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ABSTRACT 

Stability represents significant criteria in power system operation. Stability analysis of 

power systems has been done by using an efficient numerical technique that is the 

recursive projection method (RPM). RPM analyzes the outputs of the time domain 

simulation code (TDSC) that is used to simulate the dynamics of a power system, to 

define a slow/unstable operating mode as a subspace of system’s full space and applying 

Newton method to improve the convergence of system solution, while fixed-point 

iteration method is used in the supplement subspace of stable modes. The analysis is 

performed by detecting those eigenvalues of the state matrix with magnitudes greater 

than unity, and creating the corresponding orthonormal basis that participates in 

extending the solution's convergence. This leads to getting a more accurate and stable 

solution in power systems. When a perturbation occurs to the power system, applying 

RPM allows the numerical solution to reach its steady-state mode in a short time and 

without continuous oscillation. Verification of RPM’s achievements has been performed 

on an example of 6-bus power system. The environment of this work is the Matlab 

program supported by the power system toolbox (PST). 

Keywords: Power system analysis, recursive projection method, numerical integration        

                    methods. 
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ÖZ 

 

Kararlılık güç sistemlerinin çalışması açısından önemli bir kriterdir. Bu çalışmada güç 

sistemlerinin kararlılık çözümlemesi, özyineli izdüşüm yöntemi (RPM) denen etkili bir sayısal 

yöntem kullanılarak yapılmıştır. RPM ilk önce güç sisteminin dinamiğinin benzetimi için 

kullanılan zaman erim benzetim yazılımının çıktılarını analiz eder ve yavaş veya kararsız 

çalışma kiplerini, sistem uzayının  değişimsiz bir altuzayı olarak tanımlar. Bu değişimsiz altuzay 

üzerinde Newton yöntemi uygulanıp çözümün yakınsaması iyileştirilir. Kararlı kiplere ait 

tümleyen uzay üzerinde ise sabit-nokta dürümü uygulanmaya devam eder. Analiz, durum 

matrisinin özdeğerlerinin bulunmsı ve bunlardan genliği birden büyük olanlara karşılık gelen ve 

çözümün yakınsamasını sağlayacak olan tam dikgen temel oluşturarak yapılır. Bu yolla güç 

sistemlerinin analizinde kararlı ve doğruluğu yüksek olan bir çözüm elde edilir. Güç sisteminde 

bir hata oluştuğunda, RPM sayısal çözümün durağan duruma kısa zamanda ve salınımsız olarak 

erişmesini sağlar. RPM’in başarımı 6 baralı bir sistem üzerinde denenerek 

doğrulanmıştır.Çalışmalar Matlab ortamında, daha önce geliştirilmiş olan Güç Sistemleri Paketi 

kullanılarak yapılmıştır.   

 

Anahtar kelimeler: Güç sistemleri kararlılığı, Özyineli İzdüşüm Yöntemi, Sayısal Çözüm  

                                Yöntemleri. 
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Chapter 1 

INTRODUCTION 

In recent times, increasing transmission capability and the incessant extending of scale in 

interconnected power systems take power systems to extreme operating conditions. Some 

small perturbations occuring to the system may lead to fluctuations in voltage, frequency 

and loads. Therefore, stability criteria are one of the major factors which cause restriction 

in the capability of power transmission in the electrical power system [1]. 

Power system stability indicates the ability of a power system, for a certain initial 

operating condition to retrieve an equilibrium status after exposure to a disturbance. 

Hence, the stability criterion tries to preserve the integrity of a power system which 

means that the power system entirely stays intact without any tripping of loads or 

generators, excluding disconnecting of the faulting components or purposely tripped to 

maintain normal operation of the remaining system components. Stability is a procedure 

of equilibrium between opposing parameters; instability is produced when a disturbance 

occurs and causes sustained imbalance of opposing parameters [2]. 

Power system is a highly complex nonlinear dynamic system, and for modeling and 

analysis, it should be represented by a set of differential and algebraic equations DAEs. 

The precise stability analysis of a system entails itemized simulations utilizing DAEs 

which entirely model the system.  
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Historically, the stability problem has been attempted from 1920. At that time there were 

no computers and the computations were mainly done using hand calculations. In 1950, 

analogue computers were developed and used for simulating the power system stability 

problem. After six years a computer program for power system stability was developed 

mainly to analyze the tangent stability of a system. Over the years, another development 

took place to implement high response excitation systems, which resulted in increased 

capability of improving tangent stability of the system. But this application also resulted 

in a problem of weak damping of the system oscillation, and this problem has been 

overcome by implementing power system stabilizers [3]. 

During the years, power system stability has become a challenge for power engineers 

because of the large interconnected systems, and they were faced with various problems. 

One of these problems is modeling the system to get the correct assessment of power 

system stability, which needs correct development of a mathematical model to obtain 

approximate solution through numerical techniques; the mathematical model of a system 

is a set of nonlinear differential and algebraic equations DAEs. Also there is no 

availability to an accurate solution for DAEs [4].                                                                 

Another problem is preserving synchronous operation of a system. The stability issue 

arises as a result of the dynamic response of the synchronous generators after a 

perturbation occurs, as power systems depend on these machines for electric power 

generation. So, an important condition which should be satisfied during operation of the 

system is that all the machines stay in synchronism. This side of stability is affected by 

the rotor angle dynamics and power-angle relation [2], [3].                                                                              
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The developments that occur in modern power systems lead to an increasing tendency to 

focus on effects of instability, which give the necessity of evolving new techniques to 

improve transient stability since it plays a significant role in preserving safety of power 

system operation. Power system transient phenomena play an important role in 

designing, developing and operating power systems. Investigating this phenomena gives 

important information on the machines in showing the ability to maintain their 

synchronism throughout wide unexpected perturbation such as various faults, losing 

main part of the load and power generation units [3], [5].                                                                                                       

Plenty of studies have been devoted over the years to handle the problem of dynamic 

stability in power systems. Dynamic simulation should be used to analyze and solve the 

stability problem of the power system efficiently. In other words, stability simulation 

criteria depend on dynamic model derived [5], [6]. Transient stability simulation problem 

is sorted as step by step solution of differential-algebraic initial value problems. This 

solution allows reducing the interface error to a more acceptable level [7].                                                                                                     

In the present time, power systems are being adjacent to their stability limits because of 

the environmental and economic restrictions. Maintaining a stable operation of a power 

system is consequently a very important issue and much concentration on the study of 

stability problems has been carried out [8]. Analysis methods that take dynamics of the 

components in the power system into account like small signal analysis, can efficiently 

enhance dynamic performance and augment power transmission of the system [4]. 
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Small signal stability (or small-disturbance stability) is the ability of restoring the 

operation mode to its original mode or a new mode and maintain synchronism after a 

small disturbance. The problem is usually one of the insufficient damping of the system 

oscillations, which is caused by the lack of sufficient damping torque. Oscillations will 

appear between two or more generators, as soon as AC generators were operated in 

parallel [2], [9]. Small signal stability problems could be either local or global mode in 

nature. The first mode is related to the oscillations of generating units at a specific station 

in regard to the remainder of system. The second mode is related to the oscillations of 

many machines in one portion of the system versus machines in the other portions; these 

oscillations are named 'inter-area mode oscillation' as well. To analyze and design power 

systems, small signal stability is the most significant prerequisite, which consists of 

oscillation mode and mode form, correlativity analysis, stability area estimation and its 

sensitivity. Small signal stability has many approaches of analysis methods like eigen-

structure analysis which is based on theoretical solution and time domain simulation 

based on numerical solution [10], [11]. 

