS), GS'leri
siirlayict  diigiimler arasindaki bazi digiimlere atamak icin  kullanilir ve
smirlandirmasi, tum bolimler aras1 baglantilarin en az bir given diigiimiine bagh

olmasidir.

Deneyler bes IEEE test sistemi topolojisi tzerinde gerceklestirilmistir. IEEE test
sistemi klclk ve biyik aglara ayrilmistir. Elde edilen sonuglar, segmentlerin
miktarmi artirarak, gerekli GS'lerin miktarinin arttigimi ve kigik aglarmn, segment

boyutundaki blyuk aglardan daha dengeli oldugunu gostermektedir.

Optimum GSY probleminde segment basina GS sayis1 segmentler izerinde ayni
degildir. Segmentlerin giivenligini bozabilir ve bdlumler arasi baglantilarda daha
fazla gecikme yasanabilir. Giivenligi en Ust seviyeye c¢ikarmak ve GS'leri

segmentlere dagitarak isletme giderlerini en aza indirmek igin optimal GSY



tekdlzelik problemi 6neriyoruz.

IEEE BUS 14'te optimum GSY homojenligi uygulandiktan sonra, GS'lerin
segmentler Gzerindeki dagilimi, 3 segment ve 5 segment 100%, 4 segment 81% ve 6

segment 35% arttirilmastir.

Anahtar Kelimeler: Denetleme kontrolii ve veri toplama (DKVVT) agi, siber
giivenlik, guven digiimii, Minimum yayilma agaci (MYA), dogrusal programlama

sorunu (DPS), segment, sinirlayici diigiim, tekdizelik sorunu.
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Chapter 1

INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) systems are used to control and
monitor infrastructure of industries such as transmission and distribution networks of
electricity, refineries, nuclear power plants. At present, industrial control systems and
information technology (IT) systems merge together. As a consequence, SCADA and

its equipment are a vulnerable target of the intrusion [1].

To keep the integrity of information and avoid cyber intrusions, smart grids need to
deploy trust systems to monitor and control the input and output traffic. Trust

systems are a combination of firewall and/or intrusion detection systems [2].

In this thesis, we are going to address the optimal trust system placement problem by
focusing on discussion of its concepts, algorithms, and experimental results mainly
from [1], and implementation of the optimal trust system placement scheme [1],
experiments on IEEE test system topologies used in [1], and improvement of optimal

trust system placement in smart grid SCADA networks [1], [3] and [4].

Adding trust systems to all the nodes in the grid is expensive and increases the
processing time of the communication of nodes. In order to make it practical,
networks must be divided into small networks, known as segments [1], and the

selected bordering nodes [1] should be equipped by the trust systems. These nodes



are called trust nodes. Inter-segment links are connected to the TS, hence, trust nodes
are able to monitor ingress and egress traffic. Segmentation problems are often
solved using mixed integer linear programming [5]. Uniformity of trust nodes among
the segments is used to keep the balancing of dispersion of the trust nodes among the
segments. As a consequence, the trust system is transferred from the oversized
segment to the undersized segment if there is a link between the trust node in the
oversized segment and the node that is not equipped by the trust system in the

undersized segment.

The rest of this thesis is organized as follows. Chapter 2 discusses the related work
mainly based on [1] and defines the problems of the thesis. Chapter 3 is about the
design and implementation of the trust system placement problem and testing of the
optimal trust system placement in smart grid of SCADA networks. Chapter 4 is
about the improvement of the optimal trust system placement program using
uniformity of trust systems distribution over network segments. Chapter 5 presents
our experiments on IEEE test system topologies in the conditions of [1]. Chapter 6 is
the conclusion. Appendix A shows the source codes of the program. Appendix B
shows the databases of the IEEE test system topologies used in the experiments.
Appendix C shows the screenshots of the experimental results on IEEE test system

topologies.



Chapter 2

RELATED WORK AND PROBLEM DEFINITION

This chapter explains the terms related to trust system placement in smart grid
networks (Section 2.1) and describes a method of trust nodes placement from [1]

(Section 2.2). Thesis problems are defined in detail (Section 2.3).

2.1 Cyber-Security Terms and Notions for Smart Grid SCADA

Networks

If infrastructures of smart grid network have not appropriate security equipment, it
may result in vulnerabilities in power infrastructures. Power systems have three
different types of sectors: generation, distribution and control, and consumption that
may be the targets of the cyber-intrusion. Depending on the target, there can be three

different cyber-attacks [5] as shown in Figure 1.

P
Cyber-attack .
(Typel) ———+  Generation
['}
L J
Cyber-attack E L Distribution &
(Type Il) 2 Control
B i
Y
C{.?;;:lltﬁ;:k -———- —--—2 Consumption
AN

Figure 1: Three types of cyber-attacks on the electric grid through the internet [5]

Type | cyber-intrusion targets generation which intruder tries for interrupting or

getting control of the operation of generators. Type Il targets power distribution and



control. In this type intruder makes failure in the supply of electricity or damaging
the network equipment. Type |1l attacks target the consumption part. It causes an
increment of load that damages the grids and it can bring down the grid. Password-
secured access, group key ciphering for multicast transmissions, private key
ciphering for unicast transmissions, user confirmation, message verification codes
and firewalling of SCADA data traffic are the defense mechanisms to those attacks

which are performed by trust systems.

Trust system validates input, identifies risks and bad data, and initiates appropriate
alerts. It then assigns data types for the good data elements in each packet. It next
determines if the recipient is authorized to read all of the data types in the message,
especially when the recipient is external to the company. If the message is not
authorized, the system sanitizes the parts of the message that are not allowed to be
passed to the recipient or it simply deletes the message. Finally, the good data
elements are transferred to database systems for archiving for historical and trend
analysis and then they are passed to intranet display. The data archived are viewable
and accessible by someone with appropriate privileges. A logo and summary for the

functions supported by trust systems is depicted in Figure 2.



Format and
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Suspicious Event
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Figure 2: Trust system logo with capabilities summary [2].

In [2], four different types of trust system implementation were discussed. Type 1 is
the passive mode, type 2 is the half active mode, type 3 is the active mode, type 4 is
the tunnel (or gateway) mode. In our work, trust systems will be implemented in type

3, active mode.

In type 1, passive mode, a trust system is connected to the switch on the
communication link from the outside of the network. The advantage of passive mode
is that a failed trust system does not block the communications link because trust
system connected to the communication links from outside. The disadvantage is that
trust system can detect and report the malicious packets and it cannot block these
malicious packets. In type 2, half-active mode, implementation of passive mode is
updated to block the bad activities in such a way that trust system interacts with a
separate firewall or router Access Control List (ACL). The advantage is that it
monitors and controls the traffics from outside the networks and same as passive

mode if trust system is failed the communication links does not block. The



disadvantage is that there will still be some chance that one or more bad activities
will reach to the destination. In type 3, active mode, trust system is in line with all of
the communication between the SCADA network and it can block bad data. The
advantage is that it can detect and block the malicious traffics. The disadvantage is
that if trust system fails the communication links is blocked. In type 4, tunnel or
gateway mode, trust systems or routers provide firewall and other security features
for the nodes behind them. The communications between them are secured by the
encryption gateway. The advantage is that traffic packets are encrypted and protected
when they are traveling from outside of the network. The disadvantage is that
encryption and decryption of the packets cause delays to the network. Figure 3

demonstrates these 4 types of trust system implementation.
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Figure 3: Trust system modes and configuration options [2]

In [6], a blackout reported that affected more than 50 million people in Italy. The
Midwest independent system operator had only non-real-time data to work with, and

they cannot identify the location of breaking lines.

In [7], a key management, wide area key exchange (WAKE), was employed to
provide security for wide area measurement system (WAMS). The WAMS has four

major hardware elements.



1. Phasor measurement units (PMUSs), devices which measure the electrical waves
on an electricity grid using a common time source for synchronization

2. Phasor data concentrators (PDCs)

3. Wide area network (WAN)

4. Real-time database and data archiver

To provide the security, WAKE uses public key infrastructure (PKI) [8]. PKI is an
industry-standard asymmetric-key cryptosystem, with standards including X.509 and

RFC 5280 [9].

In [10]- [12], SCADA networks are divided into small networks and trust systems
are installed to the appropriate nodes to monitor and control the ingress and egress
traffics. The links between segments are known as inter-segment links. Trust systems
monitor the traffic between segments; consequently, intersegments shall be
connected to at least one trust node which hosts trust system. Figure 4 demonstrates
an example of segmentation. Inter-segment links are shown by the dotted lines. Trust
systems are installed to the bordering nodes. Inter-segment links are connected to at

least one trust node.

SCADS Node

[:3 Trust Systbermn

Segment 3

1 -
. Segr‘nent 1

O )

Figure 4: A simple example of a segmentation-based TSP11].

Sepmeant F
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In [10], centrality measurement, method of ranking node in a graph, is utilized to
improve the cyber protection of smart grid networks. The node degree, number of
links connected to the node, is the simplest definition of centrality. Bordering nodes

were considered for trust node placement.

In [11], the impact of latency was considered in selection of trust nodes because trust
nodes distribute the time critical messages. In [11], the number of segments depends

on the latency threshold.

In [12], link coverage and path tolerance deployment schemes were used to protect
the SCADA networks against the cyber-attacks. Link coverage refers to the number
of monitored links in a network and path tolerance refers to the maximum number of
consecutive non-monitoring nodes in a route. As a consequence, the maximum link
coverage and the least path tolerance were two ideal goals to protect the SCADA

network against cyber-attack.

2.2 Description of the Method of Optimal Trust Nodes Placement

from [1]

Table 1 describes symbols used in the algorithms, equations and formulas.

Table 1: Description of symbols [1]
Symbol Description

G(V, E) SCADA network graph. It is an undirected graph.

T(V, EMST) | MST of a given network G(V, E).

V Node set of SCADA network.




E Link set of the SCADA network.

N Size of the SCADA network in terms of node, [V|=N.

EMST MST link set of the SCADA network.

o, Weighting factors for multiple objectives.

S Set of network segments.

K Total number of segments to be created, |S|=k.

e s b Index variables for links, segments and bordering nodes
respectively.

Cucsv Undirected link between node u and v.

MST JMST
dy>", dy

Degrees of node u and v in the MST.

dMT (eye,,) | Minimum degree of the link between node u and node v
in the MST.

w(e) Weight of the link e in terms of propagation delay.

w(e) Normalized weight of the link e with respect to the
maximum link weight.

Xi(D Variable set for bordering nodes belonging to the inter-
segment link 1.

Lgs, Set of inter-segment links between segments S, S’.

B(s) Set of bordering nodes in the segment s.

Q Total number of trust systems required

M Number of available trust systems.

Y Vector for binary decision variables for MST link
elimination, Y=(y,)n-1)x1

X Vector for binary decision variables for trust node

selection, X=(xsp)y. < |B(s)|x1"

The section has

the following structure. Algorithm of sorting (Bubble sort) is

10



considered in Section 2.2.1. Bubble sort will be used for Disjoint-set algorithm in
Section 2.2.2. Disjoint-set algorithms are considered in section 2.2.2. It will be used
for initial tree partitioning problem in Section 2.3.1. Kruskal algorithm of minimum
spanning tree construction is considered in Section 2.2.3. It is necessary for initial
tree partitioning problem in Section 2.3.1.

2.2.1 Sorting Algorithms

As mentioned, segmentation is based on the MST graph and sorting algorithm is the
main part of the MST graph algorithm. In [13], types of sorting algorithms are

enlisted. In this section, Bubble sort algorithm [14] will be described.

Bubble sort algorithm starts at the beginning of the input array, A[0,,n-1] of data to
be sorted, and compares two neighboring elements. If the first one is greater than the
second one, it swaps them and continues doing this to the end of the array. Again,
and again, it starts from the beginning of the array and compares each pair of the
neighboring elements until there are no swaps. Bubble sort algorithm pseudocode is
as follows:

Algorithm 2.1: Pseudocode of bubble sort algorithm [14].

Bubble sort

1. Input: An unsorted array of numbers, A

2. Output: The sorted in increasing order array, A

3. Procedure BubbleSort ( A)

4. n=length(A); swapped=true;
5. While (swapped ==true)

6. swapped=false;

7. for i=1to n-1 do
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8. if A[i-1]>A[i] then

9. swap(A[i-1],A[i])
10. swapped=true
11. end if

12. end for

13. end while

14. end procedure

The input of the Algorithm 2.1 is the array of numbers that are not sorted, and the
output is the array of numbers sort from lowest number to greatest number. In Line 4
the variable n denotes the length of the array. Variable swapped locates in the while
loop (Lines 5-13) and the initial value of swapped is true. In lines 7-12 if the
condition in line 8 is true then the greatest value is swapped with the lowest value in
the pair (Line 9) and then the value of the swapped is changed to true. Lines 7-12
repeat n-1 times, where n is the length of the array. When the for loop is finished,
the value of the swapped is false if there were no swaps in the array (Lines 7-12),
and the while loop terminates (Line 5). After termination of the while loop, the
numbers in the array are sorted from lowest to the greatest value. An example of the

bubble sort work is given in Example 1.

Example 1. Application of Bubblesort to array A[5]= (5,1,4,2,8)
Input: Array of numbers: A[5]= (5,1,4,2,8)

n=5, length of the array

swapped=true;

(First iteration of while loop)

swapped=false; i=1,
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(5,1,4,2,8) — (1,5, 4, 2, 8), here, algorithm compares the first two
elements, and swaps since 5 > 1.

swapped=true; i=2;

(1,54,2,8)—(1,4,5, 2, 8), swap since 5> 4

Swapped=true; i=3;

(1,4,5 2,8 — (1,4, 2,5, 8), swap since 5> 2

Swapped=true; i=4

(1, 4, 2,5,8) — (1, 4, 2,5, 8), now, since these elements are already in
order (8 > 5), algorithm does not swap them.

Loop on | terminates

(Second iteration of while loop)

Swapped=false; i=1;

(1,4,2,58 —(1,4,2,5,8)

i=2;

(1,4,2,58) —(1,2,4,5, 8), swap since 4 > 2

Swapped=true; i=3;

(1,2,4,58) —(1,2,4,5,8)

i=4;

(1,2,4,58) —(1,2,4,5,8)

Now, the array is already sorted, but the algorithm does not know if it is
completed. The algorithm needs one iteration of while loop
without any swap to know it is sorted.

(Third iteration of while loop)

Swapped=false; i=1;

(1,2,4,5,8) —(1,2,4,5,8)
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i=2:

(1,2,4,5,8) —(1,2,4,5,8)

i=3;

(1,2,4,5,8) —(1,2,4,5, 8)

i=4;

(1,2,4,5,8) —(1,2,4,5,8)

The value of the swapped does not change, hence, the iteration of while

loop is terminated, and the array is sorted.

Output: A[5]=(1, 2, 4, 5, 8).
2.2.2 Disjoint-Set Algorithms
Before going to describe the Disjoint-set algorithm, some definitions of the graph
need to be cleared. Figure 5 illustrates an example of small graph. A graph, G, is a
pair of sets, G(V, E), where V is set of vertices, G.V={1, 2, 3,4, 5, 6, 7}, E is a set of
edges, G.E={(1,2), (2,3), (3,5), {4,5}, (5,6), (6,7)}. And edge, e, is a pair of vertices,
(a, b), that these vertices of the edge are known as end-vertices of the edge. A graph
in Figure 5 is a weighted graph, each edge has a weight. Weight of the edge is

denoted by w and the set of edge with weight is denoted by G.E.w={((1,2),4),

((2,3),10).((3.5).6), ((4.5).3).((5.6),4).((6,7),1)}.

Po
Mo e

Figure 5: An example of graph [1].
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The number of vertices defines by |G.V| and the number of edges of the graph, G,
defines by |G.E|. In Figure 5 the number of vertices is 7, |G.V|=7, and the number of

edges is 6, |G.E|=6.

Disjoint-set algorithm [15] is used to find the connected vertices of a graph and
creates a set of minimum spanning trees of a graph [16]. It plays a key role in
Kruskal algorithm [17] for finding the minimum spanning trees of a graph. Parent
pointer and rank value are the attributes of the elements of the disjoint-set forest. If
the parent pointer of an element does not point to another element, then the element
is the root of the tree and is the representative member of its set. If the parent pointer
of the element points to another element, it means that this element belongs to the
set, tree, and the set is identified the chain of parents upward until a representative
element is reached at the root of the tree. Figure 6 illustrates an example to show the

parent pointer.

Figure 6: An example of parent pointer definition in graph.

In Figure 6, vertices C and F point to themselves. It means that they are the root of
the trees. The vertex b points to another vertex, it means that this vertex belong to the

tree, and this vertex is not the root, it points to the vertex c. As a consequence, to find
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the tree that vertex b is belong to, vertex b follows a chain to up to find the vertex
that points to itself, root of the tree. In Figure 6, the set of left tree is {b,c,e,h} and the
set of right tree is {d,f,g}. Another attribute is rank which denotes the depth of the

tree. For example, both trees in Figure 6 have a rank of 2.

Disjoint-set algorithm contains three functions [15]. First one is Make-set(x)
function. The input of the Make-Set(x) is a vertex of the graph. This function creates
a new set for the input vertex and initialize the attributes of the vertex (parent pointer
points to itself and the value of the rank is 0). This function locates in a for loop to
create a new set for all vertices in a graph. Algorithm 2.1 shows the pseudocode of

the Make-Set function.

Algorithm 2.2: Pseudo code of the Make-Set function [15].
Make-Set

1. Input: x, vertex of graph.

2. Output: a set of disjoint-set tree with the initialized attributes.

3. Function Make-Set (x)

4.  Begin

5. X.parent =x;
6. x.rank=0;

7.  End

In Line 5, vertex x points to itself, create a tree that the root of the tree is itself, and
the rank value in Line 6 is 0 that means the depth of the tree is 0. As a result, a new
set for the x is created in the disjoint-set tree and the attributes of the vertex are

initialized.
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The second function is Find(x). The input of the Find function is a vertex of the tree.
The functionality of this function is to determine which set of the disjoint-set tree

contains a given vertex x. Algorithm 2.3 describes the pseudocode of the Find(x).

Algorithm 2.3: Pseudo code of the Find(x) function [15].
Find

1. Input: vertex x

2. Output: root of vertex Xx.

3. Function Find(x)

4.  Begin

5. If x.parent !=x then

6. x.parent:=Find(x.parent)
7.  Endif

8. Return x.parent

The input of the function is a vertex of the graph. If the parent pointer of the vertex x
doesn’t point to itself (if point to itself, it means this is the root vertex) (Line 5) then
it goes up the tree till find the root vertex (Line 6). The output is the root of the input
vertex. Hence, the set of vertex x is identified because each set have only one

specific root.

The third function is Union (X, y). This function uses the Find function for vertex x
and y of the edge (X, y) to find the roots of trees that they belong to them. If the roots
of vertices x and y are different then the trees are combined by attaching the root of

one to the root of the other. This union function uses the rank value which means
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that the shorter tree will be attached to the root of the taller tree. Algorithm 2.7 shows

the pseudocode of the Union (X, y) algorithm.

Algorithm 2.4: Pseudo code of the Union function [15].
Union

1. Input: Edge of the graph

2. Output: Updating the structure of trees

3. Function Union(x, y)

4.  Begin

5. xRoot:=Find(x)

6. yRoot:=Find(y)

7. If XxRoot == yRoot then
8. Return
9. End If

10. If xRoot.rank < yRoot.rank then

11. xRoot, yRoot:=yRoot, xRoot. //swap xRoot and yRoot
12. yRoot.parent := xRoot

13. End If

14, If XxRoot.rank==yRoot.rank then

15. xRoot.rank:= xRoot.rank+1
16. End If
17. End

Lines (5-6) use Find function to find the root of trees (xRoot and yRoot) that vertices
x and y are belong to them. If the roots of trees are same, then vertex x and y are in a

same set. If the roots of vertex x and y are different and the rank value of the vertex
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X is lower than the rank value of the vertex y then the value of the ranks for the

vertex x and y will be swapped (Lines 10-13). If their rank value of x and y are same

then, the rank value of the vertex x will be increase by 1 unit (Lines 14-16).

Algorithm 2.5 shows the pseudocode of Disjoint-set algorithm.

Algorithm 2.5: Pseudocode of Disjoint-set algorithm.

Disjoint-set

1.

10.

11.

12.

13.

14.

Input: Edges of the Graph, G, and N number of vertices in the graph,
|G.V|
Output: Collection of disjoint sets

Function Disjoint-set(G.E, N)

Begin
N=|G.V/;
For i=1to N| do
Make-Set(Vi);
End For

For j=1to |G.E| do
X=Find(Ej. e1)// first vertex of the edge Ej;
Y=Find(Ej. e2)// second vertex of the edge Ej;
Union(X,Y)

End For

End

The input of the Disjoint-set algorithm is a graph and the output is the set of trees.

Lines 6-7 executes the Make-Set function for each vertex of the graph, Vi, where V
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is the vertex and the index i denotes the vertex number from the set of the vertex of
the graph, G.V={V1,V2,....,VN} and N is the number of vertexes in a graph,
N=|G.V| . Lines 8-12 is a for loop to check all the edges of the graph. In Lines 10-11
the Find function is called to find the parent of the endpoints of the edge,
(Ej.el,Ej.e2), and store in variables X and Y. in Line 12 the function Union(X, Y) is
called to find the roots of the trees. Figure 7 shows the four connected partitions of a
graph that is used as an input for Disjoint-set algorithm. An example of Disjoint-set

work is given in Example 2.

= 7< ) Ceo—CD (o) D
(e« c[ ) Ce) CiD
Figure 7: Four connected components of a graph [15].

Example 2: Application of Disjoint-set to the graph G;

Input: Four connected graph G(V,E): G.V={ab,c,defqg,hl,j}

G.E={(a,b),(a,c),(c,b), (b,d),(e,f),(e,0),(h,)}, |G.v|=10, Number of vertices,

|G.E|=7, Number of edges.

