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ABSTRACT

The filtering problem is to estimate the motion of an object detected by sensors,
cameras, voice recorders, etc., based on its specific characteristics such as color, light

reflection, and sound waves.

There are many filtering algorithms that have been used by researchers in the past
to solve the related problems. In the literature, Lucas Rod’es Guirao (partner Diego
Mor’1n) conducted an experiment to estimate the motion of an object and compared the
performance of the Kalman filter and the particle filter in their study. They conclude
that using the Kalman filter after the particle filter can slightly improve the performance
of the particle filter alone, but the combination of Kalman filter and particle filter is still

very sensitive to particle deprivation when there are occlusions.

The objective of this thesis is to use the particle filter algorithm to improve the tracking
mechanizm in the way that updating particles which tracking the movements of the ball

in a faster way.

This thesis presents the modified particle filter optimization for tracking the object
efficiently and follow its posterior movements on the exact point to track the object
truly. Depending on the proposed particle filter algorithm, the camera is set to track
the object behind of the conjectural goal line and the proposed code performs the

estimation of particles as a guider of goalkeeper.

Focused small ball considered as an object to estimate its x and y coordination in a

two-dimensional area captured by a fixed camera connected to the computer. A 30-
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second live shot is used to track the ball by using the RGB features of the particles
to calculate the estimation of the object by a coded Matlab application. The proposed
agorithm checks whether the ball has crossed the goal line or not, and then print these

all output information on terminal section of Matlab.

Keywords: Particle filter algorithm, Kalman filter, Estimation, Object tracking.
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Filtreleme problemi, sensorler, kameralar, ses kayit vb. cihazlar1 kullanarak hedef
objenin kendine ait 6zgii renk, 151k yansimasi ve ses dalgalar1 gibi 6zelliklerini

kullanarak objenin konum hareketlerini tahmin etme konularini icerir.

Gecmiste arastirmacilar tarafindan kendi alanlarina ait problemleri ¢6zmek icin
kullanilan bircok filtreleme algoritmasi vardir. Literatiirde Lucas Rod es Guirao
(partner Diego Mor “1n) bir aragtirma yapmistir ve bu arastirmada Kalman filter ve
particle filter algoritmalarin1 kargilastirip hedef objenin konum hareketlerini tahmin
etme yaklasimlarimi incelemislerdir. Arastirma sonucunda Kalman filter in particle
filter dan sonra kullanilmasinin, tek basina particle filter performansini gelistirdigini
gostermistir ama Kalman filter ve particle filter bilesimi olan Kalmanized particle
filter (KPF)’in ise okliizyon varken, cismi takip eden taneciklerin yoksunlugu

konusunda hala hassas oldugu gozlemlenmistir.

Bu tezde amac, particle filter algoritmasini kullanarak takip mekanizmasini, takibi

saglayan taniecikleri hizli bir yol ile giincelleyerek gelistrimektir.

Bu tez, nesneyi verimli bir sekilde takip eden ve onun bir sonraki hareketlerini dogru

bir sekilde tahmin eden bir particle filter optimizasyonu sunar.

Hedef cismin takip edilmesini saglayacak particle filter optimize etme algoritmasini
gelistirerek objenin bir sonraki konumuna daha verimli bir sekilde erisim saglanmasi
hedeflenmektedir. Bu algoritmaya bagli olarak, hedef cisim takibi i¢in hayali kale

cizgisine sabitlenecek sekilde bir kamera ve taneciklere yon verecek olan kodlanmis



bir tahmin etme algoritmas1 kullanildi.

Bilgisayara baglh bir web kamera kullanarak, futbol topu olarak varsayilan bir objenin
bir sonraki adimini, iki-boyutlu bir alanda x ve y koordinatlar1 tahmin edilecek. Matlab
kodlar1 kullanilarak 30 saniyelik bir canli kaydin icerisinde obje takibini, objenin renk
ozelliklerini kullanarak taneciklerin, topun iizerine yerlesip takip etmesi saglanacak.
Daha sonra topun, web kameraya olan mesafesi belirlenmis, hayali kale ¢izgisini gecip

gecmedigi hesaplanarak sonug bilgileri Matlab terminal kisminda gosterilecektir.