There are various theoretical and numerical techniques used in power system stability 

studies. One of the theoretical techniques is based on Lyapunov’s stability theorem, 

which gives a basis for optimal dynamic stability design of power systems. It is applied 

to analyze and improve the stability of mathematical solutions of a dynamical system. 

One of the studies that have been carried out in [12] is applied by using Lyapunov’s 

direct method to get suitable and feasible investigation of the stability of systems with 

deviating argument of delay type. The ways of constructing Lyapunov functions for 

linear systems with fixed coefficients are already well-established. Although this 
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technique gives satisfactory results, it is not efficient for large power systems and it will 

be complicated and difficult to handle for stability problems. Numerical methods are 

widely used since they can handle different types of dynamic models and sequences of 

events for complex power systems. In other words, they are applicable to analyze several 

forms of complex nonlinear phenomena [12], [13]. 

An interesting case is tracking the system trajectory and determining the tasks needed to 

recover and restore the system when imbalance is observed in load-generation. This 

needs to integrate the DAEs. For this reason, some techniques are developed and carried 

out step by step, integrating the DAEs of the system from the initial value to get dynamic 

response to perturbations. The importance of a dynamical simulation tool in power 

system transient analysis leads to the use of various kinds of numerical integration 

techniques like trapezoidal and Euler methods [6], [14]. 

The Trapezoidal method of variable step size integration is very efficient, and widely 

used. It is one of the good approaches in numerical integration techniques that is used to 

insert synthetic elements in the system which could impact the correct solution to a 

certain degree. Trapezoidal method is used in [14] to give an efficient solution for a 

boundary value problem by immediate calculation of a trajectory on the stability 

boundary that is designated as a critical trajectory. Therefore, in this study, the method 

depends basically on the calculation of the trajectory for assessment of stability [3], [6], 

[14]. 
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The Euler method is used in [15] to support C/C++ software to solve the mathematical 

representation of power system dynamic equipment which includes synchronous 

generators, turbine-governors and exciters. This software is the Dynamic Computation 

for Power Systems (DCPS) software package, and it is applied to show the basic 

modeling and calculation ways that deal with power system dynamics and carry out 

power system transient stability analysis. WECC 9-bus system was used to check the 

impact of changing load demand on the critical clearing time Tcc. The outcome showed 

that an increase in the load demand leads to linearly decreasing Tcc. The transient 

stability is performed to check the response of the equipment for the three-phase fault 

case. During this case, critical fault clearing time Tfc is solved, and the system becomes 

unstable if Tfc becomes greater than Tcc [15]. 

Although this approach gives noticeable improvement in the stability solution, it suffers 

from some disadvantages that reduce its applicability, such as the lower accuracy and the 

synthetic numerical oscillations that are frequently encountered in switching events, and 

thus in discontinuities. Furthermore, this method by itself will fail at large step size 

integration and it will go to divergence. Another problem is the large number of DAEs in 

the mathematical model of a large power system. Therefore, the solution through those 

methods needs to be supported and developed by another technique [16]. 

Recursive projection method (RPM) is stabilization of an unstable numerical procedure; 

it is performed by calculating a projection onto the unstable subspace. RPM is applied to 

recognize and solve the unstable/slow invariant subspace by obtaining outcome 

information from a time domain simulation code TDSC [17]. Newton or special Newton 
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iteration is carried out to improve convergence of the unstable/slowly-converging mode; 

in contrast, fixed-point iteration method of the TDSC is utilized and kept to evolve as the 

stable/fast-decaying mode of a system. During the numerical process, the projection is 

updated effectively, and resizing the dimension of the unstable subspace can be done; 

decrease or increase in the dimension can occur.  It is notable that this method is quite 

efficient in the case of a small size of the unstable subspace compared to the size of full 

state system. Furthermore, RPM is effectively applicable to accelerate iterative actions in 

case of slow convergence caused by some tardily decaying modes [18]. 

RPM, which is originally proposed in [18], started to be applied recently in power system 

stability problems; it is receiving more attention because of its ability to enhance 

convergence and produce eigenvalues as a byproduct from TDSC. Besides that, it 

efficiently works by preserving numerical and modeling facilities of TDSCs, and saves in 

cost by cancelling additional programming costs [17]. 

To summarize, a major problem in the numerical stability analysis of power systems is 

the inadequacy of the existing time domain numerical simulation methods in predicting 

the dynamics of the system after a disturbance. The aim of this thesis is to apply the 

RPM procedure to stabilize the numerical simulation of the dynamics of system when a 

fault occurs, thus enabling an accurate prediction of system behavior in transients.   

This thesis is organized as follows. In Chapter 1 the stability problems in power systems 

is surveyed and discussed. Chapter 2 deals with the mathematical formulation of the 

stability problem for single-and multi-machines systems, while Chapter 3 introduces the 

RPM method and its application to the numerical simulation of power system transients. 
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In Chapter 4, simulation results for a number of test cases are presented and discussed. 

Finally, in Chapter 5 some conclusions are drawn and suggestions for future work are 

made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 

 

Chapter 2 

STABILITY ANALYSIS OF POWER SYSTEM 

2.1 Synchronous Machines 

The main part in an electrical power system that deals with stability analysis is generator 

and its rotor part, since it plays a major role in system synchronism. Therefore, 

performing dynamic model and developing mathematical equations should be achieved 

to describe the dynamics of the rotor and its angle position.  

The important thing is when the power system operates in the steady state mode it is 

subject to a perturbation. This leads to alteration in the voltage angles of the synchronous 

generators. This will produce an unbalance between the generation and load of the 

system and will create a new operating mode with different voltage angles.  

The stability analysis determines the effect of disturbances on the behavior of 

synchronous machines in power systems. The perturbation may be small like changing in 

load demand; or large such as loss of generator, line, or a series of such disturbances. The 

modification that occurs from the initial (steady state) operating mode to the new 

operating mode is called the transient duration, and the behavior of the system during this 

time is called dynamic system performance. The main point in stability criteria is 

whether synchronous generators preserve their synchronism at the termination point of 
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transient duration. If the oscillatory response of a power system over the transient 

duration is damped and the settling of the system occurs successfully to the new steady 

operating mode in a limited time, the system will be stable, and if not the system will be 

unstable [19]. 

The system contains inherent forces that tend to reduce oscillations when the system has 

ingrained forces, and these forces try to reduce the oscillations, this case known as 

asymptotic stability. This type of stability is targeted in the future of power system. The 

continuous oscillation is excluded from asymptotic stability, although this type of steady 

state oscillation may be considered stable in mathematical analysis. The concern is on the 

practical side, because this continuous oscillation may be undesirable to both of the 

feeding system and the costumer in electrical power system. The asymptotic stability also 

shows the workable characteristic for an agreeable operating state [3], [19].  

The stability problem focuses on the behavior of synchronous machines after being 

subjected to a disturbance. Therefore, it is important to study the stability analysis of 

these machines by performing dynamic modeling and developing mathematical 

equations [20]. 