Starting the first loop to create the sets for each vertex in given graph

i=1;

Make-Set(a)={a}, here Make-Set algorithm create a set for vertex a.

i=2;

Make-Set(b)={b}, here Make-Set algorithm create a set for vertex b.

i=3;

Make-Set(c)={c}, here Make-Set algorithm create a set for vertex c.

i=4;

Make-Set(d)={d}, here Make-Set algorithm create a set for vertex d.
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i=5;

Make-Set(e)={e}, here Make-Set algorithm create a set for vertex e.
iI=6;

Make-Set(f)={f}, here Make-Set algorithm create a set for vertex f.
i=7;

Make-Set(g)={g}, here Make-Set algorithm create a set for vertex g.
i=8;

Make-Set(h)={h}, here Make-Set algorithm create a set for vertex h.
i=9;

Make-Set(i)={i}, here Make-Set algorithm create a set for vertex i.
i=10;

Make-Set(j)={j}, here Make-Set algorithm create a set for vertex j.
The first for loop is finished.

Starting the second for loop. This loop iterates for the size of the edge,
IG.E|=7.

=1

X=Find(a); //X={a};

Y=Find(b);// Y={b},

Union(a,b);// sets {a},{b} are combined and create one set, {a,b};
=2;

X=Find(a); //X={a,b};

Y=Find(c);// Y={c};

Union(a,c);// sets {a,b},{c} are combined and create one set, {a,b,c};
j=3;

X=Find(c); //X={a,b,c};
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Y=Find(b);// Y={a,b,c};

Union(c,b);// they are in same set;

=4,

X=Find(b); //X={a,b,c};

Y=Find(d);// Y={d};

Union(b,d);// sets {a,b,c},{d} are combined and create one set, {a,b,c,d};
j=5;

X=Find(e); //X={e};

Y=Find(f);// Y={f};

Union(e,f);// sets {e},{f} are combined and create one set, {e,f};
j=6;

X=Find(e); //X={e,f};

Y=Find(g);// Y={g};

Union(e,q);// sets {e,f},{g} are combined and create one set, {e,f,g};
=T

X=Find(h); //X={h},

Y=Find(i);// Y={i};

Union(h,i);// sets {h},{i} are combined and create one set, {h,i};
End of second for loop;

Output: {a,b,c,d}, {e,f.g}, {h,i};

2.2.3 Kruskal Algorithm of MST Construction

Given a weighted graph, MST is a graph connecting all the vertices of the graph

without any cycle between the vertices and also with minimum possible edge weight

[16]. In [17], the Kruskal algorithm is used to obtain the MST graph. Pseudocode

below presents the Kruskal algorithm.
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Algorithm 2.6: Pseudo code of Kruskal algorithm [17].

MST-Kruskal (G(V,E))

1.

10.

11.

12.

13.

14.

Input: An undirected graph having vertices, G.V={V1,V2,....,VN},
and edges, G,E, with weights G.Ew for each e from
G.E={G.E1,G.E2....G.EM}.
Output: An undirected graph without any cycle between vertices
(Minimum Spanning Tree).
A=@; Il A 'is a minimum spanning tree; N=|G.V/|;// Number of vertices
Fori=1to N do
Make-Set(Vi);

End For
BubbleSort(G.E.w); //Sort the edges of G.E into non-decreasing order
by weight w;
For j=1 to |G.E| do// |G.E| denotes the number of edges in graph,G;
If Find-Set(Ej.e1) # Find-Set(Ej.e2) // Ej denotes the edge in graph in
position j; el and e2 are endpoints of the edge

A=A U {G.Ej};

Union (u, v);
Return A;
End If

End For

Input of the Kruskal algorithm is an undirected graph and the output is a minimum

spanning tree. Line 3 initialize an empty set of minimum spanning tree and N, is the

number of vertices. In line 5, Make-set, Algorithm 2.2, function creates a set of
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trees. In this set, all vertices in the input graph is a separate tree. Line 7 executes the
BubbleSort function, Algorithm 2.1, to sort the set of edge into increasing order by
weight of the edge. In line 8, first element from the set of the edge is selected. The
functionality of Find-Set(u) and Find-Set(v) is to find the set of trees that contain
vertices u and v of the edge (u, v), Algorithm 2.3. If selected edge connects two
different trees (Line 9), their parents are different, then adds this edge to the
minimum spanning tree set A (Line 10). In Line 10, union (u, v) combines two trees
that contain vertices u and v. Line 12 returns the minimum spanning tree of the input

graph.

(d) (e) U)

Figure 8: An illustrative example of Kruskal algorithm. a) edge AD removed from
input graph and added to minimum spanning tree. b) edge CE removed and added to
minimum spanning tree .c) edge DF removed and added to minimum spanning tree.

d)edge AB added to minimum spanning tree, edge BD form a cycle. €) edge BE
added to MST. f) last edge EG is removed from input graph and added to MST [17].

Figure 8(a) shows the input graph. The edge AD with minimum weight is selected to

remove from input graph and add to the minimum spanning tree (MST), it is shown
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by the green line. In Figure 8(b), the next edge CE with minimum weight is removed
from the input graph and added to the MST. Figure 8(c) shows the next selected edge
AB. Edge BD cannot be added to the MST because it forms a cycle ADB. The edges
with red line demonstrate the cycle, hence, they cannot be added to MST. Finally, the
MST is shown by green line in Figure 8(f). An example of MST-Kruskal work is

given in Example 3.

Example 2: Application of MST-Kruskal to the graph G;

Input: Graph G.// G.V={A,B,C,D,E,F,G};
G.Ew={((AB),7),((B,C).8).,((A.D),5).((B,D).9).(B,E),7).((C,E),5),(D.E).1
5),((D,F),6),((F,G),11),((E,F),8).((E,G),9)}; N=|G.V|=7, number of vertices;
|G.E|=11 is number of edges

Starting the first for loop to create the sets for each vertex in given graph
i=1;

Make-Set(A)={A}, here Make-Set algorithm create a set for vertex A.

i=2;

Make-Set(B)={B}, here Make-Set algorithm create a set for vertex B.

i=3;

Make-Set(C)={C}, here Make-Set algorithm create a set for vertex C.

i=4;

Make-Set(D)={D}, here Make-Set algorithm create a set for vertex D.

i=5;

Make-Set(E)={E}, here Make-Set algorithm create a set for vertex E.

i=6;

Make-Set(F)={F}, here Make-Set algorithm create a set for vertex F.
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i=7;

Make-Set(G)={G}, here Make-Set algorithm create a set for vertex G.
End of first for loop
BubbleSort(G.E.w)={((A,D),5),((C,E),5),((D,F),6),((A,B),7),((B,E),7),(B,C
).8).((E.F).8).((B.D).9).(E.G).9).((F.G).11).((E.D).15)}

Starting of second for loop// it iterates 11 times for the edges of the graph G
=1

Find(A)#Find(D)

AEw={((AD),5)}

Union(A,D);// sets {A} and {D} are combined,{A,D};

=2;

Find(C)#Find(E)

A.Ew={((AD)5).((C.E).5)}

Union(C,E);/ sets {C} and {E} are combined,{C,E};

=3;

Find(D)#Find(F)

A.Ew={((AD)5), (C[E).5), (D.F).6)}

Union(D,F);// sets {A,D} and {F} are combined,{A,D,F};

=4;

Find(A)#Find(B)

A.Ew={((AD).5), ((CE).5), (D.F).6), (AB), )}

Union(A,B):// sets {A,D,F} and {BY} are combined,{A,D,F,B};

i=5;

Find(B)#Find(E)

A.Ew={((AD),5) , ((C,E),5), ((D,F).6), (AB),7).((B.E). ")}
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Union(B,E);// sets {A,D,F,B} and {C,E} are combined,{A,B,C,D,E,F};

J=6;

Find(B)=Find(C)// they are in same set, and cannot be added to A because
they make a cycle

=7,

Find(E)=Find(F)// they are in same set, and cannot be added to A because
they make cycle

J=8;

Find(B)=Find(D)// they are in same set, and cannot be added to A because
they make cycle

=9;

Find(E)#Find(G)

A.Ew={((A,D),5),((C,E).5), (D,F).6), (AB),7).((B,E).7), (E.G),9)}
Union(E,G);// sets {A,B,C,D,E,F} and {G} are combined,{A,B,C,D,E,F,G};
j=10;

Find(F)=Find(G) // they are in same set, and cannot be added to A because
they make cycle

=11,

Find(E)=Find(D) // they are in same set, and cannot be added to A because
they make cycle

Output: A={((A.D),5).((C,E).5). ((D.F).6), (A.B).7).((B.E),7), (E.G).9)}

2.2.4 Linear Programming Problem (LPP) in General

Linear programming is a method to achieve the best outcome (such as maximum

profit or lowest cost) with the special conditions and with certain restrictions. Linear

programming is a special case of mathematical programming (also known as the

27



mathematical optimization). In [18,19], linear programming problem is discussed. In
our application, we used Matlab program to solve the LPP. Linear programming

problem can be expressed as below.

optimize .CT x (2.1)

X

subject to

311X1 + 312X2 + + alan< b1
321X1 + 322X2 + + aZan< bz

(2.2)

Am1Xy + ageXe + oo+ A Xp< by

x; €{0,1} (2.3)

where X is the vector of variables, the value of the variable must be 0 or 1, that must
be determined, C and b are vectors of (known) coefficients, and (.)7 is the matrix
transpose, and A is an mxn matrix of real numbers, a. (2.1) is called objective
function that can be minimized or maximized. The inequalities (2.2) and (2.3) are the
constraints which specify a convex polytope over which the objective function, f(x),
is to be optimized. The output of the linear programming problem is a vector, X, that
optimize, minimize or maximize, the given objective function, f(x).

2.3 Definition of Optimal TSP Problem as LPP

In [1], an electric power grid system is considered as an undirected graph, in which
nodes correspond to power grid buses, generator or load, and links correspond to the
power grid branches, transformer or transmission lines, and the weight of the links
denotes the propagation delay or distance between two endpoints of the link. Figure

9 shows an example of a power grid system with 9 power grid buses and 12 power
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grid branches.

9 1 /@ 17 @
L 2O
, & ]

Figure 9: A graph G(V,E) of power grid system. with G,V={V1...\V9} power grid
buses (nodes) and G.E={G.E1,..,G.E12} power grid branches (links) [1]. Each edge
has weight, propagation delay between two endpoints of the link or distance between
them, marking it, e.g., w(G.E1(v1,v2))=4.

The definition of optimal TSP problem is divided into 3 parts presented in Sections
2.3.1-2.3.3. Section 2.3.1 presents a problem of segmentation to initialize the
partitions, Section 2.3.2 presents a problem of local search to update the partitions
optimally, and Section 2.3.3 describes the problem of optimal trust node selection

from the bordering nodes of the partitions.

Figures 10-14 illustrate the results of the initial tree partitioning, ideal segmentation,
and trust node selection problems solving for SCADA network from Figure 9.

2.3.1 Definition of Initial Tree Partitioning Problem (Segmentation)

As | mentioned in the introduction, SCADA networks are distributed geographically,
the distance between nodes in SCADA networks maybe hundreds or thousands of
miles. The initial tree partitioning problem (Segmentation) is used to divide the
SCADA networks to segments. MST is the main part of the segmentation. The MST
of a SCADA network is obtained by the Kruskal algorithm, Algorithm 2.6. The
partitions of the SCADA networks include the nodes that the distance between them

is minimal because partitions are in MST form.
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Linear programing problem (LPP1) is used to construct the primary partitions by
removing links from the SCADA network, G(V,E). By removing K-1 links from the
SCADA network, this network will be divided into K segments. The MST of the
SCADA network contains N-1 links, where N denotes the quantity of SCADA
nodes, |G.V|. Totally, N-K edges must be left from the SCADA network to achieve

the K partitions.

LPP1 is initial tree partitioning that eliminates K-1 MST links to obtain segments
regarding their normalized weights and lowest degrees. Node’s degree is the number
of links connected to that node. Leaf nodes degree is one. The minimum degree of
the link is defined as follows [1]:

drl\;llisrrlr(euHV) = min(dll\l/[STl d\l>/[ST) ) (24)
where d¥5T is the degree of the node u, that is, the number of links that are
connected to the node u. In (2.4), the lowest degree of the edge of the MST graph is
obtained by selecting the minimum degree of the nodes that are connected to that

link. Figure 10 depicts by rectangles the minimum degree of the links of the SCADA

network in Figure 9.
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Minimum spanning tree
Figure 10: Minimum spanning tree of SCADA network of figure 9 [1].

In LPP1, two weighting factors (o, ) are normally set to a=1 and =0.5. Normalized
weight (2.7), sets the weight of the links in a same range when they are not in the
same range. For example, in Figure 10 the link (7, 8) has the maximum value in the
MST SCADA network and it is equal to 17. To obtain the normalized weights,

weights of all the links are divided by 17. The normalized weight of link (1, 2) is

equal to 14—7 = 0.2352. The decision variable in LPP1 is, Y=(y,)n-1)x1, such that

[1]:

_ {1: if eeEMST is selected for elimination; (2 5)
Ye = 0, otherwise. '

Initial tree partitioning problem (LPP1) is described as follows [1]:

max Y e cEMST ( dMsT(e) + BW(e)) Ve » (2.6)
where
We)=—"9 _veeE , 2.7)

)
max w(e
e€E (€)

subject to
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YecEMSTYe = K—1 (2.8)
ye —dM5T(e) < 0, ve € EMST | (2.9)

ye €{0,1}, Ve € EMST | (2.10)

The objective function is presented in (2.6) and the normalization weight is defined
in (2.7). Constraint (2.8) is the quantity of the links that must be removed, and this is
equal to K-1 which means that if the quantity of segments K is equal to 3 the number
of eliminated links shall be equal to 2. Constraint (2.9) ensures that each segment has
at least two nodes that are connected. Algorithm 2.7 gives the pseudo code of the

initial tree partitioning problem [1].

Algorithm 2.7: Pseudocode of initial tree partitioning (segmentation)
algorithm [1].

Initial tree partitioning

Input: G (V, E), SCADA network, with weights, G.E.w; K, number of
target segments;

Output: S= {sl, s2, 53, ..., sK}, K segments obtained;

1.  Begin

2. ES=0¢N=|GV|ks= [g] ; /I N is number of nodes in graph G; ESS

is the set of links left after eliminating N-K links; kg is a limitation
variable that the size of segments must not exceed from this variable.

3.  T(V,EMST) « MST — Kruskal(G(V,E)); // MST graph, T, is
calculated by the Algorithm 2.6.

4.  Forall ee EMST do
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5. Calculate the lowest degree dM5T (e) by (2,4);

6. Calculate the normalized weight W(e) by (2.7);

7. End for

8. El'«
LPP1(inputs: objective function, (2.6),and the constraints, (2.8) —
(2.10); Output: the vectore Y that maximize the objective function))
(2.5)-(2.10); /I E!, vector Y, is the set of links that need to be
eliminated. LPP1 will choose the (K-1) edges that shall be removed to
make the primary tree partition.

9. ESS = {EMST\E!}; // Remove E'from the links of MST and store the
remain links in ESS. Size of ESS is N-K.

10. returnS = {s1,s2, ....,sK} « Disjoint — set(ESS, N); [initial
partition set defined by using Disjoint-set algorithm, Algorithm 2.5.
Inputs of Disjoint-set algorithm are edges, ESS, and number of nodes

in the graph G, N.

The input of the Algorithm 2.7 is the graph G (V, E) which G.V and G.E, vertices
and edges of G, and G.E.w, weights of the edges, G.E, and the number of segments,
K. The output of the Algorithm 2.7 is the set of the segments. Line 2 is the
initialization part and the set of the links left after elimination (E%) by the LPP1 is

empty, number of nodes (N) set to the number of nodes in the input graph and
variable k, = [%] In fact, the variable kg is the limitation variable and it means that

the number of nodes in segments must not exceed this value. In line 3, the minimum
spanning tree, T(V, EMST) is computed by the Kruskal algorithm. The input of the

Kruskal algorithm is the original graph, G (V, E), and edges weights, and the output
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of the Kruskal algorithm is the MST graph, T(V, EM5T). The number of links in the
MST is equal to N-1. Lines 4-6 compute the minimum degree and normalized weight
for all links in the MST. K-1 links are eliminated by the LPP1 in line 8 and the set of
the eliminated links of the MST is returned, E’, by the LPP1. In line 9, the remaining
set of links after elimination are placed in E**, set of links after elimination. Line 10
returns the initial set of segments. Disjoint-set algorithm, Algorithm 2.5, identifies
the segments. The inputs of the Disjoint-Set algorithm are set of edges and number of
nodes in the graph, G, and the output is the collection of disjoint sets, S. Figure 11

illustrates the primary segments that obtained by the Algorithm 2.7.

K-1=2

® - 0o

Link elimination and
Disjointset function

Figure 11: Links eliminations and segments identification [1].

The inputs of the initial tree partitioning algorithm, Algorithm 2.7, are the weighted
graph, G, in Figure 9 and the number of target segments, K, which is 3. The variables
Ess, set of remain links after eliminating the links, number of nodes, N=|G.V|=9, and
k., = 3, limitation variable, are initialized. In line 3 the MST, T, is obtained by the
MST-Kruskal algorithm. The MST is represented by Figure 10. Lines 4-7 compute
the minimum degree of the links (2.4) and normalized the weight of the MST links

(2.7). Figure 10 represents the minimum degree of the links. By solving the linear
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programming problem 1, LPP1, the number of links that must be eliminated is
returned and stored in E!, E! ={(2,3),(6,7)} ,. The input of LPP1 are objective
function and the constraints (2.6)- (2.10). the output is the vector Y that the decision
variable is denoted in (2.5). In line 9, set of the elimination links, E!, is removed
from the set of the MST links, EST, and the remain links of the MST are stored in
ESS, ESS = {((1,2),4),((3,6),6),((6:4),3)((4,5),2),((9,7),1)((7,8),17)}. The
set of 3 segments, S={sl,s2,s3}, is returned by Disjoint-Set algorithm, S=
{{1,2},{3,4,5,6,},{7,8,9}}, Line 10.

2.3.2 Definition of Ideal Segmentation Problem

The objective of ideal segmentation problem is to reduce the sum of the minimum
spanning tree weights of all partitions in SCADA networks and it is acquired when
the MST weight of any partition is minimized. ldeal segmentation problem is

described as follows [1]:

min Yees 5, (2.11)
where
st = % omsts w(es),vs €S, (2.12)
subject to
Uses VS =V, (2.13)
vsn vs = @,Vs #s’ ands,s’ €S, (2.14)
ver< g (2.15)

where V is set of the SCADA nodes, S is set of the segments; for each segment ,
s € S, Tt is the MST’s weight of the segment s and VS is the set of segment’s

nodes, MSTS is the minimum spanning tree in segment s and w(e%)denotes the link’s
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weight in segment s. Expression (2.11) is the objective function that minimizes the
sum of the weights of the MST graph in the segments. Equation (2.12) defines the
sum of the weights of the MST graph in the segment s. Constraint (2.13) ensures that
the entire network is segmented, i.e. the union of all segments returns the whole
network. Constraint (2.14) shows that intersection of any two segments is empty, in
other words, it shows that each node belongs to only one segment. Constraint (2.15)
limits the number of nodes for one segment. Algorithm 2.8 describes the local search

algorithm to provide the ideal segments size.

Algorithm 2.8: Pseudo code of local search algorithm.

Local search

Input: G(V, E), K, S // G is the original graph, K is number of target

segments and S is the set of segments that returns by the Algorithm 2.7;

Output: Set of segment sets after repartitioning;

15. Begin

16.  Phi=0, N=|G.V], k,=|~| ; Amin =@//initialization

17.  while phi <1do

18. Count=0;

19. Fori=ltoKdo

20. For j=1to K do

21. If |si>ks and [s;|<k; then

22. Amin=FindAmin(s;, s;, T) // The inputs of the FindAmin
algorithm, Algorithm 2.9, are oversized segment, s;, and

undersized segment, s;, and MST graph, T, the output is the

j?
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

minimum sub-segment, Amin, belonging to s; that is adjacent to

S]'.

it (ks = Isil]) + (Jis = Isil|) > (s = Isil + |amin]]) +

(ks — |sj| — |Amin]])) then
s; = {s;\Amin} and s; = {s; UAmin};// Updates the MST
partitions
count=count+1;// 1t checks for balancing segment sizes
End if
End if
End for //j
End for //i
If (count==0) then
Phi=1;//termination condition
End if
End while
Return s={s1,s2,...., sK}

End

The inputs of the Algorithm 2.9 are complete graph of the SCADA network, G(V,E),

number of segments, K, and the set of segment sets, S. Output contains updated

segment set. In line 2 the value of kq, ks:[g], is the limitation variable, ideal

segmentation size (2.15), and it means that the number of nodes in segments must

not exceed this value. The variable phi is set to zero, this variable is used by the

while loop (Lines 3-20) implementing the local search. This loop searches for the

oversized, s;, (|s;| > k) and the undersized, s;, (|s;| < k) segments, and for each
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pair of oversized and undersized segments that are adjacent, computes sub set, Amin,
of the oversized segment, Algorithm 2.9, (Line 9). Line 10 checks that the sum of
sizes of oversized and undersized segments after updating (removing the subset,
computed by Amin algorithm, from the oversized segment, s;, and adding this subset
to the undersized segment, s;) is less than it was originally. If the condition in line 10
is true, then the Amin set is removed from the oversized segment and added to the
undersized segment (Line 11). Amin is computed in algorithm 2.9. This loop will be
finished when the adjacent oversized and undersized segments are not exist, after that
the value of the counting variable sets to one (phi=1). Line 20 returns the segment

set.

Algorithm 2.9: Pseudo code of Amin finding algorithm.

