

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Analysis and Development of Ciphers Homomorphic

on Addition and Multiplication

Anas Maher I. Ibrahim

Eastern Mediterranean University

September 2021

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy

Director

Prof. Dr. Hadi Işik Aybay

 Chair, Department of Computer

Engineering

Prof. Dr. Alexander Chefranov

Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Doctor of Philosophy in Computer Engineering.

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Doctor of Philosophy in Computer

Engineering.

Examining Committee

1. Prof. Dr. Alexander Chefranov

2. Prof. Dr. Mehmet Ufuk Çağlayan

3. Prof. Dr. Atilla Elçi

4. Assoc. Prof. Dr. Gürcü Öz

5. Assoc. Prof. Dr. Mohammed Salamah

iii

ABSTRACT

In this thesis, various additive and multiplicative homomorphic ciphers are analyzed

and developed. New homomorphic encryption (HE) ciphers classification is proposed.

The new classification of homomorphic ciphers is introduced allowing having a

separate class for the newly developed herein HE cipher. It extends the previously used

two criteria to five. In addition to the symmetric homomorphic scheme, HE1N, the

asymmetric homomorphic schemes RSA, NTRU, RLWE-NCM-CSCM from the

literature are considered.

A new ciphertext-only attack finds RSA encrypted messages as the shortest vector in

a 2-dimensional lattice is designed. For RSA not to be susceptible to the attack

proposed, new settings for RSA public keys are presented. NTRU and HE1N are two

homomorphic cryptosystems, encrypting the message by adding to it noise and then

applying modulo operation. It is found that in both of them, the modulo operation may

not have an effect because the sum is less than the modulus. NTRU modulo 𝑝 flaw

attack against NTRU using IEEE standard parameters with non-negligible success

probability is designed. To make the success probability negligible, parameter setting

is recommended in the thesis. Two attacks against HE1N are designed, and new

settings for HE1N parameters are recommended to mitigate these attacks.

 The random congruential public-key cryptosystem (RCPKC) is developed, an NTRU

variant using integers and immune against lattice basis reduction attacks (LBRA).

RCPKC specifies a range from which the random numbers shall be selected to counter

LBRA. Compared to NTRU, RCPKC is more efficient and it reduces energy

iv

consumption, which allows increasing the lifetime of unattended wireless sensor

networks.

Ring learning with errors (RLWE)-based cryptosystem using ciphertexts size control

mechanism (CSCM), called RLWE-CSCM is developed, advancing RLWE-NCM-

CSCM proposed by Brakerski and Vaikuntanathan in 2011. RLWE-CSCM is the first

fully homomorphic with respect both to addition and multiplication scheme not

affected by the growth of noise. The size of RLWE-CSCM ciphertext grows with each

homomorphic multiplication operation. Therefore, two CSCMs are proposed in this

thesis. RLWE-CSCM can be involved in a wide range of applications such as applying

images filters homomorphically, homomorphic voting systems.

Keywords: homomorphic encryption scheme, addition, multiplication, known

plaintext attack, ciphertext only attack, lattice basis reduction, ring learning with errors

v

ÖZ

Bu tezde, çeşitli toplamsal ve çarpımsal homomorfik şifreler analiz edilmiş ve

geliştirilmiştir. Yeni homomorfik şifreleme (HE) şifreleme sınıflandırması

önerilmiştir. Homomorfik şifrelerin yeni sınıflandırması, burada yeni geliştirilen HE

şifresi için ayrı bir sınıfa izin vererek tanıtıldı. Daha önce kullanılan iki kriteri beşe

kadar genişletir. Simetrik homomorfik şema HE1N'ye ek olarak, literatürden asimetrik

homomorfik şemalar RSA, NTRU, RLWE-NCM-CSCM ele alınmaktadır.

Yeni bir yalnızca şifreli metin saldırısı, 2 boyutlu bir kafesteki en kısa vektör

tasarlandığından RSA şifreli mesajları bulur. RSA'nın önerilen saldırıya duyarlı

olmaması için, RSA ortak anahtarları için yeni ayarlar sunulur. NTRU ve HE1N,

mesajı gürültü ekleyerek ve ardından modulo işlemi uygulayarak şifreleyen iki

homomorfik şifreleme sistemidir. Her ikisinde de toplamın modülden daha az olması

nedeniyle modulo işleminin bir etkisi olmayabileceği bulundu. IEEE standart

parametreleri kullanılarak NTRU'ya karşı NTRU modulo p kusur saldırısı ihmal

edilemez başarı olasılığı ile tasarlanmıştır. Başarı olasılığının ihmal edilebilir olması

için tezde parametre ayarı yapılması önerilir. HE1N'ye karşı iki saldırı tasarlanmıştır

ve bu saldırıları azaltmak için HE1N parametreleri için yeni ayarlar önerilir.

 Rastgele uyumlu ortak anahtar şifreleme sistemi (RCPKC), tamsayılar kullanan ve

kafes tabanlı azaltma saldırılarına (LBRA) karşı bağışık olan bir NTRU varyantı

olarak geliştirildi. RCPKC, LBRA'ya karşı rasgele sayıların seçileceği bir aralığı

belirtir. NTRU ile karşılaştırıldığında, RCPKC daha verimlidir ve enerji tüketimini

azaltır, bu da gözetimsiz kablosuz sensör ağlarının ömrünün artmasına olanak tanır.

vi

2011 yılında Brakerski ve Vaikuntanathan tarafından önerilen RLWE-NCM-CSCM'yi

ilerleterek, RLWE-CSCM adı verilen şifreli metin boyut kontrol mekanizmasını

(CSCM) kullanan hatalarla öğrenme (RLWE) tabanlı şifreleme sistemi geliştirildi.

RLWE-CSCM, ilgili ilk tam homomorfiktir. hem toplama hem de çarpma şemasına

gürültünün büyümesinden etkilenmez. RLWE-CSCM şifreli metninin boyutu, her

homomorfik çarpma işlemi ile büyür. Bu nedenle, bu tezde iki CSCM önerilmiştir.

RLWE-CSCM, homomorfik olarak görüntü filtreleri uygulamak, homomorfik oylama

sistemleri gibi çok çeşitli uygulamalarda yer alabilir.

Anahtar Kelimeler: homomorfik şifreleme şemaları, toplama, çarpma, bilinen düz

metin saldırısı, yalnızca şifreli metin saldırısı, kafes tabanlı indirgeme, ring hatalı

öğrenme

vii

DEDICATION

I dedicate the work of this thesis, firstly, to my family. My beloved wife, Nagham,

your unwavering support and motivation throughout this Ph.D. project was incredible.

To my children, Maher, Sana, and Leen, you have been a gift from the beginning.

To my loving parents who constantly encouraged me and pulled me up when I would

be down and under.

viii

ACKNOWLEDGMENT

I am deeply grateful to my supervisor Professor Alexander Chefranov. It was only due

to his valuable guidance, cheerful enthusiasm, and ever-friendly nature that I was able

to complete this work.

I would like to express my gratitude towards my family for the encouragement which

helped me in the completion of this work. My beloved and supportive wife, Nagham

who is always by my side when times I needed her most and helped me a lot in making

this research, and my lovable children, Maher, Sana, and Leen who served as my

inspiration to pursue this work.

I would like to express my deepest gratitude to my beloved parents, who raised me to

be the man I am today. You have always been a source of inspiration and give me the

strength to finish this work. I also extend my gratitude to my brothers, who have always

been beside me when times I need them.

I would like to acknowledge my friend Amjad for his endless support and

encouragement.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

DEDICATION ... vii

ACKNOWLEDGMENT ... viii

LIST OF TABLES ... xv

LIST OF FIGURES .. xvi

LIST OF ABBREVIATIONS .. xvii

1 INTRODUCTION .. 1

2 ANALYSIS OF HOMOMORPHIC SCHEMES AND LATTICE ATTACKS ON

THEM .. 8

2.1 Homomorphic Encryption Schemes and Their Classification 8

2.2 Review of Clasps 1 HE Schemes (RSA PKC) ... 16

2.2.1 Review of RSA PKC ... 16

2.2.2 Homomorphism of RSA with Respect to Multiplication 16

2.2.3 Review of Lattice-Based Attacks on RSA ... 17

2.2.3.1 Lattice-Based Attacks Against RSA Private Key 18

2.2.3.2 Lattice-Based COA Against RSA Messages 18

2.2.3.3 Non-Lattice-Based Attacks Against RSA Private Keys and Messages

 ... 20

2.3 Review of Class 3 (NTRU PKC) ... 24

2.3.1 Review of NTRU PKC .. 24

2.3.2 Homomorphism of NTRU with Respect to Addition and Multiplication . 28

2.3.2.1 Homomorphic Addition .. 28

x

2.3.2.2 Homomorphic Multiplication .. 28

2.3.3 Review of CPKC and Lattice-Based Attack on CPKC 31

2.3.3.1 Review of CPKC Scheme ... 31

2.3.3.2 Two-Dimensional CPKC Lattice .. 32

2.3.3.3 Gaussian Lattice Reduction Attack on CPKC Key/Message 33

2.3.4 Review of Known NTRU Variants .. 34

2.3.4.1 NTRU Variants Differing in the Choice of Their Coefficients 34

2.3.4.2 NTRU Variants Working with Different Rings 35

2.3.4.3 NTRU Variants Working with Polynomials Inside More Complicated

Structures... 35

2.3.5 Review of IN−Lattice Attack on NTRU Private Keys 36

2.4 Review of Class 4 (HE1N) ... 39

2.4.1 Review of HE1N .. 39

2.4.1.1 Parameter Settings ... 39

2.4.1.2 Encryption ... 40

2.4.1.3 Decryption ... 40

2.4.2 Homomorphism of HE1N With Respect to Addition and Multiplication . 41

2.4.2.1 Homomorphic Addition .. 41

2.4.2.2 Homomorphic Multiplication .. 41

2.5 Review of Class 6 (RLWE-NCM-CSCM PKC) .. 42

2.5.1 Homomorphic Addition ... 43

2.5.2 Homomorphic Multiplication .. 44

2.6 Review of class 7 (Homomorphic Scheme Using Ideal Lattices) 47

2.7 Summary .. 53

2.8 Problem Definition ... 53

xi

3 DESIGN OF CIPHERTEXT-ONLY ATTACK ON RSA (CLASS 1) USING

LATTICE BASIS REDUCTION ... 56

3.1 Proposed Two-Dimensional RSA Lattice .. 57

3.2 Define RSA Message as the Shortest Vector in the RSA Lattice 58

3.3 Design of LLL Attack on RSA Message as a Shortest Vector in the RSA Lattice

 .. 58

3.4 Complexity of LLL Lattice Basis Reduction Algorithm 60

3.5 Experiments on RSA Cracking for Up To 8193-Bit Messages 60

3.6 Summary .. 71

4 SECURITY ANALYSIS OF NTRU (CLASS 3) ... 73

4.1 Design of NTRU Modulo p Flaw Attack ... 73

4.1.1 NTRU Modulo p Flaw Attack ... 73

4.1.2 Explanation of Example 4.1 .. 75

4.1.2.1 Finding Inverse of the Polynomial f(x) Modulo (xN-1) 76

4.1.2.2 Getting |det(Δ)|=1 .. 78

4.1.3 Estimate of the Probability of NTRU Modulo p Flaw 81

4.2 Experimental Analysis of IN−Lattice Attack on NTRU Private Keys 83

4.3 Summary .. 86

5 ANALYSIS OF HE1N CRYPTOSYSTEM (CLASS 4) .. 88

5.1 Analysis of the Use of Modulus in HE1N Encryption 88

5.2 Design of Ciphertext-Only Attack (COA) Against HE1N Private Key p 89

5.2.1 COA Against HE1N Private Key p ... 89

5.2.2 Computational Complexity of the KPA Attack ... 91

5.2.3 Probability of Finding a Matching Pair in a Finite Set 91

5.2.4 Analysis of Prno(𝓶) Approximation ... 94

xii

5.3 Design of Known Plaintext Attack Against HE1N Private Key p 96

5.3.1 KPA Against HE1N Private Key p .. 96

5.3.2 Computational Complexity of The KPA Attack 97

5.3.3 Probability of Finding a Matching Pair in a Finite Set 97

5.4 Summary .. 100

6 DEVELOPMENT OF RANDOM CONGRUENTIAL PUBLIC-KEY

CRYPTOSYSTEM (RCPKC) ... 101

6.1 Region Resistant to GLR Attack on the CPKC Private Key/Message 102

6.2 The proposed RCPKC .. 103

6.2.1 RCPKC Main Ideas ... 103

6.2.2 RCPKC Proposal ... 105

6.3 Security Analysis .. 108

6.3.1 Brute Force and MITM Attacks .. 109

6.3.2 Lattice Basis Reduction Attacks .. 112

6.3.3 A Hybrid Lattice Basis Reduction and MITM Attack 113

6.3.4 Multiple Transmission Attack ... 114

6.3.5 Chosen Ciphertext Attack .. 114

6.4 RCPKC Asymmetric Encryption Padding and its IND-CCA2 Security 115

6.5 RCPKC Performance and Power Consumption Evaluation 118

6.5.1 RCPKC Performance Evaluation .. 118

6.5.2 RCPKC Power Consumption Evaluation .. 121

6.6 Summary .. 123

7 DEVELOPMENT OF FULLY HOMOMORPHIC CRYPTOSYSTEM WITHOUT

NOISE CONTROL MECHANISM (RLWE-CSCM) ... 125

7.1 Proposed RLWE-CSCM .. 125

xiii

7.1.1 Parameter Setup ... 125

7.1.2 Key Generation .. 126

7.1.3 Encryption .. 126

7.1.4 Anti Ciphertext Only Attacks Condition ... 126

7.1.5 Decryption ... 126

7.1.6 Proof of Decryption Correctness ... 127

7.2 Homomorphism of RLWE-CSCM with Respect to Addition and Multiplication

 .. 129

7.2.1 Homomorphic Addition ... 129

7.2.1.1 Single Homomorphic Addition ... 129

7.2.1.2 Homomorphism for Any Number of Additions 130

7.2.2 Homomorphic Multiplication of Ciphertexts .. 131

7.2.2.1 Homomorphism for Single Multiplication .. 132

7.2.2.2 Homomorphic Multiplication Using Recryption 134

7.2.2.3 Computing Exponentiation Homomorphically Using Recryption 139

7.2.2.4 Homomorphic Multiplication Using Re-Linearization 141

7.3 Security Analysis .. 143

7.3.1 Ciphertext Only Attack Against RLWE-CSCM Messages (Modulo C2

Attack) .. 143

7.3.2 Ciphertext Only Attack Against RLWE-CSCM Messages (Modulo p

Attack) .. 144

7.3.3 Ciphertext Only Attack Against RLWE-CSCM Messages Using Public Key

 .. 144

7.4 Summary .. 145

8 CONCLUSION ... 147

xiv

REFERENCES ... 153

APPENDICES ... 181

Appendix A: Example of RSA Encryption/ Decryption 182

Appendix B: Lattice and Lattice Basis Reduction Algorithms 183

Appendix C: Examples of CPKC Scheme Encryption/ Decryption 192

Appendix D: Example of HE1N Encryption/Decryption 195

Appendix E: Examples of RLWE-NCM-CSCM Cryptosystem Encryption/

Decryption .. 196

Appendix F: Example of RCPKC Scheme Encryption/ Decryption 197

Appendix G: NTRU Asymmetric Encryption Padding IND-CCA2 Security (NAEP)

 .. 200

Appendix H: Formulas for CPU Power Consumption Calculation 204

Appendix I: Examples of RLWE-CSCM ... 206

Appendix J: Source Code of RCPKC Performance Tests 228

xv

LIST OF TABLES

Table 2.1: Classification of homomorphic schemes (col. 2) based on five criteria (cols.

3-7). .. 14

Table 3.1: Comparison between lattice-based COA and other known RSA attacks. 56

Table 3.2: Number of cracked messages under different parameter settings. 60

Table 3.3: Results of experiments on RSA cracking with 𝑁 = 2050 65

Table 4.1: Numerator of (4.37) for different 𝑁 values and corresponding 𝑑. 82

Table 4.2: The parameters used in our experiments. ... 83

Table 4.3: The results of new attack in different ntru security levels. 83

Table 4.4: Expected time (MIPS-years) to break NTRU cryptosystem in comparison

to (Z. Yang et al., 2018a) ... 86

Table 5.1: KPA success probability and computational complexity, for different 𝓂

 .. 99

Table 6.1: Width of the range for the 𝑟 value for different security levels. 111

Table 6.2: RCPKC and NTRU CPU encryption/decryption time sample mean,

standard deviation, and confidence interval for different runs 119

Table 6.3: Ratios of encryption and decryption times of NTRU and the variants 𝐴 ∈

𝑅𝐶𝑃𝐾𝐶, 𝐵𝑄𝑇𝑅𝑈,𝑀𝑎𝑇𝑅𝑈, 𝐸𝑇𝑅𝑈. ... 121

Table 6.4: Microcontroller MSP430FR5969 dynamic and leakage power consumption,

𝑃𝑑𝑦𝑛 and 𝑃𝑙𝑒𝑎𝑘, for different frequencies and active supply voltages. 122

xvi

LIST OF FIGURES

Figure 2.1: Depth 3 arithmetic circuit calculating 𝑦 = 𝑥1 + 𝑥2 × 𝑥3 + 𝑥4 × 𝑥5, with

the longest path shown in red. .. 10

Figure 2.2: Maple code implementation of GCD attack (Coppersmith et al., 1996),

recovering RSA message encrypted with large exponent 𝑒 = 216 + 1. 23

Figure 2.3: Good basis 𝐵𝑠𝑘 = 𝑉 (vectors with green heads), the parallelepiped formed

by the good basis (with green lines), the bad basis formed by 𝐻𝑁𝐹(𝑉) (vectors with

blue heads), and the parallelepiped of the bad basis (with blue lines). 50

Figure 3.1: LLL attack on RSA message in Example A.1 using Maple 2016.2 59

Figure 3.2: Screenshot of Maple implementation of Code 3.1 using parameter settings

in Example 3.2 ... 67

Figure 3.3: Inverse relation between the value of parameter 𝑎 (horizontal axis) in (3.16)

and number of successful RSA message cracks (vertical axis) out of 104,052 message

attacks. .. 70

Figure 4.1: Definition of the matrix (4.22), and its determinant, in Maple 2016 77

Figure 4.2: Definition of the matrix (4.30), and its determinant, in Maple 2016 80

Figure 4.3: Exponential growth of 𝑡 as 𝑁 increases .. 84

Figure 4.4: Decimal logarithm of runtime in seconds of 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack (blue

asterisks), approximation fitting line (black), and quadratic fitting (red). 85

Figure 5.1: The difference between approximated and actual probability Pr𝑛𝑜𝓂 for

1 ≤ 𝑖 ≤ 𝓂, 1 ≤ 𝓂 ≤ 𝑘, and 𝑘 = 1000 ... 95

Figure 6.1: NTRU/RCPKC encryption and decryption average CPU time ratio for 103,

104, and 105 runs. ... 121

xvii

LIST OF ABBREVIATIONS

BITRU Binary Version of NTRU Cryptosystem Via Binary Algebra

BQTRU Non-commutative Cryptosystem Based on Quaternion

Algebras

CPKC Congruential Public Key Cryptosystem

COA Chosen Ciphertext-Only Attack

CRT Chinese Remainder Theorem

CSCM Ciphertext Size Control Mechanism

DLP Discrete Logarithm Problem

ECC Elliptic Curve Cryptography

ETRU NTRU Over the Eisenstein Integers

FHE Fully Homomorphic Encryption

GCD Greatest Common Divisor

GLR Gaussian Lattice Reduction

HE Homomorphic Encryption

HE1N Homomorphic Encryption with One Dimension

HNF Hermite Normal Form

ICP Ideal Coset Problem

ILTRU An NTRU-Like Public Key Cryptosystem Over Ideal

Lattices

IN-Lattice A Lattice of Dimension Less than or Equal to 𝑁

IND-CCA2 Indistinguishability Under Adaptive Chosen Ciphertext

Attack

IND-CPA Indistinguishability Under Chosen Plaintext Attack

xviii

IPsec Internet Protocol Security

IoT Internet of Things

KPA Known Plaintext Attack

L-FHE Leveled Fully Homomorphic Encryption

LBRA Lattice Basis Reduction Attack

LHS Lift-Hand Side

LLL Lenstra–Lenstra–Lovász

MITM Meet-In-The-Middle

NCM Noise Control Mechanism

NFS Number Field Sieve

NIST National Institute of Standards and Technology

NTL Number Theory Library

NTRU N-th Degree Truncated Polynomial Ring

OTRU A Non-Associative Cryptosystem Based on Octonions

Algebra

PHE Partially Homomorphic Encryption

PKC Public-key Cryptosystems

RCPKC Random CPKC

QTRU NTRU Variant Based on Quaternion Algebra

RHS Right-Hand Side

RSA Rivest–Shamir–Adleman

RLWE Ring Learning with Errors

SHE Somewhat Homomorphic Encryption

SVP Shortest Vector Problem

w.r.t With Respect to

xix

WSN Wireless Sensor Network

X.509 Standard Defining the Format of Public-Key Certificates

1

Chapter 1

1INTRODUCTION

The Internet of Things (IoT) is a network paradigm enabling an enormous amount of

devices and data to be shared, processed, and stored (Z. Han et al., 2018; Margaret

Amala & Gnana Jayanthi, 2020). On the other hand, cloud computing is a cost-

effective approach enabling customers to benefit from high-performance computing

and virtually unlimited storage resource (Ramesh & Govindarasu, 2020; Sinchana &

Savithramma, 2020). CloudIoT has recently emerged as a paradigm leveraging IoT

and cloud computing technologies (Benabbes & Hemam, 2019). Different applications

such as wearables (e.g., smartwatches, fitness trackers), self-driving cars, healthcare

(Shah & Bhat, 2020), smart grid (Rabie et al., 2021), smart cities (Kelaidonis et al.,

2017), and surveillance systems benefit from CloudIot. Due to the enormous amount

of sensitive and personal data exchanged, processed, and stored in this environment,

the importance of preserving data privacy (during transmitting or storing) becomes

critical.

Public key cryptosystems (PKC), such as RSA (R. L. Rivest, Shamir, and Adleman

1978) and ECC (Stallings 2017, 330), are widely used nowadays in CloudIoT for

verifying node identities to prevent weak authentication (Yakubu et al. 2019, 226;

Pandey, Pandey, and Kumar 2020, 321). RSA is used in the Internet Key Exchange

protocol that is designed specifically for use with Internet Protocol Security (IPsec)

(Barker & Dang, n.d., p. 24) to provide peer authentication. RSA is also widely used

2

in X.509, the standard defining the format of public-key certificates (Algorithms and

Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile, 2002). PKC schemes provide security to the shared

data in the environment, but performing operations over encrypted data, such as query

databases, requires data to be decrypted first, and thus, compromises the privacy of

sensitive and personal data stored on an untrusted third-party cloud server.

Homomorphic encryption (HE) scheme is a form of encryption that allows performing

computations over encrypted data without the decryption keys, i.e., given encryptions,

𝐸(𝑚1), 𝐸(𝑚2) of plaintexts 𝑚1, 𝑚2, then, 𝐸(𝑚1) ⋄ 𝐸(𝑚2) = 𝐸(𝑚1 ⋄ 𝑚2). For

example, RSA cryptosystem (R. L. Rivest, Shamir, and Adleman 1978) has the

property of multiplicative homomorphism, i.e., a party having RSA public key 𝑝𝑘 =

(𝑒, 𝑁) and ciphertexts {𝑐𝑖 = 𝑚𝑖
𝑒 𝑚𝑜𝑑 𝑁}, can compute ∏ 𝑐𝑖𝑖 = (∏ 𝑚𝑖𝑖)𝑒 𝑚𝑜𝑑 𝑁, a

ciphertext that encrypts the product of the original plaintexts. Many applications

involve RSA multiplicative homomorphism feature such as secure image sharing

(Islam et al., 2011), and homomorphic signatures(R. Johnson et al. 2002; Freeman

2012). HE schemes allow CloudIoT users to benefit from cloud services without

compromising data confidentiality or their privacy (Ramesh and Govindarasu 2020).

Some HE schemes can only support a limited number of allowed homomorphic

operation types, such as RSA supports only the multiplication operation. Due to

increasing the number of applied homomorphic operations, the noise used to mask the

message increased, and thus, decryption fails if the value of the noise exceeds some

predefined threshold. Therefore, such HE schemes can support a limited number of

times to apply homomorphic operations. HE schemes can have an increase in the

ciphertext size (number of components) with each homomorphic operation. Several

3

classifications have been proposed (Acar et al., 2018; Domingo-Ferrer et al., 2019;

Feng et al., 2020; Martins et al., 2017; Shrestha & Kim, 2019; Sultan, 2019; L. Wang

& Ahmad, 2016; Zhao et al., 2020), these classifications depend on a single criterion,

that is the number of supported homomorphic operations type (Domingo-Ferrer et al.,

2019; Feng et al., 2020; Shrestha & Kim, 2019; Sultan, 2019; L. Wang & Ahmad,

2016; Zhao et al., 2020), or the underlying hard problem of the HE scheme (Acar et

al., 2018; Martins et al., 2017). The use of few classification criteria leads to group

dissimilar HE schemes in one class, for example, using the number of supported

homomorphic operation types as a classification criterion (Domingo-Ferrer et al.,

2019; Feng et al., 2020; Shrestha & Kim, 2019; Sultan, 2019; L. Wang & Ahmad,

2016; Zhao et al., 2020) leads to group HE schemes having increasing ciphertext size

(number of components) such as (Brakerski et al., 2013; Brakerski & Vaikuntanathan,

2011b, 2011a) with HE schemes that don’t have increasing ciphertext size such as

(Gentry, 2009b; Hoffstein et al., 1998). To overcome this issue, a new classification

using five criteria is proposed in Chapter 2. Using this classification, known HE

schemes are grouped into eight different classes (see Table 2.1 in Chapter 2).

Due to the importance of RSA in preserving the privacy during transmitting or/and

storing the data, analysis of RSA security is conducted in Sections 2.23.1, 3.2. Design

for a cipher-text-only attack (COA) against RSA encrypted message using the lattice

basis reduction algorithm LLL (Ibrahim, Chefranov, and Hamamreh 2021) is

performed in Sections 3.3-3.5.

The computational complexity for RSA is high due to modular exponentiation

operations in the encryption/decryption process, which make such PKC schemes

unsuitable for limited resources devices (Sethi et al. 2021), especially when using large

4

bit key size, such as 2048-bit for RSA as suggested by NIST in 2020 (Barker & Dang,

n.d., p. 54), to meet the minimal security strength of 112-bit. Compared to RSA,

elliptic curve cryptography (ECC) offers equal security for a smaller key size (Stallings

2017). ECC is included in the IEEE P1363 Standard for Public-Key Cryptography

(“IEEE Standard Specification for Public Key Cryptographic Techniques Based on

Hard Problems over Lattices,” 2009). A transition to post-quantum algorithms is

needed as cryptanalytic algorithms, such as Shor’s factorization algorithm, are

developed to defeat the security provided by currently approved asymmetric

algorithms(Barker, n.d., p. 27). NTRU (Jeffrey Hoffstein, Pipher, and Silverman 1998)

cryptosystem, standardized as IEEE P1363.1(“IEEE Standard Specification for Public

Key Cryptographic Techniques Based on Hard Problems over Lattices,” 2009), is

faster than RSA and ECC (Hermans, Vercauteren, and Preneel 2010), is announced as

one of seven candidate algorithms in the third-round finalists of NIST Post Quantum

Cryptosystem Standardization Process (“PQC Third Round Candidate Announcement

| CSRC” n.d.). NTRU, from Class 3, is homomorphic with respect to (w.r.t) two

operations, multiplication and addition, therefore serves as a base to many

homomorphic cryptosystems (Yarkln Doröz and Sunar 2020; Yarkın Doröz et al.

2018; López-Alt, Tromer, and Vaikuntanathan 2012). Analysis of NTRU security is

performed, and design of a new attack based on a flaw that allows for some parameters

to compromise the encrypted message just by applying modulo 𝑝 operation to the

ciphertext, where 𝑝 is a public parameter is performed in Section 4.1. On the other

hand, NTRU is susceptible to LBRA using LLL (Jeffrey Hoffstein, Pipher, and

Silverman 1998). Yang et. al. (Z. Yang et al. 2018) proposed a lower dimension lattice

(w.r.t. the normal 2𝑁-dimensional NTRU lattice (Jeffrey Hoffstein, Pipher, and

Silverman 1998, 273)) attack, called 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack. Experiments analysis of

5

attack is conducted in Section 4.2, we found that 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 is not so efficient as

claimed in the paper. Thus, NTRU resists lattice basis reduction attacks by increasing

the polynomial degree 𝑁, which leads to increase of the computational complexity of

encryption/ decryption processes.

In Section 6.1, CPKC (Jeffrey Hoffstein, Pipher, and Silverman 2014a) is analyzed.

CPKC proposed by NTRU authors as a toy model prone to lattice attacks and uses

polynomials of zero degree, that is integers modulo 𝑞 >> 1, thus, it outperforms

NTRU. In Section 6.2, we developed NTRU-like RCPKC (Ibrahim et al. 2020), a

random congruential public key cryptosystem using integers, based on CPKC, immune

against lattice-based attacks, and faster than NTRU and its variants.

HE1N cryptosystem (Dyer, Dyer, and Xu 2019), is homomorphic w.r.t two operations,

and proved to be IND-CPA secure. HE1N, from Class 4, is recently proposed in (Dyer,

Dyer, and Xu 2019) as a practical solution to the problem of privacy in the cloud

providing homomorphism with respect to two operations, and efficient encryption as

working on integers and performing simple modular arithmetic operations. Analysis

of HE1N security is conducted, and the design of a new ciphertext-only attack, and

known-plaintext attack (KPA) against HE1N is performed in Chapter 5.

Due to increasing the noise used to mask the plaintext with increasing the number of

homomorphic operations, HE1N allows computing function with a limited number of

additions and multiplications on ciphertexts, such schemes are called leveled fully

homomorphic encryption (L-FHE) schemes. L-FHE schemes by itself are suitable for

some applications (Brakerski, 2019). In (Gentry, 2009a), Gentry proposed the first HE

scheme that can compute arbitrary functions of any number of additions and

6

multiplications on ciphertexts, such scheme is called fully homomorphic encryption

(FHE). In his proposal (Gentry, 2009a, 2009b) from Class 7. Gentry uses

“Bootstrapping” to convert the L-FHE scheme to the FHE scheme.

After Gentry’s FHE proposal in (Gentry 2009a; 2009b), many FHE schemes are

proposed using different objects. All these FHE schemes are constructed from L-FHE

schemes by using a noise control mechanism (NCM) such as bootstrapping (Gentry

2009a), or modulus switching (Brakerski et al., 2014). FHE scheme (Brakerski &

Vaikuntanathan, 2011b), from Class 6, using ring learning with errors (RLWE) is L-

FHE as it is affected with noise, and the ciphertext size (number of components)

growth with the growth of the number of multiplication operations. Thus, hereafter,

we call it RLWE-NCM-CSCM, as it is needs NCM and ciphertext size control

mechanism (CSCM). In Chapter 7, RLWE-CSCM is proposed, the first FHE scheme

not affected with noise growth by construction, thus, no NCM is needed. RLWE-

CSCM, is RLWE based and its ciphertext size increases with the growth of the number

of multiplications. Thus, we propose two different CSCM to control the growth of

ciphertext size.

The rest of the dissertation is organized as follows. Chapter 2, provides a new

classification for HE schemes, and reviews the state of the art. In Chapter 3, of RSA

security is analyzed, and a new ciphertext-only attack against RSA encrypted message

using lattice-based reduction is proposed. In Chapter 4, NTRU PKC security is

analyzed, a new attack against RSA message is designed, and experimental analysis

of the recently published attack, 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack (Z. Yang et al. 2018) is

performed. Analysis of HE1N is security and development of several attacks again

HE1N is performed in Chapter 5. Development of RCPKC, NTRU-like cryptosystem,

7

faster and more secure than NTRU is executed in Chapter 6. Development of RLWE-

CSCM, the first FHE scheme not affected by the growth of noise by structure, is

performed in Chapter 7. Chapter 8 concludes the dissertation. Thesis contributions can

be summarized as follows:

1- New HE schemes classification is proposed extending the previously used

criteria from two to five, and increases the number of classes from four to at

least 32.

2- A new COA attack against RSA private Key/ message using LBRA with LLL

algorithm (Ibrahim, Chefranov, and Hamamreh 2021) is designed.

3- A new attack against NTRU message, NTRU Modulo 𝑝 Flaw attack

(Chefranov & Ibrahim, 2016; Ibrahim & Chefranov, 2016), is designed.

4- Experimental experiments are conducted to verify the efficiency of IN-Lattice

attack (Z. Yang et al., 2018b) against NTRU keys (Easttom et al., 2020).

5- RCPKC (Ibrahim et al., 2020), an efficient and secure variant of NTRU is

developed.

6- Several attacks are designed against HE1N (Dyer et al., 2019).

7- RLWE-CSCM, the first fully homomorphic cryptosystem without noise

control mechanism, advancing RLWE-NCM-CSCM by Brakerski et. al.

(CRYPTO 2011).

8

Chapter 2

2ANALYSIS OF HOMOMORPHIC SCHEMES AND

LATTICE ATTACKS ON THEM

In this chapter, an analysis of HE schemes is presented, a new classification for HE

schemes is proposed, state of the art is reviewed and problems addressed by this

dissertation are stated. The rest of the chapter is as follows; in Section 2.1 an analysis

of HE schemes is provided, and a new classification for HE schemes is proposed. In

Section 2.2 reviews state of the art. Section 2.8 defines the problems addressed in this

dissertation.

2.1 Homomorphic Encryption Schemes and Their Classification

HE schemes allow performing computations over its ciphertexts (Pulido-Gaytan et al.

2021), where the computations are represented as arithmetic functions (circuits)

(Brakerski, 2019), according to Definition 2.1 below:

Definition 2.1: (Gentry, 2009b). Encryption scheme ℰ = (KeyGenℰ, Encryptℰ,

Decryptℰ, Evaluateℰ) is homomorphic if,

𝑐 = Evaluateℰ(pk, 𝐹, 𝐶) ⇒ 𝐹(𝑚0, . . , 𝑚𝑡−1) = Decryptℰ(sk, c), (2.1)

where 𝐶 = (𝑐0, . . . , 𝑐𝑡−1) is a tuple of ciphertexts encrypting plaintexts (𝑚0, . . . , 𝑚𝑡−1),

using the public key pk (with respective secret key sk), in case of asymmetric HE, and

sk only for symmetric HE, a function 𝐹 ∈ ℱℰ, a set containing all functions that can

be homomorphically evaluated by the scheme ℰ (for them (2.1) holds). It is most

9

common to consider the arithmetic circuit model to represent 𝐹. The algorithms

KeyGenℰ, Encryptℰ, Decryptℰ satisfy the following:

- KeyGenℰ outputs a public-key (pk) used for encryption, and the corresponding

secret-key (sk) used for decryption in case of asymmetric HE, and sk only for

symmetric HE;

- Encryptℰ encrypts a plaintext using the public-key pk for asymmetric, or secret

key, sk, for symmetric HE;

- Decryptℰ decrypts the ciphertext, using the corresponding secret-key sk;

- The computational complexity of KeyGenℰ, Encryptℰ, Decryptℰ, must be

polynomial in security parameter λ;

- The computational complexity of Evaluateℰ, must be polynomial in the depth

of 𝛿, the arithmetic circuit representing 𝐹.

Definition of the circuit depth follows.

Definition 2.2: (Sipser 2013, 382) The depth (number of levels) of a circuit is the length

(number of gates) of the longest path from the input gates to the output gates.

For example, arithmetic circuit calculating 𝑦 = (𝑥1 + 𝑥2) × 𝑥3 + 𝑥4 × 𝑥5 shown in

Figure 2.1 has depth equals to 3.

10

Figure 2.1: Depth 3 arithmetic circuit calculating 𝑦 = (𝑥1 + 𝑥2) × 𝑥3 + 𝑥4 × 𝑥5,

with the longest path shown in red.

HE schemes such as RSA (R. L. Rivest, Shamir, and Adleman 1978), El-Gamal

(ElGamal 1985), can only evaluate homomorphically function 𝐹 in (2.1), that is

composed of one type of arithmetic operations, and with no constraints on the depth

of the arithmetic circuit represents 𝐹, such schemes are called partially homomorphic

encryption (PHE) schemes (Acar et al., 2018; Martins et al., 2017; Shrestha & Kim,

2019), according to Definition 2.3,

Definition 2.3: (Acar et al., 2018, p. 3) “Partially homomorphic encryption (PHE)

scheme allows only one type of operation with an unlimited number of times (i.e., no

bound on the number of usages)”.

In other words, PHE scheme supports one type of operations, with an unlimited

number of times this type can be applied. On the other hand, L-FHE schemes such as

NTRU (Jeffrey Hoffstein, Pipher, and Silverman 1998) and HE1N (Dyer, Dyer, and

Xu 2019), can evaluate function 𝐹 in (2.1), composed of more than one type of

+ ×

×

+

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑦

11

arithmetic operations, but with limited depth of the arithmetic circuit represents 𝐹,

according to Definition 2.4 below,

Definition 2.4: (Brakerski, 2019, p. 549). L-FHE scheme is the HE scheme ℰ(𝑑) that

allows, for some 𝑑 ∈ 𝑍+, evaluation of depth-𝑑 circuits, i.e., ℱℰ(𝑑), is a set of functions

represented by circuits of depth bounded by 𝑑. The parameters of the scheme are

allowed to grow polynomially with 𝑑.

In some works (Sun et al. 2017; Youn, Jho, and Chang 2016; Boulemtafes et al. 2021),

the term “somewhat homomorphic encryption” (SHE) is used to indicate a scheme

with homomorphic capabilities against a restricted class of functions (depth bounded).

In this dissertation, the terms L-FHE and SHE are used interchangeably.

In L-FHE schemes, increasing the number of applied homomorphic operations, leads

to the growth of parameters used to mask the plaintext (noise), and thus, decryption

fails if the value of the noise exceeds some predefined threshold. In addition to the

growth of noise, some L-FHE schemes have also a growth of ciphertext size (number

of components). Gentry in (Gentry 2009a; 2009b) proposed Bootstrapping, to control

the growth of noise. Using Bootstrapping, Gentry managed to remove the constraints

on the circuit depth of the evaluated function, and thus converted an L-FHE scheme

into an FHE scheme defined by Definition 2.5,

Definition 2.5: (Brakerski, 2019, p. 549). A homomorphic encryption scheme ℰ is FHE

if ℱℰ is the set of all functions (or at least the set of all efficiently computable

functions).

All known FHE schemes, are following Gentry’s method of converting the L-FHE to

FHE using a NCM, or both of NCM and CSCM in the case of the L-FHE scheme has

12

a growth of both of ciphertexts size and the noise masks the message.. Several

classification attempts are made for HE schemes (Acar et al., 2018; Domingo-Ferrer

et al., 2019; Feng et al., 2020; Martins et al., 2017; Shrestha & Kim, 2019; Sultan,

2019; L. Wang & Ahmad, 2016; Zhao et al., 2020). In (Domingo-Ferrer et al., 2019;

Feng et al., 2020; Shrestha & Kim, 2019; Sultan, 2019; L. Wang & Ahmad, 2016;

Zhao et al., 2020), HE schemes are classified into PHE, SHE, FHE w.r.t two criteria:

operation type, and the allowed number of homomorphic operations. Such

classification criteria don’t show the difference between L-FHE schemes need NCM

only, and the L-FHE schemes need CSCM only (to be proposed in Chapter 7), or need

both of them. HE schemes differ in:

1- the number of homomorphic operation types: while PHE supports one

operation type, L-FHE supports more than the operation type.

2- the need for NCM: while PHE supports performing an unlimited number of

times of a specific operation type, L-FHE supports a limited number of times

of several operation types.

3- the need for CSCM; performing homomorphic operations leads to increase the

size of some L-FHE’s ciphertext (number of components) such as (Brakerski

et al., 2014; Brakerski & Vaikuntanathan, 2011a).

4- the underlying hard problem(s): HE with similar homomorphic features can

be differ in the underlying hard problem(s). For example, both of RSA (R. L.

Rivest, Shamir, and Adleman 1978) and El-Gamal (ElGamal 1985) support

one type of operation, don’t need NCM or CSCM, and they only differ in the

underlying hard problem (see Table 2.1).

5- and the number of keys used: HE schemes can be symmetric or asymmetric.

13

Therefore, new classification is proposed. It extends the previously used criteria (Acar

et al., 2018) (operation type, and the allowed number of homomorphic operations) to

five:

1- number of homomorphic operation types;

2- the need for NCM;

3- the need for CSCM;

4- the underlying hard problem(s);

5- and the number of keys used.

In the new criteria list, the previously used criterion, allowed number of homomorphic

operations, is replaced by: the need for NCM, and the need for CSCM, so the new

classification categorizes L-FHE schemes according to the control mechanism used.

The proposed classification of known HE schmes is presented in Table 2.1. From

Table 2.1, we can notice that:

1- PHE schemes (Classes 1, 2) are asymmetric encryption schemes, differing

only in the underlying hard problem. Therefore, in Section 2.2 we consider one

scheme as representative of Classes 1, 2 that is RSA.

2- All HE schemes support more than one homomorphic operation type, Classes

3-8, either need NCM only, or need both NCM and CSCM.

Section 2.2 reviews HE schemes from Classes 1-9, Table 2.1.

14

Table 2.1: Classification of homomorphic schemes (col. 2) based on five criteria (cols. 3-7).

1 2 3 4 5 6 7

class

number

Particular instances of

homomorphic schemes

Number. of

homomorphic

arithmetic operations

types (1, 2)

Needs

NCM

(Yes, No)

Needs

Ciphertext

Size

Control

Mechanism

(Yes, No)

Underlying hard problem

(Set of problems defining

methods resistance)

Number of keys

(Symmetric-1,

Asymmetric-2)

1
RSA(R. L. Rivest, Shamir, and

Adleman 1978)
1 No No

Discrete logarithm, integer

factorization
2

2 El-Gamal(ElGamal 1985) 1 No No Discrete logarithm 2

3

NTRU(Jeffrey Hoffstein, Pipher,

and Silverman 1998), López-Alt

et al. (López-Alt, Tromer, and

Vaikuntanathan 2012)

2 Yes No

Shortest Vector Problem in a

Lattice(Jeffrey Hoffstein,

Pipher, and Silverman 1998,

273)

2

4

Gentry(Gentry 2010), Van Dijk

et al. (van Dijk et al. 2010),

HE1N(Dyer, Dyer, and Xu 2019)

2 Yes No
Approximate GCD (Gentry

2010, 101)
1

5

Coron et. al. (Coron, Naccache,

and Tibouchi 2012; Coron et al.

2011), Yang et. al. (H. M. Yang

et al. 2012), Cheon et. al. (Cheon

et al. 2013), Chen et. al.(Chen,

Ben, and Huang 2014), Ramaiah

and Kumari (Ramaiah and

Kumari 2012), Nuida and

Kurosawa (Nuida and Kurosawa

2015)

2 Yes No Approximate GCD 2

15

6

Brakerski and Vaikuntanathan

(Brakerski & Vaikuntanathan,

2011a, 2011b), Brakerski et. al.

(Brakerski et al., 2014, 2013)

2 Yes Yes Learning with errors (LWE) 2

7 Gentry(Gentry 2009a) 2 Yes No
Ideal Coset Problem (ICP)

(Gentry 2009a, sec. 3.2)
2

8
Smart and Vercauteren (Smart

and Vercauteren 2010)
2 Yes No

Small Principal Ideal Problem,

Polynomial Coset Problem

(Smart and Vercauteren 2010,

429,431)

2

16

2.2 Review of Clasps 1 HE Schemes (RSA PKC)

 In this section, RSA from Class 1 is reviewed.

2.2.1 Review of RSA PKC

A message, 𝑚 ∈ 𝑍𝑁, is encrypted using,

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁, (2.2)

where 𝑁 = 𝑝 · 𝑞, p and q are two different prime numbers, and the encryption

exponent, e, is chosen according to,

gcd(𝑒, (𝑝 − 1)(𝑞 − 1)) = 1 (2.3)

The message, 𝑚 ∈ ℤ𝑁, is retrieved by decryption of the ciphertext, 𝑐, from (2.2) as

follows,

𝑚 = 𝑐𝑑𝑚𝑜𝑑 𝑁, (2.4)

where the decryption exponent, d, is the multiplicative inverse of e satisfying,

𝑒 ⋅ 𝑑 𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1) = 1. (2.5)

The public key is (𝑁, 𝑒), and the private key is (𝑁, 𝑑).

An example of 40-bit RSA encryption/ decryption process is provided in Example A.1,

Appendix A. Section 2.2.2 shows RSA homomorphism, Section 2.2.3 reviews lattice-

based attacks on RSA, and in Chapter 3, a new ciphertext-only attack (COA) (Ibrahim,

Chefranov, and Hamamreh 2021) against RSA encrypted messages is proposed.

2.2.2 Homomorphism of RSA with Respect to Multiplication

RSA can only evaluate homomorphically unlimited number of multiplication

operations on ciphertexts as shown below:

From (2.2)

𝑐(𝑖) = 𝑚(𝑖)
𝑒 𝑚𝑜𝑑 𝑁, 𝑖 = {1,… , 𝑛}

17

Thus,

𝐶𝑚𝑢𝑙𝑡 = 𝑐(1) ⋅ 𝑐(2) ⋅ … ⋅ 𝑐(𝑛) = 𝑚(1)
𝑒 ⋅ 𝑚(2)

𝑒 ⋅ … ⋅ 𝑚(𝑛)
𝑒 𝑚𝑜𝑑 𝑁 = (∏𝑚(𝑖)

𝑛

𝑖=1

)

𝑒

 𝑚𝑜𝑑 𝑁.