Anahtar Kelimeler: Tanecikli filtre algoritmasi, Kalman filtresi, Tahmin, Obje takibi
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Chapter 1

INTRODUCTION

Particle filter problem is commonly used in object tracking area by researchers. The
important point of the filtering problem is not just recording the objects’ posterior
movements by using needed devices as video recorder, light and movement sensors etc.
The most important aim is that, following the target object in a safest and fastest way
by using particles which are sticking on the objects to find out its direction, velocity
and distance between object and input recorder. Many researchers have studied on this
subject and tried to find different methods to solve this problem in the past researches

[1-6].

Kalman Filter is an implementation of Bayes filter was invented by Rudolph Emil
Kalman in 1950. Algorithm of this filter includes two steps which are prediction and
update. Prediction step tries to recognize future state by using previous state
depending on current state. This state focuses on some needed variables which are
position, velocity and acceleration to measure estimation of the object. Update state is
the state which using current state to make improvement of present state. This state
lays on required predicted state variable and predicted covariance variable calculated
by using prediction results to update prediction step which will be current state later
on. Difference of Kalman filter against other filters is that Kalman filter is a filter in
dynamic system to measure current state and estimate posterior movements of the
object by using previous state variables which includes dynamic changes which are

position, velocity and acceleration.



Particle Filter which called as Monte Carlo method provides to measure target
distribution (7r) by using three systems, prediction (7 (x;+1)), updating current state
(m;41 (%)) and new estimation (74 (x;+1)). These systems are helping to find
evolving probability distribution 7 in the state that increasing dimension. The authors
are inspired of two models to improve their research. Bayesian Missing Data-Problem
by using Rao-Blackwellization to provide approximation and State-Space Model by
using observation equation (y; ~ f; (- |x;,¢)) and state equation represented by
Markov process ((x; ~ g (- |x—1,0))). The authors proposed a general use of
Rao-Blackwellization to improve performance of approximation, memory usage and
speed of computation. In this case, weight variable is added in the problem to

improve better approximation of each posterior step with their probability values [1].

Kalmanized particle filter is the filtering method which combines two filtering model
to improve estimation of the posterior movements of the target objects researched
by [7]. The authors made a comparison between performance of Kalman filter and
particle filter in their related research. Nintendo Pinball game has used as an
experimental application. One minute video recorded to test it on related filter
algorithms. Particle filter and Kalman filter methods applied on this video separately
and then they apply the combination of particle filter and Kalman filter to observe the
performance of finding expected posterior movement of the object and then the
performances has recorded to finalize conlusion. Results are compared in two way
which are ‘when no particle deprivation occurs’ and ‘when particle deprivation
occurs’. By comparing these two informations the results shows that using Kalman
filter after particle filter is approximately improoving the efficiency of the particle
filter alone. The authors observe that the Kalmanized particle filter is sensitive to

deprivation effects to particles that estimates object. Their results conclude that if



particle deprivation does not occurs, mean square error rate is acceptable for particle
filter, Kalmanized particle filter (with constant velocity and acceleration separately)
but if particle filter deprivation occurs, mean square error rate of applied particle filter,
Kalmanized particle filter (with constant velocity and acceleration separately) is too
high and cannot acceptable although mean square error rate of Kalman filter (with
constant velocity and acceleration separately) and particle filter does not have too
much differences between ‘when no particle deprivation occurs’ and ‘when particle

deprivation occurs’.

The problem in this thesis, focusing on the state to estimate target distribution which
will be called estimation posterior movement of the object by using particle filter
algorithm by assigning constant velocity and constant acceleration. Algorithm is
improved as Kalmanized particle filter algorithm by using only particle filter
algorithm as mentioned in [1]. A small ball defined as an object is focused to estimate
its x and y coordination in a two-dimensional area recorded by fixed camera
connected to computer. 30 second live record is used to follow the ball by using RGB
feature of the particles to calculate estimation of the object by coded matlab

application.

This thesis consist of four chapter.

In Chapter 1, required definitions and literature review metioned as Introduction.

In Chapter 2, basic information about particle filter algortihm, modified particle filter

algorithms, advantages and disadvantages mentioned as Particle Filter.



In Chapter 3, proposed particle filter algorithm, detailed steps of particle filter model,

developing process of the experiment mentioned as Proposed Particle Filter.

In Chapter 4, experiment process, results and future work is mentioned as Conclusion.