Find Amin

Input: s;,s; and T(V, EMST) /I s; is the oversized segment set, s;is the

undersized segment set, T is the minimum spanning tree;

Output: Collection of nodes of the oversized segment;

1.  Begin numbered list?

2. If{e(u,v)|u € s;, v € 53N EMST = @ then// Edge e is the adjacent
edge between oversized segment, s;, and undersized segment, s;,
and endpoint u of edge e is a node that belongs to oversized
segment and endpoint v of edge e is a node that belong to

undersized segment,

3. Amin=0;
4. Else
5. Osize = @, 856t = @, N=0;//Initialization
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6. EPS! = U,pes{e(a b)le(a b) € EMST}

7. For all e EPS' do

8. EPsi = {EPsi\e(u,z)}; /ICutting the edge e(u,z) where endpoint u
of edge e is a node that connected to undersized segment by the
edge e(u,v) in line 2 and endpoint z of node e is the other endpoint
of the edges belong to oversized segment.

9. {Au, Az} < Disjoint — set(EPs}, |T.V|);// After cutting the edge
u two segments Auand Az are obtained by the Disjoint-Set
algorithm. One segment having node adjacent node, u, that is

called Au the other one is Az that is not used.

10. n=n+1,

11. 8set(n) = Au;

12. Ssize(n) = |Aul;

13. EPst = {EPsi U e, };//Restoring
14. End for

15. n*=arg min,, 8;,.(n);

16. Amin=38.(n *);
17. End if
18. Return Amin

19. End

Algorithm 2.9 is utilized to calculate Amin subset for the oversized segment in
algorithm 2.8. The inputs of the Algorithm 2.9 are oversized segment, s;, and

undersized segment, s;, and the minimum spanning tree, T. Line 2 checks the

neighboring of the segments. If they are not neighbor, the Amin set is empty. If the
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segments are neighbor, these segments are connected by a link, line 5 initializes the
size of segment set, &,;,., and the segment set , §,.;, and the variable n. Line 6
returns the set EPS'of links belonging to oversized segment, s;. The link that
contains node the adjacent node, u, and this node belongs to the oversized segment
cuts from the EPSt set (Line 8). After cutting, the oversized segment is divided into
two segments. Disjoint-set function, Algorithm 2.5, returns these segments (Line 9).
One of these sub segments contains adjacent node, u. This segment is qualified for
segment modification. The sets &;,, and ., are updated (Lines 11-12). This loop is
continued for all links of the EPS¢ that contains adjacent node, u. Line 15 returns the
minimum size of §g;,,.. Finally, in line 16 the corresponding node set Amin is

computed. Figure 12 illustrates the updated segment obtained by Algorithm 2.9.

Amin=(3}

.. o

Local search and
repartitioning

Figure 12: Updated segments of figure 11 obtained by algorithm 2.8 [1].

The node 3 in Figure 11 which is located in the oversized segment, {3,4,5,6} is
shown by green color in Figure 11, is identified by the Algorithm 2.9. The inputs of
Algorithm 2.9 are oversized segment, {3,4,5,6}, and undersized segment, {1,2}, and
minimum spanning tree, T, the adjacent link is e (3,6) and the adjacent node is u=3.
In line 6 the set of links belongs to oversized segment is initialized, EPSi =

{(3,6),(6,4),(4,5)}. The link (3,6) is the only link that contains adjacent node, 3,
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from EPSi as a consequence, the for loop in Line 7 iterates only one time. In Line 8
the link (3,6) is cut from the EPSi set and in line 9 two segments are returns by the
Disjoint-set algorithm, Algorithm 2.5, these set are {3}and {4,5,6}. The set that
contains the adjacent node, {3}, is returned by the Find Amin algorithm. This node is
adjacent to the undersized segment, {1,2} shown by blue color in Figure 11.
Algorithm 2.8 receives the Amin set, {3}, from the Algorithm 2.9 and then checks
the balancing condition in Line 10. In Line 11, node 3 is removed from oversized
segment and added to undersized segment. The output of the Algorithm 2.8 is the
updated set of segments, S={{1,2,3},{4,5,6},{7,8,9}}.

2.3.3 Definition of Optimal TSP Problem

After the segments are initialized by the Algorithm 2.7 using LPP1, and repartitioned
by the Algorithms 2.8, 2.9 solving ideal segmentation problem, the optimal trust
nodes must be selected. The LPP2 is the optimal trust node computation problem that

is described by (2.16)-(2.19) [1]:

min Yises Lben(s) Xsb (2.16)
subject to
ZxexmX1 = 1,V1€ Lg; Vs,s" €S, (2.17)
Xsp € {0,1}, Vs € Sand Vb € B(s), (2.18)
where
Xi(D) = {Xsp, Xp' ), b € B(s),b’ € B(s"),s #s',1=(b,b"), (2.19)

where B(s) denotes the collection of bordering vertexes, L¢¢ denotes the set of inter-
segment links between segment s and s’, and X, (1) is the parameter set for bordering

vertexes relevant to the inter-segment link, 1. The output of the LPP2 is the quantity
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of trust nodes that the system needs to be protected against the attacks. The decision

binary variable is X = (x,)y ¢ |5(s)x1 » Where beB(s),

1; if beB(s)is selected, s€S;
Xsb = {0’ otherwise ) (2'20)

The objective function is given in (2.16) and inequality (2.17) ensures that all inter-

segment links are covered by at least one trust system.

Algorithm 2.10: Pseudo code of trust node selection algorithm.
Optimal trust nodes placement algorithm
Input: S= {sl, s2, .....,sK}, G (V, E)

Output; yTrust,

1.  Begin
2. For all se S do
3. B(s)=0;//Initialize bordering node sets

4, End for

5. For all s#s’ and s,s’€ S do

6. Lss, = @;//Initialize inter-segment link sets
7. End for

8. For all e(u,v)€ E do

9. Find the segment x having node u;

10. Find the segment y having node v;

11. If x#£y then
12. Lyy = {Lxy U e}; // Updating inter-segment link set by adding link
e(u,v);
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13. B(x) = {B(x) U u}; // adding node u to bordering node set x;

14, B(y) = {B(y) U v}; // adding node v to bordering node set y;
15. end if

16. End for

17. yTrust

Solve LPP2(inputs: the objective function and constraints (2.16) —
(2.19), outputs: The vector X for binary decision variables )//This
will select the trust node set

18.  Return vTrust

19. End

Algorithm 2.10 is used to identify the bordering nodes and select the trust nodes. The
input of the algorithm 2.10 is a set of segments S which is the output of the algorithm
2.8 and the original graph. G (V, E). The output of the algorithm 2.10 is the selected
trust nodes. Lines 2-7 are the initialization part of the algorithm. In this part the set of
bordering nodes, B(s), per segment is initialized (Lines 2-4). For each pair of
segments, the inter-segment link set, L, is initialized in Lines 5-7. For all links,
e(u,v), in original graph, the segment, X, is identified that contains node u of the link
e(u,v) and segment y is identified that contains node v of the link e(u,v) (Lines 9-10).
If these segments are different, this link is known as an inter-segment link. Lines (12-
14) update the bordering node set and inter-segment link sets. By using LPP2 the
trust nodes are selected (Line 17). Figure 13 illustrates the intersegment links. These

links are shown by the dotted line in Figure 13.
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Identify inter-segment links
and bordering nodes

Figure 13: Identifying inter-segment links and bordering nodes [1].

Figure 13 illustrates the inter-segment links set, Algorithm 2.10 identifies the sets of

the inter-segment links, Lss’, and the set of bordering nodes, B(s), as follows:

lesz = {(3:4‘); (3;6)} and les3 = {(1:9): (2:9): (3:7)} and LsZs3 = {(617)}

B(s1)={1,2,3}, B(s2)={4,6}, B(s3)={7,9}.

After initializing the bordering node sets and inter-segment links, the trust nodes,
yTrust are obtained by the LPP2 in line 17. The inputs of the LPP2 are the objective
function (2.16) and the constraints (2.16)- (2.19). The output is the vector X, X =

(Xsb)y.cs|B(s)|x1 » Where BEB(s). The selected trust nodes in Figure 14 are 3, 7 and 9.

/l#*
CK\@—m—i -O——0

Trustnodes selection
Figure 14: Finding trust nodes by algorithm 2.10[1].
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Figure 15 depicts the flowchart of the optimal TSP problem solution algorithm. This
flowchart has 5 blocks except starting and ending blocks. In block 1, SCADA
network graph. G (V, E), and number of segments, K, are inputs of the Algorithm
2.7. In block 2, primary segments are computed by the Algorithm 2.7 (Segmentation
problem); the output of the Algorithm 2.7 is the set of segments, S, and this is used
as an input for the Algorithm 2.8 in block 3. Block 3 is about the local search process
in Algorithm 2.8 to find the oversized, s;, and undersized, s;, segments. This block
implements the ideal segmentation problem. Algorithm 2.9 is part of the Algorithm
2.8. The inputs of the Algorithm 2.9 are oversized, s;, and undersized, s;, segments
and minimum spanning tree, T, ant the output is the set of sub-partition, Amin, of the
oversized segment. The functionality of the Algorithm 2.9 is to find the set of nodes
from the oversized segments. The output of the block 3 is the updated set of
segments. Algorithm 2.10 implements the trust node selection problem (Block 4).
The inputs of the Algorithm 2.10 in block 4 are output of Algorithm 2.9, set of
segments, and the input graph in block 1, G(V,E). Output of the block 5 is the

selected trust nodes set (Block 5).
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Figure 15: Flowchart of the algorithm for solving optimal TSP problem [1].
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2.4 Experimental Outcomes

Case studies are conducted in [1] for the IEEE test system topologies [20]. The IEEE
test cases represent the part of the American Electric Power Systems. Table 2

illustrates the overview of experimental parameters.

Table 2: Overview of experimental parameters [1]

IEEE Number Number Link Link
Test of Nodes | of Active | Weight Weight
System (Network | Links Mean (ps) | Standard
Topology | Size) Deviation
(1)
BUS14 | 14 20 19.55 18.84
BUS 30 30 42 24.1 24.67
BUSS57T | §7 78 2233 34.41
BUS 118 | 118 179 8.35 6.22
BUS 300 | 300 409 14.59 39.21

The topologies are divided into two parts on the base of the network size: large
networks and small size networks. BUS 118 and BUS 300 are members of large
networks. BUS 14, BUS 30, and BUS 57 are members of the small networks.
Databases of the IEEE test system topologies include: bus number, load flow area,
loss zone, circuit, branch resistance, branch reactance, base KV (Kilo Volt), load
MVAR (Mega Volt Ampere Reactive), load MW (Mega Watt), minimum voltage
and maximum voltage. Databases are stored as text files. The first seven fields of the

first record of the IEEE test system topology of the BUS14 is shown in Table 3.
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Table 3: Structure of the IEEE test system topology BUS14.

1 2 3 4 5 6 7
1% Node 2" Node Load flow Loss zone area number of Transmission Branch
number of an number of an area number number parallel line resistance
edge edge includes: transmission o)
1 character Includes: Includes: Includes:
Includes: Includes: 1 character Includes: 1character | 14 characters
4 characters 4 characters 1 character
1 2 1 1 1 0 0.01938

An electric power grid is an interconnected network to bring electricity from

producers to consumers [21]. It contains generating stations, high voltage

transmission lines and distribution lines.

Generating station, generator, converts the mechanical energy using steam turbines,
gas turbines, water turbines into electrical power for use in an external circuit [22].
High voltage transmission line, electric power transmission system, moves the
electrical energy from generating station to an electrical substation [23]. Electric
power distribution is the final stage in the delivery of electric power, it carries

electricity from the electrical substation to individual consumers [24].

In a smart grid environment, electric power grids are assumed to be accompanied by
the representative SCADA communication networks. In a representative network,
each link corresponds to a power grid branch and each node corresponds to a
particular power grid bus. Links are weighted by the propagation delays. Figure 16
shows the IEEE BUS 14 test system topology with 14 nodes (buses) and 20 active

links.

In Figure 16, diagram of IEEE BUS 14 is depicted. IEEE BUS 14 includes 14 buses

which indicate the generator stations and 20 branches which indicate the
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transmission lines. The arrows in Figure 16 demonstrates the electrical loads,
component or portion of a circuit that consumes electric power [25]. Each bus in a
power system can be classified into three types [26]. First one is known as load bus.
All buses in load bus having no generators. Second one is the generator bus. The
buses that have generator are known as generator buses. The third one is the slack
bus that it balances the active and reactive power in power system. IEEE BUS 14
includes 14 buses, correspond to node in graph, that buses 1,2,3 and 8 are generator
buses and the other buses are load buses. The rectangle in Figure 16 demonstrates the

transmission lines number, correspond to link in graph.

|IEEE 14 BUS test system

Transmission Line

@ Bus Mumber

@ Generator
) Bus

+ Electrical load

Figure 16 : IEEE BUS 14 test system.

The information that must be retrieved from the databases includes: node number in

column 1 of Table 3, node number in column 2 of Table 3 and branch resistance in
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column 7 in Table 3. Brach resistance is used to calculate the propagation delay.

Structure of the database record is as follows:

First field defines the first node number of the link. This field includes 4
characters (including space characters). For example, in the first line of BUS 14
(Column 1 in Table 3), characters 1-3 are spaces and the fourth character is 1, as
a consequence, the node number is equal to 1.

Second field defines the second node number of the link. This field includes 4
characters (including space characters). For instance, characters 1-3 (Column 2
in Table 3) are spaces and the fourth character is equal to 2 as a result, the node
number is 2. After these 2 steps, two nodes of the link, (1, 2), are found.

Field 7 includes 10 characters (including space characters) and defines the branch

resistance. In the given example the branch resistance is 0.01938.

Because propagation delays are not given in the text file, the following calculations

are used to retrieve propagation delays for IEEE test system topologies:

1.

2.

Branch resistance (R) is retrieved from the previous steps.

Static resistivity (p) is a measure of how strongly a material opposes the flow of
electric current. Aluminum wire with an iron core is assumed in [3], which has a
resistivity value of 2.50188E-8 Qm.

Area is the cross-sectional area of the material in square meters (m?). In [3], it is
selected 0.00080642 m? as a typical value.

The line length of a piece of material is measured in meters. The line length is
obtained by equation (2.21).

In [3], fiber optics cables are used in the communication line, therefore, the speed

of light, 299792458 m/s, in fiber optics cable, fiber optic operates 99.7% speed of
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light, is used in equation (2.22) to obtain the time or latency from the line length

(2.21) [3].

RXArea

Line_Length = m (meters), (2.21)

Time = % s (seconds), (2.22)
For instance, the propagation delay between nodes 1 and 2 of IEEE BUS 14 power
system is calculated as follows:
Example 3: Computation of propagation delay between node 1 and node 2
of IEEE BUS 14.
R=0.01938 Q. // retrieved from field 7 of Table 3.

Area=0.00080642 m?.

p = 2.50188E — 8 Qm.

Line_Length=221238x000080642 _ ¢4 667034,
2.50188E-8

Time=22278%3 _ ¢ 250E—6's (seconds) = 6 ps (micro seconds).

299792458
The rest propagation delays are obtained in same way of Example 3 which are

specified in Figure 17.

Figure 17 shows a graph of IEEE BUS 14 test system topology. In the graph, nodes
correspond to the buses, generators or electrical loads, links represent
communication between buses, transmission lines, and link’s weights represent

propagation delay in micro seconds.
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Figure 17: Graph of IEEE BUS 14 test system topology presented in figure 16.

The designed method implementation employed MATLAB optimization toolbox.
The IEEE test system models are utilized as SCADA network graphs. Small
networks are divided into 3 to 6 segments with increment of 1. Large networks are
split into 5 to 30 segments with increments of 5. The mean value of the segment size
differs between 2.33 and 19 in small size networks and also, the range of mean value
of the segment size is between 3.93 and 60 in large networks. In [1], all the
examinations are implemented on a PC system equipped by RAM 4 GB and Intel

core i3, 3.30 GHz processor.

In [1] coefficient of variation, also known as relative standard deviation, RSD, of
segment size [27] is chosen as a metric. Equation (2.23) demonstrates the coefficient
of variation, CV, formula [27].

cv=2, (2.23)

=|Q
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where o is the standard deviation and p is the average. Equation (2.24) illustrates the

standard deviation formula [28] for values x[1..N]:

N —
o= /—Zi=115’31“>2 | (2 .24)

. Equation (2.25) defines the mean of x[1..N] values :
p== N, x) (2.25)

Figure 18 demonstrates the relative standard deviation of the calculated segment

sizes for small (Figure 18(a)) and large (Figure 18(b)) networks.
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Figure 18: Relative standard deviation of the calculated segment sizes. (a) Large
networks. (b) Small networks [1].

Relative standard deviation of the computed segment sizes is less than 0.5 for small
networks and is less than 1 for large networks. As the Figure 18 shows, it is obvious
that the coefficient for large network is higher than for small network and it is
because of network size. In large networks segments have lower size balance and as
a consequence, the relative standard deviation of the calculated segment sizes is

larger.
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In Figure 19, the average MST weight (2.25) is the metric for the geographic
dispersion. Figure 19(a) is for small networks and Figure 19(b) is for large networks.
In both of them, it is clear that by increasing the number of segments the average
MST weight is reduced. The segment sizes and quantity of segments are related, and
it means that increasing number of segments causes decrementing of the segment

sizes. As a consequence, there is a decrement in the average of MST weight.
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Figure 19: The average MST weight of the calculated segments. (a) Large networks,
(b) Small networks [1].
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Figures 20 shows the desired quantity of trust systems, calculated by the Algorithm
2.10, for the proposed scheme. In both cases, the bar chart shows that required
amount of trust systems rises with the amount of segment increasing. The amount of

increments is higher for larger networks.
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Figure 20: The needed number of trust systems. (a) Large networks. (b) Small
networks [1].
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2.5 Problem Definition

SCADA networks are used to monitor and control the input and output traffic to
protect the smart grid networks against the intrusions, malicious activities and other
bad activities that harm the smart grid networks. For this reason, trust systems are
deployed by the smart grid operators to monitor traffic packets. Trust systems consist

of firewalls and intrusion detection systems (IDS).

The objective of optimal TSP problem is to optimize the cyber-security of smart grid
networks. As trust systems contain specialized software and hardware agents, it is
expensive to deploy them through entire of network and also trust systems cause
delay through the network. In [1], optimal TSP problem is proposed to optimize the
security by minimizing the operational expenditure and capital expenditure. As a
consequence, minimum number of trust nodes is selected and equipped by the trust
systems. These nodes are known as trust nodes. Optimal TSP problem provides

optimize security and minimize the cost.

Methods that are used to solve the optimal TSP problem comprise segmentation
algorithm, local search algorithm and trust node selection algorithm. Segmentation
problem is the main part of the optimal TSP problem. As smart grid networks, power
grid systems, are geographically distributed the network is divided into small
networks to restrict the spreading of cyber-attacks. Segmentation is based on the
MST it means that in each segment the distance between components is minimal.

Local search is used to uniform the size of the segments in number of nodes.

Only bordering nodes can host the trust systems. As a consequence, due to the

budgetary minimum number of trust nodes are selected by the trust node selection
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algorithm. The constraint of trust node selection algorithm is that all inter-segment
links must be connected to at least one trust node. As a result, if in one segment a bad
activity, malicious traffic and other types of attack is took place then it can not
distribute to other segment because segments are connected through the inter-

segment links which they are equipped by at list one trust system.

We used IEEE test system topologies, categorized into small and large networks, as
database to analyze the performance of optimal TSP problem. We use coefficient
variation to measure the segments size. The coefficient of variation for small network
is smaller than coefficient of variation for large networks. It means that segments in
small networks are more balanced in number of nodes. By increasing the number of
segments, the required number of trust systems increases, and the average of MST

weighs decreases.
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Chapter 3

DESIGN, IMPLEMENTATION, AND TESTING OF

OPTIMAL TSP SCHEME

In this chapter, we explain design and implementation of the codes. This chapter
includes three sections. In Section 3.1, design and implementation of proposed
optimal TSP scheme [1] are discussed. In Section 3.2, testing of the developed

optimal TSP scheme is discussed.
3.1 Design and Implementation of Proposed TSP System in [1]

As mentioned in Chapter 2, the optimal TSP scheme is based on three algorithms
(Figure 14). Inputs of this software are divided into two parts, the first one is manual
input and the second one is the text files, based on IEEE test system topology [20].
The source codes and the databases are shown in the Appendix A. After explanation
of the codes, we will discuss the improvement part of the optimal Trust System
Placement (TSP) scheme in smart grid SCADA networks program due to the
minimization of the dispersion of the trust system number over the network segments
that improves uniformity of the trust systems placement. Utilities that we used, are
Microsoft Visual Studio.Net Enterprise 2015 and Matlab R2016a. This application is
implemented by Microsoft C#.net which is an elegant and type-safe object-oriented
language. Matlab is used to solve the LPP1 and LPP2 problems. All the examinations
are implemented on a PC system equipped by an Intel core i7 2.10 GHz CPU and

8GB RAM and Microsoft Windows 10 64-bit operating system.
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3.1.1 Design of Optimal TSP Scheme [1]
Figure 21 demonstrates 8 blocks of process to implement the proposed optimal TSP

in smart grid SCADA networks. These blocks are shown as follows:

e )

Initialize graph (Inputs: nodes
number, propagation delay
output: G(V.E))

3

Initialize graph(Input: Text
file Output: G(V.E)) e—N
@

Isit manual input?

@

Yes—>

|

Output: G(V.EW)andK
)

Segmentation
Algorithm 2.7(Input: G(V.E,W) Output: S)
(@)

Local search
Cooperation of Algorithm 2.8(Input: G(V.EW), K. S
Output: S) and Algorithm 2.9(Input: sisj.T Output: Amin)
(6

Selection of trust nodes
Algorithm 2.10(Input: G(V.E.W), S Output: Trust node
set)

M

Output: Trust nodes set
@®)

A

( )

Figure 21: Block diagram of process to implement the proposed TSP in smart grid
SCADA networks.