Thus, 𝐶𝑚𝑢𝑙𝑡 is the encryption of ∏ 𝑚(𝑖)
𝑛
𝑖=1 , and computed without the need to decrypt

the ciphertexts 𝑐(1), … , 𝑐(𝑛). Therefore, RSA is homomorphic w.r.t to one type of

operations that is multiplication. RSA encryption (2.2) does not use any noise to mask

the plaintext. Thus, RSA does not need NCM or CSCM.

In Chapter 3 a new ciphertext-only attack on RSA using lattices basis reduction is

proposed. Therefore, Section 2.2.3 reviews lattice-based attacks on RSA. Appendix B

provides a brief introduction to lattices and lattice basis reduction algorithms.

2.2.3 Review of Lattice-Based Attacks on RSA

LLL algorithm (A. K. Lenstra, Lenstra, and Lovász 1982) of lattice basis reduction is

used for COA on RSA (Boneh et al., 1998; Coppersmith, 1996b, 1996a; Hastad, 1988,

1986; Takayasu & Kunihiro, 2019, 2014) and NTRU (Jeff Hoffstein et al. 2010;

Jeffrey Hoffstein, Pipher, and Silverman 1998; Kirchner and Fouque 2017; Z. Yang et

al. 2018). Most of the attacks require either message broadcasting, or prior knowledge

of a part of a message/private key. And the problem of attacking RSA is considered as

a problem of solving SVP in a lattice dimension of which grows with the growth of

the encryption exponent, e. LLL algorithm computational complexity exponentially

depends on the lattice dimension (Jeffrey Hoffstein, Pipher, and Silverman 2014b,

428), equation (7.49), (Jeffrey Hoffstein, Silverman, and Whyte 1999, 6), Table 1, and,

hence, it solves SVP efficiently for low-dimensional lattices but the solution is

infeasible for lattices with a dimension greater than 400 (“IEEE Standard Specification

for Public Key Cryptographic Techniques Based on Hard Problems over Lattices,”

18

2009) to meet minimum security level of 112-bit. That is why, attacks on RSA using

LLL assume low encryption exponent value (May 2010). next, the attacks on RSA

private key and plaintext message are reviewed.

2.2.3.1 Lattice-Based Attacks Against RSA Private Key

In (Coppersmith, 1996a), prime factors of 𝑁 = 𝑝 · 𝑞, used as the modulus value in

RSA encryption (2.2) with the public key, 𝑒, and decryption (2.4) with the private key,

𝑑, are found as roots of a bivariate polynomial constructed using high order

(
1

4
+ 𝜀) log2 𝑁 bits of 𝑝, 𝜀 > 2/ log2 𝑁 (high order bits of 𝑞 are known by division of

𝑁 by 𝑝). LLL lattice basis reduction algorithm is used for dimension 𝑟 = 2𝑘 + 1, 𝑘 >

1/(4𝜀). In (Boneh & Durfee, 2000, 1999), LLL method is used to disclose the private

key, 𝑑 < 𝑁𝛿 , 𝛿 = 0.292, that extends the attack applicability compared to attack

(Wiener 1990) assuming 𝛿 = 0.25. In (de Weger, 2002), two parameters define the

attack applicability: 𝛿, and 𝛽 such that Δ = |𝑝 − 𝑞| = 𝑁𝛽. In (de Weger, 2002, fig. 1),

specifies that known attacks on RSA are not applicable for 𝛽 ∈ [0.5, 1], and mainly

not applicable for 𝛿 ∈ [0.5, 1], 𝛽 ∈ [0.25, 0.5]. Using 𝛽, the attack extends the

applicability of (Boneh & Durfee, 2000, 1999) attack up to 𝛿 → 1 for 𝛽 → 0.25 +

𝜀, 𝜀 → 0. In (Takayasu and Kunihiro 2014; 2019; Boneh, Durfee, and Franke 1998),

LLL algorithm is used to disclose secret RSA exponent provided that part of it (least-

or most-significant bits) are known. (Takayasu and Kunihiro 2019, fig. 1; 2014, fig. 2)

show that 𝛿 can be extended to 0.57 and 0.37 for the use of most- and least-significant

bits, respectively.

2.2.3.2 Lattice-Based COA Against RSA Messages

In (Coppersmith, 1996b), an encrypted RSA message is disclosed as a root of a

univariate polynomial of low order, 𝑒. Exponent considered in the paper is 𝑒 = 3

resulting in the polynomial of order, 𝑘 = 𝑒 = 3. The message, 𝑚, to be found shall be

19

rather small: |𝑚| < 𝑁
1

𝑘
−𝜀 , 𝜀 =

1

log𝑁
, 𝑘 < log 𝑁, (see (Hastad 1986, sec. 2)).

Respective lattice size is,

𝑆𝑖𝑧𝑒 = 2ℎ ⋅ 𝑘 − 𝑘 ≥ 2 ⋅
1

𝑘𝜀
𝑘 − 𝑘 = 2 log2 𝑁 − 𝑘 > 0, (2.6)

where ℎ is such that ℎ · 𝑘 ≥ 7 and ℎ − 1 ≥ (ℎ𝑘 − 1)(
1

𝑘
− 𝜀). It is known from NTRU

security requirements (“IEEE Standard Specification for Public Key Cryptographic

Techniques Based on Hard Problems over Lattices,” 2009) that if the size of a lattice

meets, 𝑆𝑖𝑧𝑒 ≥ 400, then LLL attack is unfeasible. Thus, from (2.6), it follows that

already for 512-bit RSA the attack is not feasible because log2 𝑁 = 512, 𝑘 < 512,

and, hence, 𝑆𝑖𝑧𝑒 ≥ 1024 − 𝑘 ≥ 512. Note that in (Coppersmith, 1996b), estimates of

RSA parameters, such that the proposed attack is feasible, are not defined. In (Hastad

1986), Hastad showed that the message, 𝑚, can be revealed in polynomial time when

it is encrypted with several public keys, (𝑒𝑖 , 𝑁𝑖), each having the same public exponent,

𝑒, and different moduli values, 𝑁𝑖 , 𝑖 = 1,⋯ , 𝑘, expected to be mutually relatively

prime, and meeting (2.7):

𝑚 < min
𝑖=1,⋯,𝑘

𝑁𝑖, (2.7)

𝑘 >
𝑒(𝑒 + 1)

2
,

(2.8)

𝑁 > 𝑛
𝑒(𝑒+1)

2 (𝑘 + 𝑒 + 1)
(𝑘+𝑒+1)

2 2
(𝑘+𝑒+1)2

2 (𝑒 + 1)𝑒+1 , (2.9)

𝑁 = ∏𝑁𝑖

𝑘

𝑖=1

,
(2.10)

(see (Hastad 1986, 405)). Method (Hastad 1988) is practically the same as in (Hastad

1986) with slightly different lattice constructed, and, thus, slightly differing from (2.9)

(see (Hastad 1988, 338)), and is also applied to a broadcasted message. The

20

broadcasted message, 𝑚, is revealed by applying LLL algorithm to the lattice defined

using coefficients of the polynomials resulting from the message encryption using

different moduli. Also, Chinese remainder theorem (CRT) is used.

2.2.3.3 Non-Lattice-Based Attacks Against RSA Private Keys and Messages

RSA secret key can be disclosed if the integer modulus, 𝑁, is factorized. Methods of

integer factorization are reviewed in (Rabah 2006; Alimoradi and Arkian 2016), and

application of one of them, number field sieve (NFS), in (Kleinjung et al. 2010) in

December 2009, resulted in factoring 768-bit RSA modulus, RSA-768. RSA moduli

RSA-240 and RSA-250 with 795 and 829 bits were factored by NFS on December 2,

2019, and February 28, 2020, (“RSA Factoring Challenge - Wikipedia” n.d.) which

took 4000 and 2700 core-years of Intel Xeon Gold 6130 CPUs as a reference (2.1GHz),

respectively (Listserv - Nmbrthry Archives, n.d.),([Cado-Nfs-Discuss] Factorization

of RSA-250, n.d.).

In (Bunder et al. 2017), a method of factoring RSA modulus, 𝑁 = 𝑝𝑞, 𝑞 < 𝑝 < 2𝑞,

in time polynomial in log𝑁 is proposed under assumption that an encryption exponent,

𝑒, meets 𝑒 · 𝑥 − (𝑝2 − 1)(𝑞2 − 1)𝑦 = 𝑧, 𝑔𝑐𝑑(𝑦, 𝑥) = 1, 𝑧 ≠ 0, 𝑥 · 𝑦 <

2𝑁– 4√2𝑁
3

4, |𝑧| < (𝑝 – 𝑞)𝑁
1

4𝑦, 𝑒 < (𝑝2 – 1)(𝑞2 – 1). In (Wiener 1990), continued

fractions are used for 𝑑 disclosure with 𝛿 ≤ 0.25. In (Wu et al. 2014), the applicability

of the attack (Wiener 1990) is extended to 𝑑 ≤ 𝑁𝛿 ∙ 2𝑟, 𝑟 ≤ 7. In(Abd Ghafar et al.,

2020), a method of 𝑁 factorization is proposed applicable when |𝑁0.5 − 𝑝0.5 ∙ 𝑞0.5| is

sufficiently small (less than 2112 as explained in (Abd Ghafar et al., 2020, p. 4)).

Super-encryption (successive encryption of the ciphertexts) is proposed in (Simmons

1977; Berkovits 1982). However, in (Jamnig 1988; Ronald L. Rivest 1978), it is shown

21

that the probability of success is about 10−90 for the parameters proposed for RSA in

(Rivest et al., 1978) because 𝑝 − 1, 𝑞 − 1 shall have large prime factors, and similar

for them as well. In (Bleichenbacher, 1997), Bleichenbacher defines that plaintexts 𝑚𝑖

are related if 𝑚𝑖 = 𝑓𝑖(𝑚) for some known polynomials 𝑓𝑖 and shows that having 𝑙

RSA public keys (𝑒1, 𝑁1),··· , (𝑒𝑙, 𝑁𝑙), 𝑁 = 𝑁1𝑁2 ··· 𝑁𝑙 and 𝑐𝑖 = 𝑓𝑖(𝑚)𝑒𝑖 mod 𝑁𝑖 for

𝑖 = 1,···, 𝑙, the plaintext 𝑚 can be computed in time polynomial in log𝑁 using

Coppersmith’s algorithm (Coppersmith, 1996b, p. 156). A method of the broadcasted

message disclosure is proposed based on the use of the CRT allowing reducing the

number of modular equations to a single equation and then finding 𝑒-th order root over

integers, in the simplest case of broadcasting one and the same message,

(Bleichenbacher, 1997, p. 241), or a univariate polynomial root finding using

Coppersmith method (Coppersmith, 1996b) for broadcasting related messages based

on a small message. The paper considers messages, 𝑚𝑖, related to the base message,

𝑚, by an affine transformation, 𝑚𝑖 = 𝛼𝑖 ∙ 𝑚 + 𝛽𝑖 𝑚𝑜𝑑 𝑛𝑖 (Bleichenbacher, 1997, p.

242), whereas in Coppersmith method only translation transformation is expected to

be used: 𝑚′ = 𝑚 + 𝑡 (Coppersmith, 1996b, p. 161). In (Delaurentis 1984),

DeLaurentis considered two cases. In Case 1, a probabilistic algorithm is proposed that

allows factoring modulus, 𝑁 = 𝑝 · 𝑞, using information on the public-private key pair

of the attacker (insider) but not of the other users, neither public, nor private keys,

within an average number of runs at most 2. In Case 2, without factoring of 𝑁, an own

encryption-decryption key pair, as well as an encryption key of another valid user are

used to disclose an equivalent for the private key of another user that may be used to

disclose his messages and to forge his signature. Simmons (Belhaj & Kahla, 2013)

considers one message encrypted by two different encryption keys resulting in two

ciphertexts of one and the same message. If the encryption keys are co-prime, their

22

mutual inverses may be found and used for the message disclosing. In (Arjen K.

Lenstra and Verheul 2000, 265), Lenstra et. al., clarified that selecting values of public

exponent 𝑒, such as 3 and 17 can no longer be recommended, but commonly used

values such as 216 + 1 = 65537 still seems to be fine. Lenstra et. al. (Arjen K. Lenstra

and Verheul 2000, 265) asserted that if one prefers to stay on the safe side, an odd 32-

bit or 64-bit of public exponent at random may be chosen.

If a known plaintext-ciphertext pair, (𝑃, 𝐶) is known, discrete logarithm problem

(DLP) solution can be used to disclose the private key as 𝑑 = 𝑙𝑜𝑔𝐶,𝑁𝑃. DLP

computational complexity is of the order of that of integer factorization and in parallel

with factorization respective DLP solving is reported in ([Cado-Nfs-Discuss]

Factorization of RSA-250, n.d.; Listserv - Nmbrthry Archives, n.d.).

In (Coppersmith et al., 1996), a method for recovering RSA messages is proposed for

rather large encryption exponent such as, 𝑒 = 216 + 1. The method assumes that

two plain messages are encrypted with the same encryption exponent, 𝑒, and modulus,

𝑁, and one of the messages, 𝑚2, is related with another one, 𝑚1, by an affine

transformation, 𝑚2 = 𝑎 ⋅ 𝑚1 + 𝑏, and two respective ciphertexts are known, 𝑐1, 𝑐2.

The message, 𝑚1, is found as a root of a polynomial which is the greatest common

divisor (GCD) of two univariate polynomials modulo 𝑁, 𝑝1(𝑚1) = 𝑚1
𝑒 −

𝑐1, 𝑝2(𝑚1) = (𝑎 · 𝑚1 + 𝑏)𝑒 − 𝑐2. The GCD is obtained using Euclid’s algorithm. The

method is generalized for the cases of 𝑚2 = 𝑝(𝑚1), where 𝑝() is a polynomial, and

for multiple messages polynomially related, 𝑝(𝑚1,⋯ ,𝑚𝑘) = 0. As far as all the

related messages, 𝑚2,···, 𝑚𝑘 depend on the single message, 𝑚1, this mode of operation

can be considered as “broadcasting” of the message 𝑚1 and its dependent messages,

23

𝑚2,···, 𝑚𝑘 encrypted each with its own encryption exponent. The maximal encryption

exponent mentioned in the paper is 𝑒 = 216 + 1. Figure 2.2 shows our implementation

of the attack (Coppersmith et al., 1996) using Maple 2016 on Intel i7-7700 CPU 3.60

GHz, 8GB RAM. The message, 𝑚 = 2, is recovered as the root of the GCD of two

univariate polynomials, 𝑝1 = 𝑥𝑒 − 𝑐1 mod 𝑁 and 𝑝2 = (𝑥 + 1)𝑒 − 𝑐2 mod 𝑁, where

𝑁 = 𝑝 · 𝑞 = (220 + 7) · (220 + 13), 𝑒 = 216 + 1, 𝑐1 = 𝑚𝑒 𝑚𝑜𝑑 𝑁, 𝑐2 = (𝑚 +

 1)𝑒 𝑚𝑜𝑑 𝑁. The GCD is found nearly in 6 minutes.

Figure 2.2: Maple code implementation of GCD attack (Coppersmith et al.,

1996), recovering RSA message encrypted with large exponent 𝑒 = 216 + 1.

In (Boneh et al., 2000), Boneh et al. proposed attacking 𝑛-bit RSA message, m, using

meet-in-the-middle (MITM) attack. MITM attack is applied in two steps. A pre-

computation step where the message is represented as 𝑚 = 𝑚1𝑚2 with 𝑚1 ≤ 2𝑛1 and

24

𝑚2 ≤ 2𝑛2. Hence, 𝑐 𝑚2
𝑒⁄ = 𝑚1

𝑒 𝑚𝑜𝑑 𝑁. A table of size 2𝑛1 has to be built containing

the values 𝑚1
𝑒 𝑚𝑜𝑑 𝑁 for all 𝑚1 ∈ 0,1,⋯ , 2𝑛1 − 1. Then, in the search step, we check

for each 𝑚2 ∈ 0, 1,⋯ , 2𝑛2 − 1, whether 𝑐 𝑚2
𝑒⁄ 𝑚𝑜𝑑 𝑁 is present in the table. Any

collision reveals the message 𝑚. We implemented MITM attack (Boneh, Joux, and

Nguyen 2000) using NTL (“NTL: A Library for Doing Number Theory” n.d.) library

(Intel i5-8250U CPU 1.60 GHz, 8GB RAM), and we managed to recover a 40-bit

message from Example A.1, Appendix A, encrypted with 𝑒 = 216 + 1 in 2.25

seconds for pre-computation step and 0.202 second for the searching step. Thus, from

the analysis conducted we see that known lattice-based attacks against RSA private

key, and against RSA messages practically use small public encryption exponent, a

large part of the message to be known in advance, or a message to be broadcast. On

the other hand, a non-lattice-based attack in (Coppersmith et al., 1996) has the cost of

𝑂(𝑒2) for computing GCD (Micciancio 2016), where 𝑒 is the RSA encryption

exponent, while MITM (Boneh, Joux, and Nguyen 2000) has the cost of 𝑂(𝑛√2𝑛),

where n is the message length in bits. The analysis of the attacks on RSA conducted

above shows that they are not applicable for key-size greater than 829 bits, with 𝑝, 𝑞

such that 𝑝 − 1, 𝑞 − 1 have large prime factors, encryption and decryption keys are

greater than 𝑁0.5, and 𝑟𝑜𝑢𝑛𝑑(𝑁0.5 − ⌊𝑝0.5⌋ ∙ ⌊𝑞0.5⌋) is large. In Chapter 3 a new

ciphertext-only attack on RSA is proposed.

2.3 Review of Class 3 (NTRU PKC)

In this section, NTRU PKC and its variants are reviewed.

2.3.1 Review of NTRU PKC

NTRU is described below according to (Jeffrey Hoffstein, Pipher, and Silverman

2014b, sec. 7.10.1).

25

NTRU has four positive integer parameters, (𝑁, 𝑝, 𝑞, 𝑑), and uses the rings,

𝑅 =
ℤ[𝑥]

𝑥𝑁 − 1
, 𝑅𝑞 =

ℤ𝑞[𝑥]

𝑥𝑁 − 1
, 𝑅𝑝 =

ℤ𝑝[𝑥]

𝑥𝑁 − 1
.

A polynomial, 𝑎(𝑥) ∈ 𝑅, loos as follows:

𝑎(𝑥) = ∑ 𝑎𝑖𝑥
𝑖

𝑁−1

𝑖=0

= [𝑎0, 𝑎1, … , 𝑎𝑁−1] (2.11)

NTRU uses trinary polynomials defined as follows,

𝒯(𝑑1, 𝑑2) = {𝑎(𝑥) ∈ 𝑅:

𝑎(𝑥) ℎ𝑎𝑠 𝑑1 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 equal to 1,
𝑎(𝑥) ℎ𝑎𝑠 𝑑2 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 equal to -1,

𝑎(𝑥)ℎ𝑎𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑒𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 equal to 0
} (2.12)

NTRU assumes that,

𝑔𝑐𝑑(𝑝, 𝑞) = 𝑔𝑐𝑑(𝑁, 𝑞) = 1, 𝑞 > (6𝑑 + 1)𝑝 (2.13)

𝑝 > 2 is prime, 𝑑 ≥ 1 is an integer defining the structure used by NTRU polynomials,

𝑓(𝑥), 𝑔(𝑥), 𝑟(𝑥), are introduced below. NTRU uses two private keys:

𝑓(𝑥), 𝑔(𝑥). The first private key, 𝑓(𝑥), is generated as follows:

𝑓(𝑥) = [𝑓0, 𝑓1, . . . , 𝑓𝑁−1] ∈ 𝒯(𝑑 + 1, 𝑑) (2.14)

The private key (2.14), 𝑓(𝑥), must have inverses modulo 𝑝 and 𝑞, that is, 𝐹𝑝(𝑥), 𝐹𝑞(𝑥),

respectively:

𝑓 ⋅ 𝐹𝑞 ≡ 1 (𝑚𝑜𝑑 𝑞) 𝑎𝑛𝑑 𝑓 ⋅ 𝐹𝑝 ≡ 1 (𝑚𝑜𝑑 𝑝) (2.15)

The private key, 𝑔(𝑥), is randomly chosen as follows:

𝑔(𝑥) ∈ 𝒯(𝑑, 𝑑) (2.16)

The public key, ℎ(𝑥), is computed using (2.15) and (2.16) as follows,

ℎ(𝑥) = 𝐹𝑞 ⋅ 𝑔 𝑚𝑜𝑑 𝑞. (2.17)

The plaintext message 𝑚(𝑥), is assumed to meet the following condition:

𝑚(𝑥) ∈ 𝑅𝑝. (2.18)

26

Moreover, the coefficients of 𝑚 are assumed to be center-lifted, i.e., to be in

(−
1

2
𝑝,

1

2
𝑝]. A pseudo-randomly generated blinding polynomial, 𝑟(𝑥), is chosen as

follows:

𝑟(𝑥) ∈ 𝒯(𝑑, 𝑑). (2.19)

Ciphertext, 𝑒(𝑥), is computed as,

𝐹ℎ,𝑝
𝑁𝑇𝑅𝑈(𝑚, 𝑟) = 𝑒(𝑥) = 𝑝 ⋅ 𝑟 ⋅ ℎ + 𝑚 ∈ 𝑅𝑞 . (2.20)

Decryption in NTRU consists of Steps 1 and 2 described below.

Step 1: The first private key, 𝑓(𝑥), is applied to (2.20):

𝑎 = 𝑓 ⋅ 𝑒 𝑚𝑜𝑑 𝑞 = 𝑝 ⋅ 𝑟 ⋅ 𝑔 + 𝑓 ⋅ 𝑚 𝑚𝑜𝑑 𝑞, (2.21)

Step 2: The second private key, 𝐹𝑝, is applied to (2.21) after 𝑎 is center-lifted

𝑚 = 𝑎 ⋅ 𝐹𝑝 𝑚𝑜𝑑 𝑝, (2.22)

Decryption correctness condition is,

∀𝑖 ∈ {0, … , 𝑁 − 1}, |𝑎𝑖| < 𝑞/2 (2.23)

Where 𝑎𝑖 is the 𝑖-th coefficient of the polynomial 𝑝 ⋅ 𝑟 ⋅ 𝑔 + 𝑓 ⋅ 𝑚.

In equation(2.22), 𝐹𝑝 from (2.15) is used, and the contributor with factor 𝑝 in (2.21)

vanishes due to the constraints (2.13), (2.14)-(2.16), (2.19) imposed which guarantee

that sum in the rightmost expression in (2.21) is a polynomial with coefficients strictly

less than 𝑞, so that mod 𝑞 operation, applied last in (2.21), does not change the

coefficients.

Howgrave et. al., in (Howgrave-Graham, Silverman, and Whyte 2005; Howgrave-

Graham, Silverman, et al. 2003) defined the following parameter settings for NTRU:

27

𝑝 = 2, 𝑞 > 4𝑑 + 1 is prime, 𝑁 > 3𝑘 + 8 is prime, 𝑘 is the security parameter, and 𝑑

is the minimal integer such that (
𝑁 2⁄

𝑑 2⁄
) √𝑁⁄ > 2 𝑘, where (

𝑚
𝑛

) is the number of

combinations of 𝑛 elements out of 𝑚. Secret polynomials, 𝑓, and 𝑔, are binary

polynomials from 𝐷𝑓 and 𝐷𝑔, with 𝑑𝑓 = 𝑑𝑔 = 𝑑 coefficients equal to one. Both 𝑓 and

𝑔 are invertible modulo 𝑞. The public key, ℎ, is defined as in (2.17). A binary message,

𝑚 = 𝐷𝑚 ∈ 𝑅𝑝, is encrypted using a random binary polynomial 𝑟 from 𝐷𝑟 with the

𝑑𝑟 = ⌊𝑁 2⁄ ⌋ ones according to (2.20). The decryption process is executed by (2.21),

(2.22). The center-lifting to 𝑎, the LHS in (2.21) is done through the function 𝑐𝑒𝑛𝑡𝑒𝑟().

An implementation of 𝑐𝑒𝑛𝑡𝑒𝑟(), called 𝑐𝑒𝑛𝑡𝑒𝑟1(), provided in (Silverman et al.,

2003, p. 4) follows:

1. Calculate 𝑚(1) as 𝑒(1) − 𝑝 ⋅ 𝑟(1) ⋅ ℎ(1) 𝑚𝑜𝑑 𝑞, reduced to the interval,

𝑁 − 𝑞

2
≤ 𝑚(1) <

𝑁 + 𝑞

2
.

(2.24)

2. Denote 𝑎 reduced to the interval [0, 𝑞 − 1] by 𝑎. The underline is intended to

indicate the minimal possible interval.

3. Calculate 𝑎(1). This will differ from 𝑝 ⋅ 𝑟(1) ⋅ ℎ(1) + 𝑓(1) ⋅ 𝑚(1) by 𝑘 ⋅ 𝑞,

for some integer, 𝑘.

4. Add 𝑞 to the lowest 𝑘 entries of 𝑎 to obtain 𝑎 reduced into the correct interval.

NTRU decryption fails if the following condition does not hold,

𝑊𝑖𝑑𝑡ℎ(𝑝 ⋅ 𝑔 ⋅ 𝑟 + 𝑓 ⋅ 𝑚) < 𝑞. (2.25)

where 𝑊𝑖𝑑𝑡ℎ(𝑝(𝑥)) = max
𝑖=0,…,𝑁−1

(𝑝𝑖) − min
𝑖=0,…,𝑁−1

(𝑝𝑖). Application of the 𝑐𝑒𝑛𝑡𝑒𝑟()

function to the left-hand side (LHS) makes the second equality in (2.21) true under

condition (2.25). For the conditions imposed on NTRU parameters described

28

above, in particular, 𝑝 = 2, 𝑞 > 4𝑑 + 1, the second equality in (2.24)holds, and

there is no need for centering.

2.3.2 Homomorphism of NTRU with Respect to Addition and Multiplication

NTRU is homomorphic w.r.t. two operations; addition and multiplication. From

(2.20), let 𝑒(𝑖)(𝑥) be ta ciphertext encrypting the message 𝑚(𝑖), 𝑖 = {1,… , 𝑛}:

𝑒(𝑖)(𝑥) = 𝑝 ⋅ 𝑟(𝑖) ⋅ ℎ + 𝑚(𝑖) ∈ 𝑅𝑞 . (2.26)

Homomorphic addition and multiplication follow.

2.3.2.1 Homomorphic Addition

Let 𝑒(𝑥) be the ciphertext that encrypts the summation of 𝑒(1) and 𝑒(2) as follows:

𝑒(𝑥) = 𝑒(1)(𝑥) + 𝑒(2)(𝑥) = 𝑝 ⋅ ℎ(𝑟(1) + 𝑟(2)) + 𝑚(1) + 𝑚(2).

It follows that

𝑒(𝑥) = ∑𝑒(𝑖)(𝑥)

𝑛

𝑖=1

= 𝑝 ⋅ ℎ ∑𝑟(𝑖)

𝑛

𝑖=1

+ ∑𝑚(𝑖)

𝑛

𝑖=1

= 𝑝 ⋅ ℎ ⋅ 𝑟 + 𝑚

Decryption of 𝑒(𝑥) resulting in 𝑚 = ∑ 𝑚(𝑖)𝑛
𝑖=1 is performed by (2.21),(2.22).

Decryption correctness condition is,

∀𝑖 = {0,… ,𝑁 − 1}: |𝑏𝑖| < 𝑞, (2.27)

where 𝑏𝑖 is the 𝑖-th coefficient of the polynomial 𝑝 ⋅ 𝑔 ∑ 𝑟(𝑖)𝑛
𝑖=1 + 𝑓 ∑ 𝑚(𝑖)𝑛

𝑖=1 ,

according to (2.23). Since 𝑟 has small coefficients (see (2.19)), many homomorphic

additions can be executed correctly as the growth of the noise, ∑ 𝑟(𝑖) = 𝑛�̂�𝑛
𝑖=1 , is linear

on 𝑛.

2.3.2.2 Homomorphic Multiplication

Multiplication of 𝑒(1)(𝑥), 𝑒(2)(𝑥) is performed as follows:

29

𝑒(𝑥) = 𝑒(1)(𝑥) ⋅ 𝑒(2)(𝑥) = (𝑝 ⋅ 𝑟(1) ⋅ ℎ + 𝑚(1))(𝑝 ⋅ 𝑟(2) ⋅ ℎ + 𝑚(2))

= 𝑝 ⋅ ℎ(𝑝 ⋅ 𝑟(1) ⋅ 𝑟(2) ⋅ ℎ + 𝑟(1) ⋅ 𝑚(2) + 𝑟(2) ⋅ 𝑚(1)) + 𝑚(1)𝑚(2)

= 𝑝 ⋅ ℎ ⋅ 𝑟𝑥 + 𝑚(1)𝑚(2)

The decryption of 𝑒(𝑥) performed as follows:

Step1:

𝑎 = 𝑓2 ⋅ 𝑒(𝑥) 𝑚𝑜𝑑 𝑞 = (𝑝 ⋅ 𝑟(1) ⋅ 𝑔 + 𝑓 ⋅ 𝑚(1))(𝑝 ⋅ 𝑟(2) ⋅ 𝑔 + 𝑓 ⋅ 𝑚(2)) 𝑚𝑜𝑑 𝑞

Step2: after center-lifting coefficients of polynomial 𝑎 from Step1,

𝐹𝑝
2 ⋅ 𝑎 𝑚𝑜𝑑 𝑝 = 𝑚(1) ⋅ 𝑚(2).

Decryption correctness condition is:

∀𝑖 = {0,… ,𝑁 − 1}: |𝑐𝑖| < 𝑞, (2.28)

where 𝑐𝑖 is the 𝑖-th coefficient of the polynomial 𝑝 ⋅ ℎ ⋅ 𝑟𝑥 + 𝑚(1)𝑚(2), and 𝑟𝑥 = 𝑝 ⋅

𝑟(1) ⋅ 𝑟(2) ⋅ ℎ + 𝑟(1) ⋅ 𝑚(2) + 𝑟(2) ⋅ 𝑚(1) = 𝒪(𝑟2). The growth of 𝑟𝑥 is exponential in

the number of multiplications which limits the number of allowed multiplication

operations.

Thus, we conclude that NTRU is homomorphic w.r.t to addition and multiplication

operations. NCM is needed when the thresholds defined in (2.27),(2.28) are exceeded.

NTRU works with degree 𝑁 polynomials. The main problem NTRU faces is that it is

susceptible to the lattice basis reduction attack (LBRA) using LLL algorithm. The

LBRA using LLL algorithm solves the shortest vector problem (SVP) with exponential

in 𝑁 running time revealing the secret key because the private keys are selected as

polynomials with small coefficients for the decryption correctness (Hoffstein et al.,

1999). To overcome the problem of susceptibility, NTRU uses large 𝑁 resulting in

30

high computational complexity (Hoffstein et al., 1998; “IEEE Standard Specification

for Public Key Cryptographic Techniques Based on Hard Problems over Lattices,”

2009).

NTRU variants (Bagheri et al., 2018; Banks & Shparlinski, 2002; Coglianese & Goi,

2005; Gaborit et al., 2002; Gaithuru & Salleh, 2017; Hoffstein et al., 2014b, p. 373;

Howgrave-Graham et al., 2005; Howgrave-Graham, Silverman, Singer, et al., 2003;

Jarvis & Nevins, 2015; Karbasi & Atani, 2015; Malekian et al., 2011; Malekian &

Zakerolhosseini, 2010; M.G. & R., 2016; Seck & Sow, 2019; Stehlé & Steinfeld, 2011;

Thakur & P., 2016; Thakur & Tripathi, 2017; Vats, 2009; B. Wang et al., 2018;

Yassein & Al-Saidi, 2016; Yu et al., 2017), shown in Section 2.3.4, try minimizing

NTRU computational complexity by extending the coefficients of the polynomials

used or using matrices of polynomials that allow preserving the security level while

decreasing the polynomial degree. The extreme case is a polynomial of zero degrees,

that is integers modulo 𝑞 >> 1, as used in the congruential public-key cryptosystem

(CPKC) (Section 2.3.3.12.3.3), but CPKC with the NTRU encryption/encryption

mechanism is insecure against LBRA by GLR (crackable in about 10 iterations)

(Hoffstein et al., 2014b, pp. 373–376, 451). Therefore, the CPKC is considered as a

toy model of NTRU because “it provides the lowest dimensional introduction to the

NTRU public-key cryptosystem” (Hoffstein et al., 2014b, p. 374). The insecurity of

CPKC stems from the choice of the private keys used as small numbers to provide

decryption correctness. In Section 2.3.3, CPKC is reviewed, and LBRA using GLR is

presented. Section 2.3.4 reviews known NTRU variants, and Section 2.3.5 reviews one

of the main recent lattice attacks against NTRU, 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack(Z. Yang et al.,

2018b).

31

2.3.3 Review of CPKC and Lattice-Based Attack on CPKC

In this section, a review of the CPKC scheme (Hoffstein et al., 2014a) is provided,

then an introduction of lattice-based attack on CPKC is given.

2.3.3.1 Review of CPKC Scheme

Two secret integers, 𝑓, and 𝑔, are defined as follows:

𝑓 < √𝑞 2⁄ , √𝑞 4⁄ < 𝑔 < √𝑞 2⁄ (2.29)

gcd(𝑓, 𝑞 ⋅ 𝑔) = 1 (2.30)

where 𝑞 is a public integer. The first secret value, 𝑓, has inverse modulo 𝑔 and 𝑞, that

is 𝐹𝑔 and 𝐹𝑞, respectively, by virtue of (2.30),

1 = 𝑓 ⋅ 𝐹𝑔 𝑚𝑜𝑑 𝑔, 1 = 𝑓 ⋅ 𝐹𝑞 𝑚𝑜𝑑 𝑞. (2.31)

A public value, ℎ, is computed using (2.29) and (2.31) as follows:

ℎ = 𝐹𝑞 ⋅ 𝑔 𝑚𝑜𝑑 𝑞. (2.32)

Thus, CPKC has the private (secret) key, 𝑆𝐾 = (𝑓, 𝑔, 𝐹𝑔, 𝐹𝑞), and the public key, 𝑃𝐾 =

(ℎ, 𝑞). The plaintext message, 𝑚, meets the following condition,

0 < 𝑚 < √𝑞 4⁄ . (2.33)

A random integer, 𝑟, is chosen as follows:

0 < 𝑟 < √𝑞 2⁄ . (2.34)

The ciphertext, 𝑒, is computed using (2.32)-(2.34) as follows:

𝑒 = 𝐹ℎ(𝑚, 𝑟) = 𝑟 ⋅ ℎ + 𝑚 𝑚𝑜𝑑 𝑞 (2.35)

Decryption is described by Step 1 and 2 below:

Step1: Multiply the ciphertext (2.35) by 𝑓, getting:

𝑎 = 𝑓 ⋅ 𝑒 𝑚𝑜𝑑 𝑞

= 𝑟 ⋅ 𝑓 ⋅ 𝐹𝑞 ⋅ 𝑔 + 𝑓 ⋅ 𝑚 𝑚𝑜𝑑 𝑞 (2.36)

32

Note that 𝑎 = 𝑟 ⋅ 𝑔 + 𝑓 ⋅ 𝑚 if (the remainder is allowed to be negative):

|𝑟 ⋅ 𝑔 + 𝑓 ⋅ 𝑚| < 𝑞 (2.37)

where (2.31), (2.32), and (2.35) are used. The CPKC decryption correctness condition

(2.37) holds under conditions (2.29), (2.33) and (2.34):

|𝑟 ⋅ 𝑔 + 𝑓 ⋅ 𝑚| < √𝑞 2⁄ √𝑞 2⁄ + √𝑞 2⁄ √𝑞 4⁄ < 𝑞. (2.38)

Thus, the parameters, 𝑓 , 𝑔, and 𝑟, are selected as small compared to 𝑞 (see (2.29),

(2.33) and (2.30)) to meet the CPKC correctness decryption condition (2.37) used in

Step 2 of the decryption. Step 2: Multiply (2.36) by 𝐹𝑔, getting:

𝑚 = 𝑎 ⋅ 𝐹𝑔 𝑚𝑜𝑑 𝑔, (2.39)

where (2.31) is used and the contributor with the factor 𝑔 in (2.36) vanishes due to

(2.37). Numerical Example C.1 of CPKC encryption/decryption is in Appendix C.

In Section 2.3.3.2, lattice basis reduction attack (LBRA) using GLR algorithm against

the CPKC private key/message is explained.

2.3.3.2 Two-Dimensional CPKC Lattice

In (Hoffstein et al., 2014b, p. 376), it is shown that the CPKC private key recovery

problem can be formulated as the shortest vector problem (SVP) in the two-

dimensional lattice, 𝐿(𝑉1, 𝑉2). From (2.32), it can be noticed that for any pair of

integers, 𝐹 and 𝐺, satisfying:

𝐺 = 𝐹 ⋅ ℎ 𝑚𝑜𝑑 𝑞, 𝐹 = 𝒪(√𝑞), 𝐺 = 𝒪(√𝑞) (2.40)

(𝐹, 𝐺) is likely to serve as the first two components, 𝑓, and 𝑔, of the private key, 𝑆𝐾

(Hoffstein et al., 2014b, p. 376). Equation (2.40) can be written as 𝐹 ⋅ ℎ + 𝑞 ⋅ 𝑛 = 𝐺,

where 𝑛 is an integer. Therefore, our task is to find a pair of comparatively small by

absolute value integers, (𝐹, 𝐺), such that:

33

𝐹 · 𝑉1 + 𝑛 · 𝑉2 = (𝐹, 𝐺), (2.41)

where 𝑉1 = (1, ℎ) and 𝑉2 = (0, 𝑞) are basis vectors, at least one of them having the

Euclidean norm of order 𝒪(𝑞). Similarly, the CPKC message recovery problem can

be formulated as the SVP in the two-dimensional lattice, 𝐿(𝑉1, 𝑉2), where 𝑉1 and 𝑉2

are from (2.41). It can be also noticed from (2.35) that for any pair of integers,

(𝑅𝑅, 𝐸𝑀), satisfying:

𝐸𝑀 = 𝑅𝑅 ⋅ ℎ 𝑚𝑜𝑑 𝑞, 𝑅𝑅 = 𝒪(√𝑞), 𝐸𝑀 = 𝒪(√𝑞), (2.42)

(𝑅𝑅, 𝐸𝑀) is likely to serve as the vector (𝑟, 𝑒 − 𝑚) since the encryption Equation

(2.35) can be written as 𝑟 · ℎ + 𝑞 · 𝑛 = 𝑒 − 𝑚, where 𝑛 is an integer. Therefore, our

task is to find a pair of comparatively small by absolute value integers, (𝑅𝑅, 𝑅𝑀), such

that:

𝑅𝑅 · 𝑉1 + 𝑛 · 𝑉2 = (𝑅𝑅, 𝐸𝑀). (2.43)

We aim to find the shortest vector 𝑤 from 𝐿(𝑉1, 𝑉2) using LLL that might disclose

(𝑟, 𝑒 − 𝑚) if 𝑒 and 𝑟 are of the order of 𝒪(√𝑞). Comparing (2.41) and (2.43), it is

noticed that they are the same up to the unknowns’ names used, and hence, finding the

shortest vector in 𝐿(𝑉1, 𝑉2) may reveal either the private key components, (𝐹, 𝐺) =

 (𝑓 , 𝑔), or the message related vector, (𝑅𝑅, 𝐸𝑀) = (𝑟, 𝑒 − 𝑚).

2.3.3.3 Gaussian Lattice Reduction Attack on CPKC Key/Message

Maple code (shown in Code B.1, Appendix B) of LBRA by GLR on CPKC private

key/message returned as the shortest vector 𝑤 = 𝑣1 of the lattice 𝐿(𝑉1, 𝑉2), where 𝑉1,

𝑉2 are from (2.41). Example C.2 in Appendix C, provides an example of a GLR attack

against CPKC. LBRA by GLR finds in 9 iterations the shortest vector, 𝑣1 = (𝑓, 𝑔)

corresponds to the private key components, (𝑓 , 𝑔), because they were selected small,

having order 𝒪(√𝑞) values according to (2.40).

34

2.3.4 Review of Known NTRU Variants

Many variants of NTRU have been proposed and studied recently, targeting further

decreasing its computational complexity. All these variants work with polynomials

and mainly differ in the choice of their coefficients, the ring defining polynomial, or

the polynomials used as the entries of such structures as matrices. The NTRU variants

overview follows.

2.3.4.1 NTRU Variants Differing in the Choice of Their Coefficients

In (Jarvis & Nevins, 2015), the NTRU variant, ETRU, was proposed working with

polynomials over Eisenstein integer coefficients and was faster than NTRU in

encryption/decryption by 1.45/1.72 times. Karbasi and Atani (Karbasi & Atani, 2015)

modified ETRU, called ILTRU (Karbasi and Atani 2015) so that it works with

irreducible cyclotomic polynomial over Eisenstein integer coefficients. An NTRU

variant, BITRU, working with polynomials over so-called binary numbers, usually

known as complex numbers, was proposed in (M.G. & R., 2016). An NTRU variant,

QTRU, working with polynomials over hyper-complex four-component numbers,

quaternions, was proposed in (Malekian et al., 2011). Furthermore, Bagheri and

colleagues proposed an NTRU variant, BQTRU, working over quaternions, but with

bivariate polynomials, seven times faster than NTRU in encryption (Malekian et al.,

2011). A variant of NTRU working with polynomials over eight-component hyper-

complex numbers, octonions(Malekian & Zakerolhosseini, 2010)alekian &

Zakerolhosseini, 2010). In (Yassein & Al-Saidi, 2016), NTRU variant, HXDTRU, was

proposed working with polynomials over 16-component hyper-complex numbers,

hexadecnions, also known as sedenions (Sedenion - Wikipedia, n.d.). Furthermore, a

variant of NTRU working with polynomials over 16-component hyper-complex

numbers, sedenions, was proposed in (Thakur & Tripathi, 2017). A variant of NTRU,

35

called CTRU, working with polynomials, the coefficients of which are also

polynomials in one variable over a binary field, was proposed in (Gaborit et al., 2002).

Furthermore, a variant of NTRU working with polynomials, the coefficients of which

are polynomials in one variable over a rational field, called BTRU, was proposed in

(Thakur & P., 2016).

2.3.4.2 NTRU Variants Working with Different Rings

An NTRU variant that works with polynomials with prime cyclotomic rings was

proposed (Yu et al., 2017). A variant of NTRU working with non-invertib(Banks &

Shparlinski, 2002) in (Banks & Shparlinski, 2002).

2.3.4.3 NTRU Variants Working with Polynomials Inside More Complicated

Structures

An NTRU variant working with square matrices of polynomials was proposed in

(Coglianese & Goi, 2005) and was shown to be 2.5 times better than NTRU encryption

and decryption time. An NTRU variant, called NNRU, working with polynomials also

being entries of square matrices forming a non-commutative ring, was proposed in

(Vats, 2009). Apart from the polynomial variants, an NTRU-like cipher over the ring

of integers, called ITRU, was proposed in (Gaithuru & Salleh, 2017) without

referencing CPKC (Hoffstein et al., 2014b). In ITRU (Gaithuru & Salleh, 2017, pp.

34, Table 1), the NTRU model specified above was given, but a model for the proposed

ITRU was not defined. Its Algorithm 1, (Gaithuru & Salleh, 2017, p. 35), describes

the key generation, and hence, it shall be made by the key owner (receiver). On the

other hand, in (Gaithuru & Salleh, 2017, p. 37), the most important parameter, 𝑞, was

selected by the sender (which encrypts a message using the public key, ℎ′ = 423,642,

and a random value, 𝑟′ = 19, in (Gaithuru & Salleh, 2017, p. 37, eq. (19)) with the

help of the private keys, 𝑓′, 𝑔′, which contradicts the NTRU model: the secret key is

36

known to only the key owner that uses the private key only for decryption, whereas

the public key is used for encryption by the public user only.

2.3.5 Review of IN−Lattice Attack on NTRU Private Keys

In this section, lower dimension lattice (than the normal 2𝑁-dimensional NTRU lattice

ℒ𝑛𝑡𝑟𝑢 (Hoffstein et al., 1998, p. 273, 2014b, p. 425)) attack on NTRU (Z. Yang et al.,

2018b), hereafter (𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack), is briefly reviewed. In (Z. Yang et al.,

2018b), a class of lower dimension lattices (lower than 2𝑁) is constructed, called 𝐼𝑁 −

𝐿𝑎𝑡𝑡𝑖𝑐𝑒, and a new lattice attack on NTRU is presented using these lattices.

Definition 2.6: (Hoffstein et al., 2014b, p. 402). Let ℒ be a lattice of dimension 𝑛. The

Gaussian expected shortest length is:

𝜎(ℒ) = √
𝑛

2𝜋𝑒
(det(ℒ))1 𝑛⁄ .

(2.44)

More precisely, if 𝜖 > 0 is fixed, then for all sufficiently large 𝑛, a randomly chosen

lattice of dimension 𝑛 will satisfy:

(1 − 𝜖)𝜎(ℒ) ≤ ‖𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡‖ ≤ (1 + 𝜖)𝜎(ℒ) (2.45)

where 𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 is the shortest nonzero vector in ℒ. For 2𝑁-dimension lattice,

‖𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡‖ ≤
(1 + 𝜖)(det(ℒ))1 (2𝑁)⁄

√2𝜋𝑒
√2𝑁 <

(2.46)

Let 𝜏 > (1 + 𝜖)(det(ℒ))1 (2𝑁)⁄ √2𝜋𝑒 ⁄ . Then,

‖𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡‖ < 𝜏√2𝑁 (2.47)

Definition 2.7: (Z. Yang et al., 2018b). The NTRU problem is defined by four

parameters: a ring 𝑅 of rank 𝑁 and endowed with an inner product, a modulus 𝑞, a

uniform distribution 𝐷 in set ℓ(𝑑1, 𝑑2) which contains all polynomials with 𝑑1

coefficients equal to 1, 𝑑2 coefficients equal to -1, and the rest 0., and a target norm 𝜏

37

in (2.47). Precisely, NTRU(𝑅, 𝑞, 𝐷, 𝜏) is the problem of, given ℎ = [𝑔𝑓−1]𝑞

(conditioned on 𝑓 being invertible mod 𝑞) for 𝑓, 𝑔 ← 𝐷, finding a vector (𝑥, 𝑦) ∈ 𝑅2

such that (𝑥, 𝑦) ≠ (0, 0) 𝑚𝑜𝑑 𝑞 and of Euclidean norm less than 𝜏√2𝑁 in the lattice

ℒ𝑛𝑡𝑟𝑢 = {(𝑥, 𝑦) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ𝑥 − 𝑦 = 0 𝑚𝑜𝑑 𝑞} . (2.48)

In other words, the problem of NTRU finds the private key (𝑓, 𝑔) as the shortest vector

(𝑥, 𝑦) in the lattice ℒ𝑛𝑡𝑟𝑢.