Chapter 2

PARTICLE FILTER

Particle filters (sequence Monte Carlo) technique is a collection of Monte Carlo
algorithms for tackling filtering issues such as determining future state in dynamical
systems under signal processing and Bayesian inference. The main target of the
system is calculating posterior movement distributions of the target object by given

partial observations.

The history of particle filter is started with the term “particle filters” was found in
1996 by Del Moral and this filter used for fluid mechanics since 1960’s [8]. Sequential

Monte Carlo method has invented in 1998 by reference [6].

Particle filter leads set of samples which points posterior states of a random process
which widely preferred as mathematical models of systems or phenomenal situations
in stochastic process. The study of stochastic process consists of mathematical
information and specific techniques related to calculus, set theory, probability etc.
particle filter model provides a well-known methodology [8] to produce particles

from the needed distribution without assumption about state distribution.

Particle filter improves its prediction by updating the approximation in statistical
manner. The particles which are distributed randomly are named as set of particles;
each sample has a weight assigned to represent probability of that sample. In the

resampling step, negligible weighted particles are replaced by new particles which of



the particles with higher weights.

For situations involving nonlinear filtering and hidden Markov models, the particle
filter model is preferable. Hidden Markov model employs a number of approximation
methods, including extended Kalman filters, Markov Chain Monte Carlo approaches,

and the linear-Gaussian signal-observation model (Kalman filter).

The objective of particle filter is to predict the future density of observation variables
which is related to state-process by some methodological design. The particle filter is
invented and improved for hidden Markov model. Using observation computation with
regard to state-space, a general particle filter model forecasts the next step distribution

of the hidden states:

Yo=Y —Y,— Y3 .-+ signal
Loyl
Zo Zy Zp Zz --- observation

given the observation process Zg to Z at a time step s, the filtering issue focuses on

predicting sequentially the values of the hidden states Y.

The particle filter model provides conditional probability approximation using
experiential measure related with a usual typed particle algorithm. In reverse, the
Markov Chain Monte Carlo or importance sampling strategy models the posterior as

follows:

p()C(),Xl,"' y Xs |YO7)’17"' ;ys)~



2.1 Particle Filtering
Particle filters utilize many discrete "particles” to indicate the belief distribution across

a tracked object’s position.

Predicting the moving of the objects in complicated area is a popular research in
computer vision. It involves determining how the time based system’s state changes
by time by having multiple measurements that may contain noise. Calculating the
posterior density p(xg |#1.x) of the present object state x; conditioned on all

observation t1., = (t1,--- ,#), up to time k is the goal of Bayesian tracking.

In two phases, the probability density function p(x;|t;x) may be produced
recursively: prediction and update. If the time-varying state x; is represented as a

first-order Markov process, the probability density function p (x; | #1.) is calculated as

P (| 1) = &0 (8 | x6) 0 (k| F1p—1) 2.1

p (x| tie—1) = /P(xk | X—1) P (X1 | t1ok—1) doxg—1, (2.2)

where K is an independent normalizing constant of xj, the likelihood function is
denoted by p (# | x), the dynamic model is denoted by p (x; | xx—1) and p (x | t1:4—1)
is the temporal prior over x; given past observation, p (xy | xx_1) and p (. | x;) it is not

necessary for the distribution to be Gaussian in this scenario [9].

Particle filter [1, 10] is a technique for using Monte Carlo simulations to create a
recursive Bayesian filter. Rao-Blackwellization is one technique for improving the
performance of sequential Monte Carlo (SMC). The Rao-Blackwellized particle filter
(RBPF) [3, 11, 12] is a method that seeks to assess parts of the filtering equations

analytically while employing Monte Carlo sampling for the remaining equations



rather than depending exclusively on sampling.

The fundamental concept is that of particle filtering is to employ a weighted sample

set to approach the probability distribution

S:{(Sm),,r(n)) |n:1,...,N}.

Each sample s represent one possible state of the object with a corresponding discrete
sampling probability represents a different potential state of the object, with a discrete

sampling probability 7, where fozl n( =1[13].

The sample set’s evolution is characterized by advancing each sample in accordance
with a system model. Each member of the collection is then weighted in relation to
the observations, and N samples are chosen with replacement by selecting a specific

sample with probability nln) = p (tl | x; = sl(n)> [13]. Using
N
E[s]=Y a5 (2.3)
n=1

the estimated mean state of an item is computed at each time step [13].