2.2 Swing Equation 

A swing equation is significant in power system analysis for studying transient dynamic 

criteria and power oscillations in power systems. At steady-state operating mode, the 

relative location of the rotor axis and magnetic field axis is preserved, and the angle 

between those two axes is called power (or torque) angle. Over the perturbation period, 

the machine rotor will accelerate or decelerate according to the axis of rotation and (or 
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rotating air gap) synchronously and the starting point of rotor motion proportionally. This 

motion can be represented by a mathematical equation which is called the swing equation 

[2], [19]. After this period, if the machine rotor tends to its synchronous speed, the 

generator will preserve its stability. If the perturbation does not produce any change in 

power, the rotor will go to its original location. If the perturbation produces a change in 

generation or load, the rotor will move to a new operating angle according to the 

proportional synchronously regenerating field. 

In transient stability analysis, every generator will be represented by two state equations. 

After fault clearing, which could include separating fault line, the bus admittance matrix 

of the system will be recalculated to reflect the alteration in the system, as well as 

recalculating electrical power of ith generator [21]. The new bus admittance matrix could 

be reduced because of separating the faulted line. At post-fault case, performing the 

simulation will continue to define the stability of the system, and the output plotting will 

shows the direction of the system behavior to stable or unstable mode. Generally, the 

output solution will be for two swings to approve that there is existence or not of 

difference between two swings.  If the angle between these two swings is fixed, the 

system is stable, if not the system is unstable [22].  

At steady state operating mode, all the machines of the system rotate at a similar angular 

velocity, but when a perturbation occurs, one or some of the machines may accelerate or 

decelerate its angular velocity, this representing a risk on the power system that may 

cause loss of synchronism. This problem has affects system stability, and those machines 
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that lose synchronism should be separated from the system. Otherwise, large damage 

may occur [23]. 

2.3 Swing Equation of Single Machine 

Consider a system consists of a three phase synchronous generator with its prime mover, 

and this generator connected to an infinite bus. Machine model is shown in Figure (2.1) 

are the base of swing equation derivation and shows the electro-mechanical oscillations 

in power system [19], [24], [25]. 

 

Figure 2.1:  Power and torque components in synchronous machines 

The symbol m  refers to mechanical components and the symbol e  refers to electrical 

components. In synchronous machines, mechanical torque mT  and electromagnetic 

torque eT  are produced, the first one from the prime mover and the second one from the 

machine itself. At steady state operation, mT  and eT  are equal and there is no producing 

of acceleration or deceleration torque. That is 0m eT T   

At perturbation case, mT  will be greater than eT  and acceleration torque Ta will appear, 

which includes inertia produced from the inertia of the prime mover and the machine as 

shown below in Figure (2.1). This torque will cause accelerating of the machine. 
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The mathematical representation of rotor dynamics is described by using Newton’s 

second law in the following differential equation [20], [24] 

2

2

m
m e a

d
J T T T

dt


                                                         (2.1) 

where  

J   : Moment of inertia of the machine (kg.m
2
)

 

m  : Rotor angular site according to a constant axis (rad) 

mT  : Mechanical torque (N.m) 

eT  : Electrical torque (N.m) 

aT  : Net acceleration torque (N.m) 

Multiplying both sides by angular velocity m   

2

2

m
m m e

d
J P P

dt


                                                     (2.2) 

m m mP T   and e e eP T  are the effective mechanical and electrical powers on the rotor 

m : Rotor angular speed (rad/s) 

The formula (2.2) represents the angular acceleration expressed by mechanical angle, 

using electrical angle (2.2) becomes, 

2

2

2 e
m m e

d
J P P

p dt


                                                    (2.3) 

By rearranging the left hand side the resultant equation will be  

2
2

2

2 1
2 ( )

2

e
m m e

m

d
J P P

p dt





                                           (2.4) 



14 

 

The relationship between mechanical and electrical angular velocity ,m e  respectively 

of the rotor is        

             

2

e
m p


                                                          (2.5) 

Dividing equation (2.4) by the rating of the machine ( S ), and using equation (2.5) give 

                                         

2
2

2

1
( )

2 2
m

e m e

e

J
d P P

S dt S







                                        (2.6) 

The electrical quantities are computed by per unit base, as well as moment of inertia J , 

and inertia constant H of the synchronous machine, given by 

                   
2

00.5 mJ
H

S


                                                     (2.7)  

The practical side of power systems shows that through perturbation, there is no considerable 

swerve of angular velocity from the nominal quantities 0 0,m e  . After substituting equation 

(2.7) in equation (2.6) the resulting form of the equation will be 

                                  

2

2

0

2 pu pue
m e

e

dH
P P

dt




                                               (2.8) 

The symbol pu  refers to the mechanical and electrical power values are in . .pu  of the 

rating of machine. It is acceptable to choose the powers quantities in . .pu  at the same 

base of synchronous machine. Therefore, the final equation could be written as: 

                                        

2

2

0

2
m e

H d
P P

dt




                                                       (2.9)  
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2.4 Power - Angle Relation 

Assume a simple model of one synchronous generator connected to an infinite bus as 

shown in Figure (2.2). To simplify this model, classical model can be taken by 

substituting the generator with a fixed voltage behind a transient reactance. In such a 

system, there is a maximum power which could be transferred from the generator to the 

infinite bus. The relation between the generated electrical power and the rotor angle of 

the machine is shown by the following equation [20], [24], [25].  

                                                        1 2
maxsin sine

T

E E
P P

X
  

                                        

(2.10)

 

where                                                                                                                                                                                                                      

c                                                               1 2
max

T

E E
P

X


                                                          

(2.11) 

2.5 Equal-Area Criterion 

Equal-area criterion is one of the graphical techniques developed to analyze system 

stability; the graph shown in Figure (2.3) explains the stored energy in the rotating body 

that confirms whether the machine can preserve stability after perturbation. This 

technique could be utilized after sharp disturbance occurred to the machine to predict the 

stability at a short time (speedily). It is useful for a system consisting one machine 

connected to an infinite bus or a two-machine system, but unacceptable for large 

systems. For a simple system consisting of one synchronous machine connected to an 

infinite bus, it can be presented by a classical model as shown in Figure (2.2) 
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Figure 2.2: Single machine infinite bus system 

 

From (2.9), the following formula can be obtained 

 0

2

0
a

d
P d

dt H





 


 
 

 


                                               

    (2.12) 

while 
d

dt


 is the relative speed according to the rotating base frame, its initial value is 

zero. After a perturbation, the machine accelerates and the value of Pa will be positive. 

With regard to stability, Pa should reverse its sign after 
d

dt


  reaches to zero. Therefore, 

Pa is a function of θ and has a various Pa( ) 0. 

                                     

0

0aP d





                                                            (2.13) 

and the limit of Pa 

                          max( ) 0aP       and    

max

0

0aP d





                                                (2.14) 

If the plot of Pa is a function of θ, the formula (2.14) can presents the area under the 

curve that limited by θ0 and θmax. The total area under the curve should be zero (the 

positive part equal the negative part); based on this it is called as the equal area criterion 

[20]. Using (2.11) and fixing Pm  

                                          1 2 sine

E E
P

X
                                                         (2.15) 
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while X relies on the status of the system which may be pre-fault, fault or post-fault. The 

behavior of the system and the power angle corresponding to those three cases are shown 

in Figure (2.3). By using (2.14), it is clear seen that the stability is achieved with fault 

clearing angle up to θc, when the two areas A1 and A2 are equal. The system will be 

unstable if the fault clearing angle exceeds θc. The maximum value of fault clearing time 

that preserves the stability of the system is called critical fault clearing time
fcT , and the 

corresponding maximum rotor angle is θm. The equal area criterion also has the ability to 

calculate the maximum power that can be transferred through the system for a specific 

fault script, and to check the system if it is stable or unstable according to the given data 

and perturbation [20], [23], [24]. 