Let 𝑓 ⋅ ℎ multiplied in 𝑅 = ℤ[𝑥]/(𝑥𝑁 − 1), then can be represented by

(𝑓0, 𝑓1, … , 𝑓𝑁−1) [

ℎ0 ℎ1 ⋯ ℎ𝑁−1

ℎ𝑁−1 ℎ0 ⋯ ℎ𝑁−2

⋮ ⋮ ⋱ ⋮
ℎ1 ℎ2 ⋯ ℎ0

] = 𝑓𝐻

The circular matrix of ℎ can be written as follows:

𝐻 = (ℎ0
𝑇 , ℎ1

𝑇 , … , ℎ𝑁−1
𝑇). (2.49)

where ℎ𝑖
𝑇 (0 ≤ 𝑖 ≤ 𝑁 − 1) is the i-th column vector in H. Let 𝑣 =

(𝑣0, 𝑣1, . . . , 𝑣𝑁−1) ∈ ℤ𝑁. Then we define 𝑣𝑙𝑠(𝑙) = (𝑣𝑙 , 𝑣𝑙+1, . . . , 𝑣𝑙−1) as cycle left-shift

of 𝒗 by 𝑙 positions.

Definition 2.8: (Z. Yang et al., 2018b) Let 𝐼 be a subset of {1,2, … ,𝑁} such that 𝑔𝑖+𝑘

is 0 for all 𝑖 ∈ 𝐼, where 𝑘 is a constant integer belonging to {1,2, … ,𝑁}. And le 𝑡 =

#𝐼. Then, an IN-Lattice ℒ𝐼 with size 𝑡 is defined by

ℒ𝐼 = {𝑥 ∈ ℤ𝑁: ∀𝑖∈ 𝐼, 𝑥 · ℎ𝑖 ≡ 0 𝑚𝑜𝑑 𝑞}.

The new 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack is introduced in (Z. Yang et al., 2018b)

Algorithm 2.1: 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack (Z. Yang et al., 2018b, p. 2)

Require: Fix 𝑁, 𝑞, 𝑑𝑔ℎ, and find the probability Pr(𝒇𝑙𝑠(𝑘) ∈ ℒ𝐼) according to

(2.50);

38

The probability of having the 𝒇𝑙𝑠(𝑘) belongs to ℒ𝐼 is calculated according to (2.50),

Pr(𝑓𝑙𝑠(𝑘) ∈ ℒ𝐼) = 1 − (1 − ∏ (1 −
𝑡

𝑁 − 𝑖
)

2𝑑𝑔−1

𝑖=0

)

𝑁

, (2.50)

where 2𝑑𝑔 is the Hamming weight of g and 𝑡 = #𝐼.

The efficiency of 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack is investigated in Section 4.2, and a new attack

is proposed in Section 4.1.

Ensure: A valid private key 𝒇′;

1. 𝑡 ← 2;

2. While 𝑡 < 𝑁 do

3. count ← 1;

4. While count <=⌈1 Pr(𝒇𝑙𝑠(𝑘) ∈ ℒ𝐼)⁄ ⌉ do

5. Randomly choose a subset 𝐼 of {1,2, … ,𝑁} sch that #𝐼 = 𝑡;

6. Construct an 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 ℒ𝐼 with size 𝑡;

7. Reduce ℒ𝐼;

8. if the reduced basis contains a vector 𝒗 which can be used to

decrypt then

9. 𝒇′ = 𝒗;

10: Output 𝒇′, 𝑡 and break;

11: end if

12: count=count+1;

13: end while

14: 𝑡 ← 𝑡 + 1;

15: end while

39

2.4 Review of Class 4 (HE1N)

HE1N (Dyer et al., 2019, p. 8), the most recent HE scheme in this classis reviewed.

2.4.1 Review of HE1N

HE1N is defined as follows:

2.4.1.1 Parameter Settings

Let 𝑚1, 𝑚2, … ,𝑚𝑛 be distributed in [0,𝑀) according to a probability distribution 𝐷

with entropy 𝜌, where 𝜌 is not large enough to negate a brute force attack. Therefore,

the entropy of the plaintext is increased by adding “noise” term to the ciphertext. This

will be a multiple 𝑠 (from 0 to 𝑘) of an integer 𝑘, chosen so that the entropy 𝜌′ = 𝜌 +

log 𝑘 is large enough to negate a brute force guessing attack. Let 𝜆 be a security

parameter, measured in bits. Choose primes 𝑝, 𝑞 such that 𝑝 ∈ [2𝜆−1, 2𝜆], and 𝑞 ∈

[2𝜂−1, 2𝜂], where 𝜂 ≈ 𝜆2 𝜌′⁄ − 𝜆, and 𝑝 > (𝑛 + 1)𝑑(𝑀 + 𝑘2)𝑑, where 𝑑 is the degree

of the polynomial 𝑃 homomorphically computed over ciphertexts, (𝑚1 + 𝑠1𝑘,𝑚2 +

𝑠2𝑘,… ,𝑚𝑁 + 𝑠𝑛𝑘), such that 𝑃(𝑚1 + 𝑠1𝑘,𝑚2 + 𝑠2𝑘, … ,𝑚𝑁 + 𝑠𝑛𝑘) < 𝑝, when

𝑠1, 𝑠2, … , 𝑠𝑛 ∈ [0, 𝑘). Parameter 𝑘 is randomly chosen such that 𝑘 > (𝑛 + 1)𝑑𝑀𝑑. Key

generation algorithm and parameter generation algorithm is presented in Algorithm

2.2 and Algorithm 2.3 respectively.

Algorithm 2.2: Key generation algorithm

Input: 𝜆 ∈ 𝑆, 𝜌 ∈ ℤ: entropy of inputs, 𝜌′ ∈ ℤ: effective entropy of inputs,

Output: (𝑘, 𝑝): secret key

1. 𝑝 ← [2𝜆−1, 2𝜆];

2. 𝑣 ← 𝜌′ − 𝜌

3. 𝑘 ← [2𝑣−1, 2𝑣]

4. Return (𝑘, 𝑝)

40

where 𝑆 is the security parameter space.

2.4.1.2 Encryption

The plaintext 𝑚 is encrypted using Algorithm 2.4

The decryption process of ciphertext 𝑐 follows in Subsection 2.4.1.3

2.4.1.3 Decryption

Ciphertext 𝑐 is decrypted using Algorithm 2.5

Algorithm 2.3: Parameter generation algorithm

Input: 𝜆 ∈ 𝑆, 𝜌′ ∈ ℤ: effective entropy of inputs, (𝑘, 𝑝): secret key

Output: modulus ∈ ℤ: modulus for encryption and homomorphic operations

1. 𝜂 ← 𝜆2 𝜌′⁄ − 𝜆;

2. 𝑞 ← [2𝜂−1, 2𝜂]

3. modulus ← 𝑝𝑞

4. Return modulus

Algorithm 2.4: The encryption algorithm

Input: 𝑚 ∈ 𝑀, (𝑘, 𝑝): a secret key, modulus: public modulus

Output: 𝑐 ∈ 𝐶

1. 𝑞 ← modulus/𝑝;

2. 𝑟 ← [1, 𝑞)

3. 𝑠 ← [0, 𝑘)

4. 𝑐 ← 𝑚 + 𝑠𝑘 + 𝑟𝑝 𝑚𝑜𝑑 modulus

5: Return 𝑐

Algorithm 2.5: Decryption algorithm

Input: 𝑐 ∈ 𝐶, 𝑝:secret key

Output: 𝑚 ∈ ℳ

41

Decryption works since by definition 𝑚 + 𝑠𝑘 < 𝑝 and 𝑚 < 𝑘. Appendix D presents

an example of the encryption-decryption process of HE1N scheme. Chapter 5,

considers homomorphism of HE1N, the condition for HE1N to be homomorphic for

any polynomial 𝑃 of degree 𝑑 is set, and several attacks are proposed against HE1N.

2.4.2 Homomorphism of HE1N With Respect to Addition and Multiplication

From Algorithm 2.4, let 𝑐(𝑖) = 𝑚(𝑖) + 𝑠(𝑖)𝑘 + 𝑟(𝑖)𝑝 𝑚𝑜𝑑 𝑝𝑞, 𝑖 = {1,… , 𝑛}.

Homomorphic addition and multiplication operations follow

2.4.2.1 Homomorphic Addition

Let 𝑐 be the ciphertext encrypts the summation of 𝑐(1) and 𝑐(2) as follows:

𝑐 = 𝑐(1) + 𝑐(2) = 𝑚(1) + 𝑚(2) + (𝑠(1) + 𝑠(2))𝑘 + (𝑟(1) + 𝑟(2))𝑝 𝑚𝑜𝑑 𝑝𝑞

It follows that

𝑐 = ∑𝑐(𝑖)

𝑛

𝑖=1

= ∑𝑚(𝑖)

𝑛

𝑖=1

+ 𝑘 ∑𝑠(𝑖)

𝑛

𝑖=1

+ 𝑝 ∑𝑟(𝑖)

𝑛

𝑖=1

𝑚𝑜𝑑 𝑝𝑞

The decryption of 𝑐 is performed by Algorithm 2.5. Decryption works in the condition

that:

∑𝑚(𝑖)

𝑛

𝑖=1

+ 𝑘 ∑𝑠(𝑖)

𝑛

𝑖=1

< 𝑝. (2.51)

For small 𝑠(𝑖), 𝑖 = {1,… , 𝑛}, many homomorphic additions can be executed correctly

as the growth of the noise, ∑ 𝑠(𝑖) = 𝑛�̂�𝑛
𝑖=1 , is linear on 𝑠.

2.4.2.2 Homomorphic Multiplication

Multiplication of 𝑐(1), 𝑐(2)(𝑥) is performed as follows

𝑐 = 𝑐(1) ⋅ 𝑐(2) = (𝑚(1) + 𝑠(1)𝑘 + 𝑟(1)𝑝)(𝑚(2) + 𝑠(2)𝑘 + 𝑟(2)𝑝)

1. 𝑚 ← (𝑐 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑘;

2. Return 𝑚

42

= 𝑚(1)𝑚(2) + 𝑚(1)𝑠(2)𝑘 + 𝑚(1)𝑟(2)𝑝 + 𝑠(1)𝑘𝑚(2) + 𝑠(1)𝑘𝑠(2)𝑘 + 𝑠(1)𝑘𝑟(2)𝑝

+ 𝑟(1)𝑝𝑚(2) + 𝑟(1)𝑝𝑠(2)𝑘 + 𝑟(1)𝑝 𝑟(2)𝑝 =

𝑚(1)𝑚(2) + (𝑚(1)𝑠(2) + 𝑠(1)𝑚(2) + 𝑠(1)𝑘𝑠(2))𝑘

+ (𝑚(1)𝑟(2) + 𝑠(1)𝑘𝑟(2) + 𝑟(1)𝑚(2) + 𝑟(1)𝑠(2)𝑘 + 𝑟(1) 𝑟(2)𝑝)𝑝

= 𝑚(1)𝑚(2) + 𝑠𝑥𝑘 + 𝑟𝑥𝑝.

The decryption of 𝑐 performed by Algorithm 2.5. Decryption correctness condition is,

𝑠𝑥 < 𝑝, (2.52)

where 𝑠𝑥 = 𝑚(1)𝑠(2) + 𝑠(1)𝑚(2) + 𝑠(1)𝑠(2)𝑘 = 𝒪(𝑟2). The growth of 𝑠𝑥 is

exponential in the number of multiplications which limits the number of allowed

multiplication operations.

Thus, we conclude that HE1N is homomorphic w.r.t to addition and multiplication

operations. NCM is needed when the thresholds defined in (2.51),(2.52) are exceeded.

2.5 Review of Class 6 (RLWE-NCM-CSCM PKC)

In this section, a HE scheme based on ring learning with errors (R-LWE) by Brakerski

et. al. (Brakerski & Vaikuntanathan, 2011b), is considered. The scheme as shown in

columns 4, 5 of Table 2.1 needs NCM and CSCM, therefore, hereafter we called it

RLWE-NCM-CSCM. RLWE-NCM-CSCM (Brakerski & Vaikuntanathan, 2011b) has

two versions; symmetric and asymmetric. In this section, the symmetric version is

analyzed for simplicity.

The plaintext 𝑚 ∈ ℤ𝑡[𝑥]/(𝑥𝑛 + 1) is encrypted by,

𝑐 = (
𝑐0

𝑐1
) = (

𝑎 ⋅ 𝑠 + 𝑡 ⋅ 𝑒 + 𝑚
−𝑎

) ∈ 𝑅𝑞
2, (2.53)

43

where 𝑎 ← 𝑅𝑞 = ℤ𝑞[𝑥]/(𝑥𝑛 + 1), 𝑛 is a power of 2, 𝑞 is a prime number, and a prime

𝑡 ∈ ℤ𝑞
+, 𝑒 and 𝑠 are polynomials which coefficients are sampled from a discrete

Gaussian distribution 𝜒. The ciphertext (2.53) has two components. The decryption

process is performed in two steps as follows:

Step1: apply < 𝑐, 𝑠𝑘 > operation, where <> is the inner product, 𝑐 is the ciphertext

(2.53), 𝑠𝑘 = (
1
𝑠
).

𝑐0 + 𝑐1 ⋅ 𝑠 𝑚𝑜𝑑 (𝑥𝑛 + 1) 𝑚𝑜𝑑 𝑞 = 𝑡 ⋅ 𝑒 + 𝑚 𝑚𝑜𝑑 𝑡 (2.54)

Step2: apply modulo 𝑡 operation to the output from Step1,

𝑚 = 𝑡 ⋅ 𝑒 + 𝑚 𝑚𝑜𝑑 𝑡 (2.55)

Decryption correctness condition is,

∀𝑖 ∈ ℤ𝑛: |𝑡 ⋅ 𝑒𝑖 + 𝑚𝑖 | ≤ 𝑞/2, (2.56)

where 𝑒𝑖, 𝑚𝑖 are 𝑖-th coefficients of 𝑒 and 𝑚 respectively.

Example E.1 and Example E.2, Appendix E, are examples of failing decryption when

condition (2.56) is not satisfied, and an example of successful decryption when

condition (2.56) is satisfied, respectively.

Let 𝑐(𝑖) be the ciphertext encrypting message 𝑚(𝑖):

𝑐(𝑖) = (
𝑐0

(𝑖)

𝑐1
(𝑖)

) = (𝑎
(𝑖) ⋅ 𝑠 + 𝑡 ⋅ 𝑒(𝑖) + 𝑚(𝑖)

−𝑎(𝑖)
) , 𝑖 = 1, . . , 𝑘 (2.57)

Homomorphic addition and multiplication of 𝑐(1), 𝑐(2) follow.

2.5.1 Homomorphic Addition

Homomorphic addition of 𝑐(1), 𝑐(2) is performed as follows:

44

𝐶𝑎𝑑𝑑 = (
𝐶𝑎𝑑𝑑,0

𝐶𝑎𝑑𝑑,1
) = (

𝑐0
(1)

+ 𝑐0
(2)

𝑐1
(1)

+ 𝑐1
(2)

) =

(
(𝑎(1) + 𝑎(2))𝑠 + 𝑡(𝑒(1) + 𝑒(2)) + 𝑚(1) + 𝑚(2)

−(𝑎(1) + 𝑎(2))
) ∈ 𝑅𝑞

2.

It follows that,

𝑐𝑎𝑑𝑑 = ∑𝑐(𝑖)

𝑘

𝑖=1

=

(

∑(𝑠𝑎(𝑖) + 𝑡𝑒(𝑖) + 𝑚(𝑖))

𝑘

𝑖=1

−∑𝑎(𝑖)

𝑘

𝑖=1)

= (
𝑠 ∙ �̅� + 𝑡 ∙ �̅� + 𝑚

−�̅�
), (2.58)

Decryption of 𝑐𝑎𝑑𝑑 resulting in 𝑚 = ∑ 𝑚(𝑖)𝑛
𝑖=1 is performed by (2.54). The decryption

correctness condition is ∀𝑖 ∈ ℤ𝑛: |𝑡 ⋅ �̅�𝑖 + 𝑚𝑖 | ≤ 𝑞/2 according to (2.54), where

�̅�𝑖, 𝑚𝑖 are 𝑖-th coeffiecients of �̅� and 𝑚 respectively. For 𝑒 such that ∀𝑖 ∈ ℤ𝑛: 𝑒𝑖 ≪ 𝑞,

many homomorphic additions can be executed correctly as the growth of the noise

𝑡 ∑ 𝑒(𝑖)𝑘
𝑖=1 = 𝑡𝑘�̂� is linear on 𝑘.

2.5.2 Homomorphic Multiplication

From (2.54), (2.57), 𝑐0
(𝑖) + 𝑐1

(𝑖) ⋅ 𝑠 = 𝑡 ⋅ 𝑒(𝑖) + 𝑚(𝑖), for 𝑖 = 1, 2. Then, it holds that

(𝑡 ⋅ 𝑒(1) + 𝑚(1))(𝑡 ⋅ 𝑒(2) + 𝑚(2)) = (𝑐0
(1)

+ 𝑐1
(1)

⋅ 𝑠)(𝑐0
(2)

+ 𝑐1
(2)

⋅ 𝑠) (2.59)

= 𝑐0
(1)

⋅ 𝑐0
(2)

+ (𝑐0
(1)

⋅ 𝑐1
(2)

+ 𝑐1
(1)

⋅ 𝑐0
(2)

) ∙ 𝑠 + 𝑐1
(1)

⋅ 𝑐1
(2)

∙ 𝑠2 (2.60)

= 𝑐𝑚𝑢𝑙𝑡,0 + 𝑐𝑚𝑢𝑙𝑡,1 ⋅ 𝑠 + 𝑐𝑚𝑢𝑙𝑡,2 ⋅ 𝑠2 (2.61)

From (2.59)-(2.61), we see that a ciphertext, 𝑐𝑚𝑢𝑙𝑡 is defined in (2.62) can be decrypted

using 𝑠𝑘 = (
1
𝑠
𝑠2

),

𝐶𝑚𝑢𝑙𝑡 = (

𝐶𝑚𝑢𝑙𝑡,0

𝐶𝑚𝑢𝑙𝑡,1

𝐶𝑚𝑢𝑙𝑡,2

) = (

𝑐0
(1)

⋅ 𝑐0
(2)

𝑐0
(1)

⋅ 𝑐1
(2)

+ 𝑐1
(1)

⋅ 𝑐0
(2)

𝑐1
(1)

⋅ 𝑐1
(2)

) ∈ 𝑅𝑞
3. (2.62)

45

Note that the size (the number of components) of the ciphertext (2.62) increased due

to multiplication from two to three. Thus, decryption represented by formula (2.54)

can’t be used to decrypt the ciphertext (2.62), and new decryption must be defined to

allow 3-dimension vectors as follows:

𝑚 = 𝑚(1)𝑚(2) = 𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1 ⋅ 𝑠 + 𝐶𝑚𝑢𝑙𝑡,2.⋅ 𝑠
2 𝑚𝑜𝑑 𝑡. (2.63)

= 𝑡(𝑡𝑒(1)𝑒(2) + 𝑒(1)𝑚(2) + 𝑒(2)𝑚(1)) + 𝑚(1)𝑚(2) 𝑚𝑜𝑑 𝑡 = 𝑡�̅� + 𝑚 𝑚𝑜𝑑 𝑡.

Decryption correctness condition is,

∀𝑖 ∈ ℤ𝑛: |𝑡 ⋅ �̅�𝑖 + 𝑚𝑖 | ≤ 𝑞/2, (2.64)

where �̅�𝑖, 𝑚𝑖 are the 𝑖-th coefficients of �̅� = 𝑡𝑒(1)𝑒(2) + 𝑒(1)𝑚(2) + 𝑒(2)𝑚(1) =

𝑂(�̂�2), and 𝑚 = 𝑚(1)𝑚(2). The growth of the noise �̅� is exponential in the number of

multiplications which limits the number of allowed multiplication operations. This

restricts the depth 𝑑 of the homomorphic functions evaluated on the ciphertexts.

Brakerski and Vaikuntanathan bootstrapped their scheme using Gentry’s method

(Gentry, 2009b) to upgrade RLWE-NCM-CSCM into FHE. In (Brakerski &

Vaikuntanathan, 2011a), Brakerski and Vaikuntanathan proposed a new method to

control the increase in the ciphertext size, called “re-linearization” (Brakerski &

Vaikuntanathan, 2011a), in which the secret key, 𝑠 and 𝑠2 are encrypted using a new

secret key, called recryption key, 𝑢, as follows:

𝑐(𝑠) = (
𝑐0

(𝑠)

𝑐1
(𝑠)

) = (𝑎
(3)𝑢 + 𝑡𝑒(3) + 𝑠

−𝑎(3)
) , and 𝑐(𝑠2) = (

𝑐0

(𝑠2)

𝑐1

(𝑠2)
)

= (𝑎
(4)𝑢 + 𝑡𝑒(4) + 𝑠2

−𝑎(4)
), (2.65)

where 𝑎(3), 𝑎(4) ← 𝑅𝑞 and 𝑒(3), 𝑒(4) ← 𝜒 From (2.65) one obtains,

𝑠𝑒 = 𝑐0
(𝑠) + 𝑐1

(𝑠)𝑢 = 𝑡𝑒(3) + 𝑠, (2.66)

46

and,

𝑠𝑒2 = 𝑐0

(𝑠2)
+ 𝑐1

(𝑠2)
𝑢 = 𝑡𝑒(4) + 𝑠2. (2.67)

From (2.63), (2.66), (2.67):

𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1 ⋅ 𝑠 + 𝐶𝑚𝑢𝑙𝑡,2.⋅ 𝑠
2 𝑚𝑜𝑑 𝑡;

= 𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1 ⋅ 𝑠𝑒 + 𝐶𝑚𝑢𝑙𝑡,2.⋅ 𝑠𝑒2 𝑚𝑜𝑑 𝑡, (2.68)

by substituting (2.66), (2.67) in (2.68):

𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1 ⋅ 𝑠𝑒 + 𝐶𝑚𝑢𝑙𝑡,2.⋅ 𝑠𝑒2

= 𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1 ⋅ (𝑐0
(𝑠) + 𝑐1

(𝑠)𝑢) + 𝐶𝑚𝑢𝑙𝑡,2. (𝑐0

(𝑠2)
+ 𝑐1

(𝑠2)
𝑢)

= 𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1. 𝑐0
(𝑠) + 𝐶𝑚𝑢𝑙𝑡,2. 𝑐0

(𝑠2)
+ (𝐶𝑚𝑢𝑙𝑡,1. 𝑐1

(𝑠) + 𝐶𝑚𝑢𝑙𝑡,2. 𝑐1

(𝑠2)
) 𝑢. (2.69)

From (2.69), a two-component vector,

𝑐 = (
𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1 ⋅ 𝑐0

(𝑠) + 𝐶𝑚𝑢𝑙𝑡,2. 𝑐0

(𝑠2)

𝐶𝑚𝑢𝑙𝑡,1 ⋅ 𝑐1
(𝑠) + 𝐶𝑚𝑢𝑙𝑡,2. 𝑐1

(𝑠2)
), (2.70)

can be decrypted using (2.54) for 𝑠𝑘 = 𝑢. Thus, re-linearization is represented by

(2.70), and a chain of keys is needed for several multiplications. And to solve the issue

of growing the noise, Brakerski and Vaikuntanathan (Brakerski & Vaikuntanathan,

2011a), proposed the Dimension-Modulus Reduction method instead of Gentry’s

Bootstrapping (Gentry, 2009b). In (Brakerski et al., 2014) Brakerski et. al. showed that

modulus reduction and re-linearization (Brakerski & Vaikuntanathan, 2011a) have

worse performance than Gentry’s bootstrapping (Gentry, 2009b). Wang et al. (X.

Wang et al., 2018) proposed an FHE based on L-FHE using modulus switching and

key switching to overcome the noise growth problem. In (Gao, 2018), Gao presents an

FHE scheme based on LFHE using bootstrapping. Thus, we see that all LWE-based

FHE are LFHE upgraded to FHE using Gentry’s bootstrapping or other tools such as

47

modulus switching. In Chapter 7, RLWE-CSCM is presented, the first FHE scheme

that doesn’t affect noise growth by structure. Therefore, it does not need a noise control

mechanism. RLWE-CSCM still needs a ciphertext size control mechanism; therefore,

we present two different mechanisms to control the growth of the ciphertext.

2.6 Review of Class 7 (Homomorphic Scheme Using Ideal Lattices)

This section reviews a homomorphic scheme using ideal lattices proposed in (Gentry,

2009b) from Class 7. The following description is adapted from (Gentry & Halevi,

2011).

Gentry’s Ideal lattice scheme can be seen as a GGH-type scheme over ideal lattices

(Gentry & Halevi, 2011). The ring 𝑅 =
ℤ[𝑥]

𝑥𝑛+1
 is a set of polynomials of degree 𝑛 − 1

with integer coefficients. A polynomial from 𝑅 can be represented as a coefficient

vector in ℤ𝑛, e.g., the polynomial 𝑝(𝑥) = 3𝑥 + 1 can be represented by the vector �⃗� =

(1, 3), respectively, a vector �⃗� = (5,−2) can be equivalently represented by a

polynomial 𝑝(𝑥) = −2𝑥 + 5. That is why order 𝑛 − 1 polynomials and 𝑛-dimensional

vectors will be used hereafter interchangeably.

The ideal 𝐽 = (�⃗�) ⊂ 𝑅, is a principal ideal set by choosing a vector �⃗� ∈ ℤ𝑛 at random.

The basis matrix 𝑉 of the ideal 𝐽 = (�⃗�) is the rotational matrix 𝑉 = {�⃗�𝑖 = �⃗� ⋅

𝑥𝑖 𝑚𝑜𝑑 (𝑥𝑛 + 1): 𝑖 ∈ [0, 𝑛 − 1]}.

The public key consists of a “bad” basis 𝐵𝑝𝑘 of an ideal lattice 𝐽. The public key, 𝐵𝑝𝑘

is the HNF of the matrix 𝑉. The secret key is the “good” basis 𝐵𝑠𝑘 = 𝑉 of the ideal

lattice 𝐽.

48

To encrypt the bit 𝑏, two steps are used. In the first step, �⃗� is calculated by (2.71)

�⃗� = 2�⃗⃗� + 𝑏𝑒1 ∈ ℤ𝑛, (2.71)

Where 𝑢𝑖 ∈ {−1,0,1} is a random vector, 𝑒1 = (1,0, … ,0) ∈ ℤ𝑛 is the unit vector.

Then, in the second step, the ciphertext is calculated by (2.72),

𝑐 = �⃗� 𝑚𝑜𝑑 𝐵𝑝𝑘. (2.72)

When �⃗� has a small enough norm, i.e., less than 𝜆1(𝐿)/2, it can be computed from the

difference between 𝑐 and the closest lattice vector. Thus,

�⃗� = 𝑐 𝑚𝑜𝑑 𝐵𝑠𝑘. (2.73)

where 𝐵𝑠𝑘, the secret key, is the good basis of 𝐽. The bit 𝑏 can be recovered by applying

modulo 2 to �⃗�(1), where �⃗�(1) is the first element of the vector �⃗�.

𝑏 = �⃗�(1) 𝑚𝑜𝑑 2. (2.74)

The reason for decryption works is that, if the parameters are chosen correctly, then

the parallelepiped 𝒫(𝐵𝑠𝑘) of the secret key will be a “plump” parallelepiped that

contains a sphere of radius bigger than ‖�⃗�‖, so that �⃗� is the point inside 𝒫(𝐵𝑠𝑘). On

the other hand, the parallelepiped 𝒫(𝐵𝑝𝑘) of the public key will be very skewed, and

will not contain a sphere of large radius (Gentry & Halevi, 2011, p. 134). Therefore

𝐵𝑝𝑘 can’t be used to retrieve �⃗�.

Example 2.1 Example of Homomorphic Scheme Using Ideal Lattices Encryption/

Decryption

In this example, the homomorphic scheme (Gentry, 2009b) is considered using the

settings in (Gentry & Halevi, 2011),

49

1- Parameter Settings:

The scheme uses the ring 𝑅 = ℤ[𝑥]/(𝑥𝑛 + 1), for 𝑛 = 2. The ideal 𝐽 = (�⃗�) is

generated by �⃗�, where the vector �⃗� be selected randomly according to (2.75),

�⃗� = (7,3) ∈ 𝑅. (2.75)

Recall that the vector �⃗� can be represented as polynomial, 𝑣(𝑥) = 3𝑥 + 7. Thus, the

basis matrix 𝑉 of the ideal (�⃗�) in (2.76) is the rotational matrix 𝑉 =

{�⃗�𝑖 = �⃗� ⋅ 𝑥𝑖 𝑚𝑜𝑑 (𝑥𝑛 + 1): 𝑖 ∈ [0, 𝑛 − 1]},

𝑉 = [
7 3

−3 7
]. (2.76)

The public key, 𝐵𝑝𝑘 in (2.77), is the bad basis, HNF of (2.76) found by Maple,

𝐵𝑝𝑘 = 𝐻𝑁𝐹(𝑉) = [
1 17
0 58

]. (2.77)

We can see from Figure 2.3, that Basis 𝐵𝑠𝑘 = 𝑉 (left) is better than 𝐵𝑝𝑘 =

𝐻𝑁𝐹(𝑉)(right). Hadamard ratio for both bases follows.

50

Hadamard ratio for 𝑉 is equal to 1 and computed using Maple according to (B.2) in

Appendix B.

Hadamard ratio for 𝐻𝑁𝐹(𝑉) is approximately 0.24 and computed using Maple

according to (B.2) in Appendix B.

Figure 2.3: Good basis 𝐵𝑠𝑘 = 𝑉 (vectors with green heads), the parallelepiped

formed by the good basis (with green lines), the bad basis formed by 𝐻𝑁𝐹(𝑉)

(vectors with blue heads), and the parallelepiped of the bad basis (with blue lines).

51

2- Encryption

To encrypt the bit 𝑏 = 1, the vector �⃗⃗� is selected as in (2.78).

�⃗⃗� = (1, −1). (2.78)

The vector �⃗� is the vector encoding the message 𝑏 using the noise �⃗⃗� according to

(2.73):

�⃗� = 2�⃗⃗� + 𝑏 ⋅ 𝑒1⃗⃗⃗⃗ = (3, −2). (2.79)

The vector �⃗� encoding the message 𝑏 in (2.79) can be seen in Figure 2.3 (the vector

with black head). The ciphertext 𝑐, is the vector encrypting the encoded message �⃗�

according to (B.3) in Appendix B and (2.72).

𝑐 = �⃗� 𝑚𝑜𝑑 𝐵 = �⃗� − ⌊�⃗� × 𝐵−1⌉ × 𝐵 =

[3 −2] − ⌊[3 −2] × [
1 −17 58⁄

0 1
58⁄

]⌉ × [
1 17
0 58

]

= [3 −2] − ⌊[3 −
53

58
]⌉ × [

1 17
0 58

]

= [3 −2] − [3 −1] × [
1 17
0 58

]

= [3 −2] − [3 −7] = [0 5] (2.80)

where 𝐵−1 = [
1 −17 58⁄

0 1
58⁄

], the ciphertext 𝑐 encrypts the message 𝑏 in (2.80) can be

found in Figure 2.3 (the vector with red hrad).

52

3- The decryption of ciphertext (2.80) is done in two steps as follows:

Step 1: The vector �⃗� is retrieved using 𝑉−1 = [
7/58 −3/58
3/58 7/58

]

�⃗� = 𝑐 𝑚𝑜𝑑 𝑉 = 𝑐 − ⌊𝑐 × 𝑉−1⌉ × 𝑉

= [0 5] − ⌊[0 5] × [

7

58
−

3

58
3

58

7

58

]⌉ × [
7 3

−3 7
]

= [0 5] − ⌊[0 5] × [

7

58
−

3

58
3

58

7

58

]⌉ × [
7 3

−3 7
]

= [0 5] − ⌊[
15

58

35

58
]⌉ × [

7 3
−3 7

]

= [0 5] − [0 1] × [
7 3

−3 7
]

= [0 5] − [−3 7]

= [3 −2]

(2.81)

Step 2: The message 𝑏 is retrieved by applying modulo 2 operation to the first

component of 𝑎 according to (2.81). Thus, 𝑏 = 3 𝑚𝑜𝑑 2 = 1.

As shown in Sections 2.3, all known HE schemes w.r.t. to more than one operation

type need noise control mechanism such as bootstrapping (Gentry, 2009b), i.e., “the

decryption procedure of the scheme is run homomorphically, using an encryption of

the secret key that can be found in the public key, resulting in a new ciphertext that

encrypts the same plaintext but has smaller noise (Halevi & Shoup, 2021)”. Using

NCM each time the noise exceeds some threshold, makes it impractical to implement

these FHE for arbitrary functions in cloud applications. According to (Sarkar et al.,

2021, p. 133,134), the implementations of such encryption schemes remain unsuitable

53

for real-time applications yet due to the following reasons; long-time key generation,

long-time circuit evaluation, and usage of memory, costly noise control mechanisms.

Experiments by (Gentry & Halevi, 2011) for implementing (Gentry, 2009b) showed

that time required for key generation takes up to 2.2 hours, NCM consumes up to 31

minutes, and public-key size requires up to 2.25 GB. Therefore, in Chapter 7, we

present the first FHE scheme not affected by noise growth and thus doesn’t need NCM

by construction.

2.7 Summary

A new homomorphic schemes classification is proposed, which addresses the

challenge of grouping dissimilar HE into the same class by taking into account

additional factors such as the necessity for CSCM, the underlying hard problem, and

the number of encryption keys. The proposed classification increases the number of

classes from four to at least 32. The proposed classification facilitates considering and

studying the existent HE schemes in the literature, and better accommodate newly

proposed HE schemes.

In order to outline challenges to be addressed in this thesis, a review of the HE

schemes: RSA, NTRU, and HE1N has been presented from the literature, with the key

shortcomings of each scheme emphasized. The problems that have been addressed are

listed in the next section.

2.8 Problem Definition

The problems to be solved in the thesis are:

1. The problem of investigating RSA security. RSA is one of the first HE

schemes, it supports homomorphism w.r.t. one operation that is multiplication.

54

It is used in CloudIoT for verifying node identities to prevent weak

authentication (Pandey et al., 2020, p. 321; Yakubu et al., 2019, p. 226). RSA

is used in the Internet Key Exchange protocol (IKE) that is designed

specifically for use with IPsec Click or tap here to enter text.(Barker & Dang,

n.d., p. 24) to provide peer authentication. RSA is also widely used in X.509,

the standard defining the format of public-key certificates (Rfc3279, n.d.).

Therefore, this thesis considers the problem of investigating RSA security.

2. Investigating NTRU Security. NTRU (Hoffstein et al., 1998) is a HE PKC

w.r.t. two operations standardized as IEEE P1363.1 (“IEEE Standard

Specification for Public Key Cryptographic Techniques Based on Hard

Problems over Lattices,” 2009)and announced as one of seven candidate

algorithms in the third-round finalists of NIST Post Quantum Cryptosystem

Standardization Process ((PQC Third Round Candidate Announcement |

CSRC, n.d.). Therefore, this thesis considers the problem of investigating the

security of NTRU.

3. The problem of proposing a new NTRU variant that is more efficient than

NTRU and immune to LBRA attack. NTRU is prone to LBRA using LLL for

low polynomial degrees. For this reason, NTRU polynomials are

recommended to have degree 𝑁 > 400 (“IEEE Standard Specification for

Public Key Cryptographic Techniques Based on Hard Problems over Lattices,”

2009) to meet a minimum-security level of 112-bit. Increasing polynomials

degree increases the complexity of the encryption and decryption process.

Therefore, the problem of proposing a new NTRU variant that is more efficient

than NTRU and immune to LBRA attack is to be considered in this thesis.

55

4. The problem of investigating HE1N security is to be addressed in this thesis.

HE1N (Dyer et al., 2019) is a symmetric HE schemes w.r.t two operations

proposed as a practical scheme for cloud computing.

5. The problem of proposing an FHE scheme that is not affected by noise growth

is to be considered in this thesis. As shown in Table 2.1, all known FHE

schemes are L-FHE schemes need for NCM to be converted to FHE. For this

reason,.all known FHE schemes are not practically used. Therefore, this thesis

addresses the problem of proposing an FHE scheme that is not affected by

noise growth.

56

Chapter 3

3DESIGN OF CIPHERTEXT-ONLY ATTACK ON RSA

(CLASS 1) USING LATTICE BASIS REDUCTION

We consider ciphertext-only attack (COA) on textbook RSA (Rivest et al., 1978),

hereafter RSA, without preprocessing of the plaintext such as Optimal Asymmetric

Encryption Padding (OAEP) used in RSA standard (Kaliski et al., 2016). Herein, we

propose a new line of COA on RSA using LLL (Lenstra et al., 1982) algorithm to solve

SVP in a 2-dimensional lattice. It is based on the first found herein opportunity of RSA

encryption representation in terms of a 2-dimensional lattice. It doesn’t require

message broadcasting, prior knowledge of a part of a message/private key, or

limitations on the size of public exponent e, contrary to all known approaches as shown

in the last row of Table 3.1 but imposes constraints on the recoverable messages.

Table 3.1: Comparison between lattice-based COA and other known RSA

attacks.

Attack

Attack’s Requirements

Prior

knowledge of a

number of bits

A small

value of

exponent 𝑒

Broadcast

messages

Coppersmith (Coppersmith,

1996a)
Yes No No

Boneh et al. (Boneh et al.,

1998)Yes
No

No
No

Takayasu-Kunihiro ((Takayasu &

Kunihiro, 2019)
Yes No No

Coppersmith (Coppersmith,

1996b)
No Yes No

Hastad (Hastad, 1988) No No Yes

Bleichenbacher (Bleichenbacher,

1997)
No No Yes

57

Our COA attack computational complexity is 𝑂(𝑛2), see Section 3.4. In our

experiments, see Example 3.2, our attack on 2001 RSA 2050-bit messages took 45.775

seconds with about 0.1 success rate.

The rest of this chapter is organized as follows. Section 3.1, shows that RSA

encryption forms a 2-dimensional RSA lattice. Section 3.2, shows that the plaintext

message can be revealed as a component of the shortest vector in the RSA lattice.

Section 3.3, proposes using LLL for COA on RSA by solving SVP in the RSA lattice.

Section 3.4, evaluates the complexity of the proposed COA on RSA, and Section 3.5,

conducts experiments for up to 8193-bit messages. Section 3.6 summarizes Chapter 3

3.1 Proposed Two-Dimensional RSA Lattice

RSA message recovery problem can be formulated as SVP in a 2-dimensional lattice,

𝐿(𝑉1, 𝑉2). From (3), we can see that:

𝑐 = 𝑚𝑗 ⋅ 𝑚𝑒−𝑗𝑚𝑜𝑑 𝑁 , 𝑗 = 1. . 𝑒 − 1 (3.1)

and, hence,

𝑚𝑗 = (𝑚𝑒−𝑗)
−1

⋅ 𝑐 𝑚𝑜𝑑 𝑁. (3.2)

From (3.2), we see that for any pair of integers, 𝐴 and 𝐵, satisfying:

𝐵 = 𝐴 · 𝑐 𝑚𝑜𝑑 𝑁. (3.3)

Hastad (Hastad, 1986) No No Yes

Simmons (Simmons, 1977) No No Yes

DeLaurentis (Delaurentis, 1984) No No Yes

Boneh (Boneh et al., 2000) No No No

Bunder (Bunder et al., 2017) No Yes No

Proposed Lattice-Based COA No No No

58

 (𝐴, 𝐵) is likely to be ((𝑚𝑒−𝑗)
−1

, 𝑚𝑗), or (𝑚−𝑗, 𝑚𝑒−𝑗). Hence, equation (3.3) can be

written as:

𝐴 · 𝑐 + 𝑁 · 𝑟 = 𝐵, (3.4)

where 𝑟 is an integer. It forms a 2-dimensional RSA lattice,

𝐴 · 𝑉1 + 𝑟 · 𝑉2 = (𝐴, 𝐵), (3.5)

where 𝑉1 = (1, 𝑐) and 𝑉2 = (0, 𝑁) are basis vectors, at least one of them having

Euclidean norm of order 𝑂(𝑁), and determinant of the lattice equal to 𝑁.

3.2 Define RSA Message as the Shortest Vector in the RSA Lattice

According to Minkowski’s Second theorem (B.5), vector (𝐴, 𝐵) (3.5) likely is the

shortest vector in the RSA lattice, if

||𝐴, 𝐵|| < 1.07√𝑁. (3.6)

Hence, our task is to find a pair of comparatively small, (𝐴, 𝐵), satisfying (3.5) where

𝑉1 = (1, 𝑐) and 𝑉2 = (0, 𝑁) are known vectors. Then, (𝐴, 𝐵) is likely to be

((𝑚𝑒−𝑗)
−1

, 𝑚𝑗), or (𝑚−𝑗, 𝑚𝑒−𝑗). In our attack we adopt LLL to find the shortest

vector in the 2-dimensional RSA lattice (3.5).

3.3 Design of LLL Attack on RSA Message as a Shortest Vector in the

RSA Lattice

We want to find the shortest vector w from 𝐿(𝑉1, 𝑉2) using LLL that might disclose

(𝐴, 𝐵) = ((𝑚𝑒−𝑗)
−1

, 𝑚𝑗) (3.7)

if ||((𝑚𝑒−𝑗)
−1

, 𝑚𝑗)|| from (3.7) is of the order of 𝑂(√𝑁) meeting (3.6). In our

experiments, we used the LLL algorithm implemented in Maple 2016.2. Example 3.1

shows LLL attack on Example A.1 message, Appendix A.

59

Example 3.1: LLL attack on 40-bit RSA message from Example A.1 in Appendix A

The ciphertext from Example A.1, 𝑐 = 480808351840, and modulus 𝑁 =

1099559862701. Hence, 𝑉1 = (1 , 480808351840), and 𝑉2 =

 (0 , 1099559862701). LLL attack with 𝑉1 = (1 ,480808351840), 𝑉2 =

(0 ,1099559862701), defined in (3.5) terminates in 15 milliseconds using Maple,

obtaining the shortest vector (see Figure 3.1) given in (3.8):

We also run Example 3.1 in C using NTL (NTL: A Library for Doing Number Theory,

n.d.) and found that the LLL attack terminates in 4 × 10−5 seconds. Thus, we see that

our attack, both in Maple and C, takes less time than attacks mentioned in Subsection

2.2.3. LLL attack succeeds to retrieve message since it is a component of the shortest

vector in the lattice,

||(𝑚𝑒−1)−1,𝑚|| ≈ 990090.6 < 1.07√𝑁 ≈ 1124497.2.

𝑣1 = (82493,986648). (3.8)

Figure 3.1: LLL attack on RSA message in Example A.1 using Maple 2016.2

60

The complexity of the LLL algorithm is presented in Section 3.4.

3.4 Complexity of LLL Lattice Basis Reduction Algorithm

Lenstra, Lenstra, and Lovasz (Lenstra et al., 1982) state that for n-dimensional lattices

with integer input basis vectors of bounded length 𝑁, the LLL algorithm terminates

after at most 𝑂(𝑛2 log 𝑁) iterations.

3.5 Experiments on RSA Cracking for Up To 8193-Bit Messages

We have conducted experiments using Maple 2016.2 in Windows 8.1 on Lenovo

laptop with Intel i5-6200U CPU 2.30 GHz, 8 GB RAM, for RSA with 𝑝, 𝑞 values

specified in Table 3.2 with sizes of

𝑁 = 𝑝 ⋅ 𝑞, (3.9)

from 40 to 8193 bits more than twice exceeding recommended RSA key size, 4047

bits, for the 2050 year according to the requirements of (Lenstra & Verheul, 2000).

Values of 𝑝, 𝑞 are defined as integer expressions (see Table 3.2). Experiments in Table

3.2 conducted using Digits=10 and C = 0 in Maple.

Table 3.2: Number of cracked messages under different parameter settings.