Since it models uncertainty, particle filtering offers a reliable tracking framework. It
can keep its options open by assessing many state hypotheses concurrently. It can keep

its options open by assessing many state hypotheses at the same time [13].

Particle filter, also known as sequential Monte Carlo techniques are a group of
algorithms that are useful in simulations for sampling and estimating state
distributions in dynamic systems. They have been used in a variety of areas,
including:

1. Robotics: Particle filters have been used to localize robots and estimate their



pose.

2. Computer vision: Particle filters have been used to track objects in video
sequences and to estimate the pose of cameras.

3. Navigation: Patricle filters have been used in GPS and inertial navigation
systems to estimate the position and orientation of vehicles.

4. Speech processing: Particle filters have been used to track the state of speech
production systems and to estimate the spectral parameters of speech signals.

5. Finance: Particle filters have been used to estimate asset price models and to
calibrate financial derivatives.

6. Bioinformatics: Particle filters have been used to estimate gene expression levels
and to align DNA sequences.

7. Environment monitoring: Particle filters have been used to estimate air quality
and to track the movement of pollutants in the atmosphere.

8. Medicine: Particle filters have been used to model the dynamics of physiological

systems and to design control strategies for medical devices.

The sets of particles used in the particle filters are appropriately weighted and updated
recursively based on the Bayesian rule. Additionally, the standard particle filter
algorithm includes a resampling technique based on sequential importance

sampling [14]. The specific steps are as seen below:
Vi = (Vk—1, 1)
k=9 (ykvvk) ’

where y; and z; are the state vector and measurement vector, respectively, at time k.
The process noise is denoted by u; while the measurement noise is denoted by vy.

Similarly, § and g are two well-known nonlinear functions.



The posterior probability density function p (yx | z1.) may be estimated by a set of N

particles {y,(j),i =1,2,---,N } derived from a well-known proposal density function

q (k- 21:1) [15]
N

B (v | z14) Z (y —zk)>, 2.4)

where at time k importance weights (normalized particle weight) are co,El) the function

of Dirac delta d(.) is the Dirac delta function. At any moment, the weight can be

modified as follows:

; (e (0 1
B

Ay N

At time k, specific particles { y,(cl) } | are chosen from a significance density function
1=

during the importance-sampling phase. The particle filter approach is difficult to apply

when the optimal significance density function is used. Choosing p (y; | yx—1) as a

suboptimal importance density function:
q ()’k | y;(gl,zk) =p (yk |y,@1> (2.6)

is a realistic and effective option [15].

Substituting (2.6) in (2.5), the weight update equation is written as follows:

ol = ol p (Zk | y,(f)) -

. (i)
Finally, the weights of the particles are normalized by (Z),El) = Nw" - If the particles

i=1 Ok

with high weights are over-represented, the number of useful particles is reduced,

which in turn results in a reduction in the new particle set’s information capacity [16].

determines the number of effective (meaningful) particles Neff.

The flowchart of the particle filter algorithm is shown below:
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Figure 2.1: Flowchart of the particle filter

The individual steps of the procedure shown in Figure 2.1 are explained by birefly as

11



follows:
Initializing: In this step, a set of particles is initialized, each representing a possible
state of the system being estimated. The initial particles can be randomly generated or

generated using a prior distribution of the system’s state.

Sampling: In this step, a sample of each particle is generated by applying a motion
model to the current state of the particle. This model represents how the system’s state

changes over time.

Update Weights: In this step, the weights of each particle are updated based on the
measurement obtained from the system. This measurement is used to evaluate the

likelihood of each particle’s state representing the actual state of the system.

Normalize Weights: In this step, the weights of each particle are normalized to ensure

that they sum up to 1. This allows for proper computation of the particle filter’s output.

Output Estimation: In this step, the output of the particle filter is estimated by taking
the weighted average of all the particles. This provides an estimate of the system’s

state based on the current measurements and the motion model.

Resampling: In this step, particles are randomly selected from the current set of
particles based on their weights. The idea behind resampling is to keep particles that
have high weights (i.e., particles that are more likely to represent the actual state of
the system) and eliminate particles with low weights (i.e., particles that are less likely

to represent the actual state of the system).
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Note that these steps are repeated at each time step of the system’s operation to provide

an updated estimate of the system’s state.