60



Block 1 is a decision process to select the graph. Initialization of the graph is divided
into 2 types, initializing graph of IEEE test system topologies via text file (Block 2)
and manually initialize the graph (Block 3). The output of the Blocks 2 or 3 is used
as an input (Block 4) for the segmentation problem (Figure 15 Block 2). Block 5,
implements the code to execute the Algorithm 2.7 and the output of block 5 is used
as an input of block 6. In block6, the Algorithms 2.8 and 2.9 are implemented to run
the local search procedure. The output of the block 6 is the updated segment sets and
used as an input for the selection of trust nodes procedure (Block 7). Block 7
implements the Algorithm 2.10 and the output is the set of trust nodes that must host
the trust systems. The source codes of theses blocks are described in Section 3.1.2.
3.1.2 Implementation of optimal TSP scheme

Appendix A demonstrates the source codes of the optimal TSP program. This
program includes Edge, Graph, Create_Graph_text, Create_graph
Minimum_Spanning_Tree, LPP, Delta_min, Bordering_node_details, buttonl_click,
and Trust_Node_selection classes. Each process in Figure 21 includes several

classes.

1. The process of initializing graph in blocks 2 and 3 implement the input process
uses classes: Edge, Graph, Create_Graph.cs, Creat_Graph_text and buttonl click
event.

2. Segmentation process (Block 5) uses classes: Minimum_Spanning_Tree.cs and
LPP.cs.

3. Local search process (Block 7) uses classes: Delta_min and Form1.cs .

4. Selection of trust nodes process (Block 9) uses classes:

Bordering_node_details.cs and Trust_Node_selection.cs.
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The first part of the implementation is to define the attributes of the graph which
include: edge, source/destination node, weight (propagation delay). These attributes
are obtained by the process in block 2 or 3. Block 1 decides which block 2 or 3 might

be run. Figure 22 shows the main form appearance.

a5 Main - | X

Manual Input (Click on Button below) Input graph via textfile

Manual

MNumber Of Segments I:I

Mumber of vertices - |

MNumber of Edges Find Trust Nodes (|EEE)

Source

Destination

Weight

Figure 22: Main form of the program.

Figure 22 illustrates that the default input type is by the text file because the elements
of manual input are disabled. By clicking on the combo box and choosing the
databases (BUS14, BUS 30, BUS57, BUS 118 and BUS300), the decision process in
block 1, decides to execute the process of block 2 in Figure 21. Otherwise, if the
“Manual” button is clicked then the process of block 3 is executed (Manually input).
The manual input includes number of vertices (nodes), number of edges (links),
source (node number), destination (node number) and weight of the link. The graph

is undirected, the source and destination value just denote the two endpoints of the
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link. Classes Edge, Graph and Create_Graph are used in the both processes. Block 2,

except the mentioned classes, executes the Create_Graph_text and block 3 executes

the buttonl_click event. Figure 23 illustrates the flowchart of the input graph

procedure with the use of a text file. Figure 24 shows the main form for the manual

input graph, and Figure 25 depicts the flowchart of the procedure of manual graph

initialization.
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Block 1 is a switch statement that chooses a single switch section to execute from a
list of candidates based on a pattern match with the match expression [29]. It has 5
switch selections for IEEE test system topologies. By choosing one of the IEEE test
system topologies from the combo-box in Figure 22, one switch selection is executed
(Blocks 2, 5, 8, 11 and 14) and all lines of the text file will be read by the
“File.ReadAllLines()” method and stored in an array of string [30]. In the next block,
the array of string is parsed by the create_graph_text method to extract the attributes
of the graph in text file (Table 3). Finally, the output is the SCADA network graph

object. By clicking on the button (manual) the manual input graph is activated

(Figure 24).
a5 Main - O *
Manual Input (Click on Button below) Input graph via text file

Manual

Mumber Of Segments I:I

Number of vertices I:I
Nowbercf Edges ||

Source I:I

Destination I:I

Weight I:I
Add Find Trust Nodes

Figure 24: Manual graph input screen.

Figure 25 depicts a flowchart of the procedure of manual input of the graph. In block

1, the number of vertices (nodes) and number of edges (links) are read from the
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textboxes. The array of the object edges is created in block 2. In block 3, the variable
I is set to zero. This variable is used to count the number of edges (links). The value
of the weight, source (node number 1) and destination (node number 2) of the edge is
read and if the value of the variable i is smaller than the number of edges (Block 5)
then these values are stored to the attribute of the graph (Block 6). After adding these
values, the value of i increases by 1. If the condition in block 5 returns false
(i>number of edges), the graph is created by the Create_graph method (Block 8). The
output is an undirected graph. Below, the classes which implement the input graph

are discussed.
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Figure 25: Flowchart of the algorithm allowing of manual graph creation.
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Defining class of Edge: Appendix Al shows the class Edge.cs. It has 8 attributes
and includes: Source, Destination, Weight, minDegree, maxdeg, normalizeWeight,
we, Active, delta_Seg and Intersegment lines (3-12). There is one method,
add_Edge, which initializes the attributes Source, Destination, Weight, and Active,
which is a Boolean variable. The value of this variable at the beginning is equal to
true. This method is used to add the value of the destination, source and weight to the

created object of edge.

Defining class of Graph: Appendix A2 is about a class Graph. Lines 3-8 define the
attributes which are related to the number of vertices, number of links, Edge
properties and two constraint variables that are used to calculate the weight of the
edge (propagation delay) [3] and they are defined in Section 2, (2.21)- (2.22). It
includes seven methods. Lines (9-13) initialize the graph attributes such as:
vericesCount, number of nodes, and edgesCount, number of links, and the array of
links, ed, for manual inputs. Lines 14-28 is a method to compute the mean value of
the links (2.25). Lines 29-50 defines a method, standard_Deviation, to computes the
standard deviation of segments in size. Inputs are segments and the mean weight and
the output is the standard deviation of the computed segment size (2.24). Line 51-56
define a method, coefficient_Variation, to computes the coefficient of variation of
the segment size or of the trust nodes over the segments (2.23). Inputs are standard
deviation and mean value. Lines 58-77 is a method to find the remote nodes,
disconnected power grids in IEEE Buss300 are connected by the remote nodes and
remote nodes share and exchange the power excess. This method is used only for
BUS300. Appendix B6 show the information of remote nodes data. Table 4

illustrates the first row of the remote node file. I just need to retrieve a data from
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field 1, remote node number, and from field 19, node number. If their values are

different the values are swapped.

Table 4: First row of the remote node text file for BUS300.
1 (2]3]4(5 6 7 8 9 10 11] 12 13 14 15 16 17 18 | 19
1(1|1]1{0] 1.0284 5.95 90 49 0] O 115 0 0 0 0 0 0 1

Defining the button1_Click event (Adding link’s information for manual input):
This method is run when the button by the name Add is clicked. Appendix A3 shows
the codes of the buttonl_Click which executes the manual graph input procedure
(Figure 25). Lines 5-10 initialize an empty array of edges. By clicking the Add
button, Line 12 checks that this edge information does not exceed the number of
edges (Figure 25, Block 5). Line 14 adds the edge attributes to the array in element
with index number i. If variable i exceeds the number of edges, then the method

create_Graph returns the output graph (Line 28).

Defining the function of Create_Graph_text (Input graph by using text files):
This method executes in the class of the Graph. Appendix A4 shows the functionality
of the creat_Graph_text method. The inputs of this method include: array of the lines
of the text file, number of edges and number of vertices. Lines 3-19 are the
initializing. In line 8 the remotenode function executes if the input text file is IEEE
BUS300. Lines 20-75 is a loop that read characters of lines one by one from the input
text file (database). In each line, characters 1-4 indicate the first node of the link
(Line 28). In Line 30, there is a condition that checks the ASCII code of space
(ASCII code of space=32): if it is not equal to ASCII code of the space then it is
added to the source variable. Line 33 reads characters 6-9,and sets the value of the

dest variable. The characters in range of the positions, [20-29], of the line indicate
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the branch “resistance”. Lines 45-61 is executed if the selected text file is BUS300. If
the remotenode and node number are different they will be swapped. Line 41 sets the
value of the weigth, resistance, variable. Lines (62-72) calculate the propagation

delay of the link (2.21) - (2.22).

The segmentation process (Block 5) includes 2 classes as follows:

Defining class of minimum_spanning_tree: Appendix A5 defines MST. In this
class, | used Kruskal algorithm, Algorithm 2.6, to compute the minimum spanning
tree, Disjoint-set algorithm, Algorithm 2.5, to extract the segments and one function
to compute the minimum degree of the links. Line 4-9 implements the Find
algorithm, Algorithm 2.3. in line 6 if the node does not point to itself then the Find
method calls itself to find the parent of that node, go up the tree to find the parent.
Lines 10-29 implements the Bubblesort algorithm, Algorithm 2.1. The Exchange
method in line 10 is used to swap the elements in the array of the link. Lines 30-43
implement the Union function, Algorithm 2.11. Lines 56-91 is the Disjoint-set
algorithm, Algorithm 2.5. The input is the object graph G and the output is the
segments. Lines 92-133 is Mst_Graph method that implements the MST-Kruskal
algorithm, Algorithm 2.6, and the input is the object of the input graph, G(V,E), and

the output is the minimum spanning tree, Mst.

Defining class of LPP: This class (Appendix A6) is used to solve the integer linear
programming LPP in [1]. It has two functions LPP1 and LPP2. Line 4 is used to
make a connection between Microsoft Visual Studio and Matlab. Lines 5 and 6
define two constraints (a=1, f=0.5) which are discussed in Chapter 2. In Matlab, all
the variables are double, and also, they are defined as matrices. Hence, | defined a 2-

dimensional arrays, matrices, and the attributes of the indexes of the matrix are
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double, Lines 9-16 are arrays of LPP2 and Lines 66-73 are arrays of LPP1. Line 7 is
a method to solve the LPP2. The inputs are number of bordering nodes, number of
inter-segment links and the set of inter-segment link and the set of bordering nodes.
Lines 9-12 initialize objective function array (2.16), f, and the equation constraint
array, intcon, and inequality constraints array (2.17), A, b. Lines 13-16 initialize the
arrays to send to the Matlab application. Lines 17-36 the value of the arrays are set.
Line 31-32 call the method Find_for_Array_A, Lines 45-62, to find the segment that
having endpoints of inter-segment link. The object of array res is initialized. This
object stores the returns answer from the Matlab application (Line 38). In line 40 the
arrays are sent to the Matlab by the method Feval. The first input of this method set
to “intlinprog” it means that the answer is a binary vector, {0,1}. In line 42, first
index of the array res is the returned answer by the Matlab application and store in
the array sIn. Line 43 is the output of the LPP2 method. Lines 63-130 implement the

LPP1. The structure of the code is same as the LPP2.

Implementing the local search process (Block 6) needs to implement the while loop
in Algorithm 2.8. This loop finds the oversized segment and undersized segment. If
these segments are adjacent, then Line 10 calls the delta_computation (Algorithm
2.9) method from the delta_min class to find the set of the nodes. This set will be
removed from the oversized segment and added to the undersized segment. Below |
am going to describe the functionality of the local search algorithm, button2_click

event in form1 class, and FindAmin procedure, delta_min class.

Defining class of Delta_min: Appendix A7 illustrates the source codes of the class
Delta min. This class defines Amin computation algorithm (Algorithm 2.9) in

chapter 2. Inputs of function (delta_computation) are oversized, S_i, and undersized
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segments, S_j, and minimum spanning tree, Mst, and minimum spanning tree of the
segments, Mstss, these 4 arguments are shown in Line 3. Lines 4-17 initialize the
variables such as: a set for delta_min, line 6, an adjacent node u, line 6, an array for
Epsi, Line 9, an array for the links that are cut, line 10, an object f
minimum_spanning_tree class to use the disjoint-set method, linell, segment set for
adjacent node, line 13. Lines 18-32 check the adjacency of the segments. There is no
adjacency if the value of the variable (U=999) does not change; otherwise, lines 42-
76 extract the links set belonging to the oversized segments (Lines 42-76). All links
that belong to node u are removed and collection of segment (Segment_set_U) will
be updated (Lines 81-107). All the elements of the collection set of the segment
(Segment_set_U) will be checked if the nodes of the segment include node u then,

that segment is the output of the delta_min(Lines 108-120).

Defining the button2_click event: Appendix A8 demonstrates the Lines 1-10 in
Algorithm 2.7 and the lines 1-20 in Algorithm 2.8 in Chapter 2. In line 3 the value of
the variable phi is set to 1, this variable is used in while loop, line 28. In lines 5-8 the
number of segments, K, and the object of the segment are initialized. In line 11,
kruskal method (Appendix Ab5) is executed to obtain the minimum spanning tree,
MST. Minimum degree of the links is computed in line 13. The link weight standard
deviation and link weight mean are computed in lines 16-17. Line 21 executes the
LPP1 and store the output data of LPP1 to the ESS, links of segment set. In line 26,
the segments are returned by the disjoint-set algorithm, Segmentation method
executes the disjoint set method. The variable Ks, limitation variable in Algorithm
2.8, is set in line 27. Lines 28-66 of Appendix A8 implement the local search to find

the oversized segment and undersized segment. Line 31-56 implement two for loop
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of Algorithm 2.8. In line 37 the sub-segment of oversized segment is computed by
Delta_min class in Appendix A7 and this segment stores in delta_Min object. If the
conditions in Lines 38-43 is satisfied, then the set of nodes will be added to the
undersized segment (Lines 46-47) and removed from the oversized segment (Lines
48-56). If there are no adjacent oversized and undersized segments, then the while

loop is terminated.

Implementation of trust node selection process (Block 9) includes 2 classes as
follows:

Defining class of Bordering_Node Details: Appendix A9 shows the
Bordering_Node_Details class. Bordering node class checks all the list of the set of
the bordering nodes for duplication. If there is no duplication, then the node will be

added to the list (Lines 6-20)

Defining class of Trust_Node_Selection: Trust_Node_Selection class (Appendix
A10) is used to perform the Algorithm 2.11 in Chapter 2. Lines 2-22 represent
initialization part. Inputs of the function (Bordering_Node_ Details) is the original
graph (G) and updated segment collection (S). All the links belonging to the original
graph are checked. If bordering node (x) and bordering node (y) are not equal, the
intersegment property of the Edge property changes to true and the bordering node,
(%, y), is added to the bordering node set (Lines 26-37). All the links are checked: if
the intersegment feature is equal true, it is added to the intersegment link array
(L_xy) (Lines 38-51). Line 56 is the linear programming problem solved by Matlab.

This function returns the set of trust nodes.
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3.2 Testing of Optimal TSP Program

In this section, we will compare the results of the application with results in Figures

9-14 in Chapter 2. Figure 26 shows the main page of the optimal TSP in smart grid

SCADA networks.
gzl Main — O bt
Manual Input (Click on Button below) Input graph via text file
Manual
MNumber Of Segments I:l

Mumber of vertices ™~

Mumber of Edges Find Trust Mades (IEEE)

Source

Destination

Weight

Figure 26: Main form of the program.

The default input graph is considered as text file. The comboBox property on the
right side of the form shows the databases of the IEEE test system topologies. The
number of segments is initialized by the textbox. The button “Find Trust Nodes
IEEE”, executes the Algorithms 2.7-2.10, and the results will be shown in the

Minimum Spanning Tree and Uniform forms.

In Figure 26, if user clicks on the button “Manual”, the input type will be changed to
the manual input. Number of vertices textbox receives the number of nodes in the

graph. Number of edges textbox receives the number of links of the graph. Source
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and Destination text boxes receive the node number of two connected nodes of the
link. Weight textbox receives the propagation or distance between two nodes of the
link. By pressing the button “ADD”, the new information of the link of the graph will
be added to the Edge object (this object is defined in Edge class, Appendix A). The

functionality of the Find Trust Nodes button is to execute the Algorithms 2.7-2.10.

The complete graph is shown in Figure 9. The data of this graph is used as input to

the application.

Figure 27 demonstrates the minimum spanning tree and the trust systems in each
segment (Figures 10 and 14). Minimum spanning tree form (Figure 27) at first does
not have any contents. After computing the MST and segments the values will be

changed to string type and written on the form.

a5 Minimum Spanning Tree — [ >

Source Destination W eight

7 | 1

4 5 2

4 & 3

1 2 4

6 i 4

3 & &

2 3 10

7 8 17

Segment 1={1.2.3}

Segment 2={4 56}

Segment 3={7.2,9}

Segment 1 Cortains 1 Trust Modes
Trust Mode 1s:3

Segment 2 Cortains 0 Trust Modes
Segment 3 Contains 2 Trust Modes

Trust Mode Is:7
Trust Nede 1s:9|

Mumber Of Trus Modes: 3

Figure 27: Minimum spanning tree form that shows the MST graph and trust nodes
in each segment base on figure 8.

We test on Figures 9-14. The complete SCADA network is depicted in Figure 8. The

links of minimum spanning tree of SCADA network in Figure 10 are (1, 2), (2, 3),
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(3, 6), (6, 4), (4,5), (6, 7), (7, 8) and (7, 9) which are same as the links of minimum
spanning tree in Figure 27. The number of segments K is 3. After information of the
MST in Figure 27, the nodes of segments and trust systems in each segment are
shown. Trust nodes in Figure 27 are 3, 7, 9 and segment 1 contains one trust node
(3), segment 2 does not have any trust node and segment 3 has two trust nodes (7, 9).

All the results are the same as in the Figure 14.

In Figure 14, we realized that one segment does not have trust node on the other
hand, the total number of trust nodes is 3, and number of segments is 3, s1={1,2,3},
s2={4,5,6}, and s3={6,7,8}. As a consequence, we decide to distribute the trust
nodes through the segments as much as possible. In the next Chapter, | am going to
describe how uniformity of trust nodes distribution can improve the dispersion of

trust nodes over network segments as much as possible.
3.3 Summary

In this chapter, we implemented optimal TSP problem. The problem is written by the
Microsoft C#.net which is an objective oriented language. We defined classes for
Edge, Graph, MST, LPP, Delta min, bordering node and trust selectin. System
scheme of the optimal TSP problem in [1] is depicted in Figure 21. The input of the
implemented program is divided into two types. First one is a manual input which
user indicates the node numbers, propagation delay or weight of the links, links and
number of segments by filling the form. In the second one, user selects one of the
IEEE test system topologies and the software extract the information of selected
topology from the related text file. The outputs of the software include, minimum
spanning tree form that shows the MST graph details, segment sets and trust nodes in

each segment. We tested the program by comparing the result of our program with
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the result in [1]. Details of the graph in Figure 14 are inserted manually to the

program. By comparing the results, we notice that both of them are same.
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Chapter 4

IMPROVEMENT OF THE OPTIMAL TSP

UNIFORMITY

In this chapter, we describe how uniformity of trust nodes distribution can be
improved. We propose the Uniformity algorithm to solve the optimal TSP
uniformity. This chapter includes two sections. In Section 4.1, definition and
implementation of Uniformity algorithm is discussed. In Section 4.2, the uniformity
of trust systems distribution over network segments is compared versus uniformity of

the original TSP [1].

4.1 Definition and Implementation of Uniformity of TS Distribution

over Network Segments

Trust systems are installed to the smart grid networks to monitor and control the
traffic packets to block the dispersion of malicious packets through the segments. In
discussed optimal TSP problem security is optimized but the dispersion of trust
systems was not considered. Consequently, segments may have quite different
number of TS allocated to them, some may have many TS, other may have no one
TS. Segments that are not equipped by TS may deteriorate its security and the

segments that overloaded may cause delay on the segment.

To optimize the security and minimize the operational delay we propose to optimize
uniformity of TSP allocation to the segments (Optimal TSP uniformity problem).

This problem improves TSP which means that the number of TS will be exactly
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same as after optimal TSP problem solving, and all inter-segment links are connected
to at least one TS. The number of TS and inter-segment limitation are considered as

constraints for the optimal TSP uniformity problem.

We introduce the Uniformity optimization algorithm to solve the optimal TSP
uniformity problem. The relative standard deviation, coefficient of variation, of TS
number per segment is used as a metric to measure how much the segments are

uniform in number of trust systems.

For example, trust nodes in Figure 14 are 3, 7, 9. Nodes 7, 9 are in one segment, s3;
node 3 belongs to another segment, s1, and one segment, s2, has not any TS that may
deteriorate its security (vulnerable to compromise of other segments). Uniformity
algorithm re-distributes the TS over the segments. For instance, Uniformity
algorithm selects node number 6 as a trust node that belongs to the segment, s2,
instead of the node number 7 belonging to s3. As a result, all segments have the same
number of TS and all inter-segment links are connected to at least one TS. In Figure
14 the coefficient of variation of trust node number per segment was 0.81 and in
Figure 28, after executing the Uniformity optimization algorithm, this value changes
to 0. As a result, we improved the dispersion of trust system by 81%. Figure 28

shows the result of the Uniformity algorithm.

/’ ;
o<~
\@——i@—z—@

Figure 28: Distributing trust systems over segments by using Uniformity
optimization algorithm, algorithm 4.1.
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Algorithm 4.1 describes the Uniformity optimization algorithm to distribute the trust

systems through the segments.

Algorithm 4.1: Pseudo code of Uniformity optimization algorithm.

Uniformity optimization

Input: S, VTust [.ss’.// S denotes the .set of segments, VISt denotes the

set of trust nodes and Lss’ denotes the set of all inter-segment links,

Lss’={el,e2,..en} where e=(v1,v2) denotes the inter-segment link.

Output: VTrust // Updated trust nodes set.

1.

10.

11.

Begin
|VTrust| _
Ns= [ ] O_cv=Computing the coefficient of variation of trust

system// limitation of trust nodes in each segment. O_cv is CV of trust
system

balance=0; ph=0; Vet = @; // Viemst is a temporary set of trust
nodes.

while (balance<1) do

ph=0; VtTeﬁ;}gt vTrust:// ph is a decision variable to terminate the
while loop. vtg;;gt store the value of VTrust,

/Isearching to find overloaded and underloaded segments
For i=1to |S| do
For j=1to |S| do
If ((number of trust nodes in segment i<Ns) and

(number of trust node in segment j>Ns)) then

X1=Find trust node in segment j adjacent to segment i;
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

For all e e Lss’ do
//searching to find the intersegment link between
overloaded segment j and underloaded segment i
Y1=Find segment such that Lss’.e.vl belongs
to it;
Y2=Find segment such that Lss’.e.v2 belongs
to it;
/11 there is an inter-segment link and one node of the link, hosted
the trust system and other node does not then change the place of
trust system.
If((((Y1==segment i) and (Y2==segment j))
or((Y1==segment j) and(Y2==segment j)) then
If (X1==Lss’.e.v2) and(Lss’.e.vlg¢ VTrust)))
then
yTrust=fyTrust\x11-//Remove.
yTrust=fyTrust yJ ss° e.v1};//Add.
End if
If ((X1==Lss’.e.vl) and(Lss’.e.v2¢ VTrust)))
then
yTrust=fyTrust\x11-//Remove.
yTrust=fyTrust yJ 55’ e.v2};//Add.