1 2 3 4 5 6 7 8

Pair

(𝑝, 𝑞)#
𝑝 𝑞

Bit size

of 𝑁

(𝑎, 𝑏)

from

(3.13) for

which

RSA was

cracked,

𝑘 = 1

𝛿𝑚𝑖𝑛 𝛿𝑚𝑎𝑥

Number

of RSA

cracks

0 220 +33 220 + 13 40

(8, 1),
(4, ±1),
 (2, ±1)

0.025 0.508625 153

1 2130
− 5 2131 +39 261

(14,−1),
 (4, 2),
 (2, ±1)

0.01 0.5010325 58

2 3 × 2250 + 17
(2129

− 1)
2

− 2
509

(2, ±1),
 (4, −1),
(22, ±1)

0.01 0.5007125 59

61

Note that the prime values (𝑝, 𝑞) used in Rows 1, 2 of Table 3.2 are strong according

to (Rivest et al., 1978, p. 124), since 𝑝 − 1, 𝑞 − 1 have large primes as their factors,

that is confirmed by the following Maple code:

3 3 × 2512 + 349
3 × 2512

− 511
1026

(4, 1),
 (8, −1),
(2, ±1)

0.01 0.5007065 85

4 3 × 21024 + 515
3 × 21024

− 1717
2050

(20, 6),
(4, 2),
 (2, ±1)

0.01 0.5005 64

5 3 × 22048 + 595
3 × 22048

− 1105
4098

(26, 5),
(4, 2),
 (2, ±1)

0.001 0.5007 68

6 3 × 24096 + 1075
24096

− 2549
8193

(28,4),
 (4,2),
(2, ±1),
 (14, −1)

0.00375 0.50003 66

62

It can be checked that (𝑝, 𝑞) values in rows 1, 2, and 6 of Table 3.2 have large

𝑟𝑜𝑢𝑛𝑑(𝑁0.5 − ⌊𝑝0.5⌋ ∙ ⌊𝑞0.5⌋) values precluding attack. In our experiments, messages

are defined via a parameter,

𝛿 ∈ (0,1), (3.10)

as follows,

𝑚 = 𝑖𝑛𝑡(𝑁𝛿) + 𝑖𝑖, 𝑖𝑖 ∈ −𝐶,⋯ , 𝐶, 𝐶 ≥ 0, (3.11)

where 𝐶 ≥ 0 is an integer and 𝑖𝑛𝑡() returns the integer part of its input. Calculations

on the float-point numbers are done with an accuracy of 10, 15, 100, 200, 600, 800,

and 1600 digits:

We try vectors

𝑣(𝑗) = ((𝑚𝑒−𝑗)
−1

,𝑚𝑗) (3.12)

meeting the following two-dimensional lattice equation

𝑣(𝑗)1 ⋅ 𝑉1 + 𝑟 ⋅ 𝑉2 = 𝑣(𝑗) (3.13)

with

𝑉1 = (
1
𝑐
) , 𝑉2 = (

0
𝑁

) (3.14)

For 𝑗 = 1,⋯ ,100, according to (3.5), by the following code:

Code 3.1: Maple code for RSA cracking using LLL with j∈ {1,···,100}. Initial

conditions for the code are defined in Code 3.3 and Example 3.2. It tries cracking 2001

RSA messages in the range 𝑚0 − 1000 …𝑚0 + 1000, where m0 is defined in its first

line as trunc(𝑁𝛿).

63

In Code 3.1, with C = 1000, we check the both returned by LLL vectors and each their

component on equality to 𝑚𝑗. Exponentiation function and LLL used in Code 3.1 are

introduced in Code 3.2 as follows:

Code 3.2: Maple code introducing exponentiation function and LLL.

RSA was successfully cracked under conditions (3.16)-(3.18) on the encryption key,

e, defined via Euler totient function,

64

𝜙(𝑁) = (𝑝 − 1) ⋅ (𝑞 − 1), (3.15)

in a general form

𝑒 = 𝑘 ⋅
𝜙(𝑁)

𝑎
− 𝑏,

(3.16)

such that

gcd(𝑒, 𝜙(𝑁)) = 1, (3.17)

𝜙(𝑁) 𝑚𝑜𝑑 𝑎 = 0. (3.18)

It is implemented in Maple by the following Code 3, for Digits=1600:

Code 3.3: Maple implementation of RSA encryption key, e, calculation according to

(3.16)-(3.18), for N of 2050 bit size from Table 3.2.

For the example of data shown in Code 3.2, 𝑒 ≈
𝑁

2
, 𝑑 ≈

𝑁

10
, thus attacks described in

Section 2.2.3 are not applicable. We try finding a range of the parameter,

65

𝛿 ∈ [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥], (3.19)

or a set of values, { 𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥}, for which our method successfully cracks RSA (see

Table 3.2, columns 7, 8). In Table 3.2, columns 5, 6, pairs (𝑎, 𝑏), for which RSA was

successfully cracked, and number of successful cracks are given (for C = 0 in (3.11)).

We found that for all successful cracks,

𝑗 = |𝑏|, (3.20)

holds, where j,b are from(3.12), (3.13), and (3.16), respectively, i.e., the power of the

plaintext message, m, revealed by our attack on RSA, always is equal to |b| from

(3.16). Thus, in the experiments, we find two conditions, (3.18) and (3.20), holding

that need explanation. Also, the results of all our experiments show that condition

(3.21) holds

𝛿𝑚𝑎𝑥 ⋅ |𝑏| ≈ 0.501. (3.21)

To verify (3.21), we have conducted a special massive investigation of its validity for

(𝑝, 𝑞) pair from Table 3.2, row 4, results of which are given in Table 3.3, and confirm

its validity. Hence, we need explaining (3.18), (3.20), and (3.21). Experiments in Table

3.3 are conducted with Digits=600, p:= 3 · 21024 + 515, 𝑞:= 3 · 21024 − 1717,

(3.16)-(3.18) hold, 𝑘 = 1, 𝐶 = 1000 , and 𝛿𝑚𝑎𝑥 is from (3.19).

Table 3.3: Results of experiments on RSA cracking with 𝑁 = 2050

𝒂 𝒃
Number of

cracks
𝜹𝒎𝒂𝒙 𝜹𝒎𝒂𝒙 ⋅ |𝒃|

20 6 9205 0.0835 0.501

20 10 4987 0.050107 0.50107

20 -4 2082 0.12521 0.50084

20 -6 1642 0.038348 0.50088

20 -8 1913 0.062615 0.50092

20 -14 1336 0.035769 0.500766

5 -1 5626 0.501 0.501

5 -25 2896 0.020045 0.501125

4 2 21599 0.25066 0.50132

4 6 22937 0.083528 0.501168

66

Explanation of (3.18): Consider (3.10)-(3.12) for C = 0, (3.15), and (3.16). Then, RSA

ciphertext, c, is defined as follows:

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁 = 𝑚𝑘⋅
𝜙(𝑁)

𝑎
−𝑏𝑚𝑜𝑑 𝑁. (3.22)

Experiments show that with high probability, ranging from 0.1 to 0.5, (3.23) holds:

𝑚
𝑘𝜙(𝑁)

𝑎 𝑚𝑜𝑑 𝑁 = 1. (3.23)

Note that due to Euler’s theorem (Stallings, 2014),

𝑚𝑘𝜙(𝑁)𝑚𝑜𝑑 𝑁 = 1, (3.24)

and the left-hand side (LHS) of (3.23) is the a-th root of unity from LHS of (3.24),

which is highly likely to be also unity. The probability of our COA on RSA success

estimate is illustrated in Example 3.2.

Example 3.2: Conducting calculations by Code 3.1 in Maple 2016.2, with

Digits=1600, 𝑞 = 3 · 21024 − 1717,𝑝 = 3 · 21024 + 515, 𝛿 = 0:071435 considering

2001 numbers, m = ⌊𝑁𝛿⌋ + ii, ii ∈ [-C,··· ,C],C = 1000, we find 216 cases when (3.23)

holds, in particular, for ii = −998,−992,−988, etc. Respective Maple output is shown

in Figure 3.2. Thus, the probability of (3.24) holding, and thus our attack takes 45.775

seconds, its success probability under conditions (3.16)-(3.18), may be estimated as

216/2001=0.1079, and (3.17) is explained. Now, we explain (3.19) and (3.20).

10 13 6469 0.0385503 0.501154

Total cracks: 80692 Average 𝜹𝒎𝒂𝒙 ⋅ |𝒃|: 0.501022

67

Figure 3.2: Screenshot of Maple implementation of Code 3.1 using parameter

settings in Example 3.2

Explanation of (3.19) and (3.20): Our method of cracking of RSA ciphertext is as

follows (recall (3.1)-(3.5), (3.12), (3.13)). Rewrite (3.22):

𝑐 = 𝑚𝑒−𝑗 ⋅ 𝑚𝑗 𝑚𝑜𝑑 𝑁, 0 < 𝑗 < 𝑒. (3.25)

From (3.15), we get

68

𝑐(𝑚𝑒−𝑗)
−1

= 𝑚𝑗 𝑚𝑜𝑑 𝑁. (3.26)

Reminding (3.12), from (3.26), we arrive at (3.13). Applying LLL algorithm to the

lattice defined by (3.14), we obtain the shortest vector, (
𝑆1

𝑆2
), of the lattice such that

(
𝑆1

𝑆2
) = 𝑣(𝑗), if the norm of 𝑣(𝑗) meets Minkowski’s Second theorem:

||(
𝑆1

𝑆2
)|| ≤ ||𝑣(𝑗)|| = √𝑣(𝑗)1

2 + 𝑣(𝑗)2
2 ≤ √𝛾2 ⋅ 𝑁 = √

2

√3
⋅ 𝑁

(3.27)

where 𝛾2 ≈ 1.1547 is Hermite’s constant for the 2-dimensional lattice. To meet

(3.27), from (3.12), we have:

√(𝑚−𝑒+𝑗)2 + 𝑚𝑗2
≤ √

2

√3
⋅ 𝑁

(3.28)

From, (3.11) with C = 0, (3.16), (3.23), (3.28), we have:

√(𝑚𝑏+𝑗)2 + 𝑚𝑗2
= √⌊𝑁𝛿⌋

𝑏+𝑗
+ ⌊𝑁𝛿⌋

𝑗2

≤ √2 ⋅
𝑁

√3
≈ 𝑁0.50005

(3.29)

From (3.29), we have two cases:

Case 1: 𝑏 ≥ 0. Let 𝑗 = 0 in (3.29). Then, 𝑣(𝑗) = (𝑚
𝑏

1
), and we have:

√⌊𝑁𝛿⌋
𝑏2

+ 1 ≈ 𝑁𝑏⋅𝛿 ≤ 𝑁0.5005, (3.30)

and thus,

𝑏 ⋅ 𝛿 ≤ 0.50005 (3.31)

Case 2: 𝑏 < 0. Let 𝑗 = −𝑏 = |𝑏|. Then, 𝑣(𝑗) = (
1

𝑚𝑏), and we have

√⌊𝑁𝛿⌋
|𝑏|2

+ 1 ≈ 𝑁|𝑏|⋅𝛿 ≤ 𝑁0.5005, (3.32)

and then,

69

|𝑏| ⋅ 𝛿 ≤ 0.50005. (3.33)

Thus, from (3.30), (3.32), we may have RSA cracks the form

|𝑣(𝑗)| = (𝑚
𝑏

1
) or |𝑣(𝑗)| = (

1
𝑚𝑏), (3.34)

that have been observed in all our experimental results shown in Table 3.2 and Table

3.3. Example 3.2 confirms that (3.34) holds in a particular experiment as in all other

ones.

Example 3.3: Maple output for RSA cracking with k = 9, a = 20, b = ±6, d = 0:071435,

showing that (3.23) holds, and values found by LLL in 𝑉𝑅[1,1. .2], see Code 3.1, meet

(3.34).

70

Also, the range for 𝛿 defined by (3.31), (3.33) is confirmed by our experiments. From

Table 3.3, the last row, we see that (3.33) holds on average with accuracy

0.00097=0.50102-0.50005. Table 3.3 contains the number of RSA successful cracks

for different values of a,b, maximal 𝛿𝑚𝑎𝑥 from (3.19) and LHS of (3.33). Thus, (3.34)

explains (3.20), and (3.34) explains (3.21). To find the relation between a and number

of RSA successfully cracked messages, we run Code 3.1 with p, q from rows 3-6 of

Table 3.2, 𝛿 ∈ 0.01,… ,0.52 yields to launch 104,052 attacks on each (𝑝, 𝑞, 𝑎) value.

Figure 3.3 shows an inverse proportion between value of 𝑎 and number of successful

cracks. Thus, decreasing the public key leads to a decrease in the success rate of our

attack.

(a) (b)

(c) (d)

Figure 3.3: Inverse relation between the value of parameter 𝑎 (horizontal axis) in

(3.16) and number of successful RSA message cracks (vertical axis) out of

104,052 message attacks.

71

In Figure 3.3, (a) shows 20010 message cracks at a =2 and drops to 51 message cracks

at a = 2048 out of 104,052 message attacks. (b) shows 34017 message cracks at a = 2

and drops to 18 message cracks at a=2053 out of 104,052 message attacks. (c) shows

20010 message cracks at a = 2 and drops to 0 message cracks at a = 33739 out of

104,052 message attacks. (d) shows 20010 message cracks at a = 2 and drops to 199

message cracks at a = 222 out of 104,052 message attacks

3.6 Summary

In this chapter, we show that RSA-encrypted message considered as a component of

the shortest vector of the RSA lattice can be revealed by LLL attack. LLL attack runs

in time quadratic in the bit number of modulo 𝑁 (see Section 3.4). LLL attack targets

messages meeting (3.2)-(3.6) being the shortest vector in the RSA lattice. Our attack

works in the conditions discussed in Section 3.2 in which known attacks can’t work,

and it does not impose any other requirements, such as the need for very small public

exponent, 𝑒, part of the plaintext to be known in advance, or a message broadcasting

to sufficiently many participants, each holding a different modulus with a known affine

transformation, or using common modulus as other attacks do (Boneh et al., 1998;

Coppersmith, 1996a, 1996b; Hastad, 1988, 1986; Takayasu & Kunihiro, 2019). Our

attack shows significant speed (15 milliseconds using Mupad, and 4 × 10−5 seconds

using NTL library for Example 3.1) in recovering a 40- bit message in comparison to

our implementation for Boneh MITM attack (Boneh et al., 2000) where 2.202 seconds

are needed to recover the same length message (2 seconds for pre-computation step,

and 0.202 seconds for searching step using NTL library). Additionally, we have

conducted experiments with the proposed method for 𝑁 with bit sizes up to 8193 in

Maple 2016.2, with results presented in Table 3.2, Table 3.3, in which thousands of

successful RSA cracks were conducted using Code 3.1 run-time of which in the

72

conditions of Example 3.2 for 2001 RSA 2050-bit messages cracking is about 45

seconds. The cracks were made for large public key values meeting (3.16)-(3.18) for

which truth of (3.18), (3.20), (3.21) was discovered. Based on these findings, for RSA

not to be susceptible to the attack proposed herein, it is recommended RSA public keys

be selected such that (3.16)-(3.18) are not satisfied.

RSA is HE cryptosystem that is widely used in the Interned to provide authentication,

and many applications exploit its homomorphic multiplicative feature, such as digital

signature in electronic voting. Therefore, it is crucial to select RSA public keys such

that (3.16)-(3.18) are not satisfied in order to prevent the proposed COA attack.

73

Chapter 4

4SECURITY ANALYSIS OF NTRU (CLASS 3)

In this chapter, the security of NTRU is analyzed through two sections; Section 4.1

presents the NTRU flaw that allows in some cases revealing encrypted messages

without the need for the private key, non-negligibility of the attack is derived, and

recommended settings are proposed to avoid this attack. Section 4.2 presents

experiments that examine the efficiency of 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack (Z. Yang et al.,

2018b), and Section 4.3 summarizes results of Chapter 4

4.1 Design of NTRU Modulo p Flaw Attack

In this section, we prove that for some parameters NTRU has the modulo 𝑝 flaw

(Chefranov & Ibrahim, 2016; Ibrahim & Chefranov, 2016), so NTRU-encrypted

plaintext can be disclosed just by applying modulo 𝑝 operation to the ciphertext

without the need of using any of NTRU secret keys. We provide also statistical

estimates of the probability of having NTRU modulo 𝑝 flaw cases for different values

of 𝑁, where 𝑁 is the order of polynomial ring used in NTRU. The probabilities show

that NTRU modulo 𝑝 flaw may take place rather often. NTRU amendment to withstand

the flaw is proposed. The rest of this section is organized as follows. In Subsection

4.1.1, the NTRU modulo 𝑝 flaw is shown by example; explanations are given for the

example. In Subsection 4.1.3, we present statistics of cases when NTRU has modulo

𝑝 flaw for different 𝑁 values.

4.1.1 NTRU Modulo p Flaw Attack

Attack on NTRU using modulo 𝑝 flaw may be conducted as follows.

74

Step 1: Center-lift ciphertext, 𝑒, (2.20) w.r.t 𝑞

Step 2: Apply modulo 𝑝 operation to center-lifted ciphertext from Step 1.

A numerical example of NTRU mod 𝑝 flaw is presented in Example 4.1 the

explanation of the example follows.

Example 4.1: Example of NTRU modulo 𝑝 flaw

Let according to (2.13),

𝑁 = 5; 𝑑 = 1; 𝑝 = 3; 𝑞 = 32 > (6𝑑 + 1)𝑝 = 21, (4.1)

Let according to (2.14),

𝑓(𝑥) = 𝑥3 + 𝑥2 − 1 = [−1,0,1,1,0] (4.2)

Then, according to (2.15),

𝐹𝑞 = 𝑥4 + 𝑥 − 1 𝑚𝑜𝑑 32, 𝐹𝑝 = 𝑥4 + 𝑥 − 1 𝑚𝑜𝑑 3 (4.3)

Let according to (2.16), (2.18) and (2.19), (𝑥) ,𝑟(𝑥), and 𝑚(𝑥) are selected as,

𝑟(𝑥) = 𝑥 − 1, 𝑔(𝑥) = 𝑥 − 1, 𝑚(𝑥) = 𝑥2 + 𝑥 + 1 ∈ 𝑅𝑝. (4.4)

The public key, ℎ, according to (2.17) is:

ℎ = 𝐹𝑞 ⋅ 𝑔 𝑚𝑜𝑑 𝑞 = (𝑥4 + 𝑥 − 1)(𝑥 − 1) = −𝑥4 + 𝑥2 − 2𝑥 + 2 ∈ 𝑅𝑞 . (4.5)

Ciphertext according to (2.20),(4.4), and (4.5), is:

𝐹ℎ,𝑝
𝑁𝑇𝑅𝑈(𝑚, 𝑟) = 𝑒 = 𝑝 ⋅ 𝑟 ⋅ ℎ + 𝑚 𝑚𝑜𝑑 𝑞

= 3𝑥4 + 3𝑥3 + 24𝑥2 + 13𝑥 + 24 ∈ 𝑅𝑞 . (4.6)

Attack on NTRU using modulo 𝑝 flaw may be conducted as follows.

75

Step 1. Center-lift ciphertext,𝑒, (4.6) w.r.t 𝑞 = 32:

Step 2. Apply modulo 𝑝 operation to center-lifted ciphertext from Step 1.

𝑒 = 3𝑥4 + 3𝑥3 + 24𝑥2 + 13𝑥 + 24

3𝑥4 + 3𝑥3 − 8𝑥2 + 13𝑥 − 8 𝑚𝑜𝑑 𝑞. (4.7)

Then according to Step 2, we apply modulo 𝑝 operation directly to the center-lifted

ciphertext (4.7), we also disclose the original plaintext,𝑚(𝑥), from (4.4), as follows

𝑚 = 𝑒 𝑚𝑜𝑑 𝑝 = (3𝑥4 + 3𝑥3 − 8𝑥2 + 13𝑥 − 8)𝑚𝑜𝑑 3

= 𝑥2 + 𝑥 + 1 ∈ 𝑅𝑝. (4.8)

Comparing (4.8) and (4.4), we see that actually, the plaintext is restored without any

key, by knowledge of the public value of public parameter 𝑝 only. Thus, the example

represents NTRU flaw that we call “modulo 𝑝 flaw”.

4.1.2 Explanation of Example 4.1

The reason for the NTRU modulo 𝑝 flaw in Example 4.1 is that in the encryption (2.20)

it might happen that the polynomial, 𝐴, used for hiding the plaintext, 𝑚(𝑥), from

(2.18),

𝐴 = 𝑝 ⋅ 𝑟 ⋅ ℎ = [𝛼0, . . . , 𝛼𝑁−1]. (4.9)

has all its coefficients by an absolute value less than 𝑞 considering ℎ center-lifted. This

condition can be written as follows:

∀𝑖 ∈ {0, . . . , 𝑁 − 1}, |𝛼𝑖| < 𝑞, (4.10)

Where 𝛼𝑖 is the 𝑖-th coefficient of polynomial 𝐴 in (4.9). We can see that (4.10) holds

in Example 1 (see (4.6)). In such a case, modulo 𝑞 operation used in (4.6), preserves

𝐴 being a multiple of 𝑝 that can be eliminated from (4.6) just by modulo 𝑝 operation

applied to the ciphertext, 𝑒, as we exactly made in (4.8) after center-lifting 𝑒 in (4.7).

76

For the NTRU modulo 𝑝 flaw realization, we need to find such inverse of (2.14) that

the products (2.17), (4.9) used in (2.20), have coefficients by an absolute value less

than 𝑞 (see (4.10)). Hence, we need finding dependence of the products’ coefficients

on the coefficients of (2.14). It is done in the next Subsection 4.1.2.1. Then, in

Subsection 4.1.2.1, we find such polynomial (2.14) that the product (4.9) likely has

coefficients by an absolute value less than 𝑞.

4.1.2.1 Finding Inverse of the Polynomial f(x) Modulo (xN-1)

Consider the finding of an inverse, 𝑓−1(𝑥) = [𝑏0, 𝑏1, . . . , 𝑏𝑁−1], of (2.14) in 𝑅.

𝑓(𝑥) ⋅ 𝑓−1(𝑥) 𝑚𝑜𝑑 𝑥𝑁 − 1 = 1 (4.11)

From (4.11),

𝑓(𝑥) ⋅ 𝑓−1(𝑥) = 𝑐(𝑥) ⋅ (𝑥𝑁 − 1) + 1 (4.12)

𝑐(𝑥) = ∑ 𝑐𝑖𝑥
𝑖

𝑁−2

𝑖=0

 (4.13)

From (2.14), (4.12), and (4.13):

∑

(

∑ 𝑓𝑗𝑏𝑘

𝑗+𝑘=𝑖,
0≤𝑗,𝑘<𝑁)

𝑥𝑖

2𝑁−2

𝑖=0

 = ∑ 𝑐𝑖−𝑁𝑥𝑖 − ∑ 𝑐𝑖𝑥
𝑖 + 1

𝑁−2

𝑖=0

2𝑁−2

𝑖=𝑁

 (4.14)

Equating coefficients near respective powers, we get from (4.14) the following system

of linear algebraic equations w.r.t unknowns, 𝑏0, . . , 𝑏𝑁−1, 𝑐0, . . , 𝑐𝑁−2,

∑ 𝑓𝑗𝑏𝑖−𝑗

𝑁−1

𝑗=𝑖−𝑁+1

= 𝑐𝑖−𝑁 , for 𝑖 = 𝑁, . . . ,2𝑁 − 2 (4.15)

∑ 𝑓𝑗𝑏𝑁−1−𝑗

𝑁−1

𝑗=0

= 0 (4.16)

77

∑𝑓𝑗𝑏𝑖−𝑗

𝑖

𝑗=0

= −𝑐𝑖, 𝑖 = 1, . . . , 𝑁 − 2 (4.17)

1 − 𝑓0𝑏0 = 𝑐0 (4.18)

Preserving 𝑏0, . . , 𝑏𝑁−1 only, from (4.15) -(4.18), we get

∑𝑓𝑖−𝑁−𝑗𝑏𝑗

𝑖−𝑁

𝑗=0

+ ∑ 𝑓𝑖−𝑗𝑏𝑗

𝑁−1

𝑗=𝑖−𝑁+1

= 0, for 𝑖 = 2𝑁 − 2, . . . , 𝑁 + 1 (4.19)

𝑓0𝑏0 + ∑ 𝑓𝑁−𝑗𝑏𝑗

𝑁−1

𝑗=1

= 1 (4.20)

∑ 𝑓𝑁−1−𝑗𝑏𝑗

𝑁−1

𝑗=0

= 0 (4.21)

For 𝑁 = 5, the matrix of coefficients in (4.19)-(4.20) is as follows

𝛥 =

[

𝑓3 𝑓2 𝑓1 𝑓0 𝑓4
𝑓2 𝑓1 𝑓0 𝑓4 𝑓3
𝑓1 𝑓0 𝑓4 𝑓3 𝑓2
𝑓0
𝑓4

𝑓4
𝑓3

𝑓3
𝑓2

𝑓2
𝑓1

𝑓1
𝑓0]

 (4.22)

Determinant of (4.22), 𝑑𝑒𝑡(𝛥), calculated using Maple 2016, is as follows (Figure

4.1):

Figure 4.1: Definition of the matrix (4.22), and its determinant, in Maple 2016

78

Right hand side, RHS, of equations (4.19) -(4.22), for 𝑁 = 5 is as follows

𝑅𝐻𝑆 = (0,0,0,1,0) (4.23)

Using Cramer’s rule (Strang, 2016), find

𝑏𝑖 =
𝑑𝑒𝑡(𝛥𝑖)

𝑑𝑒𝑡(𝛥)
, for 𝑖 = 0, . . . , 𝑁 − 1, (4.24)

where the matrix 𝛥𝑖 is the matrix 𝛥 with column 𝑖 replaced by 𝑅𝐻𝑆 = (0,0,0,1,0),

(4.24) is the right side of (4.27).

Division in (4.24) is made modulo 𝑝 or 𝑞 to find 𝐹𝑝 or 𝐹𝑞 from (2.15) respectively. For

the correctness of the division in (4.24), determinant in the denominator shall have

multiplicative inverse modulo 𝑝 and 𝑞, and shall be co-prime to them. For arbitrary

determinants, their inverses may be rather large integers resulting in large coefficients

𝑏𝑖 in (4.24), hence, leading to large coefficients in h (2.17), and, thus, to violation of

(4.10). To minimize the coefficients, we need the absolute value of the determinant

value,𝑑𝑒𝑡(𝛥) (see (4.22)), equal to 1. Such a case is considered in the next Subsection

4.1.2.2 and was used in Example 4.1.

4.1.2.2 Getting |det(Δ)|=1

For the polynomial (4.2) used in Example 4.1, from (4.22) and Figure 4.1, we have,

|𝑑𝑒𝑡(𝛥)| = 1; (4.25)

𝑑𝑒𝑡(𝛥0) = −1; 𝑑𝑒𝑡(𝛥1) = 1; 𝑑𝑒𝑡(𝛥2) = 0; 𝑑𝑒𝑡(𝛥3) = 0; 𝑑𝑒𝑡(𝛥4) = 1. (4.26)

By substituting (4.25),(4.26) into (4.24),

𝑓−1(𝑥) = 𝑥4 + 𝑥 − 1 (4.27)

From (2.15), (4.27), we get (4.3).

79

We need to emphasize that having 𝑑𝑒𝑡(𝛥) satisfies (4.25), doesn’t guarantee (4.10) to

hold since the product (4.9) depends on the value of polynomial (2.16) used in (2.17)

and polynomial (2.19) used in. In the following Example 4.2, we show a case when

(4.25) holds but (4.10) doesn’t hold and NTRU modulo 𝑝 flaw is not applicable in that

case.

Example 4.2 Example of failing NTRU mod 𝒑 flaw when (4.25) holds but (4.10)

doesn’t hold.

Let according to (2.13),

𝑁 = 11; 𝑑 = 2; 𝑝 = 3; 𝑞 = 40 > (6𝑑 + 1)𝑝 = 39 (4.28)

Let us according to (2.14) and (4.25),

𝑓(𝑥) = −𝑥10 − 𝑥9 + 𝑥7 + 𝑥4 + 𝑥 = [0,1,0,0,1,0,0,1,0, −1,−1] (4.29)

For 𝑁 = 11, the matrix of coefficients in (4.19) -(4.21) is as follows

𝛥 =

[

𝑓10 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9
𝑓9 𝑓10 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8
𝑓8 𝑓9 𝑓10 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7
𝑓7 𝑓8 𝑓9 𝑓10 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6
𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5
𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4
𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓0 𝑓1 𝑓2 𝑓3
𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓0 𝑓1 𝑓2
𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓0 𝑓1
𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓0
𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10]

 (4.30)

To calculate the determinant of (4.30), Maple is used, Figure 4.2.

80

Then according to (2.15),

𝐹𝑞 = 5𝑥10 − 6𝑥9 + 7𝑥8 − 7𝑥7 + 7𝑥6 − 6𝑥5

+5𝑥4 − 3𝑥3 + 𝑥2 + 𝑥 − 3 ∈ 𝑅𝑞

𝐹𝑝 = 5𝑥10 − 6𝑥9 + 7𝑥8 − 7𝑥7 + 7𝑥6 − 6𝑥5

+5𝑥4 − 3𝑥3 + 𝑥2 + 𝑥 − 3 𝑚𝑜𝑑 𝑝 (4.31)

Let according to (2.16), (2.18) and (2.19), 𝑔(𝑥), 𝑟(𝑥), and 𝑚(𝑥) are selected as,

𝑟(𝑥) = 𝑥4 + 𝑥2 − 𝑥 − 1,

𝑔(𝑥) = 𝑥4 + 𝑥2 − 𝑥 − 1,

𝑚(𝑥) = 𝑥2 + 𝑥 + 1, (4.32)

The public key, ℎ, according to (2.17), (4.31), (4.32) is

ℎ = 15𝑥10 − 14𝑥9 + 12𝑥8 − 9𝑥7 + 5𝑥6 − 𝑥5

 − 4𝑥4 + 8𝑥3 − 11𝑥2 + 14𝑥 − 15 𝑚𝑜𝑑 𝑞, (4.33)

Ciphertext according to (2.20), (4.28), (4.32),(4.33) is:

𝑒 = 8𝑥10 + 16𝑥9 + 34𝑥8 + 33𝑥7 + 23𝑥6 + 𝑥5 + 30𝑥4

 + 16𝑥3 + 25𝑥2 + 5𝑥 + 12. (4.34)

After obtaining ciphertext,𝑒(𝑥) in (4.34), we try to attack (4.34) with NTRU modulo

𝑝 attack steps introduced in Subsection 4.1.1.

Figure 4.2: Definition of the matrix (4.30), and its determinant, in Maple 2016

81

First, we center-lift the ciphertext (4.34) w.r.t 𝑞 = 40,

𝑒 = 8𝑥10 + 16𝑥9 − 6𝑥8 − 7𝑥7 − 17𝑥6 + 𝑥5 − 10𝑥4

 + 16𝑥3 − 15𝑥2 + 5𝑥 + 12 𝑚𝑜𝑑 𝑞. (4.35)

Then applying modulo 𝑝 operation directly to the center-lifted ciphertext (4.35), we

get the message, 𝑚′ , that is not same as the plaintext message, 𝑚(𝑥), from (4.32),

and, hence, the NTRU modulo 𝑝 attack doesn’t work in that case:

𝑚′ = 𝑒 𝑚𝑜𝑑 𝑝 = 2𝑥10 + 𝑥9 + 2𝑥7 + 𝑥6 + 𝑥5 + 2𝑥4 + 𝑥3 + 2𝑥

≠ 𝑥2 + 𝑥 + 1. (4.36)

Thus, Example 4.2 shows that despite (4.24) holding, condition (4.10) for NTRU

modulo 𝑝 applicability does not hold, and applying modulo 𝑝 operation to the

ciphertext (4.34) after center-lifting in (4.35), we do not get back the plaintext (4.32)

in (4.36).

In Example 4.2, we used 𝑓(𝑥) (4.29) modulo 𝑥𝑁 − 1, with 𝑁 = 11 since inverses, 𝐹𝑞,

𝐹𝑝, (2.15), (4.31) have integer coefficients other than {-1,0,1} which makes holding of

(4.25) and violating of (4.10) possible.

4.1.3 Estimate of the Probability of NTRU Modulo p Flaw

As discussed in Section 4.1.2.1, we need the determinant value, 𝑑𝑒𝑡(𝛥), be equal to 1

in order to minimize coefficients (4.24). 𝑆𝑢𝑐𝑐𝑀𝑜𝑑𝑝𝐹𝑙𝑎𝑤(𝑁, 𝑑) in (4.37) defines the

probability a user will choose permutation of ±1 coefficients of (2.14) that ends up

with (4.25),

𝑆𝑢𝑐𝑐𝑀𝑜𝑑𝑝𝐹𝑙𝑎𝑤(𝑁, 𝑑) =
𝑓(𝑥) such that |𝑑𝑒𝑡(𝛥)| = 1

𝑓(𝑥)
. (4.37)

The number of the possible different private key, 𝑓(𝑥), the denominator of (4.37) for

fixed (𝑁, 𝑑), is found by

82

𝑓(𝑥) = (
𝑁

𝑑 + 1
) (

𝑁 − (𝑑 + 1)
𝑑

)

=
𝑁!

(𝑑 + 1)! (𝑁 − 𝑑 − 1)!
⋅

(𝑁 − 𝑑 − 1)!

𝑑! (𝑁 − 2𝑑 − 1)!

=
𝑁!

(𝑑 + 1)! ⋅ 𝑑! ⋅ (𝑁 − 2𝑑 − 1)!

=
𝑁 ⋅ (𝑁 − 1) ⋅ … ⋅ (𝑁 − 2𝑑)

(𝑑 + 1)! ⋅ 𝑑!
= 𝑂(𝑁2𝑑+1).

(4.38)

According to (“IEEE Standard Specification for Public Key Cryptographic Techniques

Based on Hard Problems over Lattices,” 2009, p. 55), 1 < 𝑑 < 𝑁/3. Thus, 𝑂(𝑁2𝑑+1)

in (4.38) is polynomial in 𝑁, and 𝑆𝑢𝑐𝑐𝑀𝑜𝑑𝑝𝐹𝑙𝑎𝑤(𝑁, 𝑑) is not negligible (see Definition,

p. 203). Howgrave et. al., (Howgrave-Graham et al., 2005), set 𝑑 = ⌊
𝑁

2
⌋ which makes

𝑂(𝑁2𝑑+1) exponential in 𝑁, and thus, 𝑆𝑢𝑐𝑐𝑀𝑜𝑑𝑝𝐹𝑙𝑎𝑤(𝑁, 𝑑) becomes negligible,

Therefore, we support settings of Howgrave et. al., (Howgrave-Graham et al., 2005),

to set 𝑑 = ⌊
𝑁

2
⌋. We conducted a statistical experiment for 𝑁 = 5, 7, and 11, with 𝑑 =

1, … , 5. Table 4.1 shows number of different 𝑓(𝑥) formed such (4.25) holds for

different 𝑁 values and corresponding 𝑑.

From Table 4.1, we can see that number of 𝑓(𝑥) such (4.25) holds increases as 𝑁

growth with fixed 𝑑. It’s also noticed that number of 𝑓(𝑥) such (4.25) holds equals to

zero when 𝑑 = ⌊𝑁/2⌋, and thus mod 𝑝 flaw attack fails.

Table 4.1: Numerator of (4.37) for different 𝑁 values and

corresponding 𝑑.

𝑵

𝒅

1 2 3 4 5

5 10 0 − − −

7 21 21 0 − −

11 55 165 110 55 0

83

𝑆𝑢𝑐𝑐𝑀𝑜𝑑𝑝𝐹𝑙𝑎𝑤(𝑁, 𝑑) estimate roughly probability of the NTRU modulo 𝑝 flaw since

(4.10) most likely might happen in the cases when (4.25) holds (see Example 4.2).

4.2 Experimental Analysis of IN−Lattice Attack on NTRU Private

Keys

In this section, experiments were conducted (Easttom et al., 2020) to verify results in

(Z. Yang et al., 2018b) and its supplementary material (Z. Yang et al., 2018a). 𝐼𝑁 −

𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack shown in Algorithm 2.1 has been implemented with Block-Korkine-

Zolotarev(BKZ) reduction algorithm from NTL package, parameter listed in Table 4.2

are used to setup the experiments.

The value of 𝑡 was recorded when a valid private key 𝑓′was found, and the probability

prob(𝑓𝑙𝑠(𝑘) ∈ ℒ𝐼) was calculated using (2.50). Those results are listed in Table 4.3.

Table 4.2: The parameters used in our experiments.

 𝒅𝒇 𝒅𝒈 𝒅𝒓 𝒒
19 2 2 2 41

37 4 4 2 79

57 6 6 2 113

73 6 6 2 113

83 8 8 2 151

97 9 9 2 167

107 14 14 2 257

Table 4.3: The results of new attack in different ntru security levels.

𝑁 19 37 57 73 83 97 107

𝑡 3 5 10 13 18 27 Not

found

prob 0.99999 0.99999 0.98741 0.99691 0.64895 0.12546 Not

found

84

Contrary to results in (Z. Yang et al., 2018a), Table 4.3 shows the exponential growth

of parameter 𝑡 as 𝑁 increases when 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack succeeds, it means that a

target vector 𝑓𝑙𝑠(𝑘) will belong to ℒ𝐼 with low probability. Thus 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack

is infeasible for sufficiently large 𝑁 (see Table 4.4). In our experiment for 𝑁 = 107,

we have not got result after 6 hours of running the code, and no valid private key 𝑓′was

found. Figure 4.3 shows an exponential growth of 𝑡 as 𝑁 increases.

To determine the practicality of 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack, we used the BKZ-NTL algorithm

of NTL package inside Yang’s algorithm to reduce those lattices and recorded the

runtime only when we found a target vector 𝑓𝑙𝑠(𝑘) successfully. Figure 4.4 gives the

results of the experiments. Time in this figure is given in seconds.

Figure 4.3: Exponential growth of 𝑡 as 𝑁 increases

85

Since those experiments were run on a 2.0 GHz Core machine, the time in seconds is

converted to the time in MIPS-years by first multiplying by 2.0 × 1024 (to account

for the 2.0 GHz machine) and then dividing by 31557600 which is the number of

seconds in a year (Z. Yang et al., 2018a). In this case, the experimental data were

approximated by linear and quadratic fitting functions respectively as follows

log10(𝑇) ≈ 0.05717 ⋅ 𝑁 − 6.725, (4.39)

log10(𝑇) ≈ 0.0002817 ⋅ 𝑁2 + 0.02158 ⋅ 𝑁 − 5.852 (4.40)

Fitting curves and data are shown in Figure 4.3. The mean squared error for linear

approximation is 1.063, and for quadratic approximation is 0.1077. Hence, we use the

quadratic approximation for extrapolation of time for greater 𝑁 values shown in Table

4.4 which shows greater time than extrapolation line in (Z. Yang et al., 2018a):

log10(𝑇) ≈ 0.065𝑁 − 7.3 (4.41)

In Table 4.4, the expected time (MIPS-years) to break NTRU cryptosystem in

comparison to (Z. Yang et al., 2018a) are given.

Figure 4.4: Decimal logarithm of runtime in seconds of 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack (blue

asterisks), approximation fitting line (black), and quadratic fitting (red).

86

From Table 4.4, we see that our expected time for 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack is greater than

shown in (Z. Yang et al., 2018a).

4.3 Summary

In this chapter, the security of NTRU is analyzed in two sections 4.1 and 4.2. In Section

4.1, a new attack on NTRU messages is proposed. The attack exploiting a flaw of

NTRU allows in some cases revealing encrypted messages without the need for the

private key. A numerical example of the attack is presented in Example 4.1. Probability

of the attack, 𝑂(𝑁2𝑑+1), is estimated in (4.38), and it is found to be polynomial in N

using IEEE standard parameters. In Section 4.2, 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack (Z. Yang et al.,

2018b) is experimentally tested. Experiments are conducted using parameter settings

in Table 4.2. The results of the conducted experiments in Table 4.3 and Figure 4.3

show an exponential growth of the parameter 𝑡. Thus, the attack becomes infeasible

for sufficiently large 𝑁. Runtime of 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack is approximated by linear

and quadratic fitting in (4.39) and (4.40) respectively. The quadratic fitting has less

mean squared error, 0.1077, compared to, 1.063, for linear fitting. Hence, Quadratic

fitting is selected for extrapolation of time for greater 𝑁. Quadratic fitting time

extrapolation shown in (4.41) shows more time than extrapolation line in (Z. Yang et

al., 2018a). Expected time (MIPS-years) to break NTRU cryptosystem using our

quadratic fitting in comparison to linear fitting in (Z. Yang et al., 2018a) shown in

Table 4.4.

Table 4.4: Expected time (MIPS-years) to break NTRU cryptosystem in

comparison to (Z. Yang et al., 2018a)

Parameter settings of NTRU Our results results of (Z. Yang et al.,

2018a)

NTRU-167 105.61 103.55

NTRU-263 1019.31 109.80

NTRU-503 1076.28 1025.4

87

NTRU, is a standardized HE scheme that is expected to be a standardized quantum

homomorphic cryptosystem. Therefore, it is crucial to use the parameter setting, 𝑑 =

⌊𝑁/2⌋, recommended in Howgrave et. al., (Howgrave-Graham et al., 2005) to avoid

NTRU mod 𝑝 flaw attack.

88

Chapter 5

5ANALYSIS OF HE1N CRYPTOSYSTEM (CLASS 4)

In this chapter, the security of HE1N (Dyer et al., 2019) from Class 4 is analyzed

through three sections; Section 5.1 proves that the modulus in HE1N encryption is not

working, and thus, can be omitted. In Section 5.2, a new COA against HE1N private

key is designed, the complexity of the attack is found, and the success probability of

the attack is estimated. In Section5.3 a new KPA against HE1N private key is

designed, the complexity of the attack is found, and the success probability of the

attack is estimated. Section 5.4 summarizes the results of Chapter 5.

5.1 Analysis of the Use of Modulus in HE1N Encryption

Recall from Step 4 of Algorithm 2.4 HE1N encryption:

𝑐 = 𝑚 + 𝑠𝑘 + 𝑟𝑝 𝑚𝑜𝑑 𝑝𝑞.

The modulus operation does not work since 𝑚 + 𝑠𝑘 + 𝑟𝑝 < 𝑝𝑞 according to Theorem

5.1 below,

Theorem 5.1: For any valid for HE1N parameters; 𝑚 ∈ [0,𝑀); 𝑠 ∈ [0, 𝑘); 𝑘 >

(𝑛 + 1)𝑑𝑀𝑑; 𝑟 ∈ [1, 𝑞); 𝑝 > (𝑛 + 1)𝑑(𝑀 + 𝑘2)𝑑; 𝑞 > 𝑝, and 𝑑 is the degree of

polynomial homomorphically computed over 𝑛 inputs, the following holds:

𝑒 = 𝑚 + 𝑠𝑘 + 𝑟𝑝 𝑚𝑜𝑑 𝑝𝑞 = 𝑚 + 𝑠𝑘 + 𝑟𝑝, (5.1)

i.e., 𝑚 + 𝑠𝑘 + 𝑟𝑝 < 𝑝𝑞, and, hence, modulus operation does not work and can be

omitted in HE1N encryption.

Proof. Let’s prove that

89

𝑚 + 𝑠𝑘 + 𝑟𝑝 < 𝑝𝑞, (5.2)

 Inequality (5.2) holds if the following holds:

𝑀 − 1 + 𝑘(𝑘 − 1) + (𝑞 − 1)𝑝 < 𝑝𝑞, (5.3)

or

𝑀 − 1 + 𝑘(𝑘 − 1) + 𝑝𝑞 − 𝑝 < 𝑝𝑞, (5.4)

or

𝑘(𝑘 − 1) + 𝑀 − 1 < 𝑝, (5.5)

or

𝑘2 − 𝑘 + 𝑀 − 1 < 𝑝. (5.6)

Inequality (5.6) holds since by definition

𝑝 > (𝑛 + 1)𝑑(𝑀 + 𝑘2)𝑑 > 2𝑀 + 2𝑘2 > 𝑘2 − 𝑘 + 𝑀 − 1, (5.7)

 where 𝑑, 𝑛 ≥ 1. Thus, (5.1) is true, and, Theorem is proved.

QED

In Sections 5.2 and 5.3, new COA and KPA against HE1N private key are designed

by exploiting the not-functioning modulus,

5.2 Design of Ciphertext-Only Attack (COA) Against HE1N Private

Key p

In subsections 5.2.1-5.2.4, a new COA against HE1N private key is designed, the

success probability of the attack has been estimated.

5.2.1 COA Against HE1N Private Key p

In this attack, the attacker is assumed to collect a set of 𝓂 HE1N’s ciphertexts. Then,

the attacker applies the COA in Algorithm 5.1:

90

Algorithm 5.1 succeeds to find 𝑝 as the greatest common divisor of any pair,

(𝑒𝑖 − 𝑒𝑗 , 𝑝𝑞), 𝑖 ≠ 𝑗, if 𝑠𝑖 = 𝑠𝑗 and 𝑚𝑖 = 𝑚𝑗. Then, gcd(𝑒𝑖 − 𝑒𝑗 , 𝑝𝑞) = gcd(𝑘(𝑠𝑖 −

𝑠𝑗) + 𝑝(𝑟𝑖 − 𝑟𝑗) + 𝑚𝑖 − 𝑚𝑗 , 𝑝𝑞) = gcd(𝑝(𝑟𝑖 − 𝑟𝑗), 𝑝𝑞) = 𝑝. Thus, the probability

that the attack succeeds is the probability that among 𝓂 ciphertexts can be found at

least one pair (𝑒𝑖, 𝑒𝑗), 𝑖 ≠ 𝑗 such that 𝑠𝑖 = 𝑠𝑗 and 𝑚𝑖 = 𝑚𝑗 .

The following section discusses the problem of estimating the probability of finding a

matching pair in a finite set.

Algorithm 5.1: COA Against HE1N Private Key 𝑝

Input: a set of 𝓂 HE1N’s ciphertexts, 𝑒𝑖 = 𝑠𝑖𝑘 + 𝑟𝑖𝑝 + 𝑚𝑖 , since the modulus

operation is not used (see Theorem 5.1)

Output: either the private key 𝑝, or the message: “key not found”.

1. flag = 0

2. for 𝑖 = 1…𝓂 do

3. for 𝑗 = 1…𝓂 do

4. if 𝑖 ≠ 𝑗 and gcd(𝑒𝑖 − 𝑒𝑗 , 𝑝𝑞) ≠ 𝑞, then

5. 𝑝 = gcd(𝑒𝑖 − 𝑒𝑗 , 𝑝𝑞) = gcd(𝑝(𝑟𝑖 − 𝑟𝑗), 𝑝𝑞)

6. flag=1;

7. break;

8. end if

9. end loop// on 𝑗

10. end loop// on 𝑖

11. if flag== 1 then

12. return 𝑝

13. else return “key not found”

91

5.2.2 Computational Complexity of the KPA Attack

In the worst case, Algorithm 5.1 tries step 5 for a number of runs = 𝓂2, since 𝑖, 𝑗 =

1…𝓂. Thus, the average computational complexity of Algorithm 5.1 is,

𝓂2

2
, (5.8)

5.2.3 Probability of Finding a Matching Pair in a Finite Set

The birthday problem (Gorroochurn, 2012) concerns the probability of finding a

matching pair in a finite set, and is defined as follows:

“What is the probability that, in a group of 𝓂 people, two of them share the same

birthday?”