The algorithm of the traditional particle filter related to the mathematical expressions

is shown below in the Figure 2.2

Algorithm 1 Particle Filter
=
fl x_,
measurementvector N
Input: {x |, o ]}r.;]  Zk

1 previouslocation, m{ | ¢ previousweight Ny @ # ofsamples,z, :

i ri ccurrentlocation, m£ seurrentweight Ny @ # o fsamples

Output: {ri mﬁ }?—1

W (0 > initialize weight

fori=1+to N;do
draw sample J.i g {rjl | ri s z_,;) - propagate particles
assign weight @, r,_t.s'i'f;rli; (2.5) = update weight
Oy +— Oem + O = cumulative weight

end for

fori=1toN,do > normalize weights
m,; — m;: .l".l Dy

end for

ResampleN; particleswithre placement = resample

fori=11oN,do r- reset weights
m;; «— 1/N,

end for

Figure 2.2: Algorithm particle filter

Originally, particle filters were developed to use edge-based image features [17, 18].
Color-based particle filters have recently been introduced [12, 19]. The capacity of
particle filter to retain a precise approximation of the posterior is critical to its success.
To account for deviations in the state space, a large number of particles are required
to assure proper sampling, and this number grows exponentially with the dimension
of the state. However, the high computational cost associated with particle filters are

often unsuitable for real-time applications because to their enormous particle count.
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2.2 Advantages and Disadvantages of Particle Filter
Advantages of particle filters:
1. Particle filters are able to estimate state distributions in nonlinear and
non-Gaussian systems, where traditional Kalman filters may not work well.
2. Particle filters can handle high-dimensional state spaces, whereas other methods
such as the extended Kalman filter become computationally infeasible.
3. Particle filters are easy to implement and can be used with minimal assumptions

about the system being modelled.

Disadvantages of particle filters:

1. Particle filters require a significant amount of samples (particles) to accurately
estimate state distributions, which can make them computationally expensive.

2. Particle filters can suffer from degeneracy, where the particles collapse into a
narrow region and the filter fails to accurately estimate the state distribution.

3. Particle filters may have slow convergence, especially in high-dimensional state
spaces.

4. Particle filters may have difficulty with multimodal state distributions, where the

state can take on multiple values with similar likelihood.
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Chapter 3

PROPOSED PARTICLE FILTER

Particle filter is a sequential Monte Carlo method for estimating the posterior
distribution of a system’s state given noisy observations. The fundamental concept of
a particle filter is to depict the posterior distribution using a set of randomized
samples, named particles, and then use these particles to approximate the true
posterior distribution. The steps of the particle filter algorithm are as follows:

1. Initialization: The first step is to initialize the particles. This is typically done by
sampling from the previous distribution of the state.

2. Resampling: After the initial set of particles is generated, a resampling step is
performed to omit particles which have low weight and to replicate particles
that have high weight. The aim of this step is to ensure that the particles are
represented good at true posterior distribution.

3. Propagation: After resampling, each of the particles are propagated forward in
time using the dynamics of the system. The propagation step is often performed
using a process model, which describes how the system state improves over time.

4. Weighting: After the particles are propagated, their weights are updated based on
the likelihood of the observed information given the current state of the particle
set. The goal of this step is to assign superior weights through particles which
are more likely to have generated the observed data.

5. Estimation: After the particles have been weighted, the last step is to estimate the

state of the system using the particles. This can be done using various techniques,

15



such as the sample mean or the maximum a posteriori (MAP) estimate.

6. Repeat steps 2-5 for each time step until the desired estimation is reached.

Note that the particle filter algorithm is a recursive algorithm, in which means that it
uses the information from the former time step to estimate next state of the system at

the current time step.

The literature is reviewed and some good experiments are found in the field of object
tracking using the particle filter algorithm, where some different methods are applied.
Inspired by the research [20], the particle filter algorithm was developed to calculate

the estimation of the target object based on its specific texture color in the RGB feature.

Unlike other methods, the particle filter is a technique used to estimate the probable
state of a system based on noisy observations. It utilizes a collection of random
samples, called particles, to estimate the true posterior distribution of the system. The
particle filtering algorithm is a type of recursive method, i.e., it builds on information

from previous steps to estimate the current state of the system.