 

Figure 2.3: Equal area criterion of one machine with infinite bus system 
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2.6 Multi-Machine Power System 

Considering a multi-machine system, the equation of the output power of its machine can 

be obtained by reducing this system and keeping only the internal machine buses  

           
1

( cos sin )
N

ei i k ik ik ik ik

k

P E E G B 


         1,2,....i N                        (2.16) 

and the swing equations for synchronous machines are 

          

2

2

0

2 i i
mi ei

H d
P P

dt




                    1,2,....i N                               (2.17) 

By using the trapezoidal method in (2.17)  

                                     

2
10

8

n n n

i ei i

i

h
P a

H


                                                (2.18) 

Where 

   

2
1 1 1 10

0( ) (2 )
8

n n n n

i i i mi ei

i

h
a h P P

H


                1,2,....i N              (2.19) 

From (2.16) and (2.19) it is acceptable to solve n

i by applying Newton method, and the 

following linear equation is solved for   to update . 

                                     a J                                                            (2.20) 

where J is the Jacobian matrix 

Power system is a type of big complex systems including generating plants, transmission 

grids and distribution substations. To deal with such a system, efficient representation 

should be adopted to study the behavior of the system and stability should be analyzed as 

well. This can be achieved through mathematical representation by a set of differential 

and algebraic equations [20], [24], [25].  
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2.7 Differential Algebraic Equations  

In studying the dynamics of a multi-machine power system, different types of stability 

problems can be modeled by a set of first-order parameterized differential equations in 

the form of 

                 ( , , )x f x y p


  , : n m p nf   R R                                  (2.21) 

and algebraic equations in the form of 

                 0 ( , , )g x y p , : n m p mg   R R                                   (2.22) 

                         
nx X  R      ,     my Y  R      ,     pp P  R     

The dynamic state variables x  and instantaneous state variables y  are distinct in the 

state space X Y . The dynamic state variables are time dependent such as generator 

voltage and rotor phase, and the instantaneous states variables as bus voltages. The space 

P consists of system parameters (as equipment constants e.g. inductance) and operating 

parameters (such as generating units and loads). This type of DAEs is used vastly in 

numerical solutions and stability estimation in power systems, because it gives realistic 

solution for the system's parameters, and it is the easiest utility for sparse matrix 

approach as well. Since, it is not general possible to get analytical solution for this 

differential algebraic equations (DAEs), approximate numerical techniques are used. The 

numerical integration techniques use a stepwise procedure to get a set of solutions for 

dependent variables according to a set of solutions for the independent variables. 

Integration methods are based on two styles which are explicit or implicit and single-step 

or multi-step. Applying integration formula to the solved differential equations separately 

is called explicit method, while discretizing those differential equations and solving them 

together at the same time as a set is called implicit method. Although the implicit method 
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is too complex it is very useful in numerical stability. Single-step method do not save 

previous step values and utilize it in the present step integration, contrary to multi-steps 

method which requires storing and using the  information of the previous  step to solve 

the present step integration [26], [27]. 

In power systems, time domain simulation code (TDSC) is a significant technique for 

dynamic analysis. It is used to study the transient behavior by applying numerical 

solution to DAEs of such a system. Power system grids consist of many generators, 

governors, transformers and various loads. To represent such a grid, each component of 

those devices requires differential and algebraic equations; consequently, the total 

number of differential and algebraic equations of a power system might be enormously 

large. The procedure of time domain simulation of power systems depends on step by 

step numerical integration of DAEs. For each corresponding step, there is a numerical 

error which can be calculated by local truncation error. To make the solution more 

accurate, either small step size integration or high order approximation should be used 

[16]. 

The numerical integration techniques have two classes; explicit and implicit methods. 

The explicit method depends on fixed-point iteration with active computation, but it has 

numerical stability problems in some cases. The implicit method based on solving 

nonlinear equations at each step is more accurately and stable but it is slow. The implicit 

method is commonly utilized in power system dynamic simulation, and wide range of 

work has been varied out to improve computational efficiency [27]. 
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The complexity of the mathematical model will increase for larger scale power systems. 

It leads to decreased accuracy of the solution and numerical stability as well. 

Consequently, efficient methods should be used to treat these problems and solve DAEs 

for various types and scales of power systems such as Modified Euler method, 

Trapezoidal method and Runga-Kutta method. 

2.8 Modified Euler’s method 

The main part of transient stability study is load flow calculation to get system conditions 

before a fault occurs. In power systems, it is important to solve first order differential 

equations (two for every machine) to get the alterations of both voltage angle and 

machine speed. For m machines, there are 2m simultaneous differential equations as 

shown in the following equations [28]. 

                                                     ( ) 2i t

d
f

dt


                                                      (2.23) 

                                
( )( )( )i

mi ei t

i

d f
P P

dt H

 
                                                (2.24) 

where, 1,2,........,i m  

By assuming the action of the governor is negligible, miP  stay constant with
(0)mi miP P . 

In applications of Modified Euler’s method, the initial appreciations of the voltage angle 

and machine speed is obtained at time ( )t t from the following formula 

                                                  
'(0)

( ) ( )

( )

i
i t t i i

t

d
t

dt


                                                   (2.25) 

                           
'(0)

( ) ( )

( )

i
i t t i i

t

d
t

dt


                                                  (2.26) 



22 

 

Evaluating the derivatives from (2.23) and (2.24) with calculating 
( )ei tP allow calculating 

powers at time t. While 
(0)eiP is calculated at the moment just after occurrence the 

disturbance. 

To obtain the second values, the derivatives at time ( )t t should be evaluated. This step 

demand determines the initial values for the machine powers at time ( )t t . Getting 

these values of power are obtained by calculating the new components of the internal 

voltage according to the following formula 

                                                    
'(0) ' (0)

( ) ( )cosi t t i i t te E                                                    (2.27) 

                          
'(0) ' (0)

( ) ( )sini t t i i t tf E                                                     (2.28) 

To get the solution of the network, the voltage at the internal machine buses should be 

fixed. By fixing the voltage at the internal machines buses, the solution of the network 

can be determined. At fault cases like a three phase fault on the bus ,n  the voltage nE  is 

fixed to be zero. The terminal currents of the machine are calculated by calculating both 

of bus and internal voltage as shown in the form 

                            (0) '(0) (0)

( ) ( ) ( )

1
( ).

'
ti t t ti t t ti t t

ei di

I E E
r jx

   


                                         (2.29) 

for the machine powers 

                           
(0) (0) '(0) *

( ) ( ) ( )Re ( )ei t t ti t t ti t tP I E                                               (2.30) 

 

 

 

The second values of both voltage angle and machine speed are calculated by 
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( ) ( )(1) (1)

( ) ( )
2

t t t

i t t i t

d d

dt dt
t

 

  



 
 

   
 
 
 

                                     (2.31) 

                       
( ) ( )(1) (1)

( ) ( )
2

t t t

i t t i t

d d

dt dt
t

 

  



 
 

   
 
 
 

                                   (2.32) 

                          
(0)

( )

( )

2i
i t t

t t

d
f

dt


 



                                           (2.33) 

                         
(0)

( )

( )

( )i
mi ei t t

t t i

d f
P P

dt H

 




                                    (2.34) 

The final values of the voltage for the machine buses at time ( )t t are 

                                               '(1) ' (1)

( ) ( )cosi t t i i t te E                                                      (2.35) 

                          '(1) ' (1)

( ) ( )sini t t i i t tf E                                                        (2.36) 

Then the solution of DAEs of the network is performed again to get final system voltages 

at time ( )t t . The procedure is repeated till it reaches to the ultimate value maxT defined 

in the study of such a network. 