End if

End if

ph++;

80



29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

End for
For all e € Lss’ do// checking the constraint, inter-
segment links must be connected to at least one trust
nod,
If (Lss’.e.vlg VTTust) and
(Lss’.e.v2¢ VTTust) then

yTrust=yeest.// It means that one inter-

segment link is not connected to trust system
as a result, the new trust nodes cannot accept

and the value of VTSt returns to Vipms',

nothing change,

End if
End for
End if
End for
End for

If(ph==0) then
Balance++;// all segments are checked

End if
End while
P_cv=Compute the coefficient of variation of trust system after
improvement
Improve_Measure=0_cv — P_cv;// show how much the dispersion
of trust system is improved.

Return vTrust:
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The inputs of the Algorithm 4.1 are set of segments, S, and set of trust nodes, VTrust,
and set of all inter-segment links. The output is the updated trust nodes set, VTrust,
which includes trust nodes that are distributed over segments. In line 2, the limitation
of the size of the segments in number of trust nodes and coefficient of variation of

trust system over segments before improving are calculated. In line 3 the Vtg;l‘;t is a

temporary set of trust nodes to store the value of VTTust pefore it is updated. Line 4 is
a while loop and the function of this loop is to find the overloaded and underloaded
segments. If these segments are found, Line 9, then the adjacent trust node, which is
connected to underloaded segment by the inter-segment link, in overloaded segment
must be recognized, line 11. Line 12 is a local search loop and it finds the inter-
segment link between oversized and undersized segments. Line 16 checks 2
conditions. First condition checks the nodes of inter-segment link that these nodes
belong to underloaded and overloaded segments. Second condition checks that the
node of the inter-segment link that is located in overloaded segment hosted the TS
and the intersection of the other node with VTTUst is empty, it is not a trust node. If
these conditions return true value, then the place of trust system is swapped between
the nodes of the inter-segment link, lines 18-19. After finding the new node that
hosted trust system the VTTUst js updated. The constraint of the problem is that all
inter-segment links must be connected to at least one trust node. Lines 30-35 are used
to check all inter-segment links for this reason. If even one inter-segment link is not
connected to at least one trust node in the updated Vst Lines 31-32, then the value

of VTTust returns to its value before updating, Vt'[fn‘{gt .The search function to find the

overloaded and underloaded segments has been continued since there is no
overloaded and underloaded segments, line 39. In line 43 the coefficient of variation

of TS over segments after improving is computed. In line 44, the improvement value
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is return. In line 45 the updated trust nodes set is returned. An example of Uniformity

optimization algorithm work is given in Example 4.

Example 4: Application of Uniformity algorithm, Algorithm 4.1, to the
graph in Figure 14.

Input: S={s1,s2,s3}={{1,2,3},{4,5,6}.{7,8,9}}; yTrust = (37,93,
Lss’={(1,9),(2,9),(3,6),(3,7),(3,4),(6,7)}.

NS:E] = 1; balance=0; Viems' = @; O_cv=0.81;

First iteration of while loop// balance=0<1

Ph=0; Veemst = {3,7,9};

i=1;

=1

number of trust node in s(i)=s1=1 is not smaller than Ns=1 and number of
trust node in s(j)=s1=1 is not greater than Ns=1; //both conditions is not
satisfied.

i=1;

=2;

number of trust node in s(i)=s1=1 is not smaller than Ns=1 and number of
trust node in s(j)=s2=0 is not greater than Ns;//both conditions is not
satisfied

i=1;

=3,

number of trust node in s(i)=s1=1 is not smaller than Ns=1 and number of
trust node in s(j)=s3=2 is greater than Ns;// one condition is not satisfied.

i=2;
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=L
number of trust node in s(i)=s2=0 is smaller than Ns=1 and number of trust

node in s(j)=s1=1 is not greater than Ns;// one condition is not satisfied.

number of trust node in s(i)=s2=0 is smaller than Ns=1 and number of trust
node in s(j)=s2=0 is not greater than Ns;// both conditions are not satisfied.
i=2;

=3;

number of trust node in s(i)=s2=0 is smaller than Ns=1 and number of trust
node in s(j)=s3=2 is greater than Ns.

X1=7;// adjacent trust node in oversized segment, s3, that is connected to
undersized segment, s2, through the inter-segment link.
Ls2s3={(6,7)};//inter-segment link between segments s2 and s3.

Y1=s2; Y2=s3,;

Ls2s3.e.v2=7=X1;

Ls2s3.e.v1=6n{3,7,9}=0;

vTrust = (3,6,9;

Ph=1,

/I Checking all inter-segment links that are connected to at least one trust
node as follows;
Lss’={el,e2,e3,e4,e5,e6}={(1,9),(2,9),(3,6),(3,7),(3,4),(6,7)}

el.v1=1 does not belong to VTrust e1.v2=9 belongs to VTrust;

e12.v1=2 does not belong to VTrust g2 v2=9 belongs to VTrust;

e3.v1=3 belongs to VTrust ¢3.v2=6 belongs to VTrust;
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e4.v1=3 belongs to VTrust e1.v2=7 does not belong to V1rust;

e5.v1=3 belongs to VTrust e5.v2=4 does not belong to V1rust;

£6.v1=6 belongs to VTrust e6.v2=7 does not belong to VTrust;

/IAll inter-segment links are connected to at least one trust node as a
consequence updated  set of trust nodes , VTTust s accepted.
yTrust=£3 6,9};

i=3;

=1

number of trust node in s(i)=s3=1 is not smaller than Ns=1 and number of
trust node in s(j)=s1=1 is not greater than Ns;// both conditions are not
satisfied.

i=3;

=2;

number of trust node in s(i)=s3=1 is not smaller than Ns=1 and number of
trust node in s(j)=s1=1 is not greater than Ns;// both conditions are not
satisfied.

i=3;

=3,

number of trust node in s(i)=s3=1 is not smaller than Ns=1 and number of
trust node in s(j)=s1=1 is not greater than Ns;// both conditions are not
satisfied.

Ph=1 then balance=0

/lin the second iteration of while loop the value of ph does not change,
ph=0, because there is no oversized and undersized segment.

Ph=0 then balance=1;//the while loop is terminated
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The updated set of trust node, uniform trust nodes, is returned by the
Uniformity algorithm.

P_cv=0;

Improve_Measure=0.81-0=0.81//improved by 81%;

Output: VTrust = (3,6 9};

Appendix A1l shows the codes that make the uniform distribution of trust nodes
over the segments (uniformity algorithm). In uniformity algorithm, number of trust
nodes does not change but the place of the trust node may be changed. This
algorithm has a loop that checks the number of trust system in segment set to find the
oversized set (Lines 16-48). It checks the other side of the link of the trust node to
check that at first this node belongs to undersized trust system in bordering node set
and latter checks that the other side of the link is not a trust node (Lines 49-57). If all
the conditions are satisfied, then the trust node is removed from the oversized
segment and is added to an undersized set (Lines 59-66). This loop continues until all

the trust nodes are checked.

Figure 29 shows the UniformForm, that improves the optimal TSP described in
Chapter 2 and shown in Figure 14. It is clear that trust system moves from node 7 to

node 6. As a result, each segment has one trust node.
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Segment 1 Containg 1 Trust Modes
Trust Node ls:3

Segment 2 Containg 1 Trust Modes
Trust Node [s:6

Segment 3 Contains 1 Trust Nodes
Trust Node |s:3

Figure 29: Uniform Form that shows the trust nodes after uniformity problem solving
for the system on figure 14.

4.2 Testing Results

Figure 30 depicts a bar chart. This bar chart compares the number of trust nodes in
each segment (Figure 14) with the number of trust nodes in each segment after
uniformity improvement (Figure 27). It is clear that each segment contains one trust

system and the segments are more balanced in quantity of trust systems.

2.5
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[}
v
>
215
2 M Trust node selection in Figure
= 14
“—
o
. 1 H Improved trust node
L2 selection
£
=}
Z 05

segment 1 segment 2 segment 3
Segment Number

Figure 30: Number of trust systems in each segment.
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The relative standard deviation is used as a metric to measure the dispersion of trust
nodes over the segments. Figure 31 shows the coefficient of variation of trust nodes
through the segments. The smaller value indicates that the dispersion of trust nodes is
more balance. In Figure 31, the coefficient of variation of trust nodes for the SCADA
network in Figure 14 is 0.81 and the coefficient of variation of trust systems after
executing the uniformity (Figure 29) is O, it means that the segments are completely
balanced in quantity of trust nodes and each segment has the same quantity of trust

nodes (each segment contains 1 trust node).

0.9
0.8
0.7
0.6
W SCADA network in Figure 14

0.5

Improved SCADA network in
Figure 14

0.4

0.3

Relative Standard Deviation

0.2

0.1

0

Figure 31: Relative standard deviation of trust system number for 3 segments of
SCADA system in figure 14. The bar for improved version is not shown as equal to
zero.

4.3 Summary

In this chapter, improvement of optimal TSP was discussed. The idea comes from
Figure 14. When we analyzed the Figure 14, we realized that one segment does not
have any TS and instead of this one segment has 2 TS and another one has 1 TS. This
problem improves TSP which means that the number of TS will be exactly same as

after optimal TSP problem solving, and all inter-segment links are connected to at
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least one TS. The number of TS and inter-segment limitation are considered as
constraints for the optimal TSP uniformity problem. in such a way that all inter-
segment links connected to at least one trust node and number of TS. We proposed
Uniformity optimization algorithm to distribute the trust systems over the segments.
By testing the algorithm, graph in Figure 9 used as input, and comparing the results
with Figure 14 we realized that all segments were balanced in number of trust
systems. The coefficient of variation was used to measure the dispersion of trust
systems over the segments. Before performing the Uniformity algorithm, the
coefficient of variation was 0.81 and after that it changed to O, lower value of
coefficient of variation means that segments are more balanced. As a consequence,
we improved the dispersion of trust systems over the segments for the graph in

Figure 9 by 81%.
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Chapter 5

EXPERIMENTS ON IEEE TEST SYSTEM

TOPOLOGIES

In this chapter, we will compare the results of our software for large and small
networks with the numerical results shown in Chapter 2, Figures 18-20. Large
networks contain BUS 118 and BUS 300 and BUS 14, BUS 30 and BUS 57 are
members of small networks. The information of the small networks and large
networks are used as a text file in the application Appendix B. Small networks are
split into 3 to 6 segments with increment of 1. Large networks are divided into 5 to
30 segments with increments of 5. All experiments are run on a laptop with Intel core
i7 2.10 GHz and 8GB RAM. We run the application one time for each IEEE test
system topologies, because the input data are not changed. The numerical results are

shown in Appendix C.

The obtained results for BUS14 are shown in Appendix C1, Figures (41-44). The
obtained results for BUS30 are depicted in Appendix C2, Figures (45-49) and these
results are shown in Figures (50-54) for BUS57. These numerical results include:
number of TS, link mean weight, link weight standard deviation, average MST
weight, average segment size and coefficient of variation of computed segment sizes.
Figures (55-60) depicts the results for BUS118 and Figures (61-66) shows the

experimental results for BUS300.
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5.1 Experimental Results on Original TSP

Figure 32 compares the overview of experimental parameters. Figure 32(a) is a table
of summary of experimental parameters on our experiment. Figure 32(b) shows a
table of summary of experimental parameters in [1]. In comparison, the value of
elements for BUS 30, BUS 57, BUS 118, BUS 300 are slightly different. | used the
same databases and implemented the exact algorithms in [1]. These differences may
be happened because the databases are updated. The differences on number of active
links might affect on the MST, segments and number of trust nodes. The number of
active links for BUS14 is the same in both Figures 32(a) and 29(b). As a

consequence, BUS14 is a measure to compare our results with the results in [1].

. Link
IEEETest |Numberof | . | Lnk Weicht IEEE Number | Number | Link Link
Syatem | Nodes(Ne & [ weight s Test of Nodes | of Active | Weight | Weight
of Active Standard System | (Network | Links Mean (us) | Standard
Topolog | twork ) Mean o ) -
v Size) Links (1) Deviation Topology | Size) Deviation
(us) (us)
BUS14 14 20 19.8 18.87 BUS 14 14 20 19.55 18.84
BUS30 30 41 24.1 25.4 BUS 30 30 42 24.1 24.67
BUS57 57 80 22,22 351 BUS 57 57 T8 233 3441
BUS118 118 186 3.4 0.74 BUS 118 | 118 179 8.35 6.22
BUS300 300 411 14.63 40.52 BUS 300 | 300 409 14.59 3021
(@) (b)

Figure 32: Comparison of the summary of experimental parameters in (a) our
application. (b) in [1].

All experimental results are shown in Appendixes C1-C5. I insert our results in the
Microsoft Excel to draw the bar charts and line charts. Figures 33-38 compare our

experimental results with the results in [1].

Figure 33 compares the relative standard deviation of the calculated segment sizes in
[1] (Figure 33(a)) with the relative standard deviation of the calculated segment sizes

on our experiments. The trend of the Figure 33(b) is same as the trend of the Figure
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33(a) for BUS14, BUS30 and BUS57 SCADA networks with 3 and 4 segments and

it is same as the trend of the Figure 33(a) for BUS30 SCADA network with 5 and 6

segments.
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Figure 33: Relative standard deviation of the calculated segments sizes for small

networks in (a) [1]. (b) our experiments.

Figure 34 compares the relative standard deviation of the calculated segment sizes in

[1] (Figure 34(a)) with the relative standard deviation of the calculated segment sizes

on our experiments. The trend of the Figure 34(b) is same as the trend of the Figure
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34(a) for large BUS300, with 5, 10, 15, and 20 segments and the relative standard

deviation of computed segment sizes for BUS118 is slightly different by comparing

with the result in [1](Figure 34(a)).
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Figure 34: Relative standard deviation of the calculated segments sizes for large

networks in (a) [1], (b) our experiments.

Figure 35 demonstrates the line chart for average of MST weights for small

networks. Figure 35(a) depicts the average of MST weights for small networks in [1].
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Figure 35(b) illustrates the line chart for average of MST weights for small networks
on our experiments. In general, Figure 34(b) in comparison with Figure 34(a), the
average of MST weight follows the same decreasing trend by the number of

segments rises.
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<
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< N .
0
3 4 5 6
Number of Segments
(b)

Figure 35: The average MST weights for small networks in (a) [1]. (b) our
experiments.
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Figure 35 and 36 demonstrates the line chart for average of MST weights for small
networks. Figure 35(a) depicts the average of MST weights for small networks in [1].
Figure 35(b) illustrates the line chart for average of MST weights for small networks
on our experiments. In general, Figure 35(b) in comparison with Figure 35(a), the
average of MST weight follows the same decreasing trend by the number of

segments rises.

Figure 36 depicts the line chart for average of MST weights for large networks.
Figure 36(a) illustrates the average of MST weights for large networks in [1]. Figure
36(b) illustrates the line chart for average of MST weights for large networks on our
experiments. In general, Figure 36(b) in comparison with Figure 36(a), the average

of MST weight follows the same decreasing trend by the number of segments rises.
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Figure 36: The average MST weights for large networks in (a) [1], (b) our

Figure 37 indicates the bar chart for required number of trust system related to the
number of segments for small networks. Figure 37(a) represents the required number
of trust system related to the number of segments in [1]. Figure 37(b) shows the bar
chart for required number of trust system related to the number of segments on our
experiment. There is a slight difference between Figure 37(a) and Figure 37(b), and

this is because of the differences of our database with database used in [1]. The trend

experiments.
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of the bar chart in Figures 37(a) is same as the trend of the bar chart in Figure 37(b).
Both bar charts in Figure 37 follows an increasing trend as the number of segments

increases and also the number of trust systems increases as the SCADA networks

size rises.
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Figure 37: Required quantity of trust systems related to the quantity of segment for
small networks in (a) [1]. (b) our experiments.

Figure 38 displays the bar chart for required number of trust system related to the

number of segments for large networks. Figure 38(a) represents the required number

97



of trust system related to the number of segments in [1]. Figure 38(b) shows the bar
chart for required number of trust system related to the number of segments on our
experiment. The tendency of bar chart in Figure 38(b) is same as the tendency in
Figure 38(a) but the required number of trust system is slightly different. it is
happened because of the difference in number of links and link mean weigh as

mentioned at the beginning of the chapter.
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Figure 38: Required quantity of trust systems related to the quantity of segment for
large networks in (a) [1]. (b) our experiments.
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5.2 Experimental Results on Comparison of Original and Proposed

TSP

Figure 39 represents coefficient of variation, relative standard deviation, of
dispersion of the trust systems through the segments. BUS14 in line chart is related
to the coefficient of variation of dispersion of the trust nodes through the segments
without uniformity improvement algorithm for BUS14. BUS14 proposed in line
chart is related to the coefficient of variation of dispersion of the trust nodes through
the segments with uniformity improvement algorithm for BUS14. The proposed
BUS14 (improved by uniformity) exhibits lower coefficient of variation than BUS14.
Segments of proposed BUS14 in number of trust systems are more balanced compare
to BUS14 without uniformity in [1]. The value of coefficient of variation for BUS14
is 1 and this value for proposed BUS14 is 0 with 3 and 5 segments. As a
consequence, the dispersion of the trust nodes (balancing segment in number of trust
nodes) is improved by 100% for BUS14 with 3 segments. Figure 39 shows that
dispersion of the trust nodes is improved by 81% with 4 segments and is improved

by 35% with 6 segments.

Coefficient of variation of the size of the segments of trust systems in BUS14 is
calculated manually and Excel is used to show the line chart. We just test the
Uniformity optimization algorithm on BUS14 with 3, 4, 5 and 6 segments. Example
5 shows the calculation of the coefficient of variation of TS over the segments for

BUS14 with 3 segments.

Example 5: Calculation of the coefficient of variation of TS over 3-

segments for BUS14.
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Number of TS over segments is 3;

The value of CV, standard deviation and average before executing
Uniformity optimization algorithm are as follows:

Segment 1 contains 0 TS, segment 2 contains 1 TS and segment 3 contains 2

TS.

_0+1+42 _
3

1;

3 (0—1)2+(1—1)2+(2—1)2_1_
o = 31 -4,

CV:% = 1;// Coefficient of variation of TS over segments before

Uniformity.

The value of CV, standard deviation and average after executing Uniformity
optimization algorithm are as follows:

Segment 1 contains 1 TS, segment 2 contains 1 TS and segment 3 contains 1

TS.

_1+4141

1;
3

J(1—1)2+(1—1)2+(1—1)2
o= = 0;

3—-1

CV:E = 0;// Coefficient of variation of TS over segments after Uniformity.
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Figure 39: The coefficient of variation of the size of the segments of trust systems in
BUS14.

Figure 40 shows the number of trust nodes in each segment of BUS14 (divided into 3
segments). The number of trust nodes in each segment of proposed BUS14 is equal
to 1. It means that segments are completely balanced in number of trust nodes. In
comparison, the number of trust nodes in each segment of BUS14 is different and
follows an increasing trend (segment 1 contains O trust node, segment 2 contains 1

trust node and segment 3 contains 2 trust nodes).
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Figure 40: Number of trust systems in each segment of BUS 14 divided into 3-
segments partitioning.
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5.3 Summary

In this chapter we compared our outcomes with the numerical results in Chapter 2.
The databases include five IEEE test system topologies for power grid systems that
are divided into two groups of small networks, and large networks. The trend of the
bar charts and line charts were same as the charts in Chapter 2. In general, by
increasing the number of segments the required number of trust system increases and
the mean value of MST weights decreases for both small and large networks. The
segments in small networks are more balanced than the segments in large networks

in size of the segments.

The coefficient of variation of the size of the segments of trust systems in BUS14
were considered to compare the results of the proposed TSP, Uniformity, with the
original TSP. the coefficient of variation is 1 for BUS14 with 3 and 5 segments and
this value is changed to O when the proposed TSP is performed. As a consequence,
the dispersion of trust system is improved by 100% for BUS14 with 3 and 5
segments. When the BUS14 was divided into 4 and 6 segments the value of
coefficient of variation is 0.81, divided into 4 segments, and it is 0.75, divided into 6
segments. After uniformity, these values were changed to 0 and 0.40. It means that,
the dispersion of trust systems is improved by 81% and 35% when BUS14 divided
into 4 and 6 segments. In general, the segments are more balanced in number of trust

system by performing proposed TSP.
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Chapter 6

CONCLUSION

The problem of optimal Trust System Placement (TSP) in SCADA networks is
considered in the thesis. At present, as SCADA networks are connected to the
internet the scope of cyber-security concerns becomes much wider. Trust systems are
used to detect and block malicious activities. The nodes in SCADA networks that
host the trust systems are known as trust nodes. Trust system consist of hardware and
software agents and are expensive to deploy. The optimal TSP problem is considered
to minimize the cost and maximize the security of the networks by installing
minimum number of trust systems into the networks. The main part of the optimal
TSP problem is segmentation. We divide the network into small networks, large
networks are more vulnerable for intruders, and locate the trust system on the
bordering node in such a way that all inter-segment links are connected to at least

one trust node. We have implemented the TSP problem solving method proposed in

[1].