Let 𝕊 be a set of 𝓂 members randomly selected from the range [0, 𝑘),

𝕊 = {𝑠𝑖}, 𝑖 = 1…𝓂, 𝑠𝑖 ∈ [0, 𝑘), (5.9)

and let Pr𝑛𝑜(𝓂) be the probability that among 𝕊 no two members have the same value.

Then,

Pr𝑛𝑜(𝓂) = Pr(𝑠𝑖 ≠ 𝑠𝑗) for all 𝑖, 𝑗 = 1…𝓂, and 𝑖 ≠ 𝑗, (5.10)

Pr𝑛𝑜(𝓂) is calculated as follows (see (Diaconis & Mosteller, 1989, sec. 7.1)):

Pr𝑛𝑜(𝓂) = ∏(1 −
𝑖

𝑘
)

𝓂

𝑖=1

, where 1 < 𝓂 < 𝑘 . (5.11)

The first-order Taylor series approximation for 𝑒−𝑥 can be used when 𝑥 is close to

zero:

𝑒−𝑥 ≈ 1 −
𝑥

1!
= 1 − 𝑥. (5.12)

Then, since
𝑖

𝑘
< 1,

92

1 −
𝑖

𝑘
≈ 𝑒−𝑖 𝑘⁄ , (5.13)

and thus,

Pr𝑛𝑜(𝓂) ≈ ∏𝑒−𝑖 𝑘⁄

𝓂

𝑖=1

= 𝑒−
𝓂(𝓂+1)

2𝑘 ≈ 𝑒−𝓂2 2𝑘⁄ , where 1 ≪ 𝓂 < 𝑘 . (5.14)

Approximation (5.14) is greater than actual Pr𝑛𝑜(𝓂) in (5.11) for 𝑘 ≥ 2; proof and

analysis are provided in Section 5.2.4.

Let Pr1(𝓂, 𝑘) be the probability of having at least one pair among 𝕊 with the same

value. Then,

Pr1(𝓂, 𝑘) + Pr𝑛𝑜(𝓂) = 1. (5.15)

From (5.14) and (5.15),

Pr1(𝓂, 𝑘) ≈ 1 − 𝑒−𝓂2 2𝑘⁄ . (5.16)

HE1N’s secret parameter 𝑘 is selected such that 𝑘 ≈ 2𝛾. Substituting it into (5.16),

one gets

Pr1(𝓂, 𝛾) ≈ 1 − 𝑒−𝓂2 2𝛾+1 ⁄ . (5.17)

Secret parameter 𝑠𝑖 is selected from the range [0, 𝑘), and the plaintext 𝑚𝑖 is selected

from the range [0,
𝑘

2
) for 𝑛 = 1 and 𝑑 = 1 (see (Diaconis & Mosteller, 1989, sec.

3.2.1)). Thus, from (5.16), (5.17), Pr2(𝓂, 𝛾), the probability of having at least two

pairs (𝑠𝑖, 𝑠𝑗) and (𝑚𝑖, 𝑚𝑗), such that 𝑠𝑖 = 𝑠𝑗 and 𝑚𝑖 = 𝑚𝑗 is

Pr2(𝓂, 𝛾) =Pr1(𝓂, 𝑘) ∙ Pr1 (𝓂,
𝑘

2
) ≈ (1 − 𝑒−𝓂2 2𝑘⁄)(1 − 𝑒−𝓂2 𝑘⁄)

< (1 − 𝑒−𝓂2 𝑘⁄)
2
. (5.18)

According to the definition, Pr2(𝓂, 𝛾) is negligible if

93

Pr2(𝓂, 𝛾) < (1 − 𝑒−𝓂2 2𝛾⁄)
2

<
1

𝛾𝑐
, for any 𝑐 ≥ 0 (5.19)

for 𝛾 > 𝛾𝑐 > 0. Let us define 𝛾𝑐. From (5.18), (5.19), taking square root from both

sides,

1 − 𝑒−𝓂2 2𝛾⁄ < 𝛾−
𝑐
2. (5.20)

From (5.20),

1 − 𝛾−
𝑐
2 < 𝑒−𝓂2 2𝛾⁄ , (5.21)

and, applying natural logarithm to both sides of (5.21),

− ln (1 − 𝛾−
𝑐
2) > 𝓂2 2𝛾⁄ . (5.22)

From (5.22), we get

2𝛾 2⁄ √− ln(1 − 𝛾−
𝑐
2) > 𝓂. (5.23)

The minimal 𝛾 for which (5.23) holds is 𝛾𝑐. For example, when 𝑚 = 100, 𝑐 = 10,

(5.23) holds for 𝛾 ≥ 𝛾10 = 40, and for 𝑐 = 100, 𝛾100 = 455. Thus, Pr2(𝓂, 𝛾) is

negligible.

Let us estimate the number, 𝓂, of members in a set 𝕊 that is required to have at least

two matching pairs from (5.18), is

√Pr2(𝓂, 𝛾) < 1 − 𝑒−𝓂2 𝑘⁄ , (5.24)

and, from (5.24),

𝑒−𝓂2 2𝛾 ⁄ < 1 − √Pr2(𝓂, 𝛾). (5.25)

By applying natural logarithm to both sides in (5.25),

𝓂 > 2
𝛾
2√− ln (1 − √Pr2(𝓂, 𝛾)). (5.26)

94

From (5.26), the number, 𝓂, of members in a set 𝕊 that is required to have at least two

matching pairs is with Pr(𝓂) = 50%

𝓂 > 2
𝛾
2
 √− ln(1 − √1/2) ≈ 1.11 ∙ 2

𝛾
2, (5.27)

and with Pr(𝓂) = 99.9% is:

𝓂 > 2
𝛾
2
 √− ln(1 − √0.999) ≈ 2.76 ∙ 2

𝛾
2. (5.28)

5.2.4 Analysis of Prno(𝓶) Approximation

In the following, the proof that Pr𝑛𝑜(𝓂) approximation, 𝑃𝑟𝑛�̃�(𝑚), is greater than

Pr𝑛𝑜(𝓂) for 𝑘 ≥ 2.

𝑃𝑟𝑛�̃�(𝑚) = ∏𝑒−𝑖 𝑘⁄

𝓂

𝑖=1

> ∏(1 −
𝑖

𝑘
)

𝓂

𝑖=1

= 𝑃𝑟𝑛𝑜(𝑚) (5.29)

Proof: Inequality (5.29) holds if

𝑒−𝑖 𝑘⁄ > 1 −
𝑖

𝑘
=

𝑘 − 𝑖

𝑘
, (5.30)

for 𝑘 ≥ 2. Multiplying both sides of (5.30) by 𝑒𝑖 𝑘⁄ (
𝑘

𝑘−𝑖
),

𝑘

𝑘 − 𝑖
> 𝑒𝑖 𝑘⁄ , (5.31)

and,

(
𝑘

𝑘 − 𝑖
)
𝑘

> 𝑒𝑖. (5.32)

Applying ln operation to both sides of (5.32),

𝑘 ln (
𝑘

𝑘 − 𝑖
) > 𝑖. (5.33)

Inequality (5.33) can be written as follows:

𝑘 ln 𝑘 − ln(𝑘 − 𝑖) > 𝑖. (5.34)

95

By adding ln(𝑘 − 𝑖) for both sides of (5.34):

𝑘 ln 𝑘 > 𝑖 + ln(𝑘 − 𝑖). (5.35)

Since 1 ≤ 𝑖 ≤ 𝓂 ≤ 𝑘 − 1. Then

𝑘 ln 𝑘 > 𝑖 ln 𝑘 > 𝑖 + ln(𝑘 − 𝑖). (5.36)

Inequality (5.36) holds for 𝑘 ≥ 2. Thus, (5.29) is proved.

QED

Figure 5.1 shows the difference between approximated, 𝑃𝑟𝑛�̃�(𝑚), and actual

probability Pr𝑛𝑜(𝓂) for 𝑘 = 1000 plotted by Code 5.1 From Figure 5.1, we can see

that the difference is less than 0.015, and the difference becomes close to zero as 𝓂

increases.

Code 5.1: Maple code for plotting the differences between approximated and

actual Pr𝑛𝑜(𝓂), where 1 ≤ 𝑖 ≤ 𝓂, 1 ≤ 𝓂 ≤ 𝑘, and 𝑘 = 1000.

1. 𝐷𝑖𝑔𝑖𝑡𝑠 ∶= 100;

Figure 5.1: The difference between approximated and actual probability Pr𝑛𝑜(𝓂)

for 1 ≤ 𝑖 ≤ 𝓂, 1 ≤ 𝓂 ≤ 𝑘, and 𝑘 = 1000

96

2. 𝑒 ∶= exp(1) ;

3. 𝑘 ∶= 1000;

4. 𝑝𝑙𝑜𝑡([𝑒−𝑚2 (2∗𝑘)⁄ − 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(1 − 𝑖/𝑘, 𝑖 = 1 . . 𝑚)], 𝑚 = 1 . . 𝑘, 𝑐𝑜𝑙𝑜𝑟 =

 ["𝑅𝑒𝑑"])

5.3 Design of Known Plaintext Attack Against HE1N Private Key p

In subsections 5.3.1-5.3.3, a new KPA against HE1N private key is designed, the

complexity of the attack, the success probability of the attack has been estimated.

5.3.1 KPA Against HE1N Private Key p

In this attack, the attacker is assumed to collect 𝓂 (ciphertext, plaintext) pairs of

HE1N cryptosystem. Then the attacker applies the KPA in Algorithm 5.2:

Algorithm 5.2: KPA Against HE1N Private Key 𝑝

Input: a set of 𝓂 HE1N’s (ciphertext, plaintext) pairs

Output: either the private key 𝑝, or the message: “key not found”.

1. flag = 0

2. 𝑥𝑖 = 𝑒𝑖 − 𝑚𝑖 = 𝑠𝑖𝑘 + 𝑟𝑖𝑝, where 𝑖 = 1…𝓂, note the modulus

operation is not used (see Theorem 5.1)

3. for 𝑗 = 1…𝓂 do

4. for 𝑗 = 1…𝓂 do

5. if 𝑖 ≠ 𝑗 and gcd(𝑥𝑖 − 𝑥𝑗 , 𝑝𝑞) ≠ 1, then

6. set 𝑝 = gcd(𝑥𝑖 − 𝑥𝑗 , 𝑝𝑞) = gcd(𝑝(𝑟𝑖 − 𝑟𝑗), 𝑝𝑞), where 𝑝𝑞 is the

public modulus.

7. set flag=1

8. break

9. end if

10. end loop// on 𝑗

11. end loop// on 𝑖

12. if flag== 1 then

13. return 𝑝

97

14. else return “key not found”

Algorithm 5.2 succeeds to find 𝑝 as the greatest common divisor of any pair,

(𝑥𝑖 − 𝑥𝑗 , 𝑝𝑞), 𝑖 ≠ 𝑗, if 𝑠𝑖 = 𝑠𝑗. Then, gcd(𝑥𝑖 − 𝑥𝑗 , 𝑝𝑞) = gcd(𝑘(𝑠𝑖 − 𝑠𝑗) + 𝑝(𝑟𝑖 −

𝑟𝑗), 𝑝𝑞) = gcd(𝑝(𝑟𝑖 − 𝑟𝑗), 𝑝𝑞) = 𝑝. Thus, the probability that the attack succeeds is

the probability that among 𝓂 (ciphertext, plaintext) pairs can be found at least one

pair (𝑥𝑖 , 𝑥𝑗), 𝑖 ≠ 𝑗 such that 𝑠𝑖 = 𝑠𝑗.

Section 5.3.2 discusses the computational complexity of Algorithm 5.2, and Section

5.4 discusses the problem of estimating the probability of finding matching pairs in a

finite set.

5.3.2 Computational Complexity of The KPA Attack

In the worst case, Algorithm 5.2 tries step 5 for a number of runs = 𝓂2, since 𝑖, 𝑗 =

1…𝓂. Thus, the average computational complexity of Algorithm 5.2 is,

𝓂2

2
, (5.37)

5.3.3 Probability of Finding a Matching Pair in a Finite Set

Let 𝕊 and Pr𝑛𝑜(𝓂) be defined in (5.9) and (5.10) respectively, Pr𝑛𝑜(𝓂) is calculated

according to (5.14).

Let Pr1(𝓂, 𝑘) be defined in (5.15) and calculated according to (5.17) for 𝑘 ≈ 2𝛾.

According to Definition, Pr1(𝓂, 𝛾) is negligible if

Pr1(𝓂, 𝛾) <
1

𝛾𝑐
. for any 𝑐 ≥ 0 (5.38)

for 𝛾≥ 𝛾𝑐. From (5.17),

98

1 − 𝑒−𝓂2 2𝛾+1 ⁄ < 𝛾−𝑐, (5.39)

Multiplying both sides of (5.39) by 𝛾𝑐,

𝛾𝑐 − 1 < 𝑒−𝓂2 2𝛾+1 ⁄ 𝛾𝑐. (5.40)

Applying natural logarithm operation to both sides of (5.40),

ln(𝛾𝑐 − 1) < ln 𝑒−𝓂2 2𝛾+1 ⁄ + 𝑐 ln 𝛾, (5.41)

Thus, from (5.41)

ln(𝛾𝑐 − 1) < 𝑐 ln 𝛾 −
𝓂2

2𝛾+1
 , (5.42)

and, from (5.42)

𝓂2

2𝛾+1
< ln (

𝛾𝑐

𝛾𝑐 − 1
). (5.43)

Then, from (5.43),

𝑚 < √2𝛾+1 ln (
1

1 − 𝛾−𝑐
). (5.44)

The minimal 𝛾 for which (5.44) holds is 𝛾𝑐. For example, when 𝑚 = 100, 𝑐 = 1, (5.42)

holds for 𝛾 ≥ 𝛾1 = 17, and for 𝑐 = 5, 𝛾5 = 39. Thus, Pr1(𝓂, 𝛾) is negligible.

To estimate the required number of collected (plaintext, ciphertext) pairs to

successfully attack with a certain probability, from (5.17), we get

1 − Pr1(𝓂, 𝛾) = 𝑒−𝓂2 2𝛾+1 ⁄ . (5.45)

Applying natural logarithm operation to both sides of (5.45),

𝓂 = √−2𝛾+1 ln(1 − Pr1(𝓂, 𝛾)), (5.46)

From (5.46), the number, 𝓂, of members in a set 𝕊 required to have at least one

matching pair with Pr1(𝓂, 𝛾) = 50% is

99

𝓂 = √2𝛾+1 ln(2) = √1.39 ∙ 2𝛾/2 = 1.18 ∙ 2𝛾/2 , (5.47)

and with Pr1(𝓂, 𝛾) = 99.9% :

𝓂 = √2𝛾+1 ln(1000) = 3.72 ∙ 2𝛾/2 . (5.48)

Thus, to attack HE1N using Algorithm 5.2 with 50% success probability for = 32,

attacker, according to (5.47), needs 𝑚 > 1.18 ⋅ 216 ≈ 7.73 ∙ 104 (plaintext,

ciphertext) pairs.

The success probability of attacking HE1N by collecting 𝓂 = 100

(plaintext/ciphertext) pairs and 𝛾 = 32 according to (5.17) is as follows:

Pr1(𝓂, 𝛾) = 1 − 𝑒−𝓂2 2𝑘⁄ = 1 − 𝑒−1002 232+1⁄ ≈ 1.16 ⋅ 10−6. (5.49)

Table 5.1 shows success probability (5.17) and computational complexity of

Algorithm 5.2 (5.37), for KPA against HE1N using different 𝓂 values, at 𝛾 = 32.

Table 5.1: KPA success probability and computational complexity, for different 𝓂

𝓶 𝐏𝐫𝟏(𝓶, 𝛾 = 𝟑𝟐) Computational Complexity (
𝓶𝟐

𝟐
)

100 1.16 ⋅ 10−6 5 ⋅ 103

103 1.16 ⋅ 10−4 5 ⋅ 105

104 0.01 5 ⋅ 107

2 ⋅ 104 0.05 2 ⋅ 108

5 ⋅ 104 0.25 1.25 ⋅ 109

7.73 ⋅ 104 0.50 2.99 ⋅ 109

105 0.69 5 ⋅ 109

2.43 ⋅ 105 0.999 2.95 ⋅ 1010

From Table 5.1, we can see that success probability increases as the number of

collected (plaintext, ciphertext) pairs increases, the success probability 50%, of having

at least one matching pair can be achieved by collecting 7.73 ⋅ 104 pairs and the

probability of 99.9% can be achieved by collecting 2.43 ⋅ 105 pairs.

100

5.4 Summary

In this chapter, HE1N security is analyzed. Section 5.1 proved that the modulus

operation in HE1N encryption is effictive due to the fact that under proposed parameter

settings, the value of the encryption is less than the modulus. Having ineffective

modulus makes HE1N vulnerable to various attacks targeting its private key. Sections

5.2.1 and 5.3.1 new COA and KPA attacks exploiting the not functioning modulus are

proposed. In sections 5.2.3, 5.2.4 the success probability of the COA attack is

analyzed. The parameters 𝛾, the length of 𝑘 in bits, and 𝓂 the number of collected

ciphertexts can be set by eq. (5.23) so that the success probability of the COA becomes

negligible. In Section 5.3.3, the success probability of KPA is estimated. The

parameters 𝛾, the length of 𝑘 in bits, and 𝓂 the number of collected ciphertexts can

be set by eq. (5.44) so that the success probability of the KPA becomes negligible.

Complexity of both attacks is found to be 𝑂(𝓂2) by (5.37) and (5.44).

HE1N scheme is proposed as efficient homomorphic scheme to provide security for

cloud computation. HE1N encryption uses an ineffective modulus operation which

makes HE1N private key and encrypted message prone to various attacks such as KPA

and COA attacks proposed in this chapter. In order to prevent such attacks it is

important to select parameters such that the condition (5.2) is not satisfied.

101

Chapter 6

6DEVELOPMENT OF RANDOM CONGRUENTIAL

PUBLIC-KEY CRYPTOSYSTEM (RCPKC)

NTRU, and its known variants, shown in Section 2.3.4, work with degree 𝑁

polynomials. The main problem NTRU faces is that it is susceptible to the lattice basis

reduction attack (LBRA) using GLR algorithm (see Appendix B) for two-dimensional

lattices and the LLL algorithm (see Appendix B) for higher dimensions. LBRA using

LLL algorithm solves SVP with exponential in 𝑁 running time revealing the secret

key because the private keys are selected as polynomials with small coefficients for

the decryption correctness (Hoffstein et al., 1999). To overcome the problem of

susceptibility, NTRU uses large 𝑁 resulting in high computational complexity

(Hoffstein et al., 1998; “IEEE Standard Specification for Public Key Cryptographic

Techniques Based on Hard Problems over Lattices,” 2009). Therefore, NTRU variants,

shown in Section 2.3.4, try minimizing NTRU computational complexity by extending

the coefficients of the polynomials used or using matrices of polynomials that allow

preserving the security level while decreasing the polynomial degree. The extreme

case is a polynomial of zero degree, that is integers modulo 𝑞 >> 1, as used in the

congruential public key cryptosystem (CPKC), shown in Section 2.3.3, but CPKC with

the NTRU encryption/encryption mechanism is insecure against LBRA by GLR

(crackable in about 10 iterations) (see Example C.2 in Appendix C). Therefore, the

CPKC is considered as a toy model of NTRU because “it provides the lowest

dimensional introduction to the NTRU public-key cryptosystem” (Hoffstein et al.,

102

2014a, p. 374). The insecurity of CPKC stems from the choice of the private keys used

as small numbers to provide decryption correctness. If CPKC could be made resistant

to GLR attack, it would be the best possible choice for the NTRU modifications.

Therefore, in Section 6.2, we propose a CPKC modification, random CPKC (RCPKC),

working on degree 𝑁 = 0 polynomials modulo 𝑞. The norm of a two-dimensional

vector formed by its private key is greater than √𝑞. RCPKC works as NTRU, and it is

a secure version of insecure CPKC. It specifies a range from which the random

numbers shall be selected and provides correct decryption for valid users and incorrect

decryption for an attacker using LBRA by GLR. In Section 6.3, the security of RCPKC

against various kinds of attacks is proved. In Section 6.4, RCPKC asymmetric

encryption padding (RAEP), is proposed. RAEP similar to its NTRU analog, NAEP,

is IND-CCA2 secure. Due to the use of big numbers instead of high degree

polynomials, RCPKC is about 27 times faster in encryption and decryption than

NTRU. Furthermore, RCPKC is more than three times faster than the most effective

known NTRU variant, BQTRU. Compared to NTRU, RCPKC reduces energy

consumption at least thirty times, which allows increasing the life-time of unattended

WSNs more than thirty time. RCPKC is performance and power analysis are

conducted in Section 6.5. Section 6.6 summarizes the chapter.

To modify CPKC to become resistant to GLR attack, first, in Section 6.1, a region

where GLR attack fails is shown.

6.1 Region Resistant to GLR Attack on the CPKC Private

Key/Message

Recall from (B.5),

𝜆 ≤ √𝛾2 det(𝐿)1 2⁄ ,

103

where det(𝐿) = 𝑞 for the lattice 𝐿(𝑉1, 𝑉2) in (2.41). Therefore, (B.5) can be written as

follows:

𝜆 ≤ 𝛼√𝑞, (6.1)

where 𝛼 = √𝛾2 ≈ 1.07. From (6.1), one gets for the relative norm,

𝜆′ =
𝜆

√𝑞
,

(6.2)

the following inequality (6.3):

𝜆′ ≤ 𝛼. (6.3)

 GLR fails in attacking the CPKC private key/message when (6.3) is not satisfied for

the secret vector relative norm (𝑓, 𝑔), i.e., if:

‖(𝑓, 𝑔)‖ √𝑞⁄ > 𝛼 (6.4)

holds, GLR fails to find the CPKC private key/message.

CPKC selects small values for the private key (𝑓, 𝑔) in (2.29) to satisfy the decryption

correctness condition (2.37). Hence, our goal is to propose in Section 6 a modification

for CPKC, that is RCPKC, where (𝑓, 𝑔) satisfies (6.4) and provides correct decryption

for valid users and incorrect decryption for an attacker using GLR.

6.2 The proposed RCPKC

In this section, RCPKC, an adjustment of CPKC described in Section 2.3.3.1, so that

it becomes resistant to GLR attack, is proposed.

6.2.1 RCPKC Main Ideas

The main two ideas of RCPKC are:

• Contrary to the settings (2.29) of CPKC, which uses the secret key (𝑓, 𝑔) with

a small norm not exceeding √𝑞 so that (𝑓, 𝑔) may be found as a shortest vector

104

(SV) in the lattice 𝐸(𝑉1, 𝑉2) defined by (2.41), RCPKC uses the private key

(𝑓, 𝑔) with a large norm meeting (6.4) so that it cannot be returned by LBRA

using GLR as the SV, but (𝑓, 𝑔) also meets (2.37) due to the skew in its

components.

• However, as we mentioned in section 2.3.3.2, for any pair of integers, 𝐹 and

𝐺, satisfying (2.42), (𝐹, 𝐺) is likely to serve as the first two components, 𝑓, 𝑔,

of the private key. That means, in spite of the large norm of (𝑓, 𝑔), the

SV=(𝐹, 𝐺), obtained in the result of LBRA using GLR may meet decryption

correctness condition (2.37) and, thus, may be used for the correct plaintext

message disclosure. That is why, our proposed RCPKC before encrypting by

(2.35), (contrary to CPKC using a random number from the predefined range

(2.34)), defines a range for the random number selection using the SV, (𝐹, 𝐺)

(returned by GLR attack on the lattice 𝐸(𝑉1, 𝑉2) defined by (2.41)), so that

decryption correctness condition (2.37) holds for (𝑓, 𝑔) but does not hold for

(𝐹, 𝐺) which leads to the failure of LBRA using GLR on RCPKC.

Thus, RCPKC assumes that the private key owner selects a range for a random

value, 𝑟 (used in encryption (2.35)), based on the secret key, (𝑓, 𝑔), and respective

SV, (𝐹, 𝐺), in the lattice, 𝐸(𝑉1, 𝑉2), defined by (2.43), guaranteeing correct

decryption for a valid user and incorrect decryption for an attacker using GLR.

Because of the special choice of the random value range, the proposed algorithm

is called Random CPKC, RCPKC. The problem for RCPKC might happen is that

the range for random numbers such as kind defined may be rather narrow and, thus,

the security of RCPKC may suffer. However, as will be shown, the range is rather

large and may significantly exceed the range for a secret message.

105

In Subsection 6.2.2, CPKC is modified to RCPKC so that it becomes immune to

GLR attacks. Example F.1 in Appendix F shows GLR attack failure to disclose

RCPKC encrypted message.

6.2.2 RCPKC Proposal

To meet (6.4), it is required that

𝑓, 𝑟 ≥ 𝛼 ⋅ √𝑞. (6.5)

The LBRA by GLR failure condition (6.4) holds if (6.5) is true since

‖(𝑓, 𝑔)‖

√𝑞
=

√𝑓2 + 𝑔2

√𝑞
=

√𝛼2 ⋅ 𝑞 + 𝑔2

√𝑞
> 𝛼,

for 𝑔 > 0. Condition (6.5), in RCPKC, substitutes for the conditions (2.29), (2.34) on

𝑓, 𝑟, in CPKC. The message, 𝑚, and the private key, 𝑔, instead of (2.33), (2.29), used

in CPKC, are redefined in RCPKC as follows:

2𝑚𝑔𝐿𝑒𝑛 > 𝑔 ≥ 2𝑚𝑔𝐿𝑒𝑛−1 > 𝑚 ≥ 0 (6.6)

where 𝑚𝑔𝐿𝑒𝑛 represents the length of 𝑚 and 𝑔 in bits.

For RCPKC, correctness decryption condition (2.37) shall hold, that is true (see (6.11))

when 𝑓, 𝑟 values in addition to (6.5) meet (6.7):

𝑞

2 ⋅ 2𝑚𝑔𝐿𝑒𝑛
> 𝑓, 𝑟. (6.7)

since 𝑞 = 2𝑞𝐿𝑒𝑛. Then, (6.5), (6.7) can be rewritten:

2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒𝑛−1 > 𝑓, 𝑟 ≥ 𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ . (6.8)

To have a non-empty range for 𝑓, 𝑟, of the width at least 𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ , from (6.8), the

following condition is obtained:

2𝑞𝐿𝑒𝑛 2⁄

2 ⋅ 𝛼
> 2𝑚𝑔𝐿𝑒𝑛+1.

(6.9)

106

By defining 𝛽 = log2 1/(2 ⋅ 𝛼) ≈ −1.103, (6.9) shows that

2𝛽 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ > 2𝑚𝑔𝐿𝑒𝑛+1,

𝑞𝐿𝑒𝑛 + 2 ⋅ 𝛽 > 2 ⋅ (𝑚𝑔𝐿𝑒𝑛 + 1),

𝑞𝐿𝑒𝑛 > 2 ⋅ (𝑚𝑔𝐿𝑒𝑛 + 1 − 𝛽). (6.10)

Let’s show that the decryption correctness condition (2.37) holds when (6.6), (6.8),

and (6.10) hold:

𝑟 ⋅ 𝑔 + 𝑓 ⋅ 𝑚 < 2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒𝑛−1 ⋅ 2𝑚𝑔𝐿𝑒𝑛 + 2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒𝑛−1 ⋅ 2𝑚𝑔𝐿𝑒𝑛−1

< 2𝑞𝐿𝑒𝑛−1 + 2𝑞𝐿𝑒𝑛−1 = 2𝑞𝐿𝑒𝑛 = 𝑞. (6.11)

Thus, for RCPKC, the norm (𝑓, 𝑔) meets (6.4) and the decryption correctness

condition (6.11) holds. We need additionally that decryption correctness condition

(6.11) to be violated for (𝐹, 𝐺), that is the SV obtained in the result of GLR attack on

the lattice 𝐸(𝑉1, 𝑉2) defined by (2.41). Hence, it cannot be used as a private key for

the plaintext message correct decryption.

All vectors (𝐹𝑖, 𝐺𝑖) obtained in the course of GLR reduction that have norms

‖(𝐹𝑖, 𝐺𝑖)‖ < 𝜇‖(𝑓, 𝑔)‖, 𝑖 = 1,… ,𝑁, (6.12)

must be listed, where 𝑁 is the number of (𝐹, 𝐺) pairs satisfying (6.12), 𝜇 is a threshold,

e.g., 𝜇 = 10, and then it must be checked that

(∀𝑖 = 1,… ,𝑁)((𝐹𝑖, 𝐺𝑖) ≠ (𝑓, 𝑔)). (6.13)

If (6.13) is violated, i.e., one of the vectors in the list is our vector (𝑓, 𝑔), then another

(𝑓, 𝑔) is used.

Inequality (6.8) defines a range for 𝑟 so that 𝑓, 𝑔, 𝑟, 𝑚 meet (2.37). Now, constraint

on 𝑟 is defined as follows:

107

𝑞

𝑔
− 𝑓 ≥ 𝑟𝑚𝑎𝑥 ≥ 𝑟 ≥ 𝑟𝑚𝑖𝑛 ≥ (𝑞 + 𝑔 ⋅ max

𝑖=1,…,𝑁
|𝐹𝑖|) min

𝑖=1,…
|𝐺𝑖|⁄ , (6.14)

such that 𝐹𝑗, 𝐺𝑗, 𝑟, 𝑚 violate (2.37) for any 𝑗 = 1,… ,𝑁. We require also that

ℎ ⋅ 𝑟𝑚𝑖𝑛 > 𝑞. (6.15)

Using (6.14) and (6.6), it is noticed that actually decryption correctness condition

(2.37) for any 𝑗 = 1,… ,𝑁, is violated:

|𝐺𝑗 ⋅ 𝑟 + 𝐹𝑗 ⋅ 𝑚| ≥ |𝐺𝑗 ⋅ 𝑟| − |𝐹𝑗 ⋅ 𝑚| ≥ |𝐺𝑗| ⋅
𝑞 + 𝑔 ⋅ max

𝑖=1,…,𝑁
|𝐹𝑖|

min
𝑖=1,…,𝑁

|𝐺𝑖|
− |𝐹𝑗 ⋅ 𝑚|

≥ 𝑞 + 𝑔 ⋅ max
𝑖=1,…,𝑁

|𝐹𝑖| − |𝐹𝑗 ⋅ 𝑚| > 𝑞. (6.16)

From (6.6), (6.14), it is also perceived that the decryption correctness condition (2.37)

holds for the original (𝑓, 𝑔):

𝑔 ⋅ 𝑟𝑚𝑎𝑥 + 𝑓 ⋅ 𝑚 ≤ 𝑔(𝑞 𝑔⁄ − 𝑓) + 𝑓 ⋅ 𝑚 = 𝑞 − 𝑓(𝑔 + 𝑚) < 𝑞. (6.17)

Thus, inequality (6.8) is used for 𝑓, but for 𝑟 from (6.14) and (6.8):

𝑟𝑚𝑎𝑥 > 𝑟 ≥ max (𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ , 𝑟𝑚𝑖𝑛). (6.18)

For RCPKC security, the range defined by (6.18) shall be rather large, such as, e.g.,

max(𝑎 · 2𝑞𝐿𝑒𝑛 2⁄ , 𝑟𝑚𝑖𝑛), hence, it is desirable having:

𝑟𝑚𝑎𝑥 ≥ 2 ⋅ max(𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ , 𝑟𝑚𝑖𝑛). (6.19)

To provide CCA indistinguishability (see Section Definition G.28), it is required to

have

gcd(𝑔, 𝑞) > 1. (6.20)

Thus, RCPKC proposal follows.

108

RCPKC proposal:

The private key components, (𝑓, 𝑔), meet (2.30), (2.31), (6.6), (6.8), and (6.20), where

𝑞𝐿𝑒𝑛, 𝑚𝑔𝐿𝑒𝑛 meet (6.10). The public key component, ℎ, is defined by (2.32).

Message, 𝑚, meets (6.6), and random integer, 𝑟, is selected from the range defined in

(6.14), (6.15) and (6.18). Encryption and decryption follow (2.35), (2.36) and (2.39),

respectively. The decryption correctness condition (2.37) is proven for RCPKC in

(6.17).

Example F.1 shown in Appendix F is an example of RCPKC encryption and

decryption, and GLR failure to find RCPKC private key/message. RCPKC is also

resistant to various attacks, as shown in the security analysis presented in the next

section.

6.3 Security Analysis

In this section, attacks on NTRU are considered: brute force (on the key and message),

and meet-in-the-middle (MITM) in Subsection 6.3.1, lattice basis reduction in

Subsection 6.3.2, hybrid lattice basis reduction, and MITM (Howgrave-Graham, 2007)

in Subsection 6.3.3, multiple transmission (MTA) (Hoffstein et al., 1998) in

Subsection 6.3.5, and also, the most recent, chosen-ciphertext (Gama & Nguyen, 2007;

Hoffstein et al., 2017; Howgrave-Graham, Nguyen, et al., 2003; Jaulmes & Joux,

2000), in Subsection 6.3.5), and we try applying them to RCPKC. Herein, the NTRU

parameters used, EES401EP1 (“IEEE Standard Specification for Public Key

Cryptographic Techniques Based on Hard Problems over Lattices,” 2009), of the

security level, 𝑘 = 112 bits:

𝑁 = 401, 𝑝 = 3, 𝑞 = 2048, 𝑑𝑓1 = 𝑑𝑓2 = 8,

 𝑑𝑓3 = 6, 𝑑𝑔 = 133, 𝑑𝑟1 = 𝑑𝑟2 = 8, 𝑑𝑟3 = 6 (6.21)

109

To meet the same security level, the RCPKC settings satisfying (6.10) are:

𝑞𝐿𝑒𝑛 = 473,𝑚𝑔𝐿𝑒𝑛 = 255, (6.22)

The key space cardinality (defined in Subsection 6.3.1 for the parameters (6.21) and

(6.22)) is greater than or equal to 22·𝑘 for 𝑘 = 112 to avoid the MITM attack explained

in Subsection 6.3.1.

6.3.1 Brute Force and MITM Attacks

An attacker can recover the NTRU private key by trying all possible values of 𝑔 and

testing whether 𝑓 · ℎ 𝑚𝑜𝑑 𝑞 has small coefficients (the product corresponds to 𝑔

according to (2.32)). On the other hand, an attacker can try all possible values of 𝑔 and

test whether ℎ−1 · 𝑔 𝑚𝑜𝑑 𝑞 (corresponding to 𝑓 by virtue of (2.32)) has small

coefficients. Equations (6.23) and (6.24) show the search space cardinalities for 𝑔 and

𝑓 for the security level, 𝑘 = 112 (taking into account the MITM attack explained later

in this section). The search space cardinality for 𝑓 is computed as follows (see

(Hoffstein et al., 2017) (Section 7)):

𝐶𝑁𝑇𝑅𝑈(𝑓, 𝑘) = (
𝑁
𝑑𝑓1

) (
𝑁 − 𝑑𝑓1

𝑑𝑓1
) (

𝑁
𝑑𝑓2

) (
𝑁 − 𝑑𝑓2

𝑑𝑓2
) (

𝑁
𝑑𝑓3

) (
𝑁 − 𝑑𝑓3

𝑑𝑓3
)

= (
401
8

) (
393
8

) (
401
8

) (
393
8

) (
401
6

) (
395
6

)

= 1.16 × 1090 ≥ 22⋅𝑘 = 2224. (6.23)

Similarly, for 𝑔:

𝐶𝑁𝑇𝑅𝑈(𝑔, 𝑘) = (
𝑁
𝑑𝑓1

) (
𝑁 − 𝑑𝑓1

𝑑𝑓1
) = (

401
133

) (
268
133

)

= 4.34 × 10188 ≥ 22⋅𝑘2224.

(6.24)

it is perceived the search space cardinality for 𝑓 is less than that for 𝑔, so the best

strategy for an attacker is to search for 𝑓 values.

110

An attacker can reduce the search space cardinality from 2𝑘 to 2𝑘 2⁄ (Howgrave-

Graham, Silverman, & Whyte, 2003) using MITM by splitting the private key 𝑓

(which is a polynomial of degree 𝑁 − 1) into two polynomials, 𝑓 = 𝑓1 + 𝑓2, where 𝑓1

is a polynomial of degree at most 𝑁/2 − 1 and polynomial 𝑓2 contains terms of degree

between 𝑁/2 and 𝑁 − 1, and then trying matches: 𝑓1 · ℎ 𝑚𝑜𝑑 𝑞 = (𝑔 − 𝑓2 ·

ℎ) 𝑚𝑜𝑑 𝑞. Hence, to meet the 𝑘 = 112 security level, the NTRU parameters must be

chosen to meet the 𝑘 = 224 security level, as it is already made in (6.21). For RCPKC,

the secret value, 𝑔, is selected from the interval [2𝑚𝑔𝐿𝑒𝑛−1 , 2𝑚𝑔𝐿𝑒𝑛) (see (6.6)); hence,

the search space cardinality for 𝑔 to meet the 2 ⋅ 𝑘-bit security level against the brute

force attack shall satisfy:

𝐶𝑅𝐶𝑃𝐾𝐶(𝑔, 𝑘) = 2𝑚𝑔𝐿𝑒𝑛−1 ≥ 22⋅𝑘 (6.25)

The secret value, 𝑓, is selected from the interval [𝛼 · 2𝑞𝐿𝑒𝑛 2⁄ , 2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒𝑛−1) (see

(6.8)); hence, the search space cardinality for 𝑓 to meet the 2 · 𝑘-bit security level

against the brute force attack shall satisfy:

𝐶𝑅𝐶𝑃𝐾𝐶(𝑓, 𝑘) = 2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒𝑛−1 − 𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ ≥ 22⋅𝑘 (6.26)

For the parameters (6.22), 𝐶𝑅𝐶𝑃𝐾𝐶(𝑔, 𝑘) = 2224, while 𝐶𝑅𝐶𝑃𝐾𝐶(𝑓 , 𝑘) ≈ 2247. In order

to provide the security level for 𝑘 = 112, the parameters (6.22) are chosen to meet the

twice greater security level of 2 · 𝑘 = 224 to counter the MITM attack, considered

below, which reduces the brute force attack effort by the square root. Since

𝐶𝑅𝐶𝑃𝐾𝐶(𝑔, 𝑘) < 𝐶𝑅𝐶𝑃𝐾𝐶(𝑓 , 𝑘), the best strategy for an attacker is to search for 𝑔

values. Similar to NTRU, the MITM attack can be applied to the RCPKC private key

component, 𝑔. Since 𝑚𝑔𝐿𝑒𝑛 is the bit length of 𝑔, then 𝑔 = 𝑔1 + 2(𝑚𝑔𝐿𝑒𝑛−1)/2 ⋅ 𝑔2,

and then, 𝑔1 and 𝑔_2 , each of a bit length equal to (𝑚𝑔𝐿𝑒𝑛 − 1)/2, can be enumerated

with the resulting search space cardinality 𝒪(2(𝑚𝑔𝐿𝑒𝑛−1) 2⁄) trying to find matching

111

(𝑓 ⋅ ℎ − 𝑔1) 𝑚𝑜𝑑 𝑞 = 2(𝑚𝑔𝐿𝑒𝑛−1) 2⁄ ⋅ 𝑔2 𝑚𝑜𝑑 𝑞.

Thus, the RCPKC parameters (6.22) provide the security level 𝑘 = 112 against the

brute force attack with MITM. Now, let us consider the brute force attack on the

message.

An attacker can compromise an NTRU message by trying all possible values of 𝑟 and

testing whether 𝑒 − 𝑟 · ℎ 𝑚𝑜𝑑 𝑞 has small coefficients. Similarly, the attacker can

compromise the RCPKC message by trying all possible values of 𝑟 and testing if 𝑒 −

𝑟 ⋅ ℎ 𝑚𝑜𝑑 𝑞 ∈ [0, 2𝑚𝑔𝐿𝑒𝑛−1) by virtue of (6.6).

The RCPKC message search space is defined by the interval [0, 2𝑚𝑔𝐿𝑒𝑛−1) (see (6.6));

hence, the search space cardinality 𝑓 or 𝑚 to meet the 2 · 𝑘-bit security level against

the brute force attack shall satisfy:

𝐶𝑅𝐶𝑃𝐾𝐶(𝑚, 𝑘) = 2𝑚𝑔𝐿𝑒𝑛−1 ≥ 22⋅𝑘, (6.27)

while the search space of 𝑟 is defined by (6.14), (6.18), and (6.19). Hence, the search

space cardinality for 𝑟 to meet the 2 · 𝑘-bit security level against the brute force attack

shall satisfy:

𝐶𝑅𝐶𝑃𝐾𝐶(𝑟, 𝑘) = 𝑟𝑚𝑎𝑥 − max(𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ , 𝑟𝑚𝑖𝑛) ≥ 22⋅𝑘. (6.28)

Table 6.1: Width of the range for the 𝑟 value for different security levels.

RCPKC Parameter 𝟐 × 𝒌

 224 336 448
1 𝑚𝑔𝐿𝑒𝑛 225 337 450
2 𝑞𝐿𝑒𝑛 473 743 909
3 𝑓 = 2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒−1

− 1

2.26 × 1074 8.26 × 10121 7.44 × 10137

4 𝑔 2𝑚𝑔𝐿𝑒𝑛 − 1
= 5.39 × 1067

2𝑚𝑔𝐿𝑒𝑛 − 5
= 2.79 × 10101

2𝑚𝑔𝐿𝑒𝑛 − 11
= 2.90 × 10135

5 𝑟𝑚𝑎𝑥 2.26 × 1074 8.26 × 10121 7.44 × 10137

6 max(𝛼2𝑞𝐿𝑒𝑛 2⁄ , 𝑟𝑚𝑖𝑛) 7.41 × 1072 1.62 × 10119 1.10 × 10137

112

Table 6.1 shows the 𝑚𝑔𝐿𝑒𝑛 and 𝑞𝐿𝑒𝑛 values to meet different 2 · 𝑘-bit security levels’

condition (6.28) (see Rows 1 and 2) and the width of the range for 𝑟 (Row 7) with 𝑓

and 𝑔 specified in Rows 3 and 4, respectively. It proves that the method can be

practically used.

6.3.2 Lattice Basis Reduction Attacks

The NTRU lattice basis, 𝐿ℎ
𝑁𝑇𝑅𝑈, associated with public key ℎ defined in (2.17) is

0 1 1

1 0 2

1 2 0

1 0 0

0 1 0

0 0 1

0 00 0 0

0 00 0 0

0 00 0 0

N

N N

NTRU

h

h h h

h h h

h h h
L

q

q

q

−

− −

=

LL

LL

M M O MM M O M

LL

LL

LL

M M O MM M O M

LL

,

where ℎ0, . . . , ℎ𝑁−1 are coefficients of the polynomial ℎ. For convenience, matrix

𝐿ℎ
𝑁𝑇𝑅𝑈 is abbreviated as

𝐿ℎ
𝑁𝑇𝑅𝑈 = (

𝐼 ℎ

0 𝑞𝐼
).

The NTRU private key recovery problem can be formulated as the SVP in 2𝑁-

dimensional lattice, 𝐿ℎ
𝑁𝑇𝑅𝑈. If a polynomial, 𝑏, of degree 𝑁 − 1 with integer

coefficients satisfying:

𝑓 ⋅ ℎ + 𝑞 ⋅ 𝑏 = 𝑔

exists, then:

(𝑓, 𝑏) = 𝐿ℎ
𝑁𝑇𝑅𝑈 = (𝑓, 𝑔).

7 𝑐𝑅𝐶𝑃𝐾𝐶(𝑟, 𝑘) 2.1 × 1074 8.24 × 10121 6.34 × 10137

113

Therefore, the vector (𝑓, 𝑔) is in the lattice 𝐿ℎ
𝑁𝑇𝑅𝑈. Vector (𝑓, 𝑔) or its rotation (rotation

of a polynomial, 𝑓, by 𝑖 steps, is 𝑥𝑖 · 𝑓 ∈ 𝑅𝑞 for an integer 𝑖) can be found if it is the

shortest vector in 𝐿ℎ
𝑁𝑇𝑅𝑈. The lattice reduction algorithm LLL (see Appendix B) finds

the shortest vector in 𝐿ℎ
𝑁𝑇𝑅𝑈 in time exponential in 𝑁. According to (Hoffstein et al.,

1999), LLL takes 1.05 × 1031 MIPS (million instructions per second)-years to find

the shortest vector or its rotation for 𝑁 = 400 (as in (6.21)) that most likely is the

NTRU private key part, (𝑓 , 𝑔).

Contrary to NTRU, RCPKC is resistant to LBRA since the GLR attack fails for it (see

Subsection 6.2.2). LBRA is one of the most used and effective techniques in attacking

an NTRU private key (e.g., it is used in the hybrid lattice attack, the most efficient on

practical NTRU parameters (Kirchner & Fouque, 2017); see Subsection 6.3.4), but it

does not apply to RCPKC.