In the project [20], the authors improve an algorithm called the Kalmanized Particle
Filter Algorithm and perform the experiment to estimate the posterior motion of the
object. They apply this algorithm to a Nintendo pinball game and try to estimate the
target object. The authors applied the particle filter, the Kalman filter, and the
combined Kalmanized particle filter respectively to each game. As a conclusion, they
found that the combined Kalmanized particle filter is very sensitive to particle
deprivation when there are occlusions because the background in the game is noisy

and the filter algorithm has problems to focus on the target object and the particle

16



filters may lose the estimation of the target object.

In this thesis an algorithm was developed that includes a particle filter algorithm to
track an object that is a red ball. In the simulation, a constant velocity is used for
the target object, and the distance measurements refer to the intensity of the number
of pixels as a percentage measure used to check how close the ball is to the camera

image.

The subject of the thesis is that the webcam image is considered as a goal in a football
game and the proposed algorithm tries to estimate the posterior motion of the target
object as a certain colored ball in the x and y axes. To check whether the ball, which
has a constant velocity, is in the goal, the distance between the camera pixels of the
target object is measured. When the ball approaches the camera pixels, the percentage

becomes higher and the algorithm can measure whether the ball is in the goal or not.

The proposed method shown in Figure 3.1 gives the detailed pseudocode:

17



Algorithm 2 Proposed Particle Filter

Variables:
F_update + [1010;0101;0010:0001] > updated particle set
Npop_particles + 400 & number of particles
Xstd _rgh + 50 b= intensity of rgh area
Xstd_pos + 25 - intensity of space between particles
Xistd_vec + 15 = vectoral intensity
Xrghb_trgt + [255,0,0] t= color of the target object
vid + videoinput ("winvideo”,2,”"MJPG_1280X720™) = video record input
N pix_resolution + get(vid,"videoResolution™) & video pixel resolution
N frm_movie + 300 = number of video frame
X « create_particles(N pix_resolution, N pop_particles) = creation of

particles

end Variables

start (vid) t> start video record

for | to N frm_movie do
Y_k + getdata(vid, 1) = get data from video input
X «— update_particles(F_update Xstd_pos, Xstd _vec,X) r update particles
L+ calc_log_likelihood (X std_rgb, Xrgb_trgt X(1:2, :),Y_k) = search

likelihood, find best positioned particles
X ¢ resample_particles(X L) = resample particles for next search
show_particles(X. Y _k) t= show particles on the video screen
show_state_estimated(X .Y k) = show estimated object position

end for

stop(vid) > stop video record

delete(vid) t- delete video record

Figure 3.1: Algorithm proposed particle filter

The functions in the Figure 3.1 are mentioned in detail as follows:

The "create particles" step in particle filtering for object tracking involves generating
a set of particles that will be used to represent the state of the target object. The
particles are generated using an initialization method and are used as the starting point
for the particle filter algorithm. The number of particles generated depends on the
desired accuracy of the particle filter and the complexity of the target object’s state. In
general, a larger number of particles results in a more accurate representation of the
target object’s state, but it also increases the computational burden of the particle filter.
The particles can be generated in several ways, depending on the desired initialization

method. One common method is to randomly generate particles within a defined region
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that is believed to contain the target object. Another method is to use the results of an
initial detection or tracking algorithm to generate a set of particles that are centered
around the detected object’s state. Particles are created randomly by using the particle
population and pixel resolution variables in the funciton CREATE_PARTICLES. The

function of proposed method shown in Figure 3.2 gives the detailed pseudocode:

function CREATE_PARTICLES(N pix_resolution , Npop_particles)
X1 < randi(N pix_resolution(2),1,Npop_particles)
X2 « randi(N pix_resolution(1).1,Npop_particles)
X3 < zeros(2,Npop_particles)
X + [X1:X2:X3]
end function

Figure 3.2: Function create particles

The "update particles" step in particle filtering involves propagating each particle’s
state forward in time, generating a predicted measurement for each particle, calculating
the likelihood of each particle representing the actual state of the target object, and
updating the weight of each particle based on the likelihood values. These updated
particles are then used in the resampling step to ensure that the particle distribution
remains representative of the target object’s state. Particles are updated by using the
position of particles and their vectoral variables related to the set of F_update and
coded in function UPDATE_PARTICLES. The function of proposed method shown

in Figure 3.3 gives the detailed pseudocode:

function UPDATE_PARTICLES(F_update , Xstd_pos Xstd_vec,X)
N + size(X,2)
X+ F_update=X
X(1:2,:) «X(1:2,:) +Xstd_pos = randn(2,N)
X(3:4.:)«—X(3:4,:)+ Xstd_vec+randn(2,N)