We compare our experimental results on IEEE test system topologies with the results
in [1] and we obtained the same results as in [1]. The results show us that by
increasing the number of segments the required number of trust systems increases.
The coefficient of variation is used to measure the uniformity of segments in size of
number of nodes. We noticed that the small networks are more balanced than the

large networks.
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The trust systems number per segments was noted not uniform over the segments
after optimal TSP problem solving. It may deteriorate security for the segments that
are not equipped by trust systems and may increase the operational delay over the
segments and inter-segment links that are oversized in number of segments. We
propose the optimal TSP uniformity problem to maximize the uniformity of
segments in number of trust systems and minimize the operational expenditure
without change of trust nodes number and TS cover all inter-segment links. We

proposed algorithm to solve the optimal TSP uniformity

The coefficient of variation of trust systems is used to measure uniformity of TSP. In
original TSP problem the coefficient of variations for BUS14 with 3,4,5 and 6
segments are 1, 0.81, 1 and 0.75 in row, and after performing the Uniformity
optimization algorithm the coefficient of variations are change to 0, 0, 0 and 0.40
with 3, 4, 5, and 6 segments. As a consequence, distribution of trust systems through
the segment in comparison in [1], is improved by 100% (number of trust systems in
each segment are same) with 3 segments and 5 segments and it is improved by 81%

with 4 segments and it is improved by 35% with 6 segments.
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Appendix A: Source Codes

The source codes of the program are shown as follows.

Appendix Al: Source Code of Class Edge:

class Edge

{

public int Source;

public int Destination;

public int Weight;

public int minDegree=0;

public int maxdeg = 0;

public decimal normalizeWeight;
public decimal we=0;

10. public bool Active = false;

11. public bool delta_Seg;

12. public bool Intersegment = false;

©oOo~NOAM~®WNE

13. //Insert edge

14. public void add_Edge(int src, int dst, int wgth)
15. {

16. Source = src;

17. Destination = dst;

18. Weight = wgth;

19. Active = true;

20. }

21. }
Appendix A2: Source Code of Class Graph:

class Graph

{

public int verticesCount;

public int edgesCount;

public int[] remote_Node;

public Edge[] ed;

private static double area = 0.00080642;
private static double p = 0.0000000250188;
public void create_Graph(int vertices,int edges, Edge [] ed1)
10. {

11. this.verticesCount = vertices;

12.  this.edgesCount = edges;

13. this.ed = ed1;}

©WoOo~NoaA~WNE

14. public double mean_Weight(Edge[] ED)

15. {

16. double mean = 0;

17. intn=0;

18. for (inti=0; i< ED.Length; i++)
19. {

20. if (EDJi].Active == true)

21.
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22. mean += ED[i]. Weight;

23. n++;

24. }

25. }

26. mean=mean/n;

27. return mean;

28. }

29. public double standard_Deviation(Segment[] s, double mean)
30. {

31. double standard = 0;

32. for (inti=0;i<s.Length; i++)

33. {

34. standard += Math.Pow((mean - s[i].nodes.Count), 2);
3.}

36.  standard = (standard) / (s.Length-1);

37. standard = Math.Sqrt(standard);

38. return standard,;

39. }

40. public double standard_Deviation(Edge[] ED,double mean)
41. {

42. double standard = 0;

43.  for (int i=0;i<ED.Length;i++)

44,

45, standard +=Math.Pow((mean - ED[i]. Weight),2);
46. }

47. standard = (standard)/(ED.Length-1));

48. standard = Math.Sgrt(standard);

49. return standard,;

50. }

51. public double coeffcient_Variation(double Std_DV,double mean)
52. {

53. double co_V =0;

54. co V =Std_DV / mean;

55. return co_V;

56. }

57. /ITHIS METHOD IS USED FOR BUS300
58. public void find_remote_node(string[] lines)
59. {

60. this.remote_Node = new int[300];

61. for (int i=0;i<lines.Length;i++)

62. {

63. intcount=1,;

64. string remote=null;

65. foreach(char c in lines[i])

66.

67. if (count<=4)

68.

69. if (c1=32)

70. remote += Convert.ToString(c);

7.}

72.  count++;

73.

74. remote_Node[i] = Convert.Tolnt16(remote);
75. }

76. }

77.}
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Appendix A3: Source Codes of Create Graph Manually:

1. private void buttonl_Click(object sender, EventArgs e)

2. {

3. N = Convert.ToIntl6(textBox5.Text);

4. //Create graph's edge object with the number of edge that input in t
extBox4

5. if (check == true){

6. edg = new Edge[Convert.ToIntl6(textBox4.Text)];
7. check = false;
8 for (int j = @; j < edg.Length; j++

9. edg[j] = new Edge();

10.

11. //Adding edge details....add_Edge(source,Destination,Weight)
12.if ((i < edg.Length) && (textBox6.Text != ""))

13. 4

14. edg[i].add_Edge(Convert.ToIntl6(textBoxl.Text) -
1, Convert.ToIntl6(textBox2.Text) - 1,
15. Convert.ToIntl6(textBox3.Text));

16. i++;}

17.if (textBox6.Text == "")

18.{

19. MessageBox.Show("Please enter the number of segment!!!");
20.}

21. //When i==edge.length inserting is finished

22.if (i==edg.Length-1)

23.{

24. textBoxl.Enabled = false;

25. textBox2.Enabled = false;

26. textBox3.Enabled = false;

27. buttonl.Enabled = false;

28. G.create_Graph(N,Convert.ToIntl6(textBox4.Text),edg);

MessageBox.Show("Graph is created\n\n"+"Number of Vertices=\n"+textB
ox5.Text+"Number of Edges="+textBox4.Text);

30.}

Appendix A4: Source of Method Create-Graph_Text File:

1. public Graph creat_Graph_text(string [] allLines,int edge_length,int vertices)
2. {

3. ShowGrapgdetails sh = new ShowGrapgdetails();

4. sh.Show();

5. if (vertices == 300)

6. {

7.

string[] lines = File.ReadAllLines("C:\\Users\\Administrator\\Desktop\\TrustNode\\TrustNod
e\\NewFolder1\\Bus300 remote.txt");

8.  find_remote_node(lines);

9. '}

10. Graph G=new Graph();

11. G.ed =new Edge[edge_length];

12.  for (inti=0; i< edge_length; i++)
13.  G.ed[i] = new Edge();

112



14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.

string source = null;
string dest = null;
string weigth = null;
G.verticesCount = vertices;
G.edgesCount = edge_length;
int edgecol = 0;

for (inti=0; i< allLines.Length; i++)

{

int count =1,

source = null;

dest = null;

weigth = null;

foreach (char c in allLines[i])

if (count <= 4)

if (c1=32)
source += Convert.ToString(c);

}
if ((count >=6) && (count <=9))

if (c!=32)
dest += Convert.ToString(c);

}
if ((count >= 20) && (count <= 29))

if (c!=32)
weigth += Convert.ToString(c);
}

count++;

}
if (vertices == 300)

46. {

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.

for(int k=0;k<300;k++)

{
if(Convert.Tolnt16(source)==remote_Node[K])
G.ed[edgecol].Source = k;

if (Convert.Tolnt16(dest) == remote_Node[k])
G.ed[edgecol].Destination= k;
G.ed[edgecol].Active = true;

}

}

else

57. {

58.

59.
60.
61.
62.
63.
64.
65.
66.
67.

68.
69.
70.

G.ed[edgecol].Source = Convert. Tolnt16(source) - 1;

G.ed[edgecol].Destination = Convert.Tolnt16(dest) - 1;
G.ed[edgecol].Active = true;

}

if (Convert. ToDouble(weigth) > 0.00000000000000000000)
{

double x = ((Convert. ToDouble(weigth)* area) / p);

X = (x *3)/299792.458;

x = Math.Floor(x *1000);

G.ed[edgecol].Weight = Convert. Tolnt16(x);

}

else

{
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71. G.ed[edgecol].Weight =1,

72. }

73. sh.input_text("\(\i\t\'\t" + source + "\t\i\t\" + dest + "\t\\t" + G.ed[edgecol].Weight);
74. edgecol++;

75. }

76. return G;
77. }

Appendix A5: Source Code of Class Minimum_Spanning_Tree:

=

class Minimum_Spanning_Tree

2. {

3. private Graph Mst = new Graph();

private static int Find(Subset[] subsets, int i)

if (subsets[i].parent 1= 1)
subsets[i].parent = Find(subsets, subsets[i].parent);

No ok

return subsets[i].parent;

}

10. public static void exchange(Edge[] data, int m, int n)
11. {
12. Edge temporary;

© o

13. temporary = data[m];

14. data[m] = data[n];

15. data[n] = temporary;

16. }

17. public static void IntArrayBubbleSort(Edge[] data)
18. {

19. inti, j;

20. int N = data.Length;

21. for j=N-1;j>0;j-)

22. {

23. for (i=0;i<j; i++)

24. {

25. if (data[i].Weight > data[i + 1].Weight)
26. exchange(data, i, i + 1);

27. }

28. }

29. }

30. private static void Union(Subset[] subsets, int X, int y)
3L {

32. int xroot = Find(subsets, X);

33. int yroot = Find(subsets, y);

34.  if (subsets[xroot].rank < subsets[yroot].rank)

35. subsets[xroot].parent = yroot;

36. else if (subsets[xroot].rank > subsets[yroot].rank)
37. subsets[yroot].parent = xroot;

38. else
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39. {

40. subsets[yroot].parent = xroot;
41. ++subsets[xroot].rank;

42. }

43. }

44. [[Prepare the string to show the MST details
45. public string Print(Edge[] result,int e)

46. {

47. string s =null; ;

48. for (inti=0;i<e-1; ++i)

49.

50. s +="\t"+(result[i].Source) + "\t\!" + (result[i].Destination) + "\t\i\t" + result[i].Weight;
51. s += Environment.NewL.ine;

52. }

53. returns;

54. }

55. //Disjointset method used for segmentation the difference with kruskal is: kruskal return grap
h disjointset return subset

56. public Subset[] disjointset(Graph graph)

57. {

58. int verticesCount = graph.verticesCount;

59. //Initial subset and edge array object

60. Edge[] result = new Edge[verticesCount];

61. Subset[] subsets = new Subset[verticesCount];
62. for (int k = 0; k < verticesCount; k++)

63. {

64. result[k] = new Edge();

65. subsets[k] = new Subset();

66. }

67. //

68. inti=0;

69. inte=0;

70. Array.Sort(graph.ed, delegate (Edge a, Edge b)
71. {

72. return a.Weight.CompareTo(b.Weight);

73. 3

74. for (int v = 0; v < graph.verticesCount; ++v)
75. {

76. subsets[v].parent = v;

77. subsets[v].rank = 0;

78. }

79. while (i < graph.ed.Length)

80. {

81. Edge nextEdge = graph.ed[i++];

82. int x = Find(subsets, nextEdge.Source);

83. inty = Find(subsets, nextEdge.Destination);

84. if (x1=y)

85. {
86. result[e++] = nextEdge;
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87. Union(subsets, X, y);
88. }
89. }

90. return subsets;

91. }
92. public Graph Mst_Graph(Graph graph)
93. {
94. int verticesCount = graph.verticesCount;

95. //Initial subset and edge array object

96. Edge[] result = new Edge[verticesCount];

97. Subset[] subsets = new Subset[verticesCount];
98. for(int k=0;k<verticesCount;k++)

99. {

100.result[k] = new Edge();

101.subsets[k] = new Subset();

102.}
103.//
104.inti=0;
105.inte =0;

106.// IntArrayBubbleSort(graph.ed);
107.//sorting the edge by weight

108.Array.Sort(graph.ed, delegate (Edge a, Edge b)
109.{

110.return a.Weight.CompareTo(b.Weight);
111.3);

112.//at first each node's parent is themself and their rank is 0
113.for (int v = 0; v < verticesCount; ++v)

114.{

115.subsets[v].parent = v;

116.subsets[v].rank = 0;

117.}

118.while (e < verticesCount - 1)

119.4

120.Edge nextEdge = graph.ed[i++];

121.int x = Find(subsets, nextEdge.Source);
122.int y = Find(subsets, nextEdge.Destination);

123.if (x =)

1244

125.result[e++] = nextEdge;
126.Union(subsets, X, Y);
127.}

128.}

129.Mst.ed = result;
130.Mst.verticesCount = verticesCount;
131.Mst.edgesCount = verticesCount-1;

132.return Mst;
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133}

134.//Finding minimum degree of each edge & normalizing the edge weight (edge.weight/maxim
um weight)

135.public void MinDegree(Graph MST)

136.

137.int dest;

138.int src;

139.int maxWeight = 0;

140.maxWeight = MST.ed[0]. Weight;

141 .for (inti = 0; i < MST.edgesCount; i++)

142 {

143.maxWeight = Math.Max(maxWeight, MST.ed[i]. Weight);

144.int scount = 0;

145.int dcount = 0;

146.src = MST.ed[i].Source;

147.dest = MST .ed[i].Destination;

148.for (int j = 0; j < MST.edgesCount; j++)

149.{

150.if ((src == MST.ed[j].Source) || (src == MST .ed[j].Destination))

151.4

152.scount++;

153.}

154.if ((dest == MST.ed[j].Source) || (dest == MST.ed[j].Destination))
155.

156.dcount++;

157.}

158.}

159.MST .ed[i].minDegree = Math.Min(scount, dcount);

160.MST .ed[i].maxdeg = Math.Max(scount,dcount);

161.}

162.//calculating the normalizeweight

163.for (intj = 0; j < MST.edgesCount; j++)

164.{

165.MST .ed[j].normalizeWeight = Convert. ToDecimal(Convert. ToDecimal(MST.ed[j]. Weight) /
Convert.ToDecimal(maxWeight));

166.}
167.}

168.}
Appendix A6: Source Code of Class LPP:

class LPP

{

IISTEP2

MLApp.MLApp matlab = new MLApp.MLApp();
private double alpha = 1;

private double beta = 0.5;

public double[,] LPP2(int Numberof_Borderin,int Numberof_interlink,Edge[] Intersegment,
Bordering_Node_Details[] B_S)

8. {

9. double[,] f = new double[Numberof_Borderin, 1];

10. double[,] intcon = new double[1, Numberof_Borderin];

Nogk~wpnE
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11. double[,] A =new double[Numberof_interlink, Numberof_Borderin];
12. double[,] b = new double[Numberof _interlink,1];

13. double[,] Aeq = new double[1,Numberof Borderin];

14. double[,] beq = new double[1,1];

15. double[,] Ib = new double[1,Numberof _Borderin];

16. double[,] ub = new double[1,Numberof_Borderin];

17. for (inti = 0; i < Numberof_Borderin; i++)
18. for (intj = 0; j < Numberof_Borderin; j++)
19. f[i, 0] =1;

20. for (inti=0; i< Numberof_Borderin; i++)
21. {

22. 1b[0, i] = 0;

23. ub[0,i]1=1;

24. intcon[0, i]=1i+1;

25. }

26. /IFill Array "A"

27. for(int i=0;i<Numberof_interlink;i++)

28. {

29. int index1;

30. int index2;

31. index1 = Find_for_Array_A(Intersegment[i].Source, B_S);
32. index2 = Find_for_Array_A(Intersegment[i].Destination, B_S);
33. AJi,index1] =-1,;

34. AJi, index2] =-1;

35. b[i, 0] =-1;

36. }

37. //Executing matlab function

38. int[] ans = new int[Numberof Borderin];

39. object res = null;

40. matlab.Feval("intlinprog", 4, out res, f, intcon, A, b, Aeq, beq, Ib, ub);

41. object[] Ippresult = res as object[];
42. double[,] sIn = Ippresult[0] as double[,];

43. return sin;
44, }

45, public int Find_for_Array_A(int node,Bordering_Node Details[] B_s)
46. {

47. intj=0;

48. intans=0;

49. for(int i=0;i<B_s.Length;i++)
50. {

51. for (int k=0;k<B_s[i].BNode.Count;k++)
52. {

53. if (node != B_s[i].BNode[K])
54. j++;

55. else

56. {

57. ans =j;

58. }
59. }
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60.

61.
62.

63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.

74.
75.
76.
77.

78.
79.
80.
81.
82.
83.
84.
85.
86.

87.
88.
89.
90.
9L

92.
93.
94.
95.

96.
97.

98.
99.

}

return ans;

}

/[This method solve the Ipp problem and return N-K number of edges (ESS)
public Edge[] LPP1(Graph Mst, double Num_segMent)

{

double[,] f = new double[Mst.edgesCount, 1];

double[,] intcon = new double[1, Mst.edgesCount];

double[,] A = new double[Mst.edgesCount, Mst.edgesCount];
double[,] b = new double[Mst.edgesCount, 1];

double[,] Aeq = new double[1, Mst.edgesCount];

double[,] beq = new double[1, 1];

double[,] Ib = new double[1, Mst.edgesCount];

double[,] ub = new double[1, Mst.edgesCount];

/ll/Preparing Subjects to for mix integer linear programming
for (inti=0; i < Mst.edgesCount; i++)

for (int j = 0; j < Mst.edgesCount; j++)

Al j]1=0;

for (inti=0; i < Mst.edgesCount; i++)

{

Ali, i] = 1;

Ib[0, i] = O;
ub[o, i = 1;

intcon[0, i]=i+1,;

b[i, 0] = Mst.ed[i].minDegree;

Aeq[0,i]=1;

Mst.ed[i].we = (Convert.ToDecimal(alpha) * Convert. ToDecimal(Mst.ed[i].minDegree)) + (
Convert.ToDecimal(beta) * Convert. ToDecimal(Mst.ed[i].normalizeWeight));

}
for (inti=0; i < Mst.edgesCount; i++)

f[i, 0] = Convert.ToDouble(-Mst.ed[i].we);
beq[0, 0] = Num_segMent - 1;

I

[[-=mmmmmmmmmeeeee Executing matlab function

int[] ans = new int[Mst.edgesCount];

object res = null;

matlab.Feval("intlinprog",4, out res, f, intcon, A, b, Aeq, beq, Ib, ub);

I

Il Access to out put of the matlab function
object[] Ippresult = res as object[];
double[,] sIn = Ippresult[0] as double[,];

100.//Avtive value changed to false for selected edge from the LPP
101.for (inti = 0; i < sIn.Length; i++)

102.{

103.if (sIn[i, 0] == 1)

104.Mst.ed[i].Active = false;

105.}
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106.Edge[] rss = new Edge[Mst.verticesCount];

107.for (inti = 0; i < Mst.verticesCount; i++)

108.rss[i] = new Edge();

109.Graph Mstss = new Graph();

110.Mstss.ed = rss;

111.Mstss.verticesCount = Mst.verticesCount;

112.Mstss.edgesCount = Mst.verticesCount - Convert.Tolnt16(Num_segMent);
113.into=0;

114./Ipreparing Ess edge(matrices)
115.for (int j = 0; j < Mst.edgesCount; j++)
116.{

117.if (Mst.ed[j].Active != false)

118.{

119.Mstss.ed[0]. Destination = Mst.ed[j]. Destination;
120.Mstss.ed[o].Active = Mst.ed[j].Active;
121.Mstss.ed[0].Source = Mst.ed[j].Source;
122.Mstss.ed[o0]. Weight = Mst.ed[j]. Weight;
123.0++;

124.}

125}
126.//

127.return Mstss.ed;

128.}
129.}
130.}

Appendix A7: Source Code of Class Delta_Min:

class Delta_min

{

public Segment delta_computation(Segment S_i, Segment S_j, Graph MST,Graph Mstss)
{

Segment dit_M = new Segment();

int u=999;

int counting = 0;

inty=0;

Edge[] E_Psi = new Edge[S_i.nodes.Count - 1];

0. Edge[] e_psi_cutted=new Edge[E_Psi.Length-1];

BoOoo~NooorwNE

11. Minimum_Spanning_Tree disj = new Minimum_Spanning_Tree();
12. Graph cutt = new Graph();

13. Segment[] segment_Set_U;

14. Segment s1 = new Segment();

15. Segment[] delta_min_set;

16. bool chq = false;
17. bool chgl = false;

18. //Finding U >Z
19. for (inti=0; i< S_i.nodes.Count; i++)
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3(1) Eor (intj=0;j<S_j.nodes.Count; j++)

gg: Eor (intk =0; k < MST.ed.Length; k++)

gg i{f(((S_i.nodes[i] == MST.ed[k].Source) || (S_i.nodes[i] == MST.ed[K].Destination)) && ((S
_j.nodes[j] == MST.ed[k].Source) || (S_j.nodes[j] == MST.ed[K].Destination)))

2 &

u = S_i.nodes[i];
28. }
29. }
30. }

}

31

32. 11
33. if (u==999)

34. {

35. dlt_M.nodes.Add(-1);

36. }

37. else

38. {

39. for (inti=0;i<E_Psi.Length; i++)
40. E_Psi[i] = new Edge();

41. intn=0;

42. [ffinding E_Psi
43. for (inti=0; i< Mstss.ed.Length; i++)

44, {

45. chq = false;

46. chql = false;

47. for (intj=0; j< S_i.nodes.Count; j++)

48. {

49. if ((Mstss.ed[i].Source == S_i.nodes[|])&&(Mstss.ed[i].Active==true))
50. chqg =true;

51. }

52. for (intj=0; j < S_i.nodes.Count; j++)

53. {

54. if ((Mstss.ed[i].Destination == S_i.nodes[j]) && (Mstss.ed[i].Active == true))

55. chqgl = true;

56. }

57. if ((chq ==true)&&(chql==true))

58. {

59. if ((Mstss.ed[i].Destination == u) || (Mstss.ed[i].Source == u))
60. {

61. E_Psi[y].Active = true;

62. counting++;

63. }

64. E_Psi[y].Destination = Mstss.ed[i].Destination;
65. E_Psi[y].Source = Mstss.ed[i].Source;
66. E_Psi[y].Active = true;

67. E_Psi[y].delta_Seg = true;

68. Mstss.ed[i].delta_Seg = true;

69. y++;

70. }

71. }

72. for (inti=0;i<E_Psi.Length - 1; i++)
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73. e_psi_cutted[i] = new Edge();

74. delta_min_set = new Segment[E_Psi.Lengthl];
75. for (inti=0; i< delta_min_set.Length; i++)
76. delta_min_set[i] = new Segment();

77. 11 End Finding

78. for (inti=0;i<E_Psi.Length; i++)

79. {

80. intyl =0;

81, /[-memmemeeeee- cutting selected edge belong to u---------------------

82. if ((E_Psi[i].Source == u) || (E_Psi[i].Destination == u))
83. {

84. E_Psi[i].Active = false;

85. cutt.edgesCount = E_Psi.Length - 1;

86. for(int k=0;k<E_Psi.Length;k++)

87. {

88. if (E_Psi[k].Active == true)

89. e psi_cutted[yl++] = E_Psi[K];

90. }

91. cutt.verticesCount = MST.verticesCount;
92. cutt.ed = e_psi_cutted;

93. //finding delta_u segment after segmentation with updated graph
94. segment_Set U = s1.Segmentation(cutt.verticesCount,cutt);
95. for (intj = 0; j < cutt.verticesCount; j++)

96. {

97. for (int k = 0; k < segment_Set_U[j].nodes.Count; k++)

98. {

99. if (segment_Set_UJ[j].nodes[k] == u)

100.delta_min_set[n] = segment_Set_U[j];

101.}

102.}

103.n++;

104./Irestoring

105.E_Psi[i].Active = true;

106.}

107.}

108.dIt_M = delta_min_set[0];

109.for (inti=1; i< delta_min_set.Length; i++)
110.{

111.if (delta_min_set[i].nodes.Count != Q)
112.{
113.if(delta_min_set[i].nodes.Count<dlt_M.nodes.Count)
114.dIt_M = delta_min_set[i];

115.}

116.}

117.}
118.return dit_M;

119.}
120.}
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Appendix A8: Source Code of the Button2_Click Event (Implementation of the
Local Search and Initial Tree Partitioning Algorithms):

Source Code of the Algorithms 2.7 -2.9:
1. private void button2_Click(object sender, EventArgs e)

2. {

3. int phi=1;
4. if (textBox6.Text == null)

5. K = Convert.ToIntl6(textBox6.Text);

6. segment_Set = new Segment[K];

7. for (int i = 0; i < K; i++)

8. segment_Set[i] = new Segment();

9. string s = "";

10. //Minimum spanning tree(MST) using kruskal algorithm

11. MST =kruskal.Mst_Graph(G);

12. //minimum degree of each edge and normalized the weight---
This method is in minimum spanning tree class

13. kruskal.MinDegree(MST);

14. //show the MST graph details in form

15.ms.Show();

16. Mean_Weight = G.mean_Weight(G.ed);
17.St _Deviation = G.standard Deviation(G.ed, Mean_Weight);

18.s = kruskal.Print(MST.ed,MST.verticesCount);
19.ms.input_Mst_Res(s);

20. //return(N-K) number of edges
21.Ess = lppl.LPP1(MST,K);

22.Mstss.verticesCount = N;
23.Mstss.edgesCount = N - K;
24.Mstss.ed = Ess;

25.//Initial segment sets

26. segment_Set = sl.Segmentation(K, Mstss);

27.Ks= Ks = Convert.ToIntl6(Math.Ceiling(Convert.ToDecimal(G.verticesCo
unt) / Convert.ToDecimal(K)));

28.while (phi < 1)

29. {

30.int count = 0;

31. for (int i = 0; i <K; i++)

32. 4

33.for (int j = 0; j < K; j++)

34. {

35.1if ((segment_Set[i].nodes.Count > Ks) && (segment_Set[j].nodes.Count
< Ks))
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36.