6.3.3 A Hybrid Lattice Basis Reduction and MITM Attack

The attack (Howgrave-Graham, 2007) on the NTRU secret key combines the LBRA

and MITM strategies. The hybrid attack, first, splits the original lattice of order 2𝑁,

𝑁 > 1, into three subparts, only one of which is further reduced, whereas the vectors

from the other parts are just enumerated, thus combining the concepts of the LBRA

and MITM attacks. The hybrid attack is not applicable to RCPKC since:

- The RCPKC lattice is two-dimensional and cannot be split into three subparts;

- RCPKC uses a large norm secret (𝑓 , 𝑔) vector (see (6.6) and (6.8)) that cannot

be found by LBRA looking for an SV, and the SV cannot be used for correct

decryption (see (6.16))

114

6.3.4 Multiple Transmission Attack

MTA reveals a large part of an NTRU message by sending 𝑛 times the same message,

𝑚, using the same public key, ℎ, but different random values, 𝑟𝑖. For NTRU encryption

(2.35)

𝑒𝑖𝑟𝑖 ⋅ ℎ + 𝑚 𝑚𝑜𝑑 𝑞

for 𝑖 = 1,2, … , 𝑛. An adversary computes:

(𝑒𝑖 − 𝑒1) ⋅ ℎ−1 𝑚𝑜𝑑 𝑞,

There by recovering 𝑟𝑖 − 𝑟1 𝑚𝑜𝑑 𝑞, 𝑖 = 1,… , 𝑛, and from these relations, many

coefficients of 𝑟1 may be revealed. Knowledge of 𝑟1 allows disclosing the message,

𝑚. RCPKC is not susceptible to MTA because no special structure is assumed for 𝑟1

contrary to the case of NTRU.

6.3.5 Chosen Ciphertext Attack

Three chosen-ciphertext attacks (CCA) on NTRU are known. The first key recovering

CCA described in (Jaulmes & Joux, 2000) uses a ciphertext of a special shape, which

can be countered by message padding (Hoffstein et al., 2017). Standardized parameters

(Hoffstein et al., 2017) allow decryption failure, i.e., a ciphertext could fail to be

decrypted correctly by NTRU. In (Howgrave-Graham, Nguyen, et al., 2003), a CCA

was presented where an attacker collects a large number of decryption failures; see the

NTRU correction decryption condition (2.29) in Subsection 2.3.1. Another CCA was

presented in (Gama & Nguyen, 2007), which is more efficient than (Howgrave-

Graham, Nguyen, et al., 2003), but still depends on decryption failures. RCPKC works

on non-structured integers, and the parameters, set in Subsection6.2.2, guarantee

correct decryption. Thus, neither of the CCAs described above apply to RCPKC.

115

6.4 RCPKC Asymmetric Encryption Padding and its IND-CCA2

Security

In this section, we prove the security of the RCPKC one-way function based on the

discussions of the security of the NTRU one-way function in (Howgrave-Graham et

al., 2005), define RCPKC asymmetric encryption padding (RAEP), and prove its IND-

CCA2 security as a particular case of NAEP (see Appendix G). According to Section

6.2.2, RCPKC defines the following four sets:

• 𝒟𝑓 = [𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ , 2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒𝑛−1): private key space, an interval from which

a private key, 𝑓, is selected;

• 𝒟𝑔 = [2𝑚𝑔𝐿𝑒𝑛−1, 2𝑚𝑔𝐿𝑒𝑛): private key space, an interval from which a private

key, 𝑔, is selected;

• 𝒟𝑚 = [0,2𝑚𝑔𝐿𝑒𝑛−1): RCPKC plaintext space, an interval from which a

plaintext, 𝑚, is selected;

• 𝒟𝑟 = [max (𝛼 ⋅ 2
𝑞𝐿𝑒𝑛

2 , 𝑟𝑚𝑖𝑛) , 𝑟𝑚𝑖𝑛]: RCPKC random value space.

The RCPKC encryption primitive is specified by the parameter set,𝒫 =

(𝑞,𝒟𝑓 , 𝒟𝑔, 𝒟𝑚, 𝒟𝑟). The one-way function underlying RCPKC is:

𝐹ℎ: 𝒟𝑚 × 𝒟𝑟 → ℤ𝑞 ,

𝐹ℎ(𝑚, 𝑟) = 𝑟 ⋅ ℎ + 𝑚 𝑚𝑜𝑑 𝑞.

Definition 6.1. RCPKC-OW problem: For a parameter set, 𝒫, we denote by

𝑆𝑢𝑐𝑐𝑅𝐶𝑃𝐾𝐶
𝑂𝑊 (𝒜,𝒫) the success probability of a PPT adversary, 𝒜, for finding a pre-

image of 𝐹ℎ,

𝑆𝑢𝑐𝑐𝑅𝐶𝑃𝐾𝐶
𝑂𝑊 (𝒜,𝒫) = Pr (

(𝑚′, 𝑟′) ← 𝒜(𝑒, ℎ)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡(∃𝑟′ ∈ 𝒟𝑟)(𝐹ℎ(𝑚′, 𝑟′) = 𝑒)
) .

116

Assumption 6.1: RCPKC-OW assumption: For every PPT adversary, 𝒜, solving the

RCPKC-OW problem, there exists a negligible function, 𝑣𝐴(𝑘), such that for

sufficiently large 𝑘, we have:

𝑆𝑢𝑐𝑐𝑅𝐶𝑃𝐾𝐶
𝑂𝑊 (𝒜,𝒫) ≤ 𝑣𝐴(𝑘).

An adversary 𝒜1 can compromise (𝑚, 𝑟) by picking 𝑟′ ∈ 𝒟𝑟, substituting it in

(𝑒 − 𝑟′ ⋅ ℎ) 𝑚𝑜𝑑 𝑞, and checking, if the result is in 𝒟𝑚. Thus, 𝑆𝑢𝑐𝑐𝑅𝐶𝑃𝐾𝐶
𝑂𝑊 (𝒜1, 𝒫) is:

𝑆𝑢𝑐𝑐𝑅𝐶𝑃𝐾𝐶
𝑂𝑊 (𝒜1, 𝒫) =

2𝑚𝑔𝐿𝑒𝑛

2𝑞𝐿𝑒𝑛
.

Since 𝑞𝐿𝑒𝑛 > 𝑚𝑔𝐿𝑒𝑛 by definition (6.10), 𝑆𝑢𝑐𝑐𝑅𝐶𝑃𝐾𝐶
𝑂𝑊 (𝒜1, 𝒫) decreases

exponentially in 𝑞𝐿𝑒𝑛, and Assumption holds. Similarly, the attacker can try the

following methods with an exponentially decreasing success probability:

1. The adversary, 𝒜2, chooses randomly a pair (𝑟′ ∈ 𝒟𝑟 , 𝑚′ ∈ 𝒟𝑚) and checks

if 𝑟′ · ℎ + 𝑚′ 𝑚𝑜𝑑 𝑞 = 𝑒.

2. The adversary, 𝒜3, picks 𝑓′ ∈ 𝒟𝑓 , substitutes it in 𝑓′ · ℎ 𝑚𝑜𝑑 𝑞, and checks

whether the result is in 𝒟𝑔.

3. The adversary, 𝒜4, chooses randomly a pair (𝑓′ ∈ 𝒟𝑓 , 𝑔
′ ∈ 𝒟𝑔), if possible,

calculates ℎ′, decrypts 𝑒 to (𝑟′,𝑚′), and checks if 𝑟′ · ℎ′ + 𝑚′ 𝑚𝑜𝑑 𝑞 = 𝑒.

4. Furthermore, the adversary can apply the GLR attack to get (𝑓 , 𝑔). However,

by construction, RCPKC is immune to that attack, and hence, the success

probability is zero. Therefore, the Assumption is true for all the above attacks.

RCPKC encryption (2.35) differs from NTRU encryption (2.20) just by setting

𝑁 = 𝑝 = 1. The conclusion of (Howgrave-Graham, Silverman, Singer, et al.,

2003) on NAEP IND-CCA2 security is also true for asymmetric encryption

padding, RAEP. However, NAEP cannot be used as-is for 𝑁 = 𝑝 = 1 because it

117

utilizes specific true polynomial functions center() and compress(). Since the

decryption correctness condition (2.37) holds for RCPKC due to the parameter

choice, the center() function is not used in RCPKC and RAEP. The function

compress() as in NAEP shall map its input, 𝑝 · 𝑟 · ℎ, to a binary string, 𝑏𝑠, of the

padded message size. In NAEP, it is done in two steps: 𝑠 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑝 · 𝑟 ·

ℎ 𝑚𝑜𝑑𝑞); 𝑏𝑠 = 𝐻(𝑠). In RAEP, both transforms are done by one hash function,

𝐻: ℤ𝑞 → {0, 1}𝑚𝑔𝐿𝑒𝑛. Algorithm 6.1 and Algorithm 6.2 show RAEP encryption

and decryption, respectively.

Algorithm 6.1: RAEP encryption algorithm

Input: 𝑁 = 𝑚𝑔𝐿𝑒𝑛 = 𝜃(𝑘) is the length of the RCPKC encrypted message;

𝑁 > 𝑙 = 𝜃(𝑘) is the padding size; 𝐺: {0,1}𝑁−𝑙 × {0,1}𝑙 → 𝒟𝑟 and

𝐻: ℤ𝑞 → {0,1}𝑁 are hash functions; 𝒟𝑟 is defined by (6.13), (6.17) and

(6.18); 𝑚 ∈ {0,1}𝑁−𝑙 is the input plaintext message.

Output: 𝑒 ∈ ℤ𝑞 is the ciphertext.

1.
Pick 𝜇

$
← {0,1}𝑙

2. Let 𝜌 = 𝐻(𝑚, 𝜇), 𝑟 = 𝑔𝑒𝑛𝑟(𝜌), 𝑠 = 𝑟 ⋅ ℎ 𝑚𝑜𝑑 𝑞, and 𝜔 = (𝑚||𝜇) ⊕

𝐻(𝑠)// 𝑔𝑒𝑛𝑟() is a function generating correct 𝑟 according to (6.14),

(6.15), (6.18), and (6.19).

3. Let 𝑒 = 𝐹ℎ(𝑚, 𝑟) // according to (2.35)

Algorithm 6.2: RAEP decryption algorithm

Input: 𝑁 = 𝜃(𝑘) is the length of the RCPKC encrypted message; 𝑁 > 𝑙 =

𝜃(𝑘) is the padding size; 𝐺: {0,1}𝑁−𝑙 × {0,1}𝑙 → 𝒟𝑟 and 𝐻: {0,1}𝑁 →

{0,1}𝑁 are hash functions; 𝒟𝑟 is defined by the space for 𝑟; 𝑒 ∈ ℤ𝑞 id the

ciphertext.

Output: 𝑚 ∈ {0,1}𝑁−𝑙 is the decrypted plaintext message if decrypted

correctly, and Reject, otherwise.

1. 𝑎 = 𝑓 ⋅ 𝑒 𝑚𝑜𝑑 𝑞 // according to (2.36)

118

Evaluations of performance and power consumption are provided in Section6.5.

6.5 RCPKC Performance and Power Consumption Evaluation

6.5.1 RCPKC Performance Evaluation

Experiments were conducted using the NTRU code (GitHub -

NTRUOpenSourceProject/Ntru-Crypto: Open Source NTRU Public Key

Cryptography and Reference Code, n.d.) and RCPKC implementation in the C99

language similar to (GitHub - NTRUOpenSourceProject/Ntru-Crypto: Open Source

NTRU Public Key Cryptography and Reference Code, n.d.) with the NTL library

(NTL: A Library for Doing Number Theory, n.d.) on a PC equipped with 1.6 GHz Intel

Core i5-8250U, 8 GB RAM, and Windows 10 (see the main part of RCPKC source

code is available in Appendix J, and the full code is available in (Anasnet/RCPKC-

Project: Open Source RCPKC Cryptosystem Reference Code, n.d.)). Both the NTRU

code (GitHub - NTRUOpenSourceProject/Ntru-Crypto: Open Source NTRU Public

Key Cryptography and Reference Code, n.d.) and the proposed RCPKC were

implemented in Visual Studio 2017. The NTRU parameters (6.21) and the RCPKC

parameters (6.22) were used. The CPU encryption and decryption time of RCPKC and

NTRU was measured for 103, 104, and 105 runs. In each run, a distinct 128-bit

message was encrypted/decrypted with both cryptosystems. The NTL function

2. 𝜔 = 𝐹𝑔 ⋅ 𝑎 𝑚𝑜𝑑𝑔 // according to (2.39).

3. 𝑠 = 𝑒 − 𝜔 𝑚𝑜𝑑 𝑞

4. 𝑚||𝜇 = 𝜔 ⊕ 𝐻(𝑠);𝑟 = 𝑔𝑒𝑛𝑟(𝐺(𝑚‖𝜇))

5. if 𝑟 ⋅ ℎ = 𝑠 𝑚𝑜𝑑 𝑞

6. output 𝑚

7. else

8. output Reject

119

RandomLen() was used to pseudo-randomly generate the messages. RandomLen()

was seeded with the output of the function clock(). The generated messages were

stored in a separate file and used to test RCPKC and NTRU. The CPU time was

measured via QueryPerformanceCounter() with ns accuracy.

Table 6.2 shows the sample mean, �̅�, standard deviation, 𝜎, and confidence interval

with the confidence level 𝐶 ∈ {0.95, 0.99, .0.999} for the number of runs 𝑛 ∈

{103, 104, 105}, respectively for RCPKC and NTRU. The confidence interval, [𝑙, 𝑢],

is calculated using (Moore, 2006, p. 350):

[𝑙, 𝑢] = [�̅� − 𝑧∗
𝜎

√𝑛
, �̅� + 𝑧∗

𝜎

√𝑛
], (6.29)

where �̅� = (∑ 𝑥𝑖
𝑛
𝑖=1) 𝑛⁄ , 𝜎 = √∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1 (𝑛 − 1)⁄ , 𝑥𝑖, and 𝑛 are the sample

mean, sample standard deviation, the value of the run, and number of runs,

respectively; 𝑧∗ is the critical value required for the specific confidence level; see

Table C in (Moore, 2006, p. 687). For example, in Table 6.2 for RCPKC encryption

with 𝐶 = 95%, 𝑛 = 103, �̅� = 6.19 × 10−6 , 𝜎 = 3.966 × 10−6 , 𝑧∗ = 1.960, the

confidence interval is calculated as follows:

[𝑙, 𝑢] = (6.190 × 10−6 −
1.960(3.966×10−6)

√1000
 , 6.190 × 10−6 +

1.960(3.966×10−6)

√1000
) =

 (6.112 × 10−6 , 6.267 × 10−6).

Table 6.2: RCPKC and NTRU CPU encryption/decryption time sample mean,

standard deviation, and confidence interval for different runs

Algorithm Measured

Value

Run number

 103 104 105

 𝐶 0.95 0.99 0.999

 𝑧∗ 1.960 2.576 3.291

Sample Mean, �̅� 6.190 × 10−6 5.492 × 10−6 4.708 × 10−6

120

Figure 6.1 shows the NTRU/RCPKC encryption and decryption average CPU time

ratio for 103, 104, and 105 runs. From Figure 6.1, it is observed that RCPKC is

27.08 ± 3.75 times faster than NTRU in encryption and 26.9 ± 5.09 times faster in

decryption, respectively.

Table 6.3 compares NTRU versus RCPKC and several NTRU variants presented in

Subsection 2.3.4. It is observed that RCPKC is faster than the fastest most recently

published NTRU variant, BQTRU, more than four times in encryption.

RCPKC

(Encryption)

Sample Standard

Deviation, 𝜎

3.966 × 10−6 2.076 × 10−6 2.923 × 10−6

Confidence

Interval [𝑙, 𝑢]
(6.112
× 10−6, 6.267
× 10−6)

(5.475
× 10−6, 5.508
× 10−6)

(4.677
× 10−6, 4.738
× 10−6)

NTRU

(Encryption)

Sample Mean, �̅� 1.444 × 10−4 1.964 × 10−4 1.440 × 10−4

Sample Standard

Deviation, 𝜎
6.878 × 10−5 1.123 × 10−5 6.437 × 10−5

Confidence

Interval [𝑙, 𝑢]
(1.430
× 10−4, 1.457
× 10−4)

(1.430
× 10−4, 1.973
× 10−4)

(1.430
× 10−4, 1.447
× 10−4)

RCPKC

(Decryption)

Sample Mean, �̅� 9.506 × 10−6 8.812 × 10−6 7.493 × 10−6

Sample Standard

Deviation, 𝜎

2.781 × 10−6 2.370 × 10−6 2.795 × 10−6

Confidence

Interval [𝑙, 𝑢]
(9.451
× 10−6, 9.560
× 10−6)

(8.792
× 10−6, 8.831
× 10−6)

(7.464
× 10−6, 7.522
× 10−6)

NTRU

(Decryption)

Sample Mean, �̅� 2.079 × 10−4 2.826 × 10−4 2.088 × 10−4

Sample Standard

Deviation, 𝜎
9.700 × 10−5 1.594 × 10−4 8.633 × 10−5

Confidence

Interval [𝑙, 𝑢]
(2.060
× 10−4, 2.098
× 10−4)

(2.813
× 10−4, 2.839
× 10−4)

(2.079
× 10−4, 2.097
× 10−4)

121

From Table 6.3, we can see that RCPKC is faster than the fastest most recently

published NTRU variant, BQTRU, more than four times in encryption.

6.5.2 RCPKC Power Consumption Evaluation

In this section, RCPKC’s power consumption is compared to NTRU in two cases:

applying both algorithms using the same or different frequencies.

Figure 6.1: NTRU/RCPKC encryption and decryption average CPU time ratio

for 103, 104, and 105 runs.

Table 6.3: Ratios of encryption and decryption times of NTRU and the variants

𝐴 ∈ {𝑅𝐶𝑃𝐾𝐶, 𝐵𝑄𝑇𝑅𝑈,𝑀𝑎𝑇𝑅𝑈, 𝐸𝑇𝑅𝑈}.
Algorithm, 𝑨 Encryption Time Ratio,

=
𝑇𝑁𝑇𝑅𝑈

𝐸𝑁𝐶

𝑇𝐴
𝐸𝑁𝐶

Decryption Time Ratio,

=
𝑇𝑁𝑇𝑅𝑈

𝐷𝐸𝐶

𝑇𝐴
𝐷𝐸𝐶

Proposed RCPKC 27 27

BQTRU (Bagheri

et al., 2018)

7 No Data

MaTRU

(Coglianese &

Goi, 2005)

2.5 2.5

ETRU (Jarvis &

Nevins, 2015)

1.45 1.75

122

Same frequencies: Let the RCPKC and NTRU execution time be 𝑇𝑅𝐶𝑃𝐾𝐶 and 𝑇𝑁𝑇𝑅𝑈,

respectively. Then, from equation (H.1) in Appendix H, the consumed energy by

NTRU and RCPKC 𝐸𝑁𝑇𝑅𝑈 and 𝐸𝑅𝐶𝑃𝐾𝐶 is:

𝐸𝑁𝑇𝑅𝑈 = 𝑃 ⋅ 𝑇𝑁𝑇𝑅𝑈 and 𝐸𝑅𝐶𝑃𝐾𝐶 = 𝑃 ⋅ 𝑇𝑅𝐶𝑃𝐾𝐶 . (6.30)

Since 𝑇𝑁𝑇𝑅𝑈 is greater than 𝑇𝑅𝐶𝑃𝐾𝐶 by more than 27 times, then from (6.30):

𝐸𝑁𝑇𝑅𝑈

𝐸𝑅𝐶𝑃𝐾𝐶
=

𝑇𝑁𝑇𝑅𝑈

𝑇𝑅𝐶𝑃𝐾𝐶
≥ 27.

(6.31)

From (6.31), RCPKC consumes twenty-seven times less energy than NTRU using the

same frequency.

Different frequencies: Since RCPKC is 27 times faster than NTRU, the former takes

approximately the same run time on 27 times lower clock frequency CPU than that of

the latter. Dynamic and leakage power consumption, calculated for frequencies from

(Texas Instruments Incorporated, 2018, p. 19) according to (H.5) in Appendix H, are

shown in Table 6.4.

It follows from Table 6.4 that 𝑃𝑙𝑒𝑎𝑘 ≪ 𝑃𝑑𝑦𝑛, and it can be neglected. From Table 6.4,

it follows that reducing the clock frequency from 16 to 1 MHz leads to a 16 times

power consumption reduction from 1440 to 90 µW. Note that MSP430FR5969, at a

lower frequency, operates at a lower voltage: operating on a 1 MHz frequency at 2.2V

results in 48.4 µW of dynamic power consumption. Hence, the total power reduction

Table 6.4: Microcontroller MSP430FR5969 dynamic and leakage power

consumption, 𝑃𝑑𝑦𝑛 and 𝑃𝑙𝑒𝑎𝑘, for different frequencies and active supply voltages.

 2.2 V 3 V

Frequency (MHz) 𝑷𝒅𝒚𝒏 (𝝁W) 𝑷𝒍𝒆𝒂𝒌 (nW) 𝑷𝒅𝒚𝒏 (𝝁W) 𝑷𝒍𝒆𝒂𝒌 (nW)

1 48.4
44

90
60

16 774.4 1440

123

is
1440

48.4
≈ 30 times. Therefore, RCPKC, compared to NTRU, is better applicable to

WSNs with power-constrained devices.

6.6 Summary

In this chapter, RCPKC is proposed, a secure and effective congruential, modulo 𝑞,

public-key cryptosystem using big numbers. It uses the same encryption/decryption

mechanism as NTRU does, but works with numbers. Contrary to NTRU, RCPKC is

resistant to LBRA because its private key components, 𝑓, and 𝑔, are chosen w.r.t √𝑞

to form a two-component vector with the norm exceeding Minkowski’s boundary

(B.4), (6.1)-(6.3) for the shortest vector in a two-dimensional lattice and meeting (6.4).

Hence, LBRA by the GLR algorithm returning the shortest vector in a two-

dimensional lattice fails at finding the large norm private key vector, (𝑓, 𝑔).

Despite the big numbers, 𝑓 and 𝑟, meeting (6.8) used in RCPKC, it guarantees that the

decryption correctness condition (2.37) holds (see (6.11)) due to the use of Conditions

(6.6), (6.8), (6.10), (6.14) and (6.18) instead of Conditions (2.29), (2.33), and (2.34),

used in the original insecure CPKC (see Section 2.3.3.1) considered in (Hoffstein et

al., 2014a). It was found that the insecurity of the original CPKC stems from the use

of Conditions (2.29), (2.33), and (2.34), defining smaller than √𝑞 numbers 𝑓, 𝑔, 𝑚, 𝑟

meeting Minkowski’s boundary (B.4) and the decryption correctness condition (2.37).

RCPKC is resistant to the LBRA by GLR attack due to the special choice of the range

for the random value, 𝑟, used in the encryption (2.35) that guarantees correctness

condition (2.37) violation for the short vectors returned by GLR, but holding for the

original private key, (𝑓, 𝑔). Section 6.3 shows also that the security of RCPKC with

respect to other known attacks on NTRU is not less than that of NTRU, which allows

124

us to conclude that RCPKC is more secure than NTRU. Section 6.4 proves the IND-

CCA2 security of RCPKC asymmetric encryption padding (RAEP).

RCPKC uses numbers, i.e., minimal possible, degree zero, polynomials, which makes

it about 27 times more effective in encryption and decryption than NTRU and more

than three times more effective in encryption w.r.t the fastest most recently published

NTRU variant, BQTRU (Bagheri et al., 2018), as the experiments show (see Table

6.3). Compared to NTRU, RCPKC reduces the energy consumption at least 27 times,

which allows increasing the life-time of unattended WSNs by more than 27 times.

The efficiency and security of proposed RCPKC allows it to be used to provide

security of various applications running on battery dependent devices such as

smartphones, and devices with limited computational power such as medical devices

and sensors.

125

Chapter 7

7DEVELOPMENT OF FULLY HOMOMORPHIC

CRYPTOSYSTEM WITHOUT NOISE CONTROL

MECHANISM (RLWE-CSCM)

HE schemes based on LWE such as (Brakerski et al., 2014, 2013; Brakerski &

Vaikuntanathan, 2011a, 2011b) from Class 6 need NCM and CSCM. In this chapter,

RLWE-CSCM, the first HE scheme supports two arithmetic operations and doesn’t

need NCM by construction. i.e., the growth of noise doesn’t lead to decryption failure

by construction. In Section 7.1, RLWE-CSCM is proposed advancing a previously

proposed RLWE-NCM-CSCMin (Brakerski & Vaikuntanathan, 2011b). In Section

7.2, homomorphism of RLWE-CSCM w.r.t addition and multiplication are proved. In

Section 7.3, the security of RLWE-CSCM against several attacks is presented. Section

7.4 summarizes Chapter 7.

7.1 Proposed RLWE-CSCM

RLWE-CSCM is a public-key cryptosystem that works in the ring 𝑅 =

ℤ[𝑥] (𝑥𝑑 + 1)⁄ . of RLWE-CSCM parameter definition follows

7.1.1 Parameter Setup

Select integers 𝑝 and 𝑞 such that

𝑞 = 𝛼 ⋅ 𝑝. (7.1)

Let rings 𝑅 = ℤ[𝑥] (𝑥𝑑 + 1)⁄ , and 𝑅𝑛 = ℤ𝑛[𝑥] (𝑥𝑑 + 1)⁄ , where parameters 𝛼 > 1,

𝑝 > 1, 𝑑 > 1, 𝑛 ∈ ℤ+.

126

7.1.2 Key Generation

Let 𝐴, 𝑠, and 𝑒 be selected from 𝑅𝑞, where 𝐴 is not invertible meets

deg(𝑔𝑐𝑑(𝐴, 𝑥𝑑 + 1)) ≠ 0, (7.2)

where deg(𝐚) is the degree of a polynomial 𝐚. The public key, 𝑝𝑘 ∈ 𝑅𝑞
2, is computed

as follows:

𝑝𝑘 = (
𝑝𝑘1

𝑝𝑘2
) = (

𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒
−𝐴

).
(7.3)

Secret key, 𝑠𝑘 ∈ 𝑅𝑞
2, is:

𝑠𝑘 = (
𝑠𝑘1

𝑠𝑘2
) = (

1
𝑠
).

(7.4)

7.1.3 Encryption

Let 𝑟 be a random polynomial selected from 𝑅𝑞. Encryption of the message, 𝑚 ∈ 𝑅𝑝,

is computed as follows

𝑐 ← 𝐸𝑛𝑐𝑝𝑘,𝑟(𝑚) = (
𝑐1

𝑐2
) = (

𝑝𝑘1 ⋅ 𝑟 + 𝑚
𝑝𝑘2 ⋅ 𝑟

) ∈ 𝑅𝑞
2.

(7.5)

7.1.4 Anti Ciphertext Only Attacks Condition

Two ciphertext-only attacks (COA) are shown in subsections 7.3.17.3.2 and 7.3.2. To

counter these attacks, the message owner selects a random 𝑟 in (7.5), such that

deg(𝑐2) ≤ deg(𝑚), (7.6)

and,

∃ 𝑖 ∈ ℤ𝑑 ∶ 𝑟𝑖 𝑚𝑜𝑑 𝑝 > 0, (7.7)

where 𝑟𝑖 is the i-th coefficient of 𝑟.

7.1.5 Decryption

The process of decryption is:

𝑚′ = 𝐷𝑒𝑐𝑠𝑘(𝑐) = [[〈𝑐, 𝑠𝑘〉]𝑞]𝑝, (7.8)

127

where 〈𝑎, 𝑏〉 is the inner product of vectors 𝑎 and 𝑏, and [𝑎]𝑞 = 𝑎 𝑚𝑜𝑑 𝑞.

7.1.6 Proof of Decryption Correctness

Theorem 7.1 RLWE-CSCM decryption (7.8) of 𝑐 encrypted by (7.5) is correct, i.e.,

𝑚′ = 𝑚, if (7.1) holds. If (7.1) is not true, decryption fails with probability 1 −

(1 𝑝𝑑⁄).

Part 1: If (7.1) holds and ciphertext 𝑐 is encrypted by (7.5), then decryption by (7.8)

results in 𝑚′ = 𝑚.

Proof of Part 1: According to (7.8), decryption is performed in two steps:

Step 1: According to (7.3)-(7.8),

[〈𝑐, 𝑠𝑘〉]𝑞 = 𝑐1 ∙ 𝑠𝑘1 + 𝑐2 ∙ 𝑠𝑘2 𝑚𝑜𝑑 𝑞,

= (𝑝𝑘1 ⋅ 𝑟 + 𝑚) ∙ 1 + (𝑝𝑘2 ⋅ 𝑟) ⋅ 𝑠 𝑚𝑜𝑑 𝑞

= (𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒) ∙ 𝑟 + 𝑚 + (−𝐴 ⋅ 𝑟 ⋅ 𝑠) 𝑚𝑜𝑑 𝑞

= 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 − 𝑘 ⋅ 𝑞, (7.9)

where 𝑘 ∈ 𝑅. Recalling (7.1), one gets from (7.9),

[〈𝑐, 𝑠𝑘〉]𝑞 = 𝑚 + 𝑝 ∙ (𝑒 ⋅ 𝑟 − 𝛼 ⋅ 𝑘). (7.10)

Step 2: Modulo 𝑝 operation applied to (7.10) vanishes the contributor with 𝑝 and leaves

the message 𝑚:

𝑚′ = [[〈𝑐, 𝑠𝑘〉]𝑞]𝑝 = 𝑚 + 𝑝 ∙ (𝑒 ⋅ 𝑟 − 𝛼 ⋅ 𝑘) 𝑚𝑜𝑑 𝑝 = 𝑚. (7.11)

Part 1 is proved.

Part 2: If (7.3)-(7.5) are satisfied, but (7.1) doesn’t hold, then 𝑚′ ≠ 𝑚 with the

probability 1 − (1 𝑝𝑑⁄).

128

Proof of Part 2: Let 𝑞 = 𝛼 ⋅ 𝑝 + 𝑡, 𝑡 > 0, 𝑡 ∈ ℤ𝑝. Then, from (7.9),

[〈𝑐, 𝑠𝑘〉]𝑞 = 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 − 𝑘 ⋅ 𝑞 (7.12)

= 𝑚 + 𝑝 ⋅ 𝑒 ⋅ 𝑟 − 𝑘 ⋅ 𝛼 ⋅ 𝑝 − 𝑘 ⋅ 𝑡

𝑚 − 𝑘 ⋅ 𝑡 + 𝑝 ∙ (𝑒 ⋅ 𝑟 − 𝑘 ⋅ 𝛼), (7.13)

where 𝑘 ∈ 𝑅. In Step 2 of decryption, the message 𝑚′ retrieved by applying modulo 𝑝

operation to the last expression in (7.13) is

𝑚′ = 𝑚 − 𝑘 ⋅ 𝑡 + 𝑝 ∙ (𝑒 ⋅ 𝑟 − 𝑘 ⋅ 𝛼) 𝑚𝑜𝑑 𝑝 = 𝑚 − 𝑘 ∙ 𝑡 𝑚𝑜𝑑 𝑝. (7.14)

From (7.14),

𝑚′ − 𝑚 = −𝑘 ∙ 𝑡 𝑚𝑜𝑑 𝑝.

Therefore, 𝑚′ ≠ 𝑚 for 𝑘 ≠ 0 𝑚𝑜𝑑 𝑝, 𝑘 ∈ 𝑅. Assuming all coefficients’ values are

equally likely, the probability of having all coefficients 𝑘𝑖 = 0 𝑚𝑜𝑑 𝑝, 𝑖 ∈ 𝑍𝑑, is

(𝛼 𝑞⁄)𝑑 = (𝛼 (𝛼 ⋅ 𝑝)⁄)𝑑 = 1 𝑝𝑑⁄ . Thus, the probability of having at least one

coefficient 𝑘𝑖 ≠ 0 𝑚𝑜𝑑 𝑝, 𝑖 ∈ 𝑍𝑑, i.e., probability of 𝑚′ ≠ 𝑚 is 1 − (1 𝑝𝑑⁄). Thus,

Part 2 is proved.

QED.

Example I.1 in Appendix I is an example of correct encryption/decryption when (7.1)

holds, and Example I.2 in Appendix I is an example of incorrect decryption when (7.1)

does not hold.

Homomorphism of RLWE-CSCM w.r.t addition and multiplication is proved in

Section 7.4

129

7.2 Homomorphism of RLWE-CSCM with Respect to Addition and

Multiplication

7.2.1 Homomorphic Addition

First, homomorphism of single addition operation is proved in Subsection 7.2.1.1.

Then, homomorphism for any number of additions is proved in Subsection 7.2.1.2

7.2.1.1 Single Homomorphic Addition

Theorem 7.2: Let 𝑐(𝑖), 𝑖 ∈ {1,2} is a ciphertext encrypting the plaintext messages 𝑚(𝑖)

using random 𝑟(𝑖) according to (7.5),

𝑐(𝑖) = (
𝑐1

(𝑖)

𝑐2
(𝑖)

) = (
𝑝𝑘1 ⋅ 𝑟(𝑖) + 𝑚(𝑖)

𝑝𝑘2 ⋅ 𝑟(𝑖)
) ∈ 𝑅𝑞

2, 𝑖 = 1,2.
(7.15)

Then, RLWE-CSCM decryption (7.8) of 𝐶 = 𝑐(1) + 𝑐(2) is 𝑚′ = 𝑚(1) + 𝑚(2), i.e.,

RLWE-CSCM is homomorphic w.r.t single addition.

Proof: Let 𝐶 be the sum of the ciphertexts 𝑐(1) and 𝑐(2), then,

𝐶 = 𝑐(1) + 𝑐(2) = (
𝑐1

(1)
+ 𝑐1

(2)

𝑐2
(1)

+ 𝑐2
(2)

)

= (
(𝑟(1) + 𝑟(2))𝑝𝑘1 + (𝑚(1) + 𝑚(2))

(𝑟(1) + 𝑟(2))𝑝𝑘2

) (7.16)

Decrypting of 𝐶 is performed by (7.8) as follows:

[〈𝐶, 𝑠𝑘〉]
𝑞

= ((𝑟(1) + 𝑟(2))𝑝𝑘1 + (𝑚(1) + 𝑚(2))) 1 + ((𝑟(1) + 𝑟(2))𝑝𝑘2) 𝑠 𝑚𝑜𝑑 𝑞

= (𝑟(1) + 𝑟(2))(𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒) + (𝑚(1) + 𝑚(2)) + (𝑟(1) + 𝑟(2))(−𝐴 ⋅ 𝑠) 𝑚𝑜𝑑 𝑞

= (𝑟(1) + 𝑟(2))𝑝 ⋅ 𝑒 + (𝑚(1) + 𝑚(2)) 𝑚𝑜𝑑 𝑞

= (𝑚(1) + 𝑚(2)) + (𝑟(1) + 𝑟(2))𝑝 ⋅ 𝑒 − 𝑘 ⋅ 𝑞,

130

where 𝑘 ∈ 𝑅. Recalling (7.1), one gets

[〈𝐶, 𝑠𝑘〉]𝑞 = (𝑚(1) + 𝑚(2)) + ((𝑟(1) + 𝑟(2)) ∙ 𝑒 − 𝛼 ⋅ 𝑘) 𝑝.
(7.17)

In Step 2 of decryption, modulo 𝑝 operation applied to (7.21) vanishes the contributor

with 𝑝 and leaves the message (𝑚(1) + 𝑚(2)):

𝑚′ = [〈𝐶, 𝑠𝑘〉𝑞]𝑝

= (𝑚(1) + 𝑚(2)) + ((𝑟(1) + 𝑟(2))𝑒 − 𝛼 ⋅ 𝑘) ∙ 𝑝 𝑚𝑜𝑑 𝑝 = 𝑚(1) + 𝑚(2). (7.18)

QED.

Example I.3 in Appendix I, is an example of the homomorphic addition of two terms.

Homomorphism for any number of additions follows.

7.2.1.2 Homomorphism for Any Number of Additions

Theorem 7.3: If 𝑐(𝑖), is a ciphertext encrypting the plaintext message 𝑚(𝑖) using

random 𝑟(𝑖) according to (7.5),

𝑐(𝑖) = (
𝑐1

(𝑖)

𝑐2
(𝑖)

) = (
𝑝𝑘1 ⋅ 𝑟(𝑖) + 𝑚(𝑖)

𝑝𝑘2 ⋅ 𝑟(𝑖)
) ∈ 𝑅𝑞

2, 𝑖 = 1. . 𝑁.
(7.19)

Then, RLWE-CSCM decryption (7.8) of 𝐶 = 𝑐(1) + ⋯+ 𝑐(𝑁) is 𝑚′ = 𝑚(1) + ⋯+

𝑚(𝑁), i.e., RLWE-CSCM is homomorphic w.r.t any number 𝑁 of additions.

Proof: Let 𝑐(𝑖) be a ciphertext defined in (7.19), and let

𝐶 = 𝑐(1) + ⋯+ 𝑐(𝑁) = (
𝑐1

(1)
+ ⋯+ 𝑐1

(𝑁)

𝑐2
(1)

+ ⋯+ 𝑐2
(𝑁)

).
(7.20)

Decrypting of 𝐶 is performed by (7.8) as follows:

[〈𝐶, 𝑠𝑘〉]𝑞 = ((𝑟(1) + ⋯+ 𝑟(𝑁))𝑝𝑘1 + (𝑚(1) + ⋯+ 𝑚(𝑁))) 1

+ ((𝑟(1) + ⋯+ 𝑟(𝑁))𝑝𝑘2) 𝑠 𝑚𝑜𝑑 𝑞

131

= (𝑟(1) + ⋯+ 𝑟(𝑁))(𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒) + (𝑚(1) + ⋯+ 𝑚(𝑁))

+ (𝑟(1) + ⋯+ 𝑟(𝑁))(−𝐴 ⋅ 𝑠) 𝑚𝑜𝑑 𝑞

= (𝑟(1) + ⋯+ 𝑟(𝑁)) ∙ 𝑝 ⋅ 𝑒 + (𝑚(1) + ⋯+ 𝑚(𝑁)) 𝑚𝑜𝑑 𝑞

= (𝑚(1) + ⋯+ 𝑚(𝑁)) + (𝑟(1) + ⋯+ 𝑟(𝑁)) ∙ 𝑝 ⋅ 𝑒 − 𝑘 ⋅ 𝑞,

where 𝑘 ∈ 𝑅. Recalling (7.1), one gets

[〈𝐶, 𝑠𝑘〉]𝑞 = (𝑚(1) + ⋯+ 𝑚(𝑁)) + ((𝑟(1) + ⋯+ 𝑟(2))𝑒 − 𝛼 ⋅ 𝑘) ∙ 𝑝. (7.21)

In Step 2 of decryption, the modulo 𝑝 operation applied to (7.21) vanishes the

contributor with integer 𝑝 and leaves the message (𝑚(1) + ⋯+ 𝑚(𝑁)):

𝑚′ = [〈𝐶, 𝑠𝑘〉𝑞]𝑝

= (𝑚(1) + ⋯+ 𝑚(𝑁)) + ((𝑟(1) + ⋯+ 𝑟(𝑁))𝑒 − 𝛼 ⋅ 𝑘) 𝑝 𝑚𝑜𝑑 𝑝

= 𝑚(1) + ⋯+ 𝑚(𝑁). (7.22)

Thus, homomorphism for any number of additions is proved. Corollary 7.1 follows

immediately from Theorem 7.3:

Corollary 7.1: If 𝐶 is encryption of 𝑁 ⋅ 𝑚, then decryption of 𝐶 by (7.8) results in 𝑁 ⋅

𝑚,𝑁 ∈ 𝑍.

Corollary 7.1 means that RLWE-CSCM is also homomorphic w.r.t multiplication by

any integer.

Example I.4 in Appendix I, is an example of homomorphic for 1000𝑐(1) + 2000𝑐(2).

7.2.2 Homomorphic Multiplication of Ciphertexts

In this section, the homomorphism of RLWE-CSCM w.r.t multiplication is explained.

In Subsection 7.2.2.1, homomorphism for single multiplication is proved, and the

132

growth of ciphertext size due to homomorphic multiplication is explained. In

Subsections 7.2.2.2-7.2.2.4, two CSCMs are presented; ciphertext recryption;

ciphertext re-linearization.

7.2.2.1 Homomorphism for Single Multiplication

Definition 7.1. Let 𝑐(1) and 𝑐(2) be the ciphertexts of the plaintexts 𝑚(1), 𝑚(2) obtained

by (7.5). Product of the ciphertexts, 𝑀(𝑐(1), 𝑐(2)), is defined in (7.23)

𝑀(𝑐(1), 𝑐(2)) = (

𝑐1
(1)

𝑐1
(2)

𝑐1
(1)

𝑐2
(2)

+ 𝑐2
(1)

𝑐1
(2)

𝑐2
(1)

𝑐2
(2)

) (7.23)

Theorem 7.4: If 𝑐(𝑖), is a ciphertext encrypting the plaintext messages 𝑚(𝑖) using

random 𝑟(𝑖) according to (7.5), 𝑖 ∈ {1,2}, then, RLWE-CSCM decryption (7.26), using

𝑠𝑘3 (7.25), of 𝑀(𝑐(1), 𝑐(2)) is 𝑚′ = 𝑚(1) ∙ 𝑚(2), i.e., RLWE-CSCM is homomorphic

with respect to a single multiplication.

𝑚′ = 𝐷𝑒𝑐𝑠𝑘3(𝑀(𝑐1, 𝑐2)) = [[〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞]𝑝. (7.24)

Note that 𝐷𝑒𝑐𝑠𝑘3 is a scalar product of 3-component vectors.

𝑠𝑘3 = (
1
𝑠
𝑠2

). (7.25)

Proof: Let 𝑐(𝑖) be ciphertext encrypting message 𝑚(𝑖), 𝑖 = 1,2, and 𝑠𝑘 is the secret key

(7.4). Then,

〈𝑐(1), 𝑠𝑘〉 = 𝑐1
(1)

+ 𝑐2
(1)

⋅ 𝑠,

〈𝑐(2), 𝑠𝑘〉 = 𝑐1
(2)

+ 𝑐2
(2)

⋅ 𝑠,

and

〈𝑐(1), 𝑠𝑘〉 ⋅ 〈𝑐(2), 𝑠𝑘〉 = (𝑐1
(1)

+ 𝑐2
(1)

⋅ 𝑠)(𝑐1
(2)

+ 𝑐2
(2)

⋅ 𝑠)

133

= 𝑐1
(1)

𝑐1
(2)

+ (𝑐1
(1)

𝑐2
(2)

+ 𝑐2
(1)

𝑐1
(2)

)𝑠 + 𝑐2
(1)

𝑐2
(2)

𝑠2 = 〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉, (7.26)

where 𝑀(𝑐1, 𝑐2) in (7.23) and 𝑠𝑘3 in (7.25). Decryption 𝐶𝑀𝑢𝑙(1,2) is performed using

the secret key 𝑠𝑘3 according to (7.24).

Steps of computing 𝐷𝑒𝑐𝑠𝑘3(𝑀(𝑐1, 𝑐2)):

Step 1: Calculate [〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞 by (7.26),

[〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞 = [〈𝑐(1), 𝑠𝑘〉 ∙ 〈𝑐(2), 𝑠𝑘〉]
𝑞

= 〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉

= (𝑚(1) + 𝑝 ∙ (𝑒 ⋅ 𝑟(1) − 𝛼 ⋅ 𝑘)) ∙ (𝑚(2) + 𝑝 ∙ (𝑒 ⋅ 𝑟(2) − 𝛼 ⋅ 𝑘)) (7.27)

Step 2: By (7.27),

[〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞 𝑚𝑜𝑑 𝑝

= (𝑚(1) + 𝑝(𝑒 ⋅ 𝑟(1) − 𝛼 ⋅ 𝑘1)) (𝑚(2) + 𝑝(𝑒 ⋅ 𝑟(2) − 𝛼 ⋅ 𝑘2))𝑚𝑜𝑑 𝑝

= 𝑚(1) ∙ 𝑚(2) (7.28)

QED.

Example I.5 in Appendix I is an example of a single homomorphic multiplication. As

shown in (7.23) and (7.25), the dimension of the ciphertext of the product of two

plaintexts and the respective decryption key is three, contrary to the original RLWE-

CSCM encryption (7.5) with the dimension of two. Thus, the complexity of the

decryption process (7.26) and required storage increases with the increase of the

number of multipliers, and extending the multiplication to many terms will have more

and more increasing complexity. To avoid the dimension rise, two CSCM’s are

proposed; ciphertext recryption; ciphertext linearization are proposed in Subsections

7.2.2.2, 7.2.2.4 respectively.

134

7.2.2.2 Homomorphic Multiplication Using Recryption

Recryption allows returning result of homomorphic multiplication of two ciphertexts

to the form of standard single plaintext encryption (7.5) but additionally encrypted by

multiplication with a secret recryption constant. Dimension of the ciphertext product,

(𝑐(1), 𝑐(2)) ∈ 𝑅𝑞
3, in (7.23), three, is greater than the dimension, two, of RLWE-CSCM

encryption, 𝑐 ∈ 𝑅𝑞
2, in (7.5). Hence, the complexity of decryption process will increase

for each multiplication which makes it infeasible to extend the multiplication to many

terms. To solve this problem, a ciphertext recryption algorithm is proposed. It takes

𝑀(𝑐(1), 𝑐(2)) ∈ 𝑅𝑞
3, a recryption key, 𝑘𝑟𝑒𝑐, which is the secret key multiplied by a

recryption constant, 𝐾 ∈ ℤ𝑝, and the public key as inputs, and outputs a RLWE-CSCM

ciphertext, 𝐶_𝐾_𝑚1_2 ∈ 𝑅𝑞
2 , that encrypts by (7.5) the product of two plaintexts

multiplied by 𝐾. The principle steps of the ciphertext recryption follow:

1. Decrypt 𝑀(𝑐(1), 𝑐(2)) ∈ 𝑅𝑞
3, in (7.23) according to (7.24) using recryption key, 𝑘𝑟𝑒𝑐

𝑘𝑟𝑒𝑐 = 𝐾 ⋅ 𝑠𝑘3 = (
𝐾
𝐾𝑠
𝐾𝑠2

) ∈ 𝑅𝑞
3, (7.29)

where 𝐾 ∈ ℤ𝑝 is a secret recryption constant that is defined by the owner of the secret

key (7.25). The decryption process results in

𝑘𝑚1_2 ← 𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑀(𝑐(1), 𝑐(2))) = 𝐾 ⋅ 𝑚(1) ⋅ 𝑚(2) (7.30)

(Proof of (7.30) is provided next page).