end function

Figure 3.3: Function update particles
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The likelihood calculation is a crucial step in particle filtering as it provides a
mechanism to assess the probability of each particle representing the target object’s
state based on the similarity of the predicted measurement and actual measurement.
Typically, the likelihood calculation involves comparing the predicted measurement
with the actual measurement using a probabilistic model, such as a Gaussian
distribution. The resulting likelihood value for each particle is used to compute the
posterior probability of the particle representing the target object’s state, which can
then be used to resample the particles and update their weights. The function
CALC_LOG _LIKELIHOOD of proposed method shown in Figure 3.4 gives the

detailed pseudocode:

function CALC_LOG_LIKEKIHOOD(X std_reb , Xreb_tret X.Y)
Npix_h + size(Y,1)
Npix_w + size(Y,2)
N « size(X,2)
L+ zeros(1,N)
Y « permute(Y,[3 12])
A+ —log(sgrt (2 pi) « Xstd _reh)
B« —0.5/(Xstd_rgh*)
X « round(X)
for | ro N do
m+— X(1.k)
n+ X(2,k)
I+~ (m>1&m< Npix_h)
J—(n>1&m<Npix_w)

W

W

if I && J then
C < double(Y(:,m,n))
D+—C—Xrgb_trot
D2 D'+D
Lik) +—A+B+D2
else
L{k) + —Inf
end if
end for
end function

Figure 3.4: Function calculate likelihood

20



The resampling step in particle filtering is used to ensure that the particle distribution
remains representative of the target object’s state by eliminating particles with low
weights and creating new particles to represent areas of high probability. The
resampling step is performed after the likelihood calculation and weight update. The
first step in resampling is to normalize the weights of each particle such that they sum
to 1. This is done to ensure that the particles with the highest weights have a higher
chance of being selected for resampling. Once the weights are normalized, a set of
new particles can be generated using a resampling method such as systematic
resampling or stratified resampling. In systematic resampling, a random number is
generated, and particles are selected with a probability proportional to their weight. In
stratified resampling, particles are selected based on dividing the normalized weights
into equal intervals and then randomly selecting a particle from each interval.
Particles are resampled for the next search to be used as the starting point for the next
iteration of the particle filter via RESAMPLE_PARTICLES function. The function of

proposed method shown in Figure 3.5 gives the detailed pseudocode:

function RESAMPLE_PARTICLES(X ., L_log)
L+ exp(L_log —max(L_log))
Q + L/sum(L,2)
R« cumsum(Q.2)
N + size(X,2)
T + rand(1,N)
[~ 1] ¢ histe(T,R)
X —X(141)
end function

Figure 3.5: Function resample particles

The "show particles" function in particle filtering is a visualization tool that displays

the particles on a graphical interface and allows the user to observe the evolution of

the particle distribution over time and to evaluate the performance of the particle filter.

21



This function typically displays the particles as points or small markers superimposed
on the video or image of the scene. The color or shape of each particle can be used to
represent the weight of the particle, with particles having a higher weight being
displayed as larger markers or with a different color. The function can be used to
evaluate the performance of the particle filter and to diagnose problems with the
particle filter, such as a lack of diversity in the particle distribution or a poor
representation of the target object’s state. Exact X and Y position on the screen is
shown on the terminal of the Matlab program with the function SHOW _PARTICLES.

The function of proposed method shown in Figure 3.6 gives the detailed pseudocode:

function SHOW PARTICLES(X , Y k)
plot(X(2,:),X(1,:)," ="}
end function

Figure 3.6: Function show particles

The particles are resampled to ensure that the particles with higher weights are more
likely to be represented in the final set of particles. The state estimate is then computed
as the weighted average of the particles. This process is repeated at each time step to
track the object over time. State estimation is performed by representing the object’s
state as a set of particles, each with its own position, velocity, and weight. The weights
are updated at each time step based on the observations and control inputs, and the

particles with higher weights are more likely to represent the true state of the object.