37.

38.

{

delta_Min = computation.delta_computation(segment_Set[i], segment_Se
t[j], MST, Mstss);
if (delta_Min.nodes.Count > @)

39. {

40.
41.

42

43,

44.
45,
46.
. segment_Set[j].nodes.Add(delta_Min.nodes[k]);

47

48.
49.
50.
51.
52.
53.
54,
55.
-}
57.
58.
59.
60.
61.
62.
63.
.if (count == 0)
65.
66.

56

64

if (delta_Min.nodes[@] != -1)
{

.if (((Math.Abs(Ks - segment_Set[i].nodes.Count)) + (Math.Abs(Ks -

segment_Set[j].nodes.Count))) >
(Math.Abs(Ks -
segment_Set[i].nodes.Count + delta_Min.nodes.Count) + (Math.Abs(Ks
- segment_Set[j].nodes.Count - delta_Min.nodes.Count))))
{
//Add
for (int k = @; k < delta_Min.nodes.Count; k++)

//remove
for (int 1
{

for (int k
{

if (segment_Set[i].nodes[k] == delta Min.nodes[1])
segment_Set[i].nodes.RemoveAt(k);

}

0; 1 < delta_Min.nodes.Count; 1l++)

0; k < segment_Set[i].nodes.Count; k++)

count++;

[ N W W W W)

phi = 1;

—

Appendix A9: Source Code of Class Borderin_Node_Details:

el N

class Bordering_Node_Details

{
public IList<int> BNode;

public int segment_Name { get; set; }

public IList<int> trust_node;
public void add_bordering_node(int x,IList<int> B)
bool check = false;

intn;
//check for duplicate

. for (int i=0;i<B.Count;i++)

{
if(x==BI[i])
{
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15. check = true;

16. }

17. }

18. if (check == false)
19. BNode.Add(x);
20. }

21. }

22. }
Appendix A10: Source Code of Class Trust_Node_Selection:

class Trust_Node_Selection

{

private Bordering_Node_Details V_Trust = new Bordering_Node_Details();
private Segment s1 = new Segment();

private LPP 1p2 = new LPP();

private Edge[] L_xy;

public string ANSWER = "Trus Nodes Are:\n\t";

public Bordering_Node_Details[] trusted(Graph G,Segment[] S)
{

10. //nitializing Bordering node and Intersegment sets

11. int count_Inter_Link=0;

12. intx;

13. inty;

14. double[,] ans;

15. Bordering_Node_Details[] B_s = new Bordering_Node_Details[S.Length];
16. for (inti=0;i< S.Length; i++)

17. {

18. B_s[i] = new Bordering_Node_Details();

19. B_s[i].BNode = new List <int> ();

20. B_g[i].trust_node = new List<int>();

21. B _s[i].segment_Name = i;

©o~Noa~WNE

23. /1

24. |
25. //
26. for (inti=0; i< G.edgesCount; i++)
27. {

28. x =sl.find_segment_belongtonode(G.ed[i].Source, S);
29. y=sl.find_segment_belongtonode(G.ed[i].Destination, S);

30. if (x1=y)

3L {

32. B_s[x].add_bordering_node(G.ed[i].Source,B_s[x].BNode);
33. B_s[y].add_bordering_node(G.ed[i].Destination,B_s[y].BNode);
34. G.ed[i].Intersegment = true;

35. count_Inter_Link++;

36. }
37. }
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38.
39.
40.
41.
42.
43.

/[Fill the intersegment link array
L_xy = new Edge[count_Inter_Link];
for (inti=0;i<L_xy.Length; i++)
L_xy[i] = new Edge();

intm=0;

for (inti=0; i< G.edgesCount; i++)

44. {

45.

46.
47.
48.
49.
50.
51
52.
53.
54.
55.

56.
57.
58.
59.

if (G.ed[i].Intersegment == true)

{

L_xy[m].Source = G.ed[i].Source;
L_xy[m].Destination = G.ed[i].Destination;
m++;

}

b
I

int count_bordering = 0;
for (inti=0;i< S.Length; i++)
count_bordering += B_s[i].BNode.Count;

ans=Ip2.LPP2(count_bordering,count_Inter_Link,L_xy,B_s);

int count = 0;

//search matlab result in bordering node and convert it to node as string
for(int i=0;i<count_bordering;i++)

60. {

61.

if (ans[i, 0] = 0)

62. {

63.
64.

65.

intj=i,
intil=0;

for(int k=0;k<B_s.Length;k++)

66. {

67.

for(int 1=0;1<B_s[k].BNode.Count;l++)

68. {

69.
70.
71.

72.
73.
74.
75.
76.
77.

78.
79.
80.
8l

82.
83.

84.
85.
86.

if j==il)
{
ANSWER += Convert.ToString(B_s[k].BNode[I] + 1) + ",";

B_s[Kk].trust_node.Add(B_s[k].BNode[l]);
count++;

i1++;

}

else

i1++;

e e

ANSWER += Environment.NewL.ine;
ANSWER += "Number of trust nodes are: " + Convert.ToString(count);

return B_s;

by
¥
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Appendix Al1l: Source Code of Uniform_Segment:

This class is used to uniform the segments in number of trust systems.

1. class Uniform_Segment

2. {

3. public Bordering_Node_Details[] uniform(Bordering_Node_Details[] b_s,Graph G, Segment
[1S, int Number_of Segment,int num_trustNodes )

4. {

5. intbalance = 0;

6. intn;

7. intph=0;

8. int temp=0;

9. int Ns =Convert.Tolnt16( Math.Ceiling((Convert. ToDecimal(Number_of_Segment)/Convert.
ToDecimal(num_trustNodes))));

10. int Ns1= Convert.Tolntl6(Math.Ceiling((Convert.ToDecimal(num_trustNodes)/Convert.To
Decimal(Number_of Segment))));

11. if (Ns1>0)

12. Ns = Nsl;

13. while (balance<1)

14. {

15. ph=0;

16. for(int i=0;i<Number_of_Segment;i++)

17. {

18. for(int j=0;j<Number_of_Segment;j++)

19. {

20. if((b_s[i].trust_node.Count<Ns)&&(b_s[j].trust_node.Count>Ns))

21. {

22. n=0;

23. for(int k=0;k<G.ed.Length;k++)

24. {

25. //when nodes find to exchange between segments this loop will be finished

26. if(n<1)

27. {

28. bool t1 = false;

29. bool t2 = false;

30. bool t3 = false;

31. //find trust node belongs to oversized bordering node set

32. for (inth =0; h <b_s[j].trust_node.Count; h++)

33. {

34. if ((b_s[j].trust_node[h] == G.ed[K].Destination) || (b_s[j].trust_node[h] == G.ed[K].Source))

35. {

36. temp = b_s[j].trust_node[h];

37. tl =true;

38. }

39. }

40. for (inth =0; h <b_g[i].trust_node.Count; h++)

41. {

42, if ((b_s[i].trust_node[h] == G.ed[K].Destination) || (b_s[i].trust_node[h] == G.ed[K].Source))

43. {

44. t3 =true;

45. }

46. }

47. if (t11=13)
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48.
49.

50.
51.
52.

{
int x1 = S[i].find_segment_belongtonode(G.ed[k].Source, S);

int x2 = S[i].find_segment_belongtonode(G.ed[k].Destination, S);
//check other side of the link and be sure that this node belong to undersized segment
if (x1==1) || (x2 ==1))) && (x1 !=x2))

53. {

54.
55.

56.

t2 = true;

}
if ((t1 == true) && (12 == true))

57. {

58.
59.
60.
61.
62.
63.

64.
65.

66.

67.
68.
69.
70.
71.
72.
73.

74.
75.
76.
77.
78.
79.

n=1;

/1Add

if (temp != G.ed[k].Destination)
b_s[i].trust_node.Add(G.ed[k].Destination);
if (temp != G.ed[k].Source)
b_s[i].trust_node.Add(G.ed[k].Source);

/fremove
b_s[j].trust_node.Remove(temp);

ph++;//1t checks for balancing

e e e e o

if (ph==0)
balance = 1;

}

return b_s;

by
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Appendix B: IEEE Test System Topologies Databases

Following Tables show the first and last 5 rows of data for IEEE test system
topologies. The complete databases are provided in the attached CD.

Appendix B1: IEEE BUS14 Branch Data:

Table 5: IEEE BUS14 branch data.

Number | 1| 2 |3|4|5|6| 7 8 9 |10(11|12(13|14| 15 |16|17(18|19(20|21
1 1| 2[1|1|1|0| 0.01938| 0.05917| 0.0528| 0| 0| 0| 0| 0 o| ol of o] of of 0
2 1| 5[1|1|1|0| 0.05403| 0.22304| 0.0492| o| 0| 0| o| O o| ol of of of of 0
3 2| 3|1|1|1|0| 0.04699| 0.19797| 0.0438| 0| 0| 0| 0| 0 o| ol of o] of of 0
4 2| 4|1|1|1|o| 0.05811| 0.17632| 0.034| o| 0| 0| o| O ol ol of of of of 0
5 2| 5/1|1|1|0| 0.05695| 0.17388| 0.0346| 0| 0| o 0| O o| ol of o] of of 0
16 9(10[1|1[1|0[ 0.03181| 0.0845 ol ol ol o] of O o/l ol of o of of 0
17 9|14/ 1|1|1|0| 0.12711| 0.27038 o| ol of 0| of o 0| of ol o] of 0] O
18 [10|11{1|1|1|0| 0.08205| 0.19207 o| ol of 0|l ol o o/l ol of 0| of of 0
19 |12|13|1|1|1]0| 0.22092| 0.19988 o| ol of of of 0 o| of o o] of 0] O
20 |13[14|1|1|1|0| 0.17093| 0.34802 o| ol of 0| of 0 o/l ol of o] of of 0

Appendix B2: IEEE BUS30 Branch Data:

Table 6: IEEE BUS30 branch data.

Number | 1| 2 (3|4|5|6] 7 8 9 |10|11|12|13|14| 15 |16|17|18|19|20(21
1 1| 2|1/1|1{0| 0.0192| 0.0575| 0.0528| 0| 0| 0| o| O ol of ol o] o] of 0
2 1| 3|1|1|1|0| 0.0452| 0.1652| 0.0408| 0| 0| 0| o O o/l of ol o] o] of 0
3 2| 4/1{1]|1]|0| 0.057| 0.1737| 0.0368| 0| 0| 0| 0| O o/l of ol o] o] of 0
4 3| 4|1{1]1|0| 0.0132| 0.0379| 0.0084| 0| 0| 0| 0| O 0l 0| o] o] o] o] O
5 2| 5|1{1|1|0| 0.0472| 0.1983| 0.0418| 0| 0| 0| 0| O 0l 0] o] o] o] o] O
37 |27/29|1|1|1|0| 0.2198| 0.4153 ol of ol 0] 0] O 0l 0] o] o] o] o] O
38 |27/30|1|1|1|0| 0.3202| 0.6027 ol of ol 0] 0] O o/l of ol o] o] of 0
39 |29(30|1|1{1|0| 0.2399| 0.4533 ol of ol 0] 0] O 0l 0] o] o] o] o] O
40 8|28[1|1|1|0| 0.0636 0.2| 0.0428| 0| ol 0| 0| O 0l 0| o] o] o] o] O
41 6[28|1[1|1|0| 0.0169| 0.0599| 0.013| 0| 0| 0| 0| O 0l 0| o] o] o] o] O
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Appendix B3: IEEE BUS57 Branch Data:

Table 7: IEEE BUS57 branch data.

Number | 1| 2|3|4|5|6] 7 8 9 |10/11]|12|13|14| 15 |16|17|18|19|20|21
1 1| 2|1]1/1]{0| 0.0083| 0.028] 0.129| 0| 0| 0| 0| O ol ol ol ol of 0] 0
2 2| 3[1]|1]1/0| 0.0298] 0.085| 0.0818| 0| 0| 0] 0] O ol ol ol ol ofl 0] 0
3 3| 4[1]|1]1/0] 0.0112| 0.0366| 0.038| 0| 0] 0] 0] O ol ol ol ol ofl 0] O
4 4| 5|1]1|1|0| 0.0625| 0.132]| 0.0258| 0| 0| 0| 0| 0 ol o] o] o] o of 0
5 4| 6/1/1]/1/0] 0.043] 0.148]| 0.0348| 0| 0| 0| 0] 0 ol of] o] o] o of 0
76 |39|57|1|1|1|0 0| 1.355 o| of o] o of of 098 0] 0] 0] O] O] O
77 |57|56/1|1]1|0] 0.174] 0.26 ol of o of 0 0 ol ol ol ol of 0] 0
78 |[38/49/1|1]1/0] 0.115| 0.177| 0.003| 0| 0] 0] O] O ol ol ol ol ofl 0] 0
70 [38/48|1|1|1|0| 0.0312] 0.0482 ol of o o] 0o 0 ol ol ol ol ofl 0] O
80 9|55/1|1|1]|0 0] 0.1205 0| of o] o o] of] 094 0] 0] 0] 0] O] O

Appendix B4: IEEE BUS118 Branch Data:

Table 8: IEEE BUS118 branch data.

Number | 1 | 2 |3]|4|5|6] 7 8 9 |10{11|12|13|14]| 15 |16|17|18|19|20|21
1 1| 2|1/1]1]{0] 0.0303| 0.0999] 0.0254| 0| 0| 0| 0] 0 ol ol of o of of 0
2 1| 3|1/1/1]{0] 0.0129] 0.0424| 0.01082| 0| 0| 0O 0] 0 ol of o[ o] 0o of 0
3 4| 5|1/1]1]0| 0.00176| 0.00798| 0.0021| 0| 0] o| 0| 0 ol ol of o of of 0
4 3| s[1]1{1]o] 0.0241] o0.108] 0.0284| 0| 0| 0] 0] 0 ol ol o[ o] 0o of 0
5 5| 6/1/1{1{0] 0.0119] 0.054| 0.01426| 0| 0| 0| 0| O ol ol of of o of 0
182 [114/115|1|1{1{0| 0.0023| 0.0104| 0.00276| 0| 0| 0| 0| 0 ol of o] o[ of 0] O
183 | 68|116]1|1|1|0[ 0.00034| 0.00405| 0.164| 0| 0| 0| 0| 0O ol ol o[ o o of 0
184 | 12|117|1|1|{1{0] 0.0329] 0.14| 0.0358| 0| 0| 0| 0| O ol of ol o[ of 0] O
185 | 75|/118|1|1|1|0| 0.0145] 0.0481| 0.01198| 0| 0| 0| o| 0O ol ol of o o of 0
186 | 76/118|1|1|1|0| 0.0164| 0.0544| 0.01356| 0| 0| 0| 0| 0 ol of o ofoloo
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Appendix B5: IEEE BUS300 Branch Data:

Table 9: IEEE BUS300 branch data.

Number | 1 2 |3|4|5|6 7 8 9 10|11|12| 13 |14 15 16 17 18 19 20 21 22

1 37|9001] 1| 9| 1{ 2| 0.00006| 0.00046 0| o] o[75s| o o 1.0082 0| 0.9043| 1.10435|  0.004 0 15| 1

2 9001|9005| 19| 1| 0f 0.0008| 0.00348 ol of of O 0| O 0 0 0 0 0 0 of 2

3 9001|9006 1| 9| 1| 2| 0.02439| 0.43682 0| o| o| 0|9006| o 0.9668 0| 0.9391| 1.1478| 0.00417| 0.99| 1.01] 3

4 9001|9012| 1{9| 1| 2| 0.03624| 0.64898 O of Of 0f{9012| 0| 0.9796 0f 0.9391 1.1478| 0.00417 0.99 1.01f 4

5 9005/9051| 1| 9| 1| 1| 0.01578| 0.37486 Of Of Of 0[9051| 0] 1.0435 0f 0.9391| 1.1478| 0.00417 0.99 1.01f 5

407 7039 39|1f1|1|1 0[ 0.03159 O[ of of O O[ Of 0.965 0 0 0 0 0 0| 407

408 7057 57|11(1|1(1 0] 0.05347 0l 0 0] O 0 0 0.95 0 0 0 0 0 0] 408

409 7044 44)1(1|1|1 0[ 0.18181 O[ of of O O Of 0.942 0 0 0 0 0 0| 409

410 |7055| 55[1|1|1|1 0| 0.19607 o/l of ol o] of o 0942 0 0 0 0 0 0| 410

411 7071 71)1f1|1|1 0| 0.06896 o[ of of O 0| of 0.9565 0 0 0 0 0 0[411
Appendix B6: IEEE BUS300 Remote Node Data:

Table 10: IEEE BUS300 remote node data

1 |2(3|4|5 6 7 8 9 10 11( 12 13 14 15 16 17 18 | 19

1 1(1{1]1]|0| 1.0284 5.95 90 49 0| 0] 115 0 0 0 0 0 0 1

2 2(1)1(1{0] 1.0354 7.74 56 15 0| 0] 115 0 0 0 0 0 o 2

3 3[(1f1f{1f{0f 0.9971] 6.64 20 0 o[ 0] 230 0 0 0 0 0 of 3

4 411(1|1]0] 1.0308] 4.71 0 0 O 0] 345 0 0 0 0 0 of 4

5 5(1f1f{1f{0f 1.0191] 4.68 353 130 o[ 0] 115 0 0 0 0 0 of 5

296 9055( 11|92 1| -7.54 0 0 8| 0] 13.8 1 6 -6 0 0] 9055| 296

297 9071( 1] 19| 0] 0.9752( -20.48 1.02] 0.35 0] 0] 0.6 0 0 0| 0.0005 0 0] 297

298 9072]1]1]9] 0| 0.9803| -19.92 1.02| 0.35 o[ 0] 0.6 0 0 0[ 0.0005 0 0 298

299 9121]1]1]9]0] 0.9799| -19.3 3.8/ 1.25 o[ 0] 6.6 0 0 0 0 0 0 299

300 9533|1]1]|9|0| 1.0402| -18.24 1.19] 0.41 of o 23 0 0 o[ 0.001 0 0| 300
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Appendix C: Experimental Results

The following Figures are the screenshots of 5 different databases output results.

Appendix C1: Screenshots of Experimental Results on IEEE Test System of

BUS14:
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Figure 41: The experimental results on IEEE test system of BUS14 with 3 segments.
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Figure 42: The experimental results on IEEE test system of BUS14 with 4 segments.
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Figure 43: The experimental results on IEEE test system of BUS14 with 5 segments.
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"’Figure 44: The experimental results on IEEE test system of BUS14 with 6 segments.
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Appendix C2: Screenshots of Experimental Results on IEEE Test System of
BUS30:

Following Figures show the experimental results on IEEE test system of BUS30.
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Figure 45: Experimental parameters for IEEE test system topology BUS30.
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Fiéure 46: The experimental results on IEEE test system of BUS30 with 3 segments.
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Figure 48: The experimental results on IEEE test system of BUS30 with 5 segments.
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Wi:i'g‘ure 49: The experimental results on IEEE test system of BUS30 with 6 segments.