Modified Euler’s method plays a big role in the calculations of transient stability of 

power systems. It can show the behavior of the machines and the performance of the 

system. The solution is evaluated by a series of estimates for internal machine bus 

voltage and machine speed at the next time step, and repeating this operation allows 

evaluating line currents and swinging impedances for preselected lines [28]. 

Chapter 3 
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RECURSIVE PROJECTION METHOD RPM 

3.1 Definition of RPM 

Recursive projection method (RPM) is one of the main new techniques to enhance the 

stability criteria in power systems. This method is used to stabilize the iterative 

procedures of solving nonlinear systems.  At each step of iterative procedure, RPM takes 

the output information from time domain simulation code (TDSC) to define the 

slow/unstable invariant subspace of the full state-space of the system. The full state-

space consists of two invariant subspaces; fast/stable subspace and slow/unstable 

subspace. Fixed-point iteration is applied to solve the first one, while Newton method is 

applied to improve the convergence of the second one [17], [29].  

Since power system is a complex nonlinear dynamic system and can be modeled by a set 

of nonlinear differential and algebraic equations DAEs, RPM is investigated in 

predicting power system steady state. By taking ordinary differential equation (ODE) of 

the system 

                                    ( , )x F x u


                                                           (3.1) 

where  Nx R  symbolizes to state variables, and  Su R  symbolizes control parameters. 

The derivation of Fixed-point iteration method can be done by defining the initial states 

(0)x  and control parametersu , that is     

                                     ( 1) ( )( , )v vx x u                                                        (3.2) 
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The behavior of solving the iteration (3.2) depends on the dominant eigenvalues of the 

Jacobian matrix x  at steady state ( )x u , and those eigenvalues control the convergence 

of this iteration by their magnitude (largest magnitude), i.e. whether they lie outside or 

inside of the unit disk. 

                                { 1 }U z      ,  < 0                                               (3.3) 

This can be shown by perturbing the solution around its steady state as 

                                            ( ) ( )v vx x                                                            (3.4) 

 

substituting (3.4) in (3.2) and using the first two terms of the Taylor series expansion      

                            

       ( ) ( 1) ( ) ( ) ( ), , , ,v v v v v

x xx x x u x u x u x x u                   
  
       (3.5) 

from which we obtain 

                                                              ( 1) ( ),v v

x x u                                                         (3.6) 

The scheme is convergent and close to steady state operation mode if all the eigenvalues 

have a magnitude less than one (located inside the unit disk), and it diverges if any of 

those eigenvalues have magnitudes greater than one (located outside the unit disk). In 

addition, the scheme is slowly convergent if any of those eigenvalues has a magnitude 

close to the boundary. The first case represents a stable scheme and the system operates 

in the steady state mode, but the second and third cases represent unstable and critical 

scheme and new technique should be applied to solve such problems. RPM is able to 

handle these cases; it can retrieve the convergence of the second case and improve 

convergence of the third case [17].   

3.2 Basic Procedure of RPM 
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The slow convergent or the divergent schemes is the result of from some eigenvalues 

approaching (or leaving) the unit disk. The main idea is finding an eigenspace 

corresponding to the unstable scheme, which is achieved effectively by recursive 

projection method, utilizing iterates from fixed-point iteration [17], [18], [29]. 

Consider a system has N eigenvalues, and some of those eigenvalues are located outside 

the unit disk: 

     
1 .... k   11 ....k N                                          (3.7) 

where k  is the number of eigenvalues which lie outside the unit disk. 

The Jacobian matrix x  of the system, which has range space
NR , can be written as the 

direct sum of two subspaces; P which is unstable/slow invariant subspace of x and has 

eigenvalues
1{ }k

u , and Q  which is the orthogonal complement of P  

                                             N N NR P Q PR QR                                                (3.8) 

Since the stabilization procedure needs to find the projectors P and ,Q it is important to 

find an orthonormal basis for the subspace P . This basis is represented by N k

pZ R  , and 

satisfies T k k

p p kZ Z I R   . The orthogonal projector of 
NR onto subspace P is T

p pZ Z , and

T T

q q p pZ Z I Z Z  is the complement orthogonal projector of 
NR onto subspace Q . The 

state variables of the system Nx R  can be written as  

           T

p pp Z Z x P     ,     ( )T

p pq I Z Z x Q                                       (3.9) 

by applying the projectors to (3.2), the fixed-point iterations for p  and q  can be rewritten 

as 

                        ( 1) ( ) ( )( , , )v v v T

p pp f p q u Z Z  
( ) ( )( , )v vp q u                                   (3.10) 
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          ( 1) ( ) ( )( , , ) ( )v v v T

p pq g p q u I Z Z   
( ) ( )( , )v vp q u                              (3.11) 

According to Lemma 1, the procedure will work with the steady state eigenvalues located 

all inside the unit disk U 
 and the Jacobian matrix 

qg is  

                          ( )T

q p pg I Z Z   ( , )x x u 
( )T

p pI Z Z                                      (3.12) 

and the iteration (3.11) is locally convergent in the proximity of steady state.  

By using RPM procedure, the convergence of iteration (3.2) is enhanced by applying the 

Newton method on the subspace .P  At the same time fixed-point iteration scheme is 

maintained on subspace Q . The procedure is performed according to the following steps: 

by defining the initial states 

     (0) (0)( )T

p pp Z Z x u   ,  (0) (0)( ) ( )T

p pq I Z Z x u                                  (3.13) 

and updating p  and q iteratively gives  

              ( 1) ( ) ( ) 1( )v v v

pp p I f     ( ) ( ) ( )( ( , , ) )v v vf p q u p                                (3.14) 

              ( 1) ( ) ( )( , , )v v vq g p q u                                                     (3.15) 

The iterations (3.14) and (3.15) continues until achieving the convergence at 

              ( 1) ( 1) ( 1)( ) ( )v v vx u x u p q                                                (3.16) 

The Newton method is applied to the unstable/slow modes by solving (3.5a) for the 

steady state. That is the following equation is solved 

                ( , , ) ( ) ( , , ) 0p f p q u F p p f p q u                           (3.17)  

Newton’s method for iteratively solving nonlinear equations is applied to (3.11) to get 

                      
  ( 1) ( ) 1 ( ) ( ) ( )( , , )v v v v v

pp p F p p f p q u   
                            (3.18) 

where the Jacobian matrix is given by 
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                                    ( ) ( , , )p p

F f
F p I I f p q u

p p

 
    
 

                                  (3.19) 

Substitution of (3.19) in (3.18) gives (3.14). 