And thus, the secret key, 𝑠𝑘3, in (7.29) and the product 𝑚(1) ⋅ 𝑚(2) in (7.30) are

encrypted by 𝐾. Recryption constant, 𝐾, can be removed using multiplicative inverse,

𝐾−1 existing if 𝐾 meets,

gcd(𝐾, 𝑝) = 1. (7.31)

135

2. Next, 𝑘𝑚1_2 is encrypted using 𝑝𝑘, according to (7.5), obtaining 𝐶_𝐾_𝑚1_2 ∈ 𝑅𝑞
2.

Therefore, by applying the ciphertext recryption process after each multiplication,

the ciphertext will be defined by (7.5), and hence, there is no increase in the

decryption complexity or the memory needed to store the ciphertext and respective

keys.

Proof of (7.30): Let 𝑘𝑟𝑒𝑐 defined in (7.29) and 𝑀(𝑐(1), 𝑐(2)) in (7.23), then

𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑀(𝑐(1), 𝑐(2))) is computed as follows:

Step 1: Calculate [〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞 by (7.26),

[〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞

= 𝑐1
(1)

⋅ 𝑐1
(2)

⋅ 𝐾 + (𝑐1
(1)

⋅ 𝑐2
(2)

+ 𝑐2
(1)

⋅ 𝑐1
(2)

) ⋅ 𝐾 ⋅ 𝑠 + 𝑐2
(1)

⋅ 𝑐2
(2)

⋅ 𝐾 ⋅ 𝑠2

= [〈𝑐(1), 𝑠𝑘〉 ∙ 〈𝑐(2), 𝐾 ⋅ 𝑠𝑘〉]
𝑞
 (7.32)

Step 2: By (7.32),

[[〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞]𝑝

= (𝑚(1) + 𝑝(𝑒 ⋅ 𝑟(1) − 𝛼 ⋅ 𝑘)) (𝐾 ⋅ 𝑚(2) + 𝐾

⋅ 𝑝(𝑒 ⋅ 𝑟(2) − 𝛼 ⋅ 𝑘))𝑚𝑜𝑑 𝑝

= 𝐾 ⋅ 𝑚(1) ⋅ 𝑚(2). (7.33)

QED.

Recryption key, 𝑘𝑟𝑒𝑐 (7.29), reveals secret recryption constant, 𝐾, as the first

component. Thus, the secret key, 𝑠, can be found from the second component as well.

Compromises 𝑠 leads to discover secret key, 𝑠𝑘, and thus all encrypted messages can

be compromised by an unauthorized party. This issue happens due to the structure of

136

𝑠𝑘, where the first component is constant equals to 1. To overcome this issue, a new

structure of 𝑠𝑘 is proposed with no constants.

Proposed changes to 𝑠𝑘 and the consequent modifications are as follows:

A. parameters 𝛽 ∈ ℤ𝑞 , 𝛾 ∈ ℤ𝑝 are selected such that,

𝛽 − 𝛾 = 𝜔 ⋅ 𝑝 𝑚𝑜𝑑 𝑞, 𝜔 ∈ ℤ𝑞 , (7.34)

and,

gcd(𝛽, 𝑠) > 1 , gcd(𝛾, 𝑠) > 1, gcd(𝛽, 𝐾) > 1, gcd(𝛾, 𝑝) = 1. (7.35)

B. Instead of (7.4), secret key, 𝑠𝑘, is defined as follows

𝑠𝑘 = (
𝑠𝑘1

𝑠𝑘2
) = (

𝛽
𝛾 ⋅ 𝑠

). (7.36)

C. Instead of the message, 𝑚, its product with the recryption constant, 𝐾, is

encrypted using (7.5),

𝑐 ← 𝐸𝑛𝑐𝑝𝑘,𝑟(𝑚𝐾) = (
𝑐1

𝑐2
) = (

𝑝𝑘1 ⋅ 𝑟 + 𝑚𝐾
𝑝𝑘2 ⋅ 𝑟

) ∈ 𝑅𝑞
2, (7.37)

𝑚𝐾 = 𝑚 ⋅ 𝐾 ∈ 𝑅𝑝. (7.38)

The decryption process of ciphertext, 𝑐 (7.37), encrypting 𝑚𝐾 (7.38) is performed

using 𝑠𝑘 (7.36) as follows:

𝑚𝐾′ ← 𝐷𝑒𝑐𝑠𝑘(𝑐) = [[〈𝑐, 𝑠𝑘〉]𝑞 ⋅ 𝛾−1]
𝑝
 (7.39)

D. Recryption key, 𝑠𝑘3 (7.40), is used instead of (7.25),

𝑠𝑘3 = (
𝛽2

𝛾 ⋅ 𝛽 ⋅ 𝑠

(𝛾 ⋅ 𝑠)2

). (7.40)

Derivation of 𝑠𝑘3 (7.40) is as follows:

〈𝑐(1), 𝑠𝑘〉 ⋅ 〈𝑐(2), 𝑠𝑘〉 = (𝑐1
(1) ⋅ 𝛽 + 𝑐2

(1) ⋅ 𝛾 ⋅ 𝑠) ⋅ (𝑐1
(2) ⋅ 𝛽 + 𝑐2

(2) ⋅ 𝛾 ⋅ 𝑠)

137

= 𝑐1
(1)

⋅ 𝑐1
(2)

⋅ 𝛽2 + (𝑐1
(1)

⋅ 𝑐2
(2)

+ 𝑐2
(1)

⋅ 𝑐1
(2)

) ⋅ 𝛽 ⋅ 𝛾 ⋅ 𝑠 + 𝑐2
(1)

⋅ 𝑐2
(2)

⋅ (𝛾 ⋅ 𝑠)2

= 〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉, (7.41)

𝑀(𝑐1, 𝑐2) is defined in (7.23).

E. Recryption key, 𝑘𝑟𝑒𝑐 (7.29), is computed using 𝑠𝑘3 (7.40), as follows

𝑘𝑟𝑒𝑐 = 𝐾 ⋅ 𝑠𝑘3 = (
𝐾 ⋅ 𝛽2

𝐾 ⋅ 𝛾 ⋅ 𝛽 ⋅ 𝑠

𝐾 ⋅ (𝛾 ⋅ 𝑠)2

) ∈ 𝑅𝑞
3, (7.42)

Thus, in (7.42), the secret recryption constant, 𝐾, is encrypted using secret

parameters 𝛽, 𝛾, and 𝑠, contrary to (7.29).

Decryption of 𝑀(𝑐1, 𝑐2) (7.23) using 𝑘𝑟𝑒𝑐 (7.42) is performed as follows,

𝑚𝐾′ ← 𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑀(𝑐1, 𝑐2))

= [[〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞(𝐾𝛽2) −1]
𝑝

= 𝑚𝐾(1) ⋅ 𝑚𝐾(2)

= 𝐾2𝑚(1)𝑚(2), (7.43)

where 𝑚𝐾(𝑖) = 𝐾 ∗ 𝑚𝑖 is the padded message of 𝑚(𝑖) according to (7.37).

Proof of (7.43): Let 𝑘𝑟𝑒𝑐 defined in (7.42) and 𝑀(𝑐(1), 𝑐(2)) in (7.23), then

𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑀(𝑐(1), 𝑐(2))) = [[〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞(𝐾𝛽2) −1]

𝑝
 is computed as follows:

Step 1: Calculate [〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞 by (7.26),

[〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞

= 𝑐1
(1)𝑐1

(2) ⋅ 𝐾 ⋅ 𝛽2 + (𝑐1
(1)𝑐2

(2) + 𝑐2
(1)𝑐1

(2)
) ⋅ 𝐾 ⋅ 𝛾 ⋅ 𝛽 ⋅ 𝑠 + 𝑐2

(1)𝑐2
(2)

⋅ 𝐾 ⋅ (𝛾 ⋅ 𝑠)2 = [〈𝑐(1), 𝑠𝑘〉 ∙ 〈𝑐(2), 𝐾 ⋅ 𝑠𝑘〉]
𝑞

= (𝛽 ⋅ 𝑚𝐾(1) + 𝑝 ∙ (𝑒 ⋅ 𝑟(1) − 𝛼 ⋅ 𝑘1))

∙ (𝐾 ⋅ 𝛽 ⋅ 𝑚𝐾(2) + 𝑝 ∙ (𝐾 ⋅ 𝛽 ⋅ 𝑒 ⋅ 𝑟(2) − 𝛼 ⋅ 𝑘2)). (7.44)

138

Step 2. By (7.44),

[[〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞(𝐾𝛽2) −1]
𝑝

= 𝑚𝐾(1) ⋅ 𝑚𝐾(2) 𝑚𝑜𝑑 𝑝 = 𝐾2 ⋅ 𝑚(1) ∙ 𝑚(2). (7.45)

QED.

The process of getting a ciphertext, 𝐶_𝐾_𝑚1_2, of (7.43) using the product of two

ciphertexts and recryption is defined in Algorithm 7.1(MultRecrypt). Algorithm

7.2(DecRecrypt) describes the process of decrypting 𝐶_𝐾_𝑚1_2, obtaining the product

of two plaintexts 𝑚(1) and 𝑚(2).

Proving that the proposed last variant has no problems as the first one

Algorithm 7.1 MultRecrypt: Algorithm of getting RLWE-CSCM ciphertext,

𝐶_𝐾_𝑚1_2 (7.5) of (7.43) using product of two RLWE-CSCM

ciphertexts and Recryption.

Input: 𝑐(1), 𝑐(2) : ciphertexts of the messages 𝑚𝐾(1) = 𝐾 ⋅ 𝑚(1), 𝑚𝐾(2) = 𝐾 ⋅

𝑚(2), respectively, using (7.5); 𝑝𝑘, public key; 𝑘𝑟𝑒𝑐, recryption key in

(7.42)

Output: 𝐶_𝐾_𝑚1_2 ∈ 𝑅𝑞
2, 𝑚𝑘′ encrypted by (7.5) using 𝑝𝑘

1. Set 𝑀𝑐1_2 ← 𝑀(𝑐(1), 𝑐(2)), where 𝑀(𝑐(1), 𝑐(2)) is the product of

ciphertexts 𝑐(1) and 𝑐(2) defined in (7.23).;

2. Decrypt 𝑀𝑐1_2 using 𝑘𝑟𝑒𝑐 according to (7.24), obtaining 𝑚𝐾′ (7.43)

3.
Set 𝐶_𝐾_𝑚1_2 ← 𝐸𝑛𝑐(𝑝𝑘,𝑟)(𝑚𝐾′) = (

𝑝𝑘1 ⋅ 𝑟 + 𝑚𝐾′

𝑝𝑘2 ⋅ 𝑟
) ∈ 𝑅𝑞

2

4. Return 𝐶_𝐾_𝑚1_2

Algorithm 7.2 DecRecrypt: Getting product of the plaintexts from the output of

Algorithm 7.1MultRecrypt.

139

Note that Algorithm 7.1 outputs, 𝑚𝐾′, the product (𝑚(1) ⋅ 𝑚(2)) encrypted with 𝐾2
,

while Algorithm 7.2, retrieves the product (𝑚(1) ⋅ 𝑚(2)) out of 𝑚𝐾′.

Example I.6 in Appendix I is an example of recrypting the product of two ciphertexts.

In the next section computation of exponentiation homomorphically using recryption

is shown.

7.2.2.3 Computing Exponentiation Homomorphically Using Recryption

In this section, we introduce computing plaintext, 𝑚, exponent, 𝑚𝑒, where 𝑒 = 2𝑛,

homomorphically using ciphertext 𝑐 of 𝑚 by Algorithm 7.3 and Algorithm 7.4 below.

Algorithm 7.3 (Power2Exponent) calculates ciphertext (7.5) of 𝑀𝑒, where 𝑀 is the

padded message of 𝑚. Algorithm 7.4 (DecPower2Exponent) gets 𝑚𝑒from the output

of Algorithm 7.3.

Input: 𝐶_𝐾_𝑚1_2, recrypted ciphertext output by Algorithm 1; 𝑠𝑘3, in (7.40),

𝐾, recryption constant meeting (7.31).

Output: 𝑚′ ∈ 𝑅𝑝, the product of messages 𝑚(1) and 𝑚(2).

1. Using (7.39), set 𝑡𝑚𝑝 ← 𝐷𝑒𝑐𝑠𝑘(𝐶_𝐾_𝑚1_2) = 𝑀(1) ⋅ 𝑀(2) = 𝐾2 ⋅

𝑚(1) ⋅ 𝑚(2).

2. Set 𝑚′ ← 𝑡𝑚𝑝 ⋅ (𝐾−1)2 𝑚𝑜𝑑 𝑝 = 𝑚(1) ⋅ 𝑚(2).

3. Return 𝑚′

Algorithm 7.3: Power2Exponent: Algorithm of homomorphic plaintext

exponentiation 𝑀𝑝𝑤𝑟 with 𝑝𝑤𝑟 = 2𝑛 using ciphertext 𝑐 of 𝑀

Input: 𝑐, an RLWE-CSCM ciphertext of the message 𝑀; 𝑝𝑤𝑟 = 2𝑛, exponent;

𝑘𝑟𝑒𝑐 recryption key (7.42) with recryption constant 𝐾 ∈ ℤ𝑝; 𝑝𝑘, public

key of RLWE-CSCM; 𝑟_𝑟𝑒𝑐, random polynomial used in encryption

(7.5).

140

Algorithm 7.4 (DecPower2Exponent) describes the process of retrieving 𝑚𝑝𝑤𝑟 from

𝐶 obtained by Algorithm 7.3.

Output: 𝐶, an RLWE-CSCM ciphertext of 𝑀𝑝𝑤𝑟.

1. Set 𝐶 ← 𝑐.

2. 𝑤ℎ𝑖𝑙𝑒 (𝑝𝑤𝑟 > 1)

3. Calculate 𝑡𝑚𝑝 = 𝑀(𝐶, 𝐶) ∈ 𝑅𝑞
3 according to (7.23).

4. Set 𝐷𝑒𝑐_𝑡𝑚𝑝 ← 𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑡𝑚𝑝) according to (7.43).

5. Set 𝐶 ← 𝐸𝑛𝑐𝑝𝑘,𝑟_𝑟𝑒𝑐(𝐷𝑒𝑐_𝑡𝑚𝑝) ∈ 𝑅𝑞
2, where 𝐸𝑛𝑐𝑝𝑘,𝑟_𝑟𝑒𝑐(𝐷𝑒𝑐_𝑡𝑚𝑝)

is performed according to (7.5).

6. Set 𝑝𝑤𝑟 ←
𝑝𝑤𝑟

2
.

7. End while

8. Return 𝐶.

Algorithm 7.4: DecPower2Exponent: describes the process of retrieving 𝑚𝑝𝑤𝑟 from

𝐶 obtained by Algorithm 7.3

Input: 𝑐, an RLWE-CSCM ciphertext of the message 𝑀; 𝑝𝑤𝑟 = 2𝑛, exponent;

𝑘𝑟𝑒𝑐 recryption key (7.42) with recryption constant 𝐾 ∈ ℤ𝑝; 𝑝𝑘, public

key of RLWE-CSCM; 𝑟_𝑟𝑒𝑐, random polynomial used in encryption

(7.5).

Output: 𝐶, an RLWE-CSCM ciphertext of 𝑀𝑝𝑤𝑟.

1. Set 𝐶 ← 𝑐.

2. 𝑤ℎ𝑖𝑙𝑒 (𝑝𝑤𝑟 > 1)

3. Сalculate 𝑡𝑚𝑝 = 𝑀(𝐶, 𝐶) ∈ 𝑅𝑞
3 according to (7.23).

4. Set 𝐷𝑒𝑐_𝑡𝑚𝑝 ← 𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑡𝑚𝑝) according to (7.43).

5. Set 𝐶 ← 𝐸𝑛𝑐𝑝𝑘,𝑟_𝑟𝑒𝑐(𝐷𝑒𝑐_𝑡𝑚𝑝) ∈ 𝑅𝑞
2, where 𝐸𝑛𝑐𝑝𝑘,𝑟_𝑟𝑒𝑐(𝐷𝑒𝑐_𝑡𝑚𝑝)

is performed according to (7.5).

6. Set 𝑝𝑤𝑟 ←
𝑝𝑤𝑟

2
.

7. End while

8. Return 𝐶.

141

Figure I.8 and Figure I.9 of Appendix I show Maple code implementation of Algorithm

7.3 Power2Exponent, and Algorithm 7.4 DecPower2Exponent respectively.

Example I.7: Example of calculating 512 multiplications homomorphically of 𝑚(1) in

Example I.6 using Power2Exponent. in Appendix I shows the calculation of 𝑚512

homomorphically using Power2Exponent, for 𝑚 = 4𝑥2 + 5𝑥 + 1.

To compute an exponent, 𝑝𝑤𝑟, that is not a power of two, the exponent pwr can be

represented in binary. For example, to compute 𝑐1000, the power, 𝑝𝑤𝑟 = 1000 =

512 + 256 + 128 + 64 + 32 + 8 = 11111010002, therefore 𝑐1000 can be computed

as

𝑐1000 = 𝑐512 ⋅ 𝑐256 ⋅ 𝑐128 ⋅ 𝑐64 ⋅ 𝑐32 ⋅ 𝑐8

The values, 𝑐512, 𝑐256, 𝑐128, 𝑐64, 𝑐32, 𝑐8 can be found using Power2Exponent.

7.2.2.4 Homomorphic Multiplication Using Re-Linearization

The main idea of ciphertext re-linearization is to re-encrypt the product (7.23) under a

new secret key, 𝑟𝑠𝑘, defined in (7.46), so that the original ciphertext form in (7.5) will

be obtained.

𝑟𝑠𝑘 = (1, 𝑟𝑠), (7.46)

where 𝑟𝑝𝑘, the corresponding public key is defined in (7.47)

𝑟𝑝𝑘 = (𝑟𝐴 ∙ 𝑟𝑠 + 𝑝 ∙ 𝑟𝑒, −𝑟𝐴) = (𝑟𝑝𝑘1, 𝑟𝑝𝑘2). (7.47)

The steps of ciphertext re-linearization follow:

A- Encrypt the variable parts of the secret key, 𝑠𝑘3, from (7.25)

𝑐𝑠 = (𝑟𝑝𝑘1 ∙ 𝑟3 + 𝑠, 𝑟𝑝𝑘2 ∙ 𝑟3) = (𝑐𝑠0, 𝑐𝑠1), (7.48)

𝑐𝑠2 = (𝑟𝑝𝑘1 ∙ 𝑟4 + 𝑠2, 𝑟𝑝𝑘2 ∙ 𝑟4) = (𝑐𝑠20, 𝑐𝑠21). , (7.49)

where 𝑟3, 𝑟4 are random variables. From (7.46)−(7.49)

142

𝑠𝑒 = 𝑠 + 𝑝 ∙ 𝑟𝑒 = 𝑐𝑠0 + 𝑐𝑠1 ∙ 𝑟𝑠, (7.50)

𝑠2𝑒 = 𝑠2 + 𝑝 ∙ 𝑟𝑒 = 𝑐𝑠20 + 𝑐𝑠21 ∙ 𝑟𝑠. (7.51)

Recall from (7.26),(7.28),

𝑚(1) ⋅ 𝑚(2) = 〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉 𝑚𝑜𝑑 𝑝 = ⟨𝑐(1), 𝑠𝑘⟩ ⋅ ⟨𝑐(2), 𝑠𝑘⟩ 𝑚𝑜𝑑 𝑝

= 𝑐1
(1)

𝑐1
(2)

+ (𝑐1
(1)

𝑐2
(2)

+ 𝑐2
(1)

𝑐1
(2)

)𝑠 + 𝑐2
(1)

𝑐2
(2)

𝑠2 𝑚𝑜𝑑 𝑝

= (𝑐𝑚0 + 𝑐𝑚1 ∙ 𝑠 + 𝑐𝑚2 ∙ 𝑠2) 𝑚𝑜𝑑 𝑝 (7.52)

B- Substituting (7.50),(7.51) into (7.52), one gets

𝑚1 ∙ 𝑚2 = < 𝑐𝑚 ∙ 𝑠𝑘3 > 𝑚𝑜𝑑 𝑝

= (𝑐𝑚0 + 𝑐𝑚1 ∙ 𝑠 + 𝑐𝑚2 ∙ 𝑠2) 𝑚𝑜𝑑 𝑝

= (𝑐𝑚0 + 𝑐𝑚1 ∙ 𝑠𝑒 + 𝑐𝑚2 ∙ 𝑠2𝑒) 𝑚𝑜𝑑 𝑝

= (𝑐𝑚0 + 𝑐𝑚1 ∙ (𝑐𝑠0 + 𝑐𝑠1 ∙ 𝑟𝑠) + 𝑐𝑚2 ∙ (𝑐𝑠20 + 𝑐𝑠21 ∙ 𝑟𝑠)) 𝑚𝑜𝑑 𝑝

= (𝑐𝑚0 + 𝑐𝑚1 ∙ 𝑐𝑠0 + 𝑐𝑚2 ∙ 𝑐𝑠20 + (𝑐𝑚1 ∙ 𝑐𝑠1 + 𝑐𝑚2 ∙ 𝑐𝑠21)

∙ 𝑟𝑠) 𝑚𝑜𝑑 𝑝

= (𝑐𝑟𝑠0 + 𝑐𝑟𝑠1 ∙ 𝑟𝑠) 𝑚𝑜𝑑 𝑝 = < 𝑐𝑟𝑠 ∙ 𝑟𝑠𝑘 > 𝑚𝑜𝑑 𝑝 (7.53)

From (7.53), we get that ciphertext re-linearization of the product, 𝑚1 ∙ 𝑚2, is

 (𝑐𝑟𝑠0, 𝑐𝑟𝑠1) = (𝑐𝑚0 + 𝑐𝑚1 ∙ 𝑐𝑠0 + 𝑐𝑚2 ∙ 𝑐𝑠20, 𝑐𝑚1 ∙ 𝑐𝑠1 + 𝑐𝑚2

∙ 𝑐𝑠21) (7.54)

which is decrypted using

𝑚1 ∙ 𝑚2 = (𝑐𝑟𝑠0 + 𝑐𝑟𝑠1 ∙ 𝑟𝑠) 𝑚𝑜𝑑 𝑝 = < 𝑐𝑟𝑠 ∙ 𝑟𝑠𝑘 > 𝑚𝑜𝑑 𝑝 (7.55)

if

𝑟𝑠 = 𝑠, (7.56)

then the ciphertext (7.54) can be decrypted with the original secret key (7.4).

143

7.3 Security Analysis

7.3.1 Ciphertext Only Attack Against RLWE-CSCM Messages (Modulo C2

Attack)

Modulo 𝑐2 Attack can be launched against RLWE-CSCM messages if the conditions

(7.57) and (7.58) are satisfied

deg(𝑝𝑘1 ⋅ 𝑟 + 𝑚) < 𝑑, (7.57)

and,

deg(𝑐2) > deg(𝑚) . (7.58)

If (7.57) is satisfied, then, from (7.5),

𝑐1 = 𝑝𝑘1 ⋅ 𝑟 + 𝑚 𝑚𝑜𝑑 (𝑥𝑑 + 1) 𝑚𝑜𝑑 𝑞

= 𝑝𝑘1 ⋅ 𝑟 + 𝑚 𝑚𝑜𝑑 𝑞.

= 𝑝𝑘1 ⋅ 𝑟 + 𝑚 − 𝑘 ⋅ 𝑞. (7.59)

And if (7.58) is satisfied, then, applying 𝑚𝑜𝑑 𝑐2 operation to the message 𝑚, returns

exact value of 𝑚. Therefore, if (7.57) and (7.58) are satisfied, the attacker can perform

the following two steps of the attack:

Step 1: From (7.3), (7.5), (7.57), (7.58), applying 𝑚𝑜𝑑 𝑐2 operation to 𝑐1 we have

𝑆1 = 𝑐1 𝑚𝑜𝑑 𝑐2 = 𝐴 ⋅ 𝑠 ⋅ 𝑟 + 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 − 𝑘 ⋅ 𝑞 𝑚𝑜𝑑 (−𝐴 ⋅ 𝑟)

= 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 − 𝑘 ⋅ 𝑞. (7.60)

Step2: Applying 𝑚𝑜𝑑 𝑝 operation to (7.60), and recalling (7.1), one gets,

𝑚′ = 𝑆1 𝑚𝑜𝑑 𝑝 = 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 − 𝑘 ⋅ 𝑞 𝑚𝑜𝑑 𝑝 = 𝑚. (7.61)

Example I.8 of Appendix I is an example of a successful modulo 𝑐2 attack. To counter

this attack, it is enough to make sure one of the conditions (7.57) and (7.58) are not

satisfied. Fulfilling constraint (7.6) violates condition (7.58). Example I.9 of Appendix

I is an example of failing modulo 𝑐2 attack.

144

7.3.2 Ciphertext Only Attack Against RLWE-CSCM Messages (Modulo p

Attack)

Modulo 𝑝 attack can be launched against RLWE-CSCM messages if the following

condition is satisfied

∀𝑖 ∈ {0, . . , 𝑑 − 1}: 𝑎𝑖 = 𝛼𝑖 ⋅ 𝑝, (7.62)

where 𝑎𝑖 is a coefficient of polynomial 𝐴 ⋅ 𝑠 ⋅ 𝑟 ∈ 𝑅𝑞, and 𝛼𝑖 ∈ ℤ+, i.e., the attack can

be launched if all the coefficients of 𝐴 ⋅ 𝑠 ⋅ 𝑟 are multiple of 𝑝. In such case, from (7.3)

and (7.5), one gets,

𝑐1 = ∑(𝑎𝑖 + 𝑏𝑖 + 𝑚𝑖)𝑥
𝑖

𝑑−1

𝑖=0

= ∑(𝛾𝑖 ⋅ 𝑝 + 𝑚𝑖)𝑥
𝑖

𝑑−1

𝑖=0

,

where 𝑏𝑖, 𝑚𝑖 are coefficients of polynomials 𝑝 ⋅ 𝑒 ⋅ 𝑟, and 𝑚 respectively. Thus,

applying 𝑚𝑜𝑑 𝑝 operation to 𝑐1 retrieves the message. Since 𝑎𝑖 ∈ 𝑅𝑞, and according

to (7.1), there are 𝛼 numbers multiple of 𝑝 in 𝑅𝑞.therefore, the probability of satisfying

(7.62) is (𝛼 𝑞⁄)𝑑 = (𝛼 (𝛼 ⋅ 𝑝)⁄)𝑑 = (1/𝑝)𝑑

7.3.3 Ciphertext Only Attack Against RLWE-CSCM Messages Using Public Key

The encrypted message, 𝑚, can be compromised using the public key as follows,

Step1: Obtain random, 𝑟, from 𝑐2,

𝑟 = 𝐴−1 ⋅ (−𝑐2) 𝑚𝑜𝑑 𝑞 = (𝐴−1 ⋅ 𝐴 ⋅ 𝑟) 𝑚𝑜𝑑 𝑞, (7.63)

where 𝐴−1 is the multiplicative inverse of 𝐴′ in 𝑅.

Step2: Revealing message, 𝑚, from 𝑐1,

𝑚 = 𝑐2 − 𝑝𝑘1 ⋅ 𝑟. (7.64)

This attack can be mitigated if the public key part, 𝐴, has no multiplicative inverse in

𝑅. This can be guaranteed by setting 𝐴 meetings (7.2).

145

7.4 Summary

In this chapter, RLWE-CSCM is proposed, the first FHE scheme homomorphic w.r.t

to two arithmetic operations and doesn’t need NCM. It is based on RLWE and uses

polynomials from the ring 𝑅 = ℤ[𝑥]/(𝑥𝑑 + 1). Section 7.1.5 shows that RLWE-

CSCM decryption uses two moduli 𝑞, 𝑝, where the former is a multiple of the latter.

Section 7.2.1 proves that applying modulo 𝑞 operation in the first step of decryption,

leaves the noise results from homomorphic addition(s) as a multiple of 𝑝, which

vanishes by applying modulo 𝑝 operation in the second step. Thus, the reason RLWE-

CSCM is not affected by noise growth is the definition of moduli 𝑞 in (7.1).

ciphertext results from the product of two ciphertexts (7.23) is greater than the original

RLWE-CSCM ciphertext (7.5) by one. To avoid the increase of the ciphertext size,

two CSCM’s; ciphertext recryption; ciphertext linearization are proposed in

Subsections 7.2.2.2, 7.2.2.4 respectively.

In ciphertext recryption, the product of two ciphertexts is decrypted using recryption

key, 𝑘_𝑟𝑒𝑐, that results from the product of two plaintexts encrypted by multiplication

with a secret recryption constant, 𝐾.

In ciphertext re-linearization, the product of two ciphertexts is encrypted again under

a new secret key, 𝑟𝑠𝑘 in (7.46), so that the form of the original ciphertext (7.5) is

retrieved. In the case 𝑟𝑠𝑘 in (7.46) is defined to be equal to 𝑠𝑘 in (7.4), then the re-

linearized ciphertext (7.54) can be decrypted with the original secret key (7.4).

146

Three different COA against RLWE-CSCM messages have been defined in Section

7.3. It is also shown that RLWE-CSCM settings (7.2), (7.6), and (7.7) counter these

attacks.

RLWE-CSCM is the first HE scheme not affected by noise growth, which allows

performing an unlimited number of homomorphic additions and multiplications on the

cihpertext. RLWE-CSCM can be used efficiently to protect data privacy in untrusted

environment such as cloud. RLWE-CSCM can be used to provide security for various

fields such as distance learning and medical applications.

147

Chapter 8

8CONCLUSION

In this thesis, new HE ciphers classification is proposed. Contrary to all previously

classifications proposed in (Domingo-Ferrer et al., 2019; Feng et al., 2020; Martins et

al., 2017; Shrestha & Kim, 2019; Sultan, 2019; L. Wang & Ahmad, 2016; Zhao et al.,

2020) it has the capability to accommodate new cryptosystems with new features.

Therefore, it allows having a separate class for the newly developed herein RLWE-

CSCM. The new HE classification introduced extends the previously used two criteria

(homomorphic operation type, the permitted number of homomorphic operations) to

five, adding: use of ciphertext size control mechanism; the number of keys used

(symmetric, asymmetric); and the underlying hard problem. The proposed

classification presented in Table 2.1, grouped known HE ciphers in eight classes.

RSA is the first developed PKC, it can provide multiplication operation

homomorphically. Therefore, RSA is widely used in the Internet to prevent weak

authentication, and in the public key certificates (Housley et al., 2002; Pandey et al.,

2020, p. 321; Yakubu et al., 2019, p. 226). Many applications also involve the RSA

multiplicative homomorphism feature such as secure image sharing (Islam et al. 2011),

and homomorphic signatures (R. Johnson et al. 2002; Freeman 2012). Security

analysis for RSA (Rivest et al., 1978) is considered in Chapter 3. We managed to

formulate RSA encryption (2.2) to a 2-dimentional lattice (3.5). A new COA using

LLL algorithm is proposed, which finds the encrypted message meeting (3.2)-(3.6), as

148

a component of the shortest vector in the lattice (3.5). The proposed COA has an

advantage over previously proposed attacks against RSA, that it does not require prior

knowledge of a number of bits; a small value of exponent 𝑒; message to be broadcasted

(see Table 3.1). Experiments shown in Section 3.5, managed to reveal thousands of

encrypted messages for 𝑁 with bit sizes up to 8193 in Maple 2016.2 with success rate

0.1. Results presented in Table 3.3 show 80692 cracked messages for 𝑁 = 2050 using

Code 3.1. LLL attack runs in time quadratic in the bit number of modulo 𝑁 (see Section

3.4). Our attack shows significant speed (15 milliseconds using Mupad, and 4 × 10−5

seconds using NTL (NTL: A Library for Doing Number Theory, n.d.) library for

Example 3.1) in recovering a 40-bit message in comparison to our implementation for

Boneh MITM attack (Boneh et al., 2000) where 2.202 seconds are needed to recover

the same length message (2 seconds for pre-computation step, and 0.202 seconds for

searching step using NTL library). Experiments show that proposed attack succeeds in

the case when RSA public keys meet (3.16)-(3.18). Hence, to prevent proposed COA

attack, it is important to select RSA public keys such that (3.16)-(3.18) are not

satisfied.

NTRU is standardized as IEEE P1363.1, and it has been selected as a finalist in the

NIST PQC standardization effort. Security of NTRU, representative of Class 3, is

considered in Chapter 4. Modulo 𝑝 flaw attack is designed, exploits a flaw found that

in case (4.10) is satisfied, the encrypted message can be revealed without the need for

the decryption key. The success probability of modulo 𝑝 attack, 𝑂(𝑁2𝑑+1), is derived

in (4.38) and found to be not negligible using IEEE standardized parameters (“IEEE

Standard Specification for Public Key Cryptographic Techniques Based on Hard

149

Problems over Lattices,” 2009, p. 55). On other hand, the success probability becomes

negligible by fixing the parameter 𝑑 = ⌊
𝑁

2
⌋ as in (Howgrave-Graham et al., 2005).

Experiments conducted in Section 4.2 to test 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 (Z. Yang et al., 2018b)

attack on NTRU private keys use the settings in Table 4.2. They showed contrary to

results in (Z. Yang et al., 2018b), the exponential growth of parameter 𝑡 as 𝑁 increases

when 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack succeeds (see Figure 4.3). It means that the success

probability of the attack is low for large value of 𝑁. For 𝑁 = 107, we failed to attack

NTRU private key using 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack after 6 hours. Experimental data were

approximated using quadratic fitting in (4.40) instead of linear fitting presented in (Z.

Yang et al., 2018b). Thus, extrapolation of time for greater 𝑁 values presented in (4.41)

using a quadratic approximation in (4.40), and shown in Table 4.4, has greater time

than extrapolation line in (Z. Yang et al., 2018a). Therefore, we conclude that the

attack is not so efficient as claimed, and the attack is infeasible for large values of 𝑁.

To counter LBRA using LLL, NTRU and its variants are shown in section 2.3.4 uses

high order 𝑁, which increases the computational complexity. To solve this issue,

RCPKC, which is presented in Chapter 6, uses polynomials of zero degrees, that is

integer. RCPKC is a secure variant of insecure CPKC presented by the authors of

NTRU as a toy model (Hoffstein et al., 2014a). The insecurity of CPKC stems from

the choice of the private keys used as small numbers to provide decryption correctness.

Thus, it is prone to LBRA using GLR (crackable in about 10 iterations) (see Example

C.2 in Appendix C). RCPKC specifies a range from which the random numbers shall

be selected and provides correct decryption for valid users and incorrect decryption

for an attacker using LBRA by GLR. Security of RCPKC is proved against various

150

attacks in Section 6.3. In Section 6.4, RCPKC asymmetric encryption padding

(RAEP), is proposed. RAEP similar to its NTRU analog, NAEP, is IND-CCA2 secure.

Due to the use of big numbers instead of high degree polynomials, RCPKC is about

27 times faster in encryption and decryption than NTRU. Furthermore, RCPKC is

more than three times faster than the most effective known NTRU variant, BQTRU.

Compared to NTRU, RCPKC reduces energy consumption at least thirty times, which

allows increasing the life-time of unattended WSNs more than thirty times. RCPKC

performance and power analysis are conducted in Section 6.5.

In Chapter 5, the security of HE1N (Dyer et al., 2019), representative of Class 4, is

considered. Section 5.1 proves that the modulus operation used in HE1N encryption,

Algorithm 2.4, is not working, which leaves HE1N private key prone to various

attacks. In sections 5.2.1 and 5.3.1 a new COA and KPA against HE1N private key

are presented respectively. In sections 5.2.3 and 5.3.3 it is proved that the success

probability of both attacks becomes negligible as the length of parameter 𝑘 in bits

increases. The computational complexity of COA and KPA is 𝑂(𝓂2). HE1N is one

of several cryptosystems that are proposed in (Dyer et al., 2019) as a practical solution

to provide security for clouds. Therefore, it is important to select parameters so that

the success probability of both KPA and COA become negligible.

From Table 2.1, we can see that all HE schemes support two homomorphic schemes

that need NCM to overcome the issue of noise growth due to increasing executed

homomorphic operations. In Chapter 7, RLWE-CSCM, the first FHE that is not

affected by noise growth by construction, is proposed. It is based on RLWE and uses

polynomials in 𝑅 = ℤ[𝑥]/(𝑥𝑑 + 1). Homomorphism of RLWE-CSCM with respect

to addition and multiplication is proved in Section 7.2. Ciphertext size of RLWE-

151

CSCM increases by executing multiplication operation. Therefore, CSCM is needed.

Two CSCMs are proposed; ciphertext recryption and ciphertext re-linearization in

sections 7.2.2.2 and 7.2.2.4 respectively. Security of RLWE-CSCM against various

attacks is presented in Section 7.3. Experiments by (Gentry & Halevi, 2011) showed

that bootstrapping NCM consumes significant time, and according to (Sarkar et al.,

2021, p. 133,134), the implementations of such encryption schemes remain unsuitable

for real-time applications yet. Therefore, proposed an FHE without NCM can be

involved in many real-time applications.

The practical results of the thesis work are:

1. A new HE ciphers classification is proposed. Contrary to all previous HE

ciphers classifications; it has the capability to accommodate new

cryptosystems with new features. Hence, it allows having a separate class for

the newly developed herein HE cipher, RLWE-CSCM.

2. The proposed COA attack against RSA compromises messages encrypted with

large modulus greater than 8000 bits efficiently. Proposed attack threatens

users of RSA on Internet and applications exploiting homomorphic

multiplicative feature of RSA. The attack can be avoided by having RSA public

key to violate conditions (3.16)-(3.18).

3. NTRU modulo 𝑝 flaw attack is proposed exploiting a flaw that in case of (4.10)

is satisfied, the encrypted message can be revealed without the need for the

private key. The attack threatens the users of NTRU with IEEE standard

parameters in (“IEEE Standard Specification for Public Key Cryptographic

Techniques Based on Hard Problems over Lattices,” 2009, p. 55) with non-

negligible success probability. To make the success probability of NTRU

152

modulo 𝑝 attack negligible, users are recommended to set the parameter 𝑑 =

⌊
𝑁

2
⌋ as in (Howgrave-Graham et al., 2005).

4. RCPKC, the random congruential public key cryptosystem is developed.

RCPKC is resistant to LBRA using GLR. It is more secure and efficient than

NTRU and all its variants. Therefore, it can run on devices with constrained

computational capability, and devices with constrained power, such as

unattended WSNs.

5. RLWE-CSCM, ring learning with errors with ciphertext size control

mechanism is proposed. RLWE-CSCM is the first HE cipher not affected by

noise growth due to homomorphic operations. Therefore, RLWE-CSCM is a

practical solution to provide data privacy for users rely on cloud computing

services.

 As a future work, RLWE-CSCM performance analysis will be conducted, a more

extensive RLWE-CSCM security analysis will be executed, a hardware

implementation of both RCPKC and RLWE-CSCM will be made, and both of RCPKC

and RLWE-CSCM will be applied to telemedicine to secure the data collected by

medical sensors and cameras.

Finally, I would like to mention that the publication requirement for the Ph.D. degree

of having at least one conference paper, and one SCI-Expanded journal paper are

fulfilled with the following published papers: (Chefranov & Ibrahim, 2016; Easttom

et al., 2020; Ibrahim et al., 2020, 2021, 2019; Ibrahim & Chefranov, 2016).

153

REFERENCES

Abd Ghafar, A. H., Kamel Ariffin, M. R., & Asbullah, M. A. (2020). A New LSB

Attack on Special-Structured RSA Primes. Symmetry, 12(5).

https://doi.org/10.3390/sym12050838

Acar, A., Aksu, H., Uluagac, A. S., & Conti, M. (2018). A Survey on Homomorphic

Encryption Schemes: Theory and Implementation. ACM Computing Surveys,

51(4), 1–35. https://doi.org/10.1145/3214303

Alimoradi, R., & Arkian, H. R. (2016). Integer Factorization Implementations.

ICTACT Journal on Communication Technology, 7(2), 1310–1314.

https://doi.org/10.21917/ijct.2016.0192

anasnet/RCPKC-Project: Open Source RCPKC Cryptosystem Reference Code. (n.d.).

Retrieved June 30, 2021, from https://github.com/anasnet/RCPKC-Project

Bagheri, K., Sadeghi, M.-R., & Panario, D. (2018). A Non-commutative Cryptosystem

Based on Quaternion Algebras. Designs, Codes and Cryptography, 86(10), 2345–

2377. https://doi.org/10.1007/s10623-017-0451-4

Banks, W. D., & Shparlinski, I. (2002). A Variant of NTRU with Non-Invertible

Polynomials. In A. Menezes & P. Sarkar (Eds.), Proceedings of the Third

International Conference on Cryptology: Progress in Cryptology (Vol. 2551, pp.

62–70). Springer-Verlag. https://doi.org/10.1007/3-540-36231-2_6

154

Barker, E. (n.d.). NIST Special Publication 800-57 Part 1 Revision 5 Recommendation

for Key Management: Part 1-General. Retrieved October 25, 2021, from

https://doi.org/10.6028/NIST.SP.800-57pt1r5

Barker, E., & Dang, Q. (n.d.). Recommendation for Key Management Part 3:

Application-Specific Key Management Guidance. Retrieved October 25, 2021,

from https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

57Pt3r1.pdf

Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate

and Certificate Revocation List (CRL) Profile, 3279 RFC 1 (2002).

https://doi.org/10.17487/RFC3279

Belhaj, S., & Kahla, H. ben. (2013). On the Complexity of Computing the GCD of

Two Polynomials Via Hankel Matrices. ACM Communications in Computer

Algebra, 46(3–4), 74–75. https://doi.org/10.1145/2429135.2429140

Beloglazov, A., Buyya, R., Lee, Y. C., & Zomaya, A. (2011). A Taxonomy and Survey

of Energy-Efficient Data Centers and Cloud Computing Systems. Advances in

Computers, 82, 47–111. https://doi.org/10.1016/B978-0-12-385512-1.00003-7

Benabbes, S., & Hemam, S. M. (2019). An Approach Based on (Tasks-VMs)

Classification and MCDA for Dynamic Load Balancing in the CloudIoT. Lecture

Notes in Networks and Systems, 102, 387–396. https://doi.org/10.1007/978-3-

030-37207-1_41

155

Berkovits, S. (1982). Factoring via Superencyrption. Cryptologia, 6(3), 229–237.

https://doi.org/10.1080/0161-118291857028

Bleichenbacher, D. (1997). On the Security of the KMOV Public Key Cryptosystem.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 1294, 235–248.

https://doi.org/10.1007/BFB0052239

Boneh, D., & Durfee, G. (2000). Cryptanalysis of RSA with Private Key d Less than

N^0.292. IEEE Trans. Inf. Theory, 46(4), 1339–1349.

https://doi.org/10.1109/18.850673

Boneh, D., & Durfee, G. (1999). Cryptanalysis of RSA with Private Key d Less than

N^0.292. In J. Stern (Ed.), Advances in Cryptology - EUROCRYPT ’99,

International Conference on the Theory and Application of Cryptographic

Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding (Vol. 1592, pp.

1–11). Springer. https://doi.org/10.1007/3-540-48910-X_1

Boneh, D., Durfee, G., & Franke, Y. (1998). An Attack on RSA Given a Small Fraction

of the Private Key Bits. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

1514, 25–34. https://doi.org/10.1007/3-540-49649-1_3

Boneh, D., Joux, A., & Nguyen, P. Q. (2000). Why Textbook Elgamal and RSA

Encryption are Insecure: (Extended Abstract). Lecture Notes in Computer

156

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 1976, 30–43. https://doi.org/10.1007/3-540-44448-3_3

Boulemtafes, A., Derhab, A., Braham, N. A. A., & Challal, Y. (2021). Privacy-

Preserving Remote Deep-Learning-Based Inference Under Constrained Client-

Side Environment. Journal of Ambient Intelligence and Humanized Computing

2021, 1–14. https://doi.org/10.1007/S12652-021-03312-8

Brakerski, Z. (2019). Fundamentals of Fully Homomorphic Encryption. In O.

Goldreich (Ed.), Providing Sound Foundations for Cryptography: On the Work

of Shafi Goldwasser and Silvio Micali (pp. 543–563). ACM.

https://doi.org/10.1145/3335741.3335762

Brakerski, Z., Gentry, C., & Halevi, S. (2013). Packed Ciphertexts in LWE-Based

Homomorphic Encryption. In K. Kurosawa & G. Hanaoka (Eds.), Public-Key

Cryptography - PKC 2013 - 16th International Conference on Practice and

Theory in Public-Key Cryptography, Nara, Japan, February 26 - March 1, 2013.

Proceedings (Vol. 7778, pp. 1–13). Springer. https://doi.org/10.1007/978-3-642-

36362-7_1

Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2014). (Leveled) Fully

Homomorphic Encryption Without Bootstrapping. ACM Transactions on

Computation Theory, 6(3), 1–36. https://doi.org/10.1145/2633600

Brakerski, Z., & Vaikuntanathan, V. (2011a). Efficient Fully Homomorphic

Encryption from (Standard) LWE. In R. Ostrovsky (Ed.), IEEE 52nd Annual

157

Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs,

CA, USA, October 22-25, 2011 (pp. 97–106). IEEE Computer Society.

https://doi.org/10.1109/FOCS.2011.12

Brakerski, Z., & Vaikuntanathan, V. (2011b). Fully homomorphic encryption from

ring-LWE and security for key dependent messages. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 6841 LNCS, 505–524. https://doi.org/10.1007/978-3-

642-22792-9_29

Bunder, M., Nitaj, A., Susilo, W., & Tonien, J. (2017). A Generalized Attack on RSA

Type Cryptosystems. Theoretical Computer Science, 704, 74–81.

https://doi.org/10.1016/j.tcs.2017.09.009

[Cado-nfs-discuss] Factorization of RSA-250. (n.d.). Retrieved June 1, 2021, from

https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-

February/001166.html

Chefranov, A., & Ibrahim, A. (2016). NTRU Modulo p Flaw. World Congress on

Internet Security (WorldCIS-2016), 54–58. https://infonomics-

society.org/worldcis-2016/worldcis-abstract-10/

Chen, L., Ben, H., & Huang, J. (2014). An Encryption Depth Optimization Scheme

for Fully Homomorphic Encryption. Proceedings - 2014 International

Conference on Identification, Information and Knowledge in the Internet of

Things, IIKI 2014, 137–141. https://doi.org/10.1109/IIKI.2014.35

158

Cheon, J. H., Coron, J. S., Kim, J., Lee, M. S., Lepoint, T., Tibouchi, M., & Yun, A.