Appendix C3: Experimental Parameters for IEEE Test System Topology

BUSSY:

Following Figures show the experimental results on IEEE test system of BUS57.
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Figure 50: Experimental parameters for IEEE test system topology BUS57.
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Figure 52: The experimental results on IEEE test system of BUS57 with 4 segments.
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Figure 53: The experimental

results on IEEE test system of BUS57 with 5 segments_.
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Appendix C4: The Experimental Results on IEEE Test System of BUS118:
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Figure 55: The experimental results on IEEE test system of BUS118 with 5
segments.

g 85 Minimum Spanning Tree - o x |®
Source Destination Weight ~
Segment 1 Contains 1 Trust Nodes. 4 5 0 [Segment 1 Cortains 2 Tust Nodes
Trust Node Is:8 8 5 0 Trust Node Is:8
9 10 0 Trust Node ls:16
Segment 2 Contains 1 Trust Nodes. 35 36 0
Trust Node Is:49 3 7 0 [Segment 2 Cortains 2 Tust Nodes
54 5 0 Trust Node ls:49
Segment 3 Contains 1 Trust Nodes. 60 51 0 Trust Nod Is:66
Trust Node Is:57 63 0
64 65 0 [Segment 3 Contains 2 Tust Nodes
Segment 4 Contains 4 Trust Nodes 65 68 0 Trust Node ls:57
24 7 0 Trust Node ls:55
68 0
114 115 0 [Segment 4 Contains 2 Trust Nodes
68 116 0 Trust Node I5:37
6 7 1 Trust Node Is:43
8 5 1
11 12 1 [Seament 5 Contains 4 Trust Nodes
2 2 1 Trust Node Is:65
30 7 1 Trust Node Is:67
8 30 1 Trust Node ls:15
38 7 1 Trust Node Is:19
30 38 1
55 56 1 Segment 6 Contans 2 Tust Nodes
Segment 6 Contains 0 Trust Nodes. 63 59 1 Trust N
64 51 1 Tork Noe 78
Segment 7 Contains 3 Trust Nodes 65 66 1
Trust Node: Is:80 68 59 1 [Seament 7 Contains 2 Trust Nodes
Trust Node Is:77 7 7 1 Trust Node 1s:80
Trust Node Is:83 7 7 1 Trust Node Is:83
81 30 1
Segment 8 Contains 1 Trust Nodes. 7 12 2 [Segment 8 Contains 1 Tust Nodes
Trust Node Is:92 3 30 2 Trust Node Is:32
34 3% 2
Segment 9 Contains 1 Trust Nodes. 61 62 2 [Seament 9 Contains 1 Trust Nodes
Trust Node Is:100 38 65 2 Trust Node 1s:100
b 7 2
Segment 10 Contains 2 Trust Nodes 7 73 2 Seament 10 Contains 2 Trust Nodes
Trust Node Is:23 7 113 2 Trust Node I5:23
Trust Node Is:32 5 3 3 Trust Node Is:32
7 18 3
18 19 3
Number Of Trus Nodes: 20 15 13 3
Link Mean Weight: 8.40322580645161 2 3 3
Link Weight Standard Deviation: 6.74606937110523 7 7 3
Active Links: 186 82 8 3
Average MST Weight: 52.8 89 92 3
Processing Time:0.213187 2 102 3
|Average Segment Size-11.8 104 105 3
Coefficient Variation:0.24561655502016 108 109 3
1 3 4
23 2 4

ﬂ o Type here to search

! 0@ ge ) @

Figure 56: The experimental results on IEEE test system of BUS118 with 10

segments.
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Figure 57: The experimental results on IEEE test system of BUS118 with 15
segments.
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Segment 13 Contains 1 Trust Nodes 3 5 1 Trust Node ls:70
Trust Node Is:52 1 12 1
2 2 1 Segment 5 Contains 2 Trust Nodes
Segment 14 Contains 1 Trust Nodes 0 7 1 Trust Node Is:34
Trust Node Is:72 3 30 1 Trust Node ls:43
3 7 1
Segment 15 Contains 0 Trust Nodes ] 38 1 Segment 6 Contains 0 Trust Nodes
55 5 1
Segment 16 Contains 0 Trust Nodes 63 59 1 Segment 7 Contains 1 Trust Nodes
54 61 1 Trust Node 1s:37
Segment 17 Contains 3 Trust Nodes 65 66 1
Trust Node Is:B0 58 69 1 Segment 8 Contains 2 Trust Nodes
Trust Node Is-77 7 7 1 Trust Node ls:49
Trust Node Is:83 7 7 1 Trust Node ls:46
81 80 1
Segment 18 Contains 4 Trust Nodes H 7 12 2 H Segment 9 Contains 2 Trust Nodes
Trust Node Is:92 2% 30 2 Trust Node Is:58
Trust Node Is:34 3% 2 Trust Node ls:57
Trust Node Is-100 51 62 2
Trust Node Is:103 H k] 65 2 [F{ Seament 10 Cortains 2 Trust Nodes
7 7 2 Trust Node [s:61
Segment 19 Contains 0 Trust Nodes 7 7 2 Trust Node Is:62
7 113 2
Segment 20 Contains 2 Trust Nodes 5 6 3 Segment 11 Cortains 1 Trust Nodes
Trust Node Is:27 7 18 3 Trust Node s
Trust Node Is:32 18 19 3
15 15 3 Segment 12 Cortains 2 Trust Nodes
2 3 3 Trust Node ls:65
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Link Weight Standard Deviation: 6.74606937110523 39 a2 3 Segment 13 Cantains 1 Trust Nodes
Active Links: 186 2 102 3 Trust Node l5:52
Average MST Weight= 24.3 104 105 3
Processing Time:0.1292845 108 109 3 Segment 14 Cortains 1 Trust Nodes
Average Seoment Size:5 9 1 3 1 Trust Node 15:72
Cocfficient Variation-0.418432556261778 v 2 24 4 v v
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Figure 58: The experimental results on IEEE test system of BUS118 with 20
segments.

140



o L=} 85 UniformForm - o %
Segment 13 Contains 2 Trust Nodes ~ Source Destination Weight Al ~
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Trust Node Is:57 4 5 0 Segmert 1 Contains 2 Trust Nodes
8 3 0 Trust Node Is:6
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61 35 % 0
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Segment 15 Contains 1 Trust Nodes 60 61 0 Trust Node 1s:3
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Trust Node Is:65 2% 7 0 Trust Node Is:19
Trust Node Is:69 8 0
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Segment 17 Contains 0 Trust Nodes 68 116 0 Trust Node Is:70
6 7 1 Trust Node Is:23
Segment 18 Contains 1 Trust Nodes 8 5 1
Trust Node Is:72 1 2 1 Segmert 5 Contains 0 Tust Nodes
bl % 1
Segment 19 Contains 0 Trust Nodes 30 7 1 Segmert § Contains 1 Tust Nodes
8 30 1 iode 1s:37
Segment 20 Contains 3 Trust Nodes 38 7 1
Trust Node Is:80 30 38 1 Segmert 7 Contains 3 Trust Nodes
Trust Node 577 55 56 1 Node Is:8
Trust Node Is:83 63 59 1 Trust Node Is:30
61 1 Trust Node Is:17
Segment 21 Contains 0 Trust Nodes 65 66 1
68 6 1 Segmert 8 Contains  Trust Nodes
Seoment 22 Containe 2 Trust Nodes 7 7 1
Trust Node Is: 7 7 1 Segmert 9 Contains 1 Tust Nodes
Tt Node 104 81 80 1 Node Is:44.
7 12 2
Segment 23 Contains 3 Trust Nodes 2% 30 2 Segmert 10 Contains 1 Trust Nodes
Trust Node Is:102 % 2 Trust Node Is:46
Trust Node Is:100 61 62 z
Trust Node Is103 38 65 2 Segmert 11 Contains 1 Trust Nodes
7 7 2 Trust Node ls:49
Segment 24 Contains 0 Trust Nodes 7 7 z
7 113 2 Seament 12 Contans 1 Tust Nodes
Segment 25 Contains 2 Trust Nodes 5 6 3 st Node Is:5
Trust Node Is:27 7 18 3
Trust Node Is:32 18 19 3 Segmert 13 Contains 2 Trust Nodes
15 19 3 Trust Node 1+:53
2 3 3 Trust Node Is:57
Number Of Trus Nodes: 34 7 7 3
Link Mean Weight: 8 40322580645161 82 & 3 Segmert 14 Contains 2 Trust Nodes
Link Weight Standard Deviation: 6.74606937110523 89 %2 3 de Is 61
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Average MST Weight: 17.68 104 105 3
P.mrg I==01610777 108 109 3 Segmert 15 Contains 1 Trust Nodes
1 3 4 Trust Node Is:59
Cocimeen Vamaonss 07554396459243 v 23 24 4 v v
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Figure 59: The experimental results on IEEE test system of BUS118 with 25
segments.

=] =) & UniformForm - [u] X
~ Source Destination Weight M ~
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Segment 20 Contains 2 Trust Nodes 54 56 0 Trust Node Is:1
Trust Node Is:70 60 61 0 Trust Node ls:3
Trust Node Is:72 63 64 0
64 65 0 Segment 3 Contains 2 Trust Nodes
Segment 21 Contains 0 Trust Nodes €5 63 0 Trust Node Is:15
2 7 0 Trust Node Is:19
Segment 22 Contains 2 Trust Nodes 68 81 0
Trust Node Is:85 114 15 0 Segment 4 Contains 1Truz( Nodes
Trust Node Is:84 68 116 0 Trust Node I
6 7 1
Segment 23 Contains 0 Trust Nodes 8 5 1 Segment 5 Contains 1 Trust Nodes
1 12 1 Trust Node 1s:26
Segment 24 Contains 1 Trust Nodes 2% 25 1
Trust Node Is:92 30 7 1 Segment 6 Contains 0 Trust Nodes
g kY 1
Segment 25 Contains 2 Trust Nodes 38 7 1 Segment 7 Contains 1 Trust Nodes
Trust Node Is:81 30 38 1 Trust Node 1s:37
Trust Node Is:77 55 56 1
63 59 1 Segment 8 Contains 2 Trust Nodes
Segment 26 Contains 4 Trust Nodes 64 61 1 Trust Node Is:8
Trust Node Is:94 €5 66 1 Trust Node Is:17
Trust Node Is:100 68 69 1
Trust Node Is:103 77 7 1 Segment 9 Contains 0 Trust Nodes
Trust Node Is:99 7 p 1
8 20 1 Segment 10 Contains 1 Trust Nodes
Segment 27 Contains 0 Trust Nodes 7 12 2 Trust Node Is:44
2% 30 2
Segment 28 Contains 2 Trust Nodes U 36 2 Segment 11 Contains 1 Trust Nodes
Trust Node 1s:108 61 62 2 Trust Node ls:46
Trust Node Is:109 38 65 2
7 7 2 Segment 12 Contains 1 Trus\ Nedes
Segment 29 Contains 0 Trust Nodes 7 7 2 Trust Node I
7 13 2
Segment 30 Contains 2 Trust Nodes 5 6 3 Segment 13 Contains 0 Trust Nodes
Trust Node Is:27 7 18 3
Trust Node Is:32 18 19 3 Segment 14 Contains 2 Trust Nodes
15 1 3 Trust Node ls:54
29 Kl 3 Trust Node 1s:53
Number Of Tnss Nodes: 38 7 i 3
Link Mean Weight: 8 40322580645161 82 83 3 Segment 15 Contains 2 Trust Nodes
Link Weight Standard Deviation: 6.74606937110523 29 92 3 Trust Node Is:58
Active Links: 186 92 02 3 Trust Node Is:57
Average MST Weight: 14 105 3
Time:0.12841 108 109 3 Segment 16 Contains 2 Trust Nodes
Average Segment Size:3. 93333333333333 1 3 4 Trust Node Is:61
Coefficient Variation:0.53800844805 v 23 2 4 v Trust Node Is:62 v
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Figure 60: The experimental results on IEEE test system of BUS118 with 30
segments.
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Appendix C5: The Experimental Result on IEEE Test System of BUS300:

=) L=l 8 Minimum Spanning Tree - o x
~
Trust Node ls:89 [ Source Destination Weight ~
Trust Node ls:185 Segment 1 Contains 3 Trust Nodes

Trust Node 1s:37 266 0
Segment 5 Contains 8 Trust Nodes Trust Node ls:40 3 b 0
Trust Node Is:36 Trust Node Is:47 1 5 0
Trust Node ls:4 2 6 0
Trust Node Is-15 Segment 2 Contains 4 Trust Nodes 3 125 0
Trust Node Is:48 Trust Node I5:198 4 15 0
Trust Node Is:84 Trust Node Is:174 7 12 0
Trust Node Is:87 Trust Node Is:64 7 o o
Trust Node Is:31 Trust Node Is:66 12 20 0
Trust Node Is:86 16 3% 0
Segment 3 Contains 3 Trust Nodes 18 2 o
st Node Is:119 7 2 0
Number Of Trus Nodes: 20 Trust Node Is:120 2 3% 0
Link Mean Weight- 14 6350364963504 Trust Node Is:152 3 36 0
Link Weight Standard Deviation: 40.5246389704438 3% 0 0
Active Links: 411 Segment 4 Contains & Trust Nodes 51 53 0
Average MST Weight- 832 6 Trust Node Is: 109 54 123 0
Processing Time:1.241915 & ] 65 0
Average Segment Size:60 81 88 0

Coefficient Variation: 0.2451065843440985 9% 9 0 v
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Figure 61: The experimental results on IEEE test system of BUS300 with 5

segments.
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Trust Node Is:216
3 26 0 Segment 1 Contains 4 Trust Nodes
Segment 5 Contains 7 Trust Nodes 266 2] ] Trust Node Is:68
Trust Node Is:217 1 5 ] Trust Node ls:15
Trust Node Is:202 6 0 Trust Node Is:43
Trust Node Is:190 3 129 ] Trust Node Is:67
Trust Node Is:57 4 1 0
Trust Node Is:179 7 12 0 Segment 2 Contains 3 Trust Nodes
Trust Node Is:180 7 110 1 Trust Node 15:39
Trust Node Is:181 12 2 ] Trust Node Is:41
16 % 0 Trust Node ls:37
Segment 6 Contains 7 Trust Nodes 18 20 0
7 2 0 Segment 3 Contains 4 Trust Nodes
2 % 0 Trust Node Is:119
3 3% 0 Trust Node Is:120
3% 20 0 Trust Node Is:152
51 53 0 Trust Node Is:112
Trust Node Is:115 54 123 0
Trust Node Is:131 ) 65 1 Segment 4 Contains 3 Trust Nodes
81 88 0 ust Node 15:216.
Segment 7 Contains 4 Trust Nodes 95 %9 ] Trust Node Is:214
Trust Node Is:20 9% 7 ] Trust Node 15203
Trust Node Is:13 7 100 0
Trust Node Is:89 104 105 0 Segment 5 Contains 4 Trust Nodes
Trust Node Is:185 107 112 0 Trust Node 15:57
108 112 0 Trust Node Is:179
Segment 8 Contains 8 Trust Nodes 109 bl ] Trust Node Is:180
Trust Node 1s:27 109 130 0 Trust Nods Is:181
Trust Node Is:32 12 116 0
Trust Node Is:31 12 147 ] Segment 6 Contains 6 Trust Nodes
Trust Node Is43 12 143 ] Trust Node Is:106
Trust Node Is:84 12 150 ] Trust Node Is:3
Trust Node Is:87 16 19 ] Trust Node 15109
Trust Node Is42 116 160 ] Trust Node Is:105
Trust Node Is:86 116 165 0 Trust Node Is:115
116 167 0 Trust Node Is:131
Segment 9 Contains 1 Trust Nodes 13 161 0
Trust Node 1s:276 136 138 0 e J B A
137 138 0 st
Segment 10 Contains 1 Trust Nodes 11 143 ] True Node 413
Trust Node Is:268 141 144 0 Trust Node ls:89
144 145 0 Trust Node 15:185
126 148 0
Number Of Trus Nodes: 37 160 17 0 Segment 8 Contains 7 Trust Nodes
Link Mean Weight: 14.6350364963504 160 166 0 Trust Node 15:27
Link Weight Standard Deviation: 40.5246389704438 163 164 0 Trust Node Is:31
Active Links: 411 169 210 ] Trust Node ls:43
Average MST Weight: 378.9 17 171 0 Trust Node Is:84
Processing Time:0.5767361 17 204 1 Trust Node I5:87
Average Segment Size:30 17 198 ] Trust Node Is:42
Coefficient Variation-0.434329339682046 . 173 242 0 Trust Node ls:86 v
17 198 0
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Figure 62: The experimental results on IEEE test system of BUS300 with 10

segments.
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2 6 0 Trust Node Is:73
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4 16 0 | Segment 2 Contains 3 Trust Nodes
7 12 0 Trust Node Is:74
7 10 0 Trust Node [s:135
12 20 0 Trust Node 1s:89
16 6 0
18 20 0 |Segmert 3 Contains 5 Trust Nodes
27 32 0 Trust Node 1s:35
28 £ 0 Trust Node 1s:39
1 36 0 Trust Node Is:44
36 40 0 Trust Node 1s:37
51 53 0 Trust Node ls:41
54 123 0
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Trust Node Is: 81 28 0 st Node Is:119
Trust Node Is:11 95 %9 0 Trust Node I5:120
Trust Node Is:78 % 57 0 Trust Node Is:152
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Trust Node Is:267 107 12 0 Trust Node 15:198
nz 0 Trust Node 1s:197
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Trust Nede Is:84 12 16 0 | Segment € Contains 1 Trust Nodes
Trust Node Is:87 12 147 0 Trust Node Is:214
Trust Node Is:86 12 143 0
12 150 0 | Segment 7 Contains 3 Trust Nodes
Segment 12 Contains 1 Trust Nodes 116 13 0 Trust Node 15:220
Trust Node Is:266 116 160 0 Trust Node Is:202
116 165 0 Trust Node 1s:179
Segment 13 Contains 0 Trust Nodes 116 167 0
19 161 0 |Segmert 8 Contains 3 Trust Nodes
Segment 14 Contains 1 Trust Nodes 138 0 Trust Node ls:131
Trust Node 1s:276 137 138 0 Trust Node ls:14
1 143 0 Trust Node Is:112
Segment 15 Contains 1 Trust Nodes 4 144 0
Trust Node s:268 i 145 0 |Segmert 9 Contains 6 Trust Nodes
46 148 0 st Node Is:
160 17 0 Trust Node Is:3
Number Of Trus Nodes: 38 160 166 0 Trust Node 1s:129
Link Mean Weight - 14 6350364963504 163 164 0 Trust Node Is:72
Link Weight Standard Deviation: 40.5246389704438 169 210 0 Trust Node [s:11
| Active Links: 411 170 17 0 Trust Node Is:78
Average MST Weight: 249 171 204 0
ing Time-0.489956 17 198 0 [Segmert 10 Contains 1Trust Nodes
| Average e, 173 242 0 ust Node v
Coefficient Variation:0.706854197938201 v 174 198 0 v
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Figure 63: The experimental results on IEEE test system of BUS300 with 15
segments.
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Segment 11 Contains 2 Trust Nodes 1 5 [ T Vo o
Trust Node Is:214 2 6§ 0 Trust Node Is 24|
Trust Node 1s:203 3 129 []
4 16 o [Segment 2 Contains 3 Trust Nodes
Segment 12 Contains 6 Trust Nodes 7 12 0 Trust Node 15:196
: 7 110 [ Trust Node I5:199|
12 20 0 Trust Node 1s:179)
16 ® 0
18 20 o [Segment 3 Cortains 3 Trust Nodes|
27 » [
2 £ 0
3 £ 0
£ 2 []
51 53 o [Segment 4 Contains 2 Trust Nodes
54 123 0 Trust Node Is:82
64 65 o Trust Node Is- 76|
81 28 [
% %9 0
% 97 [ Trust Node Is:81
97 100 0 Trust Node Is:90}
104 105 0
107 112 0
108 112 [ FTr T e T
109 1 0 Trust Node s 1
09 0
12 116 [
12 147 [ Trust Node Is:39|
Trust Node Is:43 12 148 [ Trust Node Is:37]
12 150 [ Trust Node Is-52)
Segment 17 Contains 1 Trust Nodes 16 19 [
Trust Nede 1s:273 16 160 [ Seqment. 8 Cortains 2 Trust Nodes
116 165 0 Trust Node 15:123)
Segment 18 Contains 1 Trust Nodes 16 167 [ Trust Node Is:121
Trust Nede 1s:274 19 181 0
136 138 o Segment § Contains 3 Trusi Nodes|
Segment 19 Contains 0 Trust Nodes 137 138 [
1 143 [
Segment 20 Contains 1 Trust Nodes 141 144 [
Trust Node Is:268 14 145 [
146 148 o [Segment 10 Contains 2 Trust Nodes]
160 17 o Trust Node Is:177]
Number Of Trus Nodes: 42 160 0 Trust Node Is 176
Link Mean Weight - 14 6350364963504 163 164 []
Link Weight Standard Deviation: 40.5246389704438 169 210 0 Segment 11 Cortains 3 Trust Nodes|
Active Links: 411 170 171 0 ~ Trust Node 5214
Average MST Weight: 186.25 71 204 [ Trust Node 15203
Processi 373967 173 198 0 Trust Node 15 210
Average Segment Size-15 173 242 [
Coefficient Variation:0.593138150431311 v 174 138 ] v v
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Figure 64: The experimental results on IEEE test system of BUS300 with 20
segments.
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Figure 65: The experimental results on IEEE test system of BUS300 with 25
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Trust Node Is:274

Segment 29 Contains 0 Trust Nodes

Segment 30 Contains 1 Trust Nodes
Trust Node I5:268

Number Of Trus Nodes: 5
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Figure 66: The experimental results on IEEE test system of BUS300 with 30

segments.

144