3.3 Computational Properties 

To get effective computations, the term ( ) 1( )v

pI f   requires one formation instead of 

updating at each step. The variables 
kz R  are inserted to represent p P : 

              T T

p pz Z p Z x   ,   
pp Z x   ,    

px Z z q                                  (3.20) 

which corresponds to a change of coordinates. It is noteworthy that the Jacobian matrix 

related to the Newton part changes its dimensions through performing the RPM 

procedure and decreases N N to k k , and the iteration (3.14) is  

( 1) ( ) 1( )v v T

p x pz z I Z Z     ( ) ( ) ( )( , , )T v v v

pZ z q u z                             (3.21) 

To obtain (3.21), first (3.18) is multiplied by T

pZ  and the substitutions

, ( , , ) ( , )T

p p pp Z z f p q u Z Z p q u    are made to give 

                      

( 1) ( ) ( ) 1 ( ) ( ) ( )

( ) ( ) 1 ( ) ( ) ( )

( ) 1 ( ) ( ) ( )

( ) ( , , )

( ) ( , , )

( ) ( , , )

v v T v T v v v

p p p p

v T T v T v v v

p p p p p p

v T T v v v

m p x p p

z z Z I f Z Z z q u z

z Z Z Z f Z Z z q u z

z I Z Z Z z q u z





 

 





     

     

     

                    (3.22) 

where the last line follows from ( , , ) ( , )T

p p p xf p q u Z Z p q u  .   

It is not necessary to have the system equations in explicit form. This is because the 

required computations can be performed implicitly using the information provided by the 

TDSC. As a result, the Jacobian matrix also cannot be found in explicit form. Matrix-

vector products are produced from various methods of approximations [17], [18], [29]. 
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One of those approximations is shown below. Since the orthonormal basis for the 

subspace P  are obtained. That is, 

                                                          
1[ ,..., ] N k

p p pkZ Z Z R  
                                           (3.23)

 

and for epsilon value   < 0, approximating the 
thi  column of 

x pZ  can be achieved by 

the form  

[ ( , ) ( , )]x pi piZ x Z u x u       /    ,     1,2,...,i k                         (3.24) 
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Chapter 4 

SIMULATIONS AND RESULTS 

The large increase in power demand and preserving the power system stability issue pose 

significant problems. To handle such problems and apply efficient techniques that 

enhance system stability at various types of operating modes, numerical simulation 

should be used.  Numerical simulation provides an interactional environment with 

thousands of dependable and precise built-in mathematical functions. These functions 

give solutions to a wide domain of mathematical problems comprising matrix algebra, 

differential equations, non-linear systems, and other numerous kinds of scientific 

computations. In numerical simulations, Matlab software is commonly used which has 

been strengthened by the effectual SIMULINK program. SIMULINK is a diagrammatic 

program utilized to simulate dynamic systems. Besides, it gives the possibility of 

simulating linear and nonlinear systems readily and efficiently [25]. Since the dynamical 

modeling of power systems is represented by a set of non-linear differential equations, it 

is suitable to use such a program to analyze and study power system stability problems. 
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4.1 Case Study 

In this study, the numerical simulation has been done by using power system toolbox 

PST of Matlab [21]. PST contains a set of M-files developed to aid in exemplary power 

system analysis. It supports the user to perform all power system analysis like power 

flow solution and transient stability. The power system network chosen as a case study 

which consists of three generators and six buses is shown in Figure (4.1). 

 

Figure 4.1: three generators and six buses power system 

 

Here, bus1 is the slack bus with specific voltage 1 1.06 0V   , and all the values of 

resistance, reactance, capacitance, and voltage magnitude are in per unit and the power 

base is chosen as 100 MVA. The power system installation is defined by two certain 

matrices for bus and line that are utilized in the load flow computation. Solving load flow 

is important to determine the operating conditions that are used in modeling the dynamic 
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devices. Required data is shown in the following tables which include the data set for 

generators, loads, buses, and lines. 

                             Table 1: Line data                                                          Table 2: Load data 

 

 

  

                       Table 3: Generators data                                              Table 4: Machines data 

MACHINES DATA 

Gen.   aR     '

dX      H  

 No.    PU      PU       Sec. 

1 0.00 0.20 20.00 

2 0.00 0.15 4.00 

3 0.00 0.25 5.00 

 

 
4.2 Transient Stability Simulation Using ode32 Solver 

The first step in the numerical simulation of stability is implementing the power flow 

solution by using the lfnewton code.  This code is based on the Newton method in order 

to execute load flow and calculate the physical values like active and reactive power of 

the system. Besides, trstab is used with lfnewton to analyze the system after being 

subjected to various types of fault, and calculate the new bus admittance matrix. When a 

fault occurs in the system, the protection relays directly indicates the fault and sends a 

trip signal to the circuit breaker to separate the faulted part. 

                       LINE DATA 

Bus    Bus          R               X              ½ B 

No.     No.         PU                PU                PU                                  

1 4 0.035 0.225 0.0065 

1 5 0.025 0.105 0.0045 

1 6 0.040 0.215 0.0055 

2 4 0.000 0.035 0.0000 

3 5 0.000 0.042 0.0000 

4 6 0.028 0.125 0.0035 

5 6 0.026 0.175 0.0300 

 LOAD DATA  

Bus              Load 

No.       MW        Mvar 

1 0.00 0.00 

2 0.00 0.00 

3 0.00 0.00 

4 100.00 70.00 

5 90.00 30.00 

6 160.00 110.00 

             GENERATORS DATA 

 Bus      Voltage     Generation       Mvar Limits 

 No.         Mag.           MW           Min.       Max. 

1 1.06    

2 1.04 150.00 0.00 140.00 

3 1.03 100.00 0.00 90.00 
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When the system is exposed to a fault, the simulation is divided into three cases; pre-

fault, during fault, and post-fault. The fault may cause a change in the operation mode 

according to the voltage values and machine angles as explained in Chapter 2. The aim of 

this numerical simulation is to enhance and preserve the stability of the system through 

those three steps. 

In this dissertation, a fault of three-phase is applied on the line (5-6) close to bus (6). 

Separating this line by disconnecting the circuit breakers of the ends of same line, the 

fault will be cleared. To carry out transient stability analysis for a specific clearing time 

ct  and final simulation time
ft , trstab code is ran, which is based on the ode32 solver of 

Matlab. The first machine is a reference for the other two machines with respect to speed 

and angle. For ct = 0.4 s and 
ft =5 s the output simulation in Figure (4.2a) shows the 

oscillations in the angles of both machines. In this case, for ct   0.4
 
the oscillation will 

continue for a certain time with decreasing amplitude before reaching to the steady state. 

This is illustrated by choosing 
ft =30 s as shown in Figure (4.2b). 
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              Figure 4.2a: Phase angle difference for both 2
nd

 and 3
rd

 machine at
ft =5 s 

 

 

    Figure 4.2b: Phase angle difference for both 2
nd

 and 3
rd

 machine at =30 s 
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To choose best conditions in this code like decreasing the step size to give a solution 

with optimal level of accuracy, it still gives unstable solution with oscillation that was 

taken as an indication  of error in the calculations as shown in Figure 4.2c. 