(2013). Batch Fully Homomorphic Encryption over the Integers. Lecture Notes

in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 7881, 315–335.

https://doi.org/10.1007/978-3-642-38348-9_20

Chuang, Y. L., Fan, C. I., & Tseng, Y. F. (2018). An Efficient Algorithm for the

Shortest Vector Problem. IEEE Access, 6, 61478–61487.

https://doi.org/10.1109/ACCESS.2018.2876401

Coglianese, M., & Goi, B.-M. (2005). MaTRU: A New NTRU-Based Cryptosystem.

In S. Maitra, C. E. V. Madhavan, & R. Venkatesan (Eds.), Progress in Cryptology

- INDOCRYPT 2005, 6th International Conference on Cryptology in India,

Bangalore, India, December 10-12, 2005, Proceedings (Vol. 3797, pp. 232–243).

Springer. https://doi.org/10.1007/11596219_19

Coppersmith, D. (1996a). Finding a Small Root of a Bivariate Integer Equation;

Factoring with High Bits Known. Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 1070, 178–189. https://doi.org/10.1007/3-540-68339-9_16

Coppersmith, D. (1996b). Finding a Small Root of a Univariate Modular Equation.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 1070, 155–165.

https://doi.org/10.1007/3-540-68339-9_14

159

Coppersmith, D., Franklin, M. K., Patarin, J., & Reiter, M. K. (1996). Low-Exponent

RSA with Related Messages. In U. M. Maurer (Ed.), Advances in Cryptology -

{EUROCRYPT} ’96, International Conference on the Theory and Application of

Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding

(Vol. 1070, pp. 1–9). Springer. https://doi.org/10.1007/3-540-68339-9_1

Coron, J. S., Mandal, A., Naccache, D., & Tibouchi, M. (2011). Fully Homomorphic

Encryption over the Integers with Shorter Public Keys. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 6841, 487–504.

https://doi.org/10.1007/978-3-642-22792-9_28

Coron, J. S., Naccache, D., & Tibouchi, M. (2012). Public Key Compression and

Modulus Switching for Fully Homomorphic Encryption over the Integers.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 7237, 446–464.

https://doi.org/10.1007/978-3-642-29011-4_27

de Weger, B. (2002). Cryptanalysis of RSA with Small Prime Difference. Applicable

Algebra in Engineering, Communications and Computing, 13(1), 17–28.

https://doi.org/10.1007/s002000100088

Delaurentis, J. M. (1984). A Further Weakness in the Common Modulus Protocol for

the RSA Cryptoalgorithm. Cryptologia, 8(3), 253–259.

https://doi.org/10.1080/0161-118491859060

160

Diaconis, P., & Mosteller, F. (1989). Methods for studying coincidences. Journal of

the American Statistical Association, 84(408), 853–861.

https://doi.org/10.1080/01621459.1989.10478847

Domingo-Ferrer, J., Farràs, O., Ribes-González, J., & Sánchez, D. (2019). Privacy-

preserving Cloud Computing on Sensitive Data: A Survey of Methods, Products

and Challenges. In Computer Communications (Vols. 140–141, pp. 38–60).

Elsevier B.V. https://doi.org/10.1016/j.comcom.2019.04.011

Doröz, Y., Hoffstein, J., Pipher, J., Silverman, J. H., Sunar, B., Whyte, W., & Zhang,

Z. (2018). Fully Homomorphic Encryption from the Finite Field Isomorphism

Problem. In M. Abdalla & R. Dahab (Eds.), Public-Key Cryptography – PKC

2018. Lecture Notes in Computer Science, vol 10769. (pp. 125–155). Springer

International Publishing. https://doi.org/https://doi.org/10.1007/978-3-319-

76578-5_5

Doröz, Y., & Sunar, B. (2020). Flattening NTRU for Evaluation Key Free

Homomorphic Encryption. Journal of Mathematical Cryptology, 14(1), 66–83.

https://doi.org/10.1515/jmc-2015-0052

Dyer, J., Dyer, M., & Xu, J. (2019). Practical Homomorphic Encryption over the

Integers for Secure Computation in the Cloud. International Journal of

Information Security, 18(5), 549–579. https://doi.org/10.1007/s10207-019-

00427-0

161

Easttom, C., Ibrahim, A., Chefranov, A., Alsmadi, I., & Hansen, R. (2020). Towards

A Deeper NTRU Analysis: A Multi Modal Analysis. International Journal on

Cryptography and Information Security (IJCIS), 10(2), 11–22.

https://doi.org/10.5121/ijcis.2020.10202

ElGamal, T. (1985). A Public Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 196,

10–18. https://doi.org/10.1007/3-540-39568-7_2

Feng, J., Yang, L. T., Gati, N. J., Xie, X., & Gavuna, B. S. (2020). Privacy-Preserving

Computation in Cyber-Physical-Social Systems: A Survey of the State-of-the-Art

and Perspectives. Information Sciences, 527, 341–355.

https://doi.org/10.1016/j.ins.2019.07.036

Freeman, D. M. (2012). Improved Security for Linearly Homomorphic Signatures: A

Generic Framework. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

7293, 697–714. https://doi.org/10.1007/978-3-642-30057-8_41

Gaborit, P., Ohler, J., & Solé, P. (2002). CTRU, a polynomial analogue of NTRU.

INRIA. https://hal.inria.fr/inria-00071964

Gaithuru, J. N., & Salleh, M. (2017). ITRU: NTRU-Based Cryptosystem Using Ring

of Integers. International Journal of Innovative Computing, 7(1).

https://doi.org/10.11113/ijic.v7n1.135

162

Gama, N., & Nguyen, P. Q. (2007). New Chosen-Ciphertext Attacks on NTRU. In T.

Okamoto & X. Wang (Eds.), Public Key Cryptography -- PKC 2007: 10th

International Conference on Practice and Theory in Public-Key Cryptography

Beijing, China, April 16-20, 2007. Proceedings (pp. 89–106). Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_7

Gao, S. (2018). Efficient Fully Homomorphic Encryption Scheme. IACR Cryptol.

EPrint Arch., 637. https://eprint.iacr.org/2018/637

Gentry, C. (2009a). A FULLY HOMOMORPHIC ENCRYPTION SCHEME.

https://crypto.stanford.edu/craig/craig-thesis.pdf

Gentry, C. (2010). Computing Arbitrary Functions of Encrypted Data.

CommunICAtIonS of the ACm, 53(3). https://doi.org/10.1145/1666420.1666444

Gentry, C. (2009b). Fully Homomorphic Encryption Using Ideal Lattices. Proceedings

of the Annual ACM Symposium on Theory of Computing, 169–178.

https://doi.org/10.1145/1536414.1536440

Gentry, C., & Halevi, S. (2011). Implementing Gentry’s Fully-Homomorphic

Encryption Scheme. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

6632, 129–148. https://doi.org/10.1007/978-3-642-20465-4_9

163

GitHub - NTRUOpenSourceProject/ntru-crypto: Open Source NTRU Public Key

Cryptography and Reference Code. (n.d.). Retrieved June 30, 2021, from

https://github.com/NTRUOpenSourceProject/ntru-crypto

Gorroochurn, P. (2012). Classic Problems of Probability. In Classic Problems of

Probability (pp. 240–246). John Wiley & Sons, Inc. https://www.wiley.com/en-

us/Classic+Problems+of+Probability-p-9781118063255

Halevi, S., & Shoup, V. (2021). Bootstrapping for HElib. Journal of Cryptology, 34(1),

1–44. https://doi.org/10.1007/s00145-020-09368-7

Han, J., Kamber, M., & Pei, J. (2012). 2 - Getting to Know Your Data. In J. Han, M.

Kamber, & J. Pei (Eds.), Data Mining (Third Edition) (pp. 39–82). Morgan

Kaufmann. https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00002-2

Han, Z., Li, X., Huang, K., & Feng, Z. (2018). A Software Defined Network-Based

Security Assessment Framework for CloudIoT. IEEE Internet of Things Journal,

5(3), 1424–1434. https://doi.org/10.1109/JIOT.2018.2801944

Hastad, J. (1988). Solving Simultaneous Modular Equations of Low Degree. SIAM

Journal on Computing, 17(2), 336–341. https://doi.org/10.1137/0217019

Hastad, J. (1986). On Using RSA with Low Exponent in a Public Key Network.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 218, 403–408.

https://doi.org/10.1007/3-540-39799-X_29

164

Hermans, J., Vercauteren, F., & Preneel, B. (2010). Speed Records for NTRU. In J.

Pieprzyk (Ed.), Topics in Cryptology - CT-RSA 2010: The Cryptographers’ Track

at the RSA Conference 2010, San Francisco, CA, USA, March 1-5, 2010.

Proceedings (pp. 73–88). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-11925-5_6

Hoffstein, J., Howgrave-Graham, N., Pipher, J., & Whyte, W. (2010). Practical

Lattice-Based Cryptography: NTRUEncrypt and NTRUSign. In Information

Security and Cryptography (Vol. 10, pp. 349–390). Springer International

Publishing. https://doi.org/10.1007/978-3-642-02295-1_11

Hoffstein, J., Pipher, J., Schanck, J. M., Silverman, J. H., Whyte, W., & Zhang, Z.

(2017). Choosing Parameters for NTRUEncrypt. In H. Handschuh (Ed.), Topics

in Cryptology -- CT-RSA 2017: The Cryptographers’ Track at the RSA

Conference 2017, San Francisco, CA, USA, February 14--17, 2017, Proceedings

(pp. 3–18). Springer International Publishing. https://doi.org/10.1007/978-3-319-

52153-4_1

Hoffstein, J., Pipher, J., & Silverman, J. H. (1998). NTRU: A Ring-Based Public Key

Cryptosystem. In J. P. Buhler (Ed.), Algorithmic Number Theory: Third

International Symposiun, ANTS-III Portland, Oregon, USA, June 21--25, 1998

Proceedings (pp. 267–288). Springer Berlin Heidelberg.

https://doi.org/10.1007/BFb0054868

165

Hoffstein, J., Pipher, J., & Silverman, J. H. (2014a). A Congruential Public Key

Cryptosystem. In An Introduction to Mathematical Cryptography (pp. 373–376).

Springer-Verlag New York. https://doi.org/10.1007/978-1-4939-1711-2

Hoffstein, J., Pipher, J., & Silverman, J. H. (2014b). An Introduction to Mathematical

Cryptography. Springer New York. https://doi.org/10.1007/978-1-4939-1711-2

Hoffstein, J., Pipher, J., & Silverman, J. H. (2014c). Gaussian Lattice Reduction in

Dimension 2. In An Introduction to Mathematical Cryptography (pp. 436–438).

Springer-Verlag New York. https://doi.org/10.1007/978-1-4939-1711-2

Hoffstein, J., Silverman, J. H., & Whyte, W. (1999). Estimated Breaking Times for

NTRU Lattices. Version 2, NTRU Cryptosystems (2003)

Http://Citeseerx.Ist.Psu.Edu/Viewdoc/Summary?Doi=10.1.1.10.6336.

Housley, R., Polk, W., Ford, W., & Solo, D. (2002). RFC3280: Internet X.509 Public

Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

RFC Editor.

Howgrave-Graham, N. (2007). A Hybrid Lattice-Reduction and Meet-in-the-Middle

Attack Against NTRU. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

4622, 150–169. https://doi.org/10.1007/978-3-540-74143-5_9

Howgrave-Graham, N., Nguyen, P. Q., Pointcheval, D., Proos, J., Silverman, J. H.,

Singer, A., & Whyte, W. (2003). The impact of decryption failures on the security

166

of NTRU encryption. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2729, 226–246. https://doi.org/10.1007/978-3-540-45146-4_14

Howgrave-Graham, N., Silverman, J. H., Singer, A., & Whyte, W. (2003). NAEP:

Provable Security in the Presence of Decryption Failures. IACR Cryptol. EPrint

Arch., 2003, 172. http://eprint.iacr.org/2003/172

Howgrave-Graham, N., Silverman, J. H., & Whyte, W. (2003). A Meet-in-the-Middle

Attack on an NTRU Private key. Technical report, NTRU Cryptosystems, June

2003. Report.

http://grouper.ieee.org/groups/1363/lattPK/submissions/NTRUTech004v2.pdf

Howgrave-Graham, N., Silverman, J. H., & Whyte, W. (2005). Choosing Parameter

Sets for NTRUEncrypt with NAEP and SVES-3. IACR Cryptol. EPrint Arch.,

2005, 45. http://eprint.iacr.org/2005/045

Ibrahim, A., & Chefranov, A. (2016). NTRU Modulo p Flaw. International Journal

for Information Security Research, 6(3).

https://doi.org/10.20533/ijisr.2042.4639.2016.0079

Ibrahim, A., Chefranov, A., & Hamad, N. (2019). Ntru-like secure and effective

congruential public-key cryptosystem using big numbers. 2019 2nd International

Conference on New Trends in Computing Sciences, ICTCS 2019 - Proceedings,

1–7. https://doi.org/10.1109/ICTCS.2019.8923091

167

Ibrahim, A., Chefranov, A., Hamad, N., Daraghmi, Y. A., Al-Khasawneh, A., &

Rodrigues, J. J. P. C. (2020). Ntru-like random congruential public-key

cryptosystem for wireless sensor networks. Sensors (Switzerland), 20(16), 4632.

https://doi.org/10.3390/s20164632

Ibrahim, A., Chefranov, A., & Hamamreh, R. (2021). Ciphertext-only attack on RSA

using lattice basis reduction. International Arab Journal of Information

Technology, 18(2), 237–247. https://doi.org/10.34028/IAJIT/18/2/13

IEEE Standard Specification for Public Key Cryptographic Techniques Based on Hard

Problems over Lattices. (2009). IEEE Std 1363.1-2008, 1–81.

https://doi.org/10.1109/IEEESTD.2009.4800404

Islam, N., Puech, W., Hayat, K., & Brouzet, R. (2011). Application of homomorphism

to secure image sharing. Optics Communications, 284(19), 4412–4429.

https://doi.org/10.1016/j.optcom.2011.05.079

Jamnig, P. (1988). Securing the RSA-Cryptosystem Against Cycling Attacks.

Cryptologia, 12(3), 159–164. https://doi.org/10.1080/0161-118891862891

Jarvis, K., & Nevins, M. (2015). ETRU: NTRU over the Eisenstein integers. Des.

Codes Cryptogr., 74(1), 219–242. https://doi.org/10.1007/s10623-013-9850-3

Jaulmes, É., & Joux, A. (2000). A Chosen-Ciphertext Attack against NTRU. In M.

Bellare (Ed.), Advances in Cryptology --- CRYPTO 2000: 20th Annual

International Cryptology Conference Santa Barbara, California, USA, August

168

20--24, 2000 Proceedings (pp. 20–35). Springer Berlin Heidelberg.

https://doi.org/10.1007/3-540-44598-6_2

Joe, S. (2016). The Hermite normal form for certain rank-1 circulant and skew-

circulant lattice rules. Linear Algebra and Its Applications, 496, 438–451.

https://doi.org/10.1016/j.laa.2016.02.009

Johnson, R., Molnar, D., Song, D., & Wagner, D. (2002). Homomorphic Signature

Schemes. Lecture Notes in Computer Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 2271, 244–262.

https://doi.org/10.1007/3-540-45760-7_17

Kaliski, B., Jonsson, J., & Rusch, A. (2016). RFC8017: PKCS #1: RSA Cryptography

Specifications Version 2.2 (K. Moriarty, Ed.). https://doi.org/10.17487/RFC8017

Karbasi, A. H., & Atani, R. E. (2015). ILTRU: An NTRU-Like Public Key

Cryptosystem Over Ideal Lattices. IACR Cryptol. EPrint Arch., 2015, 549.

http://eprint.iacr.org/2015/549

Kelaidonis, D., Vlacheas, P., Stavroulaki, V., Georgoulas, S., Moessner, K., Hashi, Y.,

Hashimoto, K., Miyake, Y., Yamada, K., & Demestichas, P. (2017). Cloud

Internet of Things Framework for Enabling Services in Smart Cities. In

Designing, Developing, and Facilitating Smart Cities (pp. 163–191). Springer

International Publishing. https://doi.org/10.1007/978-3-319-44924-1_9

169

Kirchner, P., & Fouque, P. A. (2017). Revisiting Lattice Attacks on Overstretched

NTRU Parameters. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

10210, 3–26. https://doi.org/10.1007/978-3-319-56620-7_1

Kleinjung, T., Aoki, K., Franke, J., Lenstra, A. K., Thomé, E., Bos, J. W., Gaudry, P.,

Kruppa, A., Montgomery, P. L., Osvik, D. A., te Riele, H., Timofeev, A., &

Zimmermann, P. (2010). Factorization of a 768-Bit RSA modulus. Lecture Notes

in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 6223, 333–350.

https://doi.org/10.1007/978-3-642-14623-7_18

Lenstra, A. K., Lenstra, H. W., & Lovász, L. (1982). Factoring Polynomials with

Rational Coefficients. Mathematische Annalen, 261(4), 515–534.

https://doi.org/10.1007/BF01457454

Lenstra, A. K., & Verheul, E. R. (2000). Selecting cryptographic key sizes extended

abstract. Lecture Notes in Computer Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 1751, 446–465.

https://doi.org/10.1007/978-3-540-46588-1_30

Listserv - Nmbrthry Archives. (n.d.). Retrieved June 1, 2021, from

https://listserv.nodak.edu/cgi-

bin/wa.exe?A2=NMBRTHRY;fd743373.1912&S=

170

López-Alt, A., Tromer, E., & Vaikuntanathan, V. (2012). On-the-Fly Multiparty

Computation on the Cloud Via Multikey Fully Homomorphic Encryption.

Proceedings of the Annual ACM Symposium on Theory of Computing, 1219–

1234. https://doi.org/10.1145/2213977.2214086

Malekian, E., & Zakerolhosseini, A. (2010). OTRU: A non-associative and high speed

public key cryptosystem. Proceedings - 15th CSI International Symposium on

Computer Architecture and Digital Systems, CADS 2010, 83–90.

https://doi.org/10.1109/CADS.2010.5623536

Malekian, E., Zakerolhosseini, A., & Mashatan, A. (2011). QTRU: quaternionic

version of the NTRU public-key cryptosystems. ISC Int. J. Inf. Secur., 3(1), 29–

42. https://doi.org/10.22042/isecure.2015.3.1.3

Margaret Amala, S., & Gnana Jayanthi, J. (2020). Internet of Things: A Technical

Perspective Survey. In Proceedings of International Conference on Artificial

Intelligence, Smart Grid and Smart City Applications (pp. 659–667). Springer

International Publishing. https://doi.org/10.1007/978-3-030-24051-6_60

Martins, P., Sousa, L., & Mariano, A. (2017). A Survey on Fully Homomorphic

Encryption: An Engineering Perspective. ACM Comput. Surv., 50(6).

https://doi.org/10.1145/3124441

May, A. (2010). Using LLL-Reduction for Solving RSA and Factorization Problems.

In Information Security and Cryptography (Vol. 10, pp. 315–348). Springer

International Publishing. https://doi.org/10.1007/978-3-642-02295-1_10

171

M.G., N., & R., H. (2016). BITRU: Binary Version of the NTRU Public Key

Cryptosystem via Binary Algebra. International Journal of Advanced Computer

Science and Applications, 7(11). https://doi.org/10.14569/ijacsa.2016.071101

Micciancio, D. (2016). Shortest Vector Problem. In Encyclopedia of Algorithms (pp.

1974–1977). Springer New York. https://doi.org/10.1007/978-1-4939-2864-

4_374

Micciancio, D. (2001). Improving Lattice Based Cryptosystems Using the Hermite

Normal Form. In J. H. Silverman (Ed.), Cryptography and Lattices, International

Conference, CaLC 2001, Providence, RI, USA, March 29-30, 2001, Revised

Papers (Vol. 2146, pp. 126–145). Springer. https://doi.org/10.1007/3-540-

44670-2_11

Moore, D. S. (2006). The Basic Practice of Statistics (4th ed.). W. H. Freeman.

Nikolić, B. (2008). Design in the power-limited scaling regime. IEEE Transactions on

Electron Devices, 55(1), 71–83. https://doi.org/10.1109/TED.2007.911350

NTL: A Library for doing Number Theory. (n.d.). Retrieved June 1, 2021, from

https://libntl.org/

Nuida, K., & Kurosawa, K. (2015). (Batch) Fully Homomorphic Encryption over

Integers for Non-Binary Message Spaces. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 9056, 537–555. https://doi.org/10.1007/978-3-662-46800-5_21

172

Pandey, P., Pandey, S. C., & Kumar, U. (2020). Security Issues of Internet of Things

in Health-Care Sector: An Analytical Approach (pp. 307–329). Springer,

Singapore. https://doi.org/10.1007/978-981-15-1100-4_15

PQC Third Round Candidate Announcement | CSRC. (n.d.). Retrieved May 29, 2021,

from https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement

Pulido-Gaytan, B., Tchernykh, A., Cortés-Mendoza, J. M., Babenko, M., Radchenko,

G., Avetisyan, A., & Drozdov, A. Y. (2021). Privacy-Preserving Neural

Networks with Homomorphic Encryption: Challenges and Opportunities. Peer-

to-Peer Networking and Applications, 14(3), 1666–1691.

https://doi.org/10.1007/s12083-021-01076-8

Rabah, K. (2006). Review of Methods for Integer Factorization Applied to

Cryptography. In Journal of Applied Sciences (Vol. 6, Issue 2, pp. 458–481).

https://doi.org/10.3923/jas.2006.458.481

Rabie, A. H., Saleh, A. I., & Ali, H. A. (2021). Smart Electrical Grids Based on Cloud,

IoT, and Big Data Technologies: State of The Art. J. Ambient Intell. Humaniz.

Comput., 12(10), 9449–9480. https://doi.org/10.1007/s12652-020-02685-6

Ramaiah, Y. G., & Kumari, G. V. (2012). Efficient Public Key Homomorphic

Encryption over Integer Plaintexts. Proceedings - 3rd International Conference

on Information Security and Intelligent Control, ISIC 2012, 123–128.

https://doi.org/10.1109/ISIC.2012.6449723

173

Ramesh, S., & Govindarasu, M. (2020). An Efficient Framework for Privacy-

Preserving Computations on Encrypted IoT Data. IEEE Internet of Things

Journal, 7(9), 8700–8708. https://doi.org/10.1109/JIOT.2020.2998109

rfc3279. (n.d.). Retrieved May 28, 2021, from

https://datatracker.ietf.org/doc/html/rfc3279#section-2.3.1

Rivest, R. L. (1978). Remarks on a Proposed Cryptanalytic Attack on the M.I.T.

Public-Key Cryptosystem. Cryptologia, 2(1), 62–65.

https://doi.org/10.1080/0161-117891852785

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems. Communications of the ACM, 21(2),

120–126. https://doi.org/10.1145/359340.359342

Romli, N. B., Minhad, K. N., I Reaz, M. B., & Amin, S. (2015). AN OVERVIEW OF

POWER DISSIPATION AND CONTROL TECHNIQUES IN CMOS

TECHNOLOGY. In Journal of Engineering Science and Technology (Vol. 10,

Issue 3).

RSA Factoring Challenge - Wikipedia. (n.d.). Retrieved June 1, 2021, from

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

Sarkar, A., Chatterjee, S. R., & Chakraborty, M. (2021). Role of Cryptography in

Network Security. In Lecture Notes in Networks and Systems (Vol. 163, pp. 103–

174

143). Springer Science and Business Media Deutschland GmbH.

https://doi.org/10.1007/978-981-15-9317-8_5

Seck, M., & Sow, D. (2019). BI-NTRU Encryption Schemes: Two New Secure Variants

of NTRU. 216–235. https://doi.org/10.1007/978-3-030-36237-9_13

Sedenion - Wikipedia. (n.d.). Retrieved June 5, 2021, from

https://en.wikipedia.org/wiki/Sedenion

Sethi, R., Bhushan, B., Sharma, N., Kumar, R., & Kaushik, I. (2021). Applicability of

Industrial IoT in Diversified Sectors: Evolution, Applications and Challenges

(pp. 45–67). Springer, Singapore. https://doi.org/10.1007/978-981-15-7965-3_4

Shah, J. L., & Bhat, H. F. (2020). CloudIoT for Smart Healthcare: Architecture, Issues,

and Challenges. In Internet of Things Use Cases for the Healthcare Industry (pp.

87–126). Springer International Publishing. https://doi.org/10.1007/978-3-030-

37526-3_5

Shrestha, R., & Kim, S. (2019). Integration of IoT with blockchain and homomorphic

encryption: Challenging issues and opportunities. In Advances in Computers

(Vol. 115, pp. 293–331). Academic Press Inc.

https://doi.org/10.1016/bs.adcom.2019.06.002

Silverman, J. H., Silverman, J. H., & Whyte, W. (2003). Estimating Decryption

Failure Probabilities for NTRUEncrypt.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.7016

175

Simmons, G. J. (1977). Preliminary Comments on the M.I.T. Public-Key

Cryptosystem. Cryptologia, 1(4), 406–414. https://doi.org/10.1080/0161-

117791833219

Sinchana, M. K., & Savithramma, R. M. (2020). Survey on Cloud Computing Security.

In Lecture Notes in Networks and Systems (Vol. 103, pp. 1–6). Springer.

https://doi.org/10.1007/978-981-15-2043-3_1

Sipser, M. (2013). Introduction to the Theory of Computation (M. Lee, Ed.; 3rd ed.).

Cengage Learning. https://www.cengage.co.uk/books/9780357670583/

Smart, N. P., & Vercauteren, F. (2010). Fully homomorphic encryption with relatively

small key and ciphertext sizes. Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 6056 LNCS, 420–443. https://doi.org/10.1007/978-3-642-

13013-7_25

Smith, C. (2002). Environmental Physics (1st Edition). Routledge Book.

https://www.routledge.com/Environmental-

Physics/Smith/p/book/9780415201919

Stallings, W. (2014). Fermat’s and Euler’s Theorem. In Cryptography and Network

Security: Principles and Practice, 6th Edition (6th ed., pp. 49–52).

https://www.pearson.com/us/higher-education/product/Stallings-Cryptography-

and-Network-Security-Principles-and-Practice-6th-

Edition/9780133354690.html?tab=contents

176

Stallings, W. (2017). Elliptic Curve Cryptography. In T. Johnson (Ed.), Cryptography

and Network Security Principles and Practice (7th Edition, pp. 330–334).

Pearson Education.

Stehlé, D., & Steinfeld, R. (2011). Making NTRU as secure as worst-case problems

over ideal lattices. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

6632 LNCS, 27–47. https://doi.org/10.1007/978-3-642-20465-4_4

Stillwell, J. (2003). Ideals. Elements of Number Theory, 196–220.

https://doi.org/10.1007/978-0-387-21735-2_11

Strang, G. (2016). Cramer’s Rule, Inverses, and Volumes. In Introduction to Linear

Algebra (5th ed., pp. 417–422). Wellesley-Cambridge Press.

Sultan, S. (2019). Privacy-Preserving Metering in Smart Grid for Billing, Operational

Metering, and Incentive-Based Schemes: A Survey. Computers and Security, 84,

148–165. https://doi.org/10.1016/j.cose.2019.03.014

Sun, X., Wang, T., Sun, Z., Wang, P., Yu, J., & Xie, W. (2017). An Efficient Quantum

Somewhat Homomorphic Symmetric Searchable Encryption. International

Journal of Theoretical Physics 2017 56:4, 56(4), 1335–1345.

https://doi.org/10.1007/S10773-017-3275-0

177

Takayasu, A., & Kunihiro, N. (2019). Partial Key Exposure Attacks on RSA:

Achieving the Boneh–Durfee Bound. Theoretical Computer Science, 761, 51–77.

https://doi.org/10.1016/j.tcs.2018.08.021

Takayasu, A., & Kunihiro, N. (2014). Partial Key Exposure Attacks on RSA:

Achieving the Boneh-Durfee Bound. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 8781, 345–362. https://doi.org/10.1007/978-3-319-13051-4_21

Texas Instruments Incorporated. (2018). MSP430FR596x, MSP430FR594x Mixed-

Signal Microcontrollers. https://www.ti.com/lit/ds/symlink/msp430fr5969.pdf

Thakur, K., & P., B. (2016). BTRU, A Rational Polynomial Analogue of NTRU

Cryptosystem. International Journal of Computer Applications, 145(12), 22–24.

https://doi.org/10.5120/ijca2016910769

Thakur, K., & Tripathi, B. P. (2017). STRU: A Non Alternative and Multidimensional

Public Key Cryptosystem. In Global Journal of Pure and Applied Mathematics

(Vol. 13, Issue 5). http://www.ripublication.com/gjpam.htm

The LLL Algorithm - Survey and Applications | Phong Q. Nguyen | Springer. (n.d.).

Retrieved May 31, 2021, from

https://www.springer.com/gp/book/9783642022944

van Dijk, M., Gentry, C., Halevi, S., & Vaikuntanathan, V. (2010). Fully

Homomorphic Encryption over the Integers. Lecture Notes in Computer Science

178

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 6110, 24–43. https://doi.org/10.1007/978-3-642-13190-5_2

Vats, N. (2009). NNRU, a noncommutative analogue of NTRU. CoRR,

abs/0902.1891. http://arxiv.org/abs/0902.1891

Wang, B., Lei, H., & Hu, Y. (2018). D-NTRU: More efficient and average-case IND-

CPA secure NTRU variant. Information Sciences, 438, 15–31.

https://doi.org/10.1016/j.ins.2018.01.037

Wang, L., & Ahmad, H. (2016). Challenges of Fully Homomorphic Encryptions for

the Internet of Things. https://doi.org/10.1587/transinf.2015INI0003

Wang, X., Luo, T., & Li, J. (2018). A More Efficient Fully Homomorphic Encryption

Scheme Based on GSW and DM Schemes. https://doi.org/10.1155/2018/8706940

Wiener, M. J. (1990). Cryptanalysis of Short RSA Secret Exponents. IEEE

Transactions on Information Theory, 36(3), 553–558.

https://doi.org/10.1109/18.54902

Wu, M. E., Chen, C. M., Lin, Y. H., & Sun, H. M. (2014). On the Improvement of

Wiener Attack on RSA with Small Private Exponent. The Scientific World

Journal, 2014. https://doi.org/10.1155/2014/650537

Yakubu, J., Abdulhamid, S. M., Christopher, H. A., Chiroma, H., & Abdullahi, M.

(2019). Security challenges in fog-computing environment: a systematic

179

appraisal of current developments. In Journal of Reliable Intelligent

Environments (Vol. 5, Issue 4, pp. 209–233). Springer Science and Business

Media Deutschland GmbH. https://doi.org/10.1007/s40860-019-00081-2

Yang, H. M., Xia, Q., Wang, X. F., & Tang, D. H. (2012). A New Somewhat

Homomorphic Encryption Scheme over Integers. Proceedings - 2012

International Conference on Computer Distributed Control and Intelligent

Environmental Monitoring, CDCIEM 2012, 61–64.

https://doi.org/10.1109/CDCIEM.2012.21

Yang, Z., Fu, S., Qu, L., & Li, C. (2018a). Supplementary File to A Lower Dimension

Lattice Attack on NTRU. http://scis.scichina.com/en/2018/059101-

supplementary.pdf

Yang, Z., Fu, S., Qu, L., & Li, C. (2018b). A Lower Dimension Lattice Attack on

NTRU. In Science China Information Sciences (Vol. 61, Issue 5, pp. 1–3).

Science in China Press. https://doi.org/10.1007/s11432-017-9175-y

Yassein, H. R., & Al-Saidi, N. M. (2016). HXDTRU Cryptosystem Based On

Hexadecnion Algebra. Proceeding of the 5th International Cryptology and

Information Security Conference, Kota Kinabalu, Malaysia.

Youn, T.-Y., Jho, N.-S., & Chang, K.-Y. (2016). Design of Additive Homomorphic

Encryption with Multiple Message Spaces For Secure and Practical Storage

Services over Encrypted Data. The Journal of Supercomputing 2016 74:8, 74(8),

3620–3638. https://doi.org/10.1007/S11227-016-1796-6

180

Yu, Y., Xu, G., & Wang, X. (2017). Provably Secure NTRU Instances over Prime

Cyclotomic Rings. In S. Fehr (Ed.), Public-Key Cryptography - PKC 2017 - 20th

IACR International Conference on Practice and Theory in Public-Key

Cryptography, Amsterdam, The Netherlands, March 28-31, 2017, Proceedings,

Part I (Vol. 10174, pp. 409–434). Springer. https://doi.org/10.1007/978-3-662-

54365-8_17

Zhao, Y., Tarus, S. K., Yang, L. T., Sun, J., Ge, Y., & Wang, J. (2020). Privacy-

Preserving Clustering for Big Data in Cyber-Physical-Social Systems: Survey

and Perspectives. Information Sciences, 515, 132–155.

https://doi.org/10.1016/j.ins.2019.10.019

181

APPENDICES

A

182

Appendix A: Example of RSA Encryption/ Decryption

Example A.1: Example of 40-bit RSA encryption/decryption.

Let 𝑝 = 220 + 33 = 1048609 and 𝑞 = 220 + 13 = 1048589 be two prime

numbers. Then modulus 𝑁 = 𝑝 · 𝑞 = 1099559862701. According to (2.3), let

encryption exponent, 𝑒 = 216 + 1 = 65537. According to (2.5), decryption exponent,

𝑑 = 1082377437569. The public key is (𝑁, 𝑒) = (1099559862701, 65537), and

the private key is (𝑁, 𝑑) = (1099559862701, 1082377437569). Let the message,

𝑚 = 986648, then the ciphertext is calculated according to (2.2):

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁 = 480808351840. (A.1)

Message, 𝑚, is retrieved by decryption of the ciphertext (A.1) according to (2.4) as

shown in (A.2):

𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑁 = 986648. (A.2)

B

183

Appendix B: Lattice and Lattice Basis Reduction Algorithms

Lattices are defined according to Definition B.1 below

Definition B.1: (Hoffstein et al., 2014b, p. 388) Let 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑚 be a set of

linearly independent vectors. The lattice ℒ generated by 𝑣1, … , 𝑣𝑛 is the set of linear

combinations of 𝑣1, … , 𝑣𝑛 with coefficients in ℤ,

ℒ = {𝑎1𝑣1 + 𝑎2𝑣2 + ⋯+ 𝑎𝑛𝑣𝑛: 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℤ}.

Definition B.2: (Hoffstein et al., 2014b, p. 388) A set of vectors 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑚 is

(linearly) independent if the only way to get

𝑎1𝑣1 + 𝑎2𝑣2 + ⋯+ 𝑎𝑛𝑣𝑛 = 0

is to have 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑛 = 0.

The rank of the lattice ℒ is 𝑛 and its dimension is 𝑚, 𝑛 ≤ 𝑚. A full rank lattice is the

lattice having its rank and dimensions are equal i.e., 𝑛 = 𝑚. basis for ℒ is any set of

independent vectors 𝑉 = {𝑣1, … , 𝑣𝑛} that generates ℒ. The same lattice can be

represented by different bases, any two matrices 𝐵1 and 𝐵2 associated with the same

lattice, 𝐿, are related by an integer matrix 𝑈 with |𝑑𝑒𝑡(𝑈)| = 1, that is, 𝐵1 = 𝑈 × 𝐵2.

Therefore, 𝑑𝑒𝑡(𝐵1) = ± 𝑑𝑒𝑡(𝐵2). Determinant of lattice 𝐿 is defined as follows

det(𝐿) = |det(𝐵)|, (B.1)

where 𝐵 is a basis matrix of 𝐿. Figure B.1 illustrates two different bases for the same

lattice. The first basis is “good” in the sense that the vectors are short, “nearly

184

orthogonal”; the second basis is “bad” because the vectors are long and quite skewed,

i.e., the angle between the basis vectors is small.

Figure B.1: Two different bases for the same lattice.

Note. Adapted from (Hoffstein et al., 2014b, p. 405).

Hadamard ratio can be used to check the orthogonality (wellness) of basis, where

Hadamard ratio is defined according to Definition B.3 below

Definition B.3: (Hoffstein et al., 2014b, p. 397) Let ℒ be an 𝑛-dimensional lattice

with the basis ℬ = {𝑣1, … , 𝑣𝑛}, then, the Hadamard ratio of the basis ℬ = {𝑣1, … , 𝑣𝑛}
is defined to be the quantity,

ℋ(ℬ) = (
det (ℒ)

‖𝑣1‖‖𝑣2‖…‖𝑣𝑛‖
)
1 𝑛⁄

,
(B.2)

where 0 < ℋ(ℬ) ≤ 1, and the closer that the value is to 1, the more orthogonal (good)

the basis. A bad basis has the ratio close to 0.

The Hermite Normal Form (HNF) unique basis of ℒ is bad basis 𝐻 and defined

according to Definition B.4 below

185

Definition B.4: (Joe, 2016, p. 439; Micciancio, 2001, p. 128) The basis 𝐻 of ℒ is in

upper triangular HNF if it is represented by an 𝑛 × 𝑛 matrix with

1- ℎ𝑖𝑗 = 0 for 𝑖 > 𝑗

2- 0 ≤ ℎ𝑖𝑗 < ℎ𝑗𝑗 for1 ≤ 𝑖 < 𝑗 ≤ 𝑛

3- 0 < ℎ𝑖𝑖 for 0 ≤ 𝑖 ≤ 𝑛

that is the elements of the main diagonal are positive integers, and in each column, the

elements above the diagonal are less than the diagonal and at least zero.

Example of HNF. Let 𝐿 be a 3-dimensional lattice with the basis 𝑣1 = (−97,19,19),

𝑣2 = (−36,30,86), 𝑣3 = (−184,−64, 78). Thus, the basis matrix 𝐵 is

𝐵 = [
−97 19 19
−36 30 86
−184 −64 78

],

Determinant of lattice 𝐿 associated with 𝐵 is 859516 and computed using Maple

according to (B.1),

Hadamard ratio is approximately 0.746 and computed using Maple according to (B.2)

as follows:

186

Hence, the basis is rather good as its Hadamard ratio is close to 1. Let’s compute the

bad basis HNF of𝐿 using Maple:

Hadamard ratio of it is approximately 0.000338 and computed using Maple according

to (B.2)

Thus, we see that the basis 𝐵 is better than the bad basis HNF of 𝐿, skewed and having

large norm vectors

187

Let 𝑅 =
ℤ[𝑥]

𝑥𝑛+1
 be the ring of polynomials with integer coefficients modulo 𝑥𝑛 + 1, and

𝐼 be an ideal of 𝑅. Ideal 𝐼 is a subset of R that is closed under addition and

multiplication by elements of R (Gentry & Halevi, 2011, p. 138). Thus, 𝐼 satisfies

1- 0 ∈ 𝐼 ⊆ 𝑅

2- If 𝑓, 𝑔 ∈ 𝐼, then 𝑓 + 𝑔 ∈ 𝐼.

3- If 𝑓 ∈ 𝐼 and ℎ ∈ 𝑅, then ℎ𝑓 ∈ 𝐼.

For example, 𝐼 can be the set of polynomials with all with integer even coefficients of

degree up to 𝑛 − 1. The set (𝑣) = {𝑣𝑟: 𝑟 ∈ 𝑅} of all multiples of any 𝑣 ∈ 𝑅 is an ideal,

called the principal ideal generated by 𝑣 (Stillwell, 2003, p. 196). Each element of 𝑅

is a polynomial of degree at most 𝑛 − 1, and thus is associated to a coefficient vector

in 𝑍𝑛. This way, we can view each element of 𝑅 as a polynomial and a vector. The

Euclidean norm ‖𝑥‖ of vector 𝑥 = (𝑥1, … , 𝑥𝑝) is defined as (∑ 𝑥𝑖
2𝑝

𝑖=1)
1/2

 (J. Han et

al., 2012, p. 78).

The ideal (𝑗) generated by 𝑗 ∈ 𝑅 corresponds to the lattice, 𝐽, generated by the basis

vectors {𝑗𝑖⃗⃗⃗ = 𝑗 ⋅ 𝑥𝑖 𝑚𝑜𝑑 (𝑥𝑛 + 1): 𝑖 ∈ [0, 𝑛 − 1]}. “Every Basis 𝐵 = (�⃗⃗�0, … , �⃗⃗�𝑛−1)

has a corresponding half open parallelepiped 𝒫(𝐵) = ∑ 𝑧𝑖𝑏𝑖
⃗⃗⃗ ⃗𝑛−1

𝑖=0 : 𝑧𝑖 ∈

(−
1

2
,
1

2
](Martins et al. , 2017, p. 83: 6)”. The length of the shortest nonzero vector in

a lattice 𝐿 is denoted 𝜆1(𝐿).

Every lattice induces a congruence relation, wherein two vectors, �⃗�, �⃗�, are congruent

if �⃗� − �⃗� ∈ ℒ. The reduction of a vector �⃗� modulo lattice basis 𝐵, �⃗� = �⃗� 𝑚𝑜𝑑 𝐵,

corresponds to determining �⃗� ∈ 𝒫(𝐵) congruent with �⃗�. This operation can be

computed as (Martins, Sousa, and Mariano 2017, 83: 6 − 83: 7)

188

�⃗� 𝑚𝑜𝑑 𝐵 = �⃗� − ⌊�⃗� × 𝐵−1⌉ × 𝐵, (B.3)

where × is a vector-matrix multiplication, ⌊⋅⌉ means rounding to the nearest integer.

Shortest vector problem (SVP) is one of the most widely studied computational

problem on lattices (Micciancio, 2016) is defined as follows:

Definition B.5: (Chuang et al., 2018; Hoffstein et al., 2014b, p. 395) Given a linearly

independent basis 𝑉 = {𝑣1, … , 𝑣𝑛} ∈ ℝ𝑚×𝑛 that generates ℒ, find a nonzero vector 𝑣

such that ‖𝑣‖ = min
𝑥∈𝑉

‖𝑥‖ i.e., 𝑣 ∈ 𝐿 that minimizes the Euclidean norm ‖𝑣‖.

The Euclidean norm ‖𝑥‖ of vector 𝑥 = (𝑥1, … , 𝑥𝑝), defined as (∑ 𝑥𝑖
2𝑝

𝑖=1)
1/2

 (J. Han

et al., 2012, p. 78).

Remark 1: There may be more than one solution to the SVP.

For example, the integer lattice ℤ2, is the set of all 2-dimensional vectors with integer

entries. Integer lattice ℤ2 can be represented by basis vectors 𝑉1 = (1,1) and 𝑉2= (1, 2),

while the four nonzero vectors (0, ±1), (±1,0) are the solutions to the SVP.

Minkowski’s Second Theorem (The LLL Algorithm - Survey and Applications | Phong

Q. Nguyen | Springer, n.d., p. 35), sets an upper bound for the norm, 𝑙, of the shortest

nonzero vector in a full rank 2-dimensional lattice given by (B.4):

𝜆 ≤ √𝛾2 det(𝐿)1 2⁄ , (B.4)

where 𝛾2 =
2

√3
≈ 1.154 is Hermit’s constant (The LLL Algorithm - Survey and

Applications | Phong Q. Nguyen | Springer, n.d., p. 41), 𝜆 is the norm of the shortest

189

nonzero vector, and 𝑑𝑒𝑡(𝐿(𝑉1, 𝑉2)) is the determinant of the lattice matrix formed by

its basis vectors. Hence,

𝜆 ≤ √1.154 det(𝐿) ≈ 1.07 √det(𝐿). (B.5)

Gaussian lattice reduction algorithm (GLR) (Hoffstein et al., 2014c) proposed by

Gauss in the 19th century, and shown in Algorithm B.1 (our Maple implementation is

shown in Code B.1) solves SVP in a 2-dimensioal lattice.

GLR algorithm shown in Algorithm B.1, upon termination returns the shortest vector

𝑣1 in 𝐿 generated by the basis 𝑉 = {𝑉1, 𝑉2}:

Algorithm B.1: GLR algorithm pseudocode (Hoffstein et al., 2014b, p. 437).

input: basis vectors 𝑉1, 𝑉2

output: the shortest vector 𝑣1 in 𝐿

begin

1. 𝑣1 = 𝑉1; 𝑣2 = 𝑉2;

2. Loop
3. If ||𝑣2|| < ||𝑣1||
4. swap 𝑣1 and 𝑣2.

5. Compute 𝑚 = ⌊𝑣1 · 𝑣2 ||𝑣1||
2

⁄ ⌉

6. If 𝑚 = 0

7. return the shortest vector v1 of the basis, {𝑣1, 𝑣2}.
8. Replace 𝑣2 with 𝑣2 − 𝑚𝑣1.

End Loop

190

Code B.1: Maple implementation for GLR Algorithm in Algorithm B.1

However, Solving SVP for higher dimensional lattice remains unsolved until LLL

(Lenstra et al., 1982) proposed in 1982. LLL, shown in Algorithm B.2, runs in a

polynomial time to solve approximate shortest vector problem (apprSVP) for higher

dimension lattices. apprSVP defined as follows

191

Algorithm B.2: The LLL lattice reduction algorithm (Hoffstein et al., 2014b, p. 444)

input: basis vectors {𝑣1, … , 𝑣𝑛} for the lattice 𝐿

output: Reduced basis vector {𝑣1, … , 𝑣𝑛}
begin

1. Set 𝑘 = 2

2. Set 𝑣1
∗ = 𝑣1

3. Loop while 𝑘 ≤ 𝑛