The function SHOW_STATE_ESTIMATED computes the weighted average of
particles and estimated X and Y position and target color pixel density of the target
object is shown on the terminal section. There is a threshold to control the goal line

which is set by the value 350. Message "GOAAAAAAAL !" is shown on the terminal
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section by measuring the distance between webcam and target object in pixel
percentage unit by controlling the threshold value. The function of proposed method

shown in Figure 3.7 gives the detailed pseudocode:

function SHOW_STATE_ESTIMATED(X , Y_k)
plot(X_mean(2.:),X_mean(l,:),"h","MarkerSize”,16."MarkerEdgeColor”,
"y, "MarkerFaceColor”,”y")
estimated_position « ("X : +X_mean(2,:) +"Y : "+ X_mean(1,:))
print{estimated_position}

percentRed « 100 % (sum(sum(X )/ (size(Y_k, 1) # size(¥Y _k,2)))
total _pixel < sum(sum(X )

print{total_pixel}

print{ percentRed }

if percentRed < 350 then
print{GOAAAAAAAL!}
end if
end function

Figure 3.7: Function show state estimated

In this thesis a webcam camera connected to the computer through a USB port is used
to capture video for real-time recording. The connection between the camera and the
computer is made using Matlab to obtain a real-time recording. The recordings are

analyzed in an algorithm coded in Matlab.
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A line is considered in front of the camera in the lower area, indicating the position
of the goal line. The ball is observed when it is thrown from the side in front of the
webcam. The target ball is held by hand with a small thread at the top. On the other
side, the ball is held at the starting point. After running the program, recording starts

after a short time.

Figure 3.9: Target object and webcam position

On the first screen, blue colored particles are displayed at random positions in the pixel
area of the camera. When the ball is identified at the starting point, the particles move
towards the red colored ball and stick to it to follow the target object. On the other
side, a yellow star is displayed on the screen. This star indicates the estimation of the

posterior movements of the ball.
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Figure 3.10: Identification of target object to the particles

In the beginning the ball is released from the starting point to move it to any point on
the camera view. When the ball moves to the goal line, the estimation star moves with
the ball to indicate the posterior position of the target object. The final result of the
estimation is displayed in the terminal area of Matlab as x and y position. Then the
next position of the object is defined at each moment of the object with respect to the
pixel change. So the next position of the target object is now estimated.
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Figure 3.11: Released target object and its posterior positions on the terminal

Another feature is that the message "Goal !" is displayed on the terminal when the ball
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crosses the threshold.
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Details M

The distance is determined based on the pixels of the target object in a percentage unit
that depends on how close the ball is to the camera. The message is displayed on the
terminal if the number of pixels of the ball on the camera image is large enough in the

percentage unit.
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Figure 3.13: Values of X and Y location of particles, pixel density and rgb color
percentage values of the target object shown on the terminal section
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Chapter 4

CONCLUSION

This thesis clarifies the development of a real-time object tracking model using a
particle filtering algorithm is explained to provide an efficient estimation mechanism
in real-time video images. Also, the position of the target object is determined using
the red ball in the form of x axis and y axis. The next position of the target object is
calculated using the estimation function shown as a yellow star symbol and output in
the terminal area of Matlab. The estimated position can be used in widely used
hardware systems for object tracking projects. The distance feature was measured in
percentage, relative to the pixel density of the target object using a USB webcam. The
proposed particle filter model was developed using Matlab and implemented using a
USB webcam and a specific colored small ball. No additional system was required to

implement the object tracking model itself.

In the experiment of the proposed particle filtering algorithm, the velocity of the
target object was set to a constant velocity. First, the target object is identified in front
of the camera and observed that the blue colored particles start searching for the
specific colored object in the RGB code and move toward the object. The object is
manually released at a constant velocity throught webcam at a constant speed to see
the estimated position in the two-dimensional x and y coordination with respect to the
pixels of the USB webcam image. The estimated x and y axis information is displayed
on the terminal in real time. Also, the distance between the located USB webcam and

the target object is displayed on the terminal as a percentage of the number of pixels
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of the target object. A threshold is set to determine whether or not the target object
crosses the goal line. If the pixel percentage of the ball exceeds the threshold, the

terminal displays the message "GOAL!".

In summary, the future movements of the target object in the current time interval are
estimated because the target object is moving. The distance variable is controlled by
the percentage of the number of pixels of the target object with respect to the distance
to the camera image. In the future work, the algorithm will be developed to convert this
simulated system into a hardware system that requires additional devices controlled by
the proposed particle filter algorithm as a robot model for the purpose of object tracking

and device control.
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