 

Figure 4.2c: Phase angle difference at best conditions for both 2
nd

 and 3
rd

 machine at
ft =30s 

 

Here, the steady-state solutions for both the 2
nd

 and 3
rd

 machine angles are nearly 2.8
o
 

and 6
o 

respectively. The solution given by trstab for this case shows that the system will 

continue oscillating for a specific time after the fault is cleared. Duration of this time is 

not short; it may lead to a sequence of other faults and may cause damage to the system’s 

switchgear. Although steady-state is achieved after such a long time, the angles still 

contain small continuous oscillations. Therefore, if this simulation result is taken to be 

reliable, extra work should be done to force the system to return to the steady-state mode 

in shorter time, and achieve steady-state without any continuous oscillation as well. On 
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the other hand, the oscillations in the steady state are actually an indication that this 

simulation result is not very reliable. Thus, trstab is not that efficient by itself in all the 

situations, and the accuracy should be improved by applying an efficient and active 

technique, which is the RPM procedure. Also, trstab is based on the ordinary differential 

equation solver ode32, which solves the system for a specified span of time, and RPM 

requires the solution at each time step in the code. Therefore, ode32 should be replaced 

by another solver, which is the Modified Euler Method (MEM), so that RPM can be 

easily applied. 

4.3 Application of Modified Euler Method 

To understand MEM well, it is better to start with the Euler Method (EM). EM is 

characterized as the easiest algorithm in the domain of numerical solution of differential 

equations, applicable to first order equations. Although EM gives a solution with least 

accuracy, it generates a foundation for comprehending more developed methods. 

Consider the following differential equation 

                                                 ( )
dx

p t
dt

 x                                                                (4.1) 

where ( )p t is a known function. According to EM, the derivative in the differential 

equation can be approximated by 

   0

( ) ( ) ( ) ( )
lim ( )
t

dx x t t x t x t t x t
p t x

dt t t 

     
  

 
                   (4.2) 

 where t is the step size           

by rearranging (4.2)   

                                           ( ) ( ) ( )x t t x t p t    ( )x t t                                    (4.3) 

by using the iterative procedure (4.3) will be  
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1( ) ( ) ( ) ( )k k k kx t x t p t x t t                                            (4.4) 

where 1k kt t t                                                    

Euler method can be sum up for the general form ( , )x f t x


  as, 

                             1( ) ( ) . [ , ( )]k k k kx t x t t f t x t                                                 (4.5) 

EM presumes that variables of the equation are constant during the step size t . So, it is 

not applicable in all the situations, and has a deficiency in accuracy at a case of fast 

changing of variables. To enhance the method, additional update should be applied to the 

right-hand side of the equation. The update uses the average of the solutions for two 

contiguous steps as below  

                            1 1( ) ( ) ( )
2

k k k k

t
x t x t f f 


                                                (4.6) 

where ( , ( ))k k kf f t x t   and  1 1 1( , ( ))k k kf f t x t    

Thus, utilize EM to get 1( )kx t   that allows executing predictor-error method, and MEM 

procedure is a combination of the two steps: Euler predictor and predictor-error. That is  

Euler predictor                           1 . ( , )k k k ky x h f t x  
                                                

(4.7) 

Predictor-error                 1 1 1.[ ( , ) ( , )]
2

k k k k k k

h
x x f t x f t y    

                                 
(4.8) 

4.4 Finding the Jacobian Matrix 

The RPM procedure requires the computation of the Jacobian matrix of the difference 

equations (see (3.2)) that result from the application of the particular numerical solution 

technique to the continuous-time differential equations (DE). In general, the DE’s are 

quite complicated and usually very difficult to obtain explicitly. To see how the Jacobian 

matrix of the discretized equations of a power system can be indirectly obtained through 
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application of a numerical procedure, we consider a linear second order system with the 

equations 

                                        

1 2

2 1 1 2 2

x x

x a x a x u







  

                                                              (4.9) 

which can be represented as  ( ) ( )x t F x t  where 
1 2[ , ]Tx x x and 

                                             

2

1 1 2 2

( )
x

F x
a x a x u

 
    

                                                       (4.10)                                                    

Suppose the numerical solution technique applied to (4.7) results in the discrete-domain 

equations 

                                                   
1

1

2

( )
( )

( )

k

k k

k

x
x x

x







 
   

 
                                                        (4.11)                                                                                                                                               

  

 

The Jacobian matrix of the function vector   is given by 

                                                                

1 1

1 2

2 2

1 2

x

x x

x x

 


 

  
  
 
  
     

This matrix can be evaluated numerically by using the following procedure: 

                                                     
1

[ ( ) ( )] 1,2x n nv x v x n   


                                 (4.12)                                                                                                         

where v n   are the vectors,      

                       
1

1

0
v

 
  
    

 , 2

0

1
v

 
  
   

 For the Modified Euler method the function vector   is written as
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1
( ) [ ( ) ( ( ))]

2

1
ˆ[ ( ) ( )]

2

x x h F x F x hF x

x h F x F x

    

                                                 (4.13)               

where 

1 2

1 1 2 2

ˆ ( )
( )

x hx
x x hF x

x h a x a x u

 
                                                  

(4.14)

 

evaluation of (4.10) at the predictor solution  

2 2 1 1

1 1 2 2 2 1 1 2 2

(1 )
ˆ( )

( ) ( )

ha x ha x hu
F x

a x hx a x ha x ha x hu u

   
                                

(4.15)  

2 2 1 1

2

1 1 2 1 1 2 2 2 2

(1 )

( ) ( ) (1 )

ha x ha x hu

a ha a x a h a ha x ha u

   
                               

(4.16)

 

1 2 2 2 1 1

2

2 1 1 2 2 1 1 2 1 1 2 2 2 2

1
( (1 ) )

2
( )

1
( ( ) ( ) (1 ) )

2

x h x ha x ha x hu

x

x h a x a x u a ha a x a h a ha x ha u



 
     

  
          
    

(4.17)  

finally, the Jacobian matrix can be obtained as 

                    

2

1 2

2

1 1 2 2 1 2

1 1
1 (1 )

2 2
( )

1 1
(2 ) 1 (2 )

2 2

x

h a h ha

x

h a ha a h a a h a h



 
  

  
    
  

                            (4.18)

                                           

The numerical procedure in (4.10) was applied to the system in (4.7) and the computed 

Jacobian matrix was compared with the theoretical result (4.11), with an excellent match.                                                                                                                                                 

4.5 Transient Stability Simulation Using modeu Solver 

After using MEM (modeu) solver instead of ode32 solver in trstab, running lfnewton 

and new trstab (which was called eigv) for a three phase fault at the same position (at 

bus 6 between lines 5 and 6) the following results are obtained: 
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     Figure 4.3: Phase angle difference for both 2
nd

 and 3
rd

 machine with MEM at h = 0.01 

The similarity of the outputs in Figures (4.2 a) and (4.3) proves that the new code eigv is 

working correctly. In this case study, the system contains six state variables; two for each 

machine, which are rotor’s speed and angle. Finding the Jacobian matrix allows 

calculating eigenvalues and eigenvectors. 

4.6 Transformation Region of Stability 

When the differential equations of a continuous-time system are transformed to discrete 

form by the numerical integration algorithm, the modes of the system will be 

transformed according to this relationship 

                                                                   kh

k e
 

      
                                            (4.19) 

where  h  integration step size, 

            ( )k x     eigenvalues of the discrete mode (integration) system 

            ( )k xF   eigenvalues of the continuous mode (physical) system 
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The transformation results in the conversion of the stability zone from the left half part of 

the complex plane for xF to the inner region of the unit disk for x . Therewith, applying 

numerical techniques to solve ODEs is imprecise. The effective relation is tightly 

associated to the integration scheme. For example, this case study deals with the 

Modified Euler Method, and for this method, 

                               ( 1) ( ) ( )ˆ ( , )v vx x hF x u                                                                (4.20) 

                               ( 1) ( ) ( ) ( 1)ˆ[ ( , ) ( , )] / 2v v vx x h F x u F x u                                        (4.21) 

                                                      
( )( , )vx u  

                                           2[(1 ) 1] / 2k kh                                                               (4.22) 

4.7 Performing RPM  

After calculating the eigenvalues, it should be checked whether their magnitudes are less-

equal-larger than unity. Then the critical values that cause the unstable behavior of the 

numerical algorithm is separated, and the corresponding eigenvectors to create a new 

basis is found which consequently improves the numerical stability.  The result for the 

three-phase fault case is shown in Figure (4.4). The operating condition is the same as 

before, that is applying a three phase fault between the lines 5 and 6, ct =0.4 s and 
ft =5 

s. The time integration step h is adjustable, and in this case is chosen as h=0.01. After 

running the program the magnitudes of the eigenvalues are determined as, 

 = [1.0000    1.0000   1.0000   1.0000    0.9999    1.0001] , n =6 

As shown in ,  the number of critical eigenvalues are k =5. According to the RPM 

procedure, it will produce a matrix of orthonormal basis 
poZ  corresponding to those 

critical eigenvalues. The produced 
poZ is 



42 

 

[

  -0.0006 + 0.0000i    -0.0038 + 0.0000i    -0.0742 - 0.5645i     0.0000 + 0.4350i    -0.0001 + 0.6975i

  -0.0006 + 0.0000i    -0.0038 + 0.0000i    -0.0756 - 0.5755i     0.0000 + 0.3880i     0.000

poZ 

1 - 0.7159i

  -0.0006 + 0.0000i    -0.0038 + 0.0000i    -0.0758 - 0.5771i     -0.0001 - 0.8125i    -0.0000 + 0.0316i

   0.0972 - 0.0000i     0.2980 - 0.0001i       -0.0013 - 0.0099i     0.0000 + 0.0029i    -0.0000 + 0.0053i

   0.5658 - 0.0000i     -0.8014 + 0.0002i     0.0004 + 0.0031i     0.0000 + 0.0006i    -0.0000 + 0.0011i

  -0.8188 + 0.0000i    -0.5185 + 0.0001i     0.0003 + 0.0021i     0.0000 + 0.0007i    -0.0000 + 0.0014i]

 

After calculating the solution at time step ,k  the Jacobian matrix, and 
poZ  are substituted 

in the main equations of the RPM algorithm to give the corrected solution at time step

1k  . This solution improves the convergence of the solution and enhances the ability to 

evaluate system stability as shown in Figure (4.4) 

         Figure 4.4: Phase angle difference for both 2
nd

 and 3
rd

 machine by RPM 

 
To prove that RPM works efficiently, can check the steady state solutions in both Figure 

(4.2) and Figure (4.4) to show that the values of the two machine angles are almost equal. 

In addition, RPM reaches the steady-state mode in a very short time 0.45 s comparing 
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with the previous case at 30 s, without any oscillation. The comparison between classical 

method and RPM is shown in Figure (4.5 a-b).  

 

                           Figure 4.5a: Comparison between classical method and RPM  

 

 

                  Figure 4.5 b: Comparison between classical method and RPM, showing initial part 
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We have taken a large simulation end-time to see the achievement of RPM clearly, as 

shown in Figure (4.6). The numerical solution given by trstab continues to oscillate in 

the steady-state, whereas it is perfectly stable with RPM. 

 

                       Figure 4.6: Steady-state solution of the system by classical method and RPM 

One of the best achievements of RPM is performing the solution and reaching steady-state 

mode with a time shorter than that in classical methods; this leads to having reliability and 

efficiency in the response of system simulations. For a step size h=0.15, the solution for 

classical method will give unstable solution, while RPM will preserve the stable solution as 

shown in Figure (4.7). Note that the large simulation time here is for observing the behavior of 

stability analysis in power system simulation, not for an actual application in real time. In 

practice, the time tcc and the steady-state period depend on many conditions like the size of 

fault, and the ability of the switchgear and the grid to handle such a fault and pass it 

successfully. 
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               Figure 4.7: Comparison between classical method and RPM for h =1.5 

4.8 Dynamic Simulation Using Power System Toolbox (PST) 

Application of RPM at the beginning of this study was carried out by using the power 

system toolbox PST [30]. But it was later abandoned because of the difficulties in using 

the transient simulation code s_simu in conjunction with the RPM procedure. PST 

allows modeling machines and control systems, and establishes active modeling to state 

variables for designing damping controllers. These models are coded as m-files Matlab 

functions. One of those m-files is s_simu which has driving functions for transient 

stability analysis. The code s_simu needs only input data to prepare a good environment 

for analyzing and solving the system dynamical equations. First of all, this code was used 

and many operating tests have been done on the 9-bus WECC (or WSCC) power system 

[23] to see the behavior of the system; showing when and how the system can regain its 



46 

 

steady state mode after subjected to different types of faults. This study is stopped in this 

thesis when trying to apply the RPM algorithm with s_simu, because it contains complex 

steps and it is difficult to connect RPM to it. Therefore, trstab m-file is used instead of 

s_simu and the complete work is implemented successfully. 
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Chapter 5 

CONCLUSION 

In this study, the power system stability problem is considered, and effective ideas are 

introduced for efficient analysis of power system behavior for various types of operating 

conditions. It has focused on transient stability under specific disturbances. The main 

criterion in power system stability, namely the equal area criterion, is also demonstrated 

in this study. Mathematical representation of power systems is performed to obtain 

differential and algebraic equations that have been solved numerically. In this work, 

MEM solver is used because it gives simple and accurate solution, and it is based on time 

stepping that allows application of the RPM algorithm easier than using the ODE solver, 

which is based on a time span solution. 

 An effective numerical technique is presented, which is the RPM algorithm, it is a new 

approach used in power systems recently to improve stability analysis. RPM is a 

stabilization algorithm that has the ability to expand the convergence domain of fixed 

point iteration schemes. In other words, RPM evaluates subspaces for the case of 

divergent iterations and correcting those iterations by applying Newton's method, 

whereas on the supplement, fixed point iteration is preserved to evolve the convergent 

iterations. A test example of a 6-bus power system is considered to show the 

achievements of the RPM technique and Modified Euler Method in the Matlab 
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environment. Besides, numerical simulation studies performed on such a system have 

shown the success of this technique.  

At each time step, the Matlab code calculates the Jacobian matrix and finds its 

eigenvalues. After that it compares the magnitudes of those eigenvalues, separating the 

larger ones and creating a corresponding ortho-normal basis which helps the code to find 

the correct solution and stabilize the numerical system. 

The RPM procedure represents a useful algorithm in power system stability analysis that 

can handle all the operating situations, stable, slow-decaying and unstable modes, 

effectively and with high accuracy. As a result, RPM forces power system simulation to 

reach the steady-state mode in a very short time compared with conventional procedures, 

and without erroneous oscillations. 

Future work that may be suggested is the application of the RPM algorithm to larger 

power systems, and for the case of unstable invariant subspaces with large dimensions. 

Theoretical work should also be carried out on this method to understand the level of 

accuracy improvement. 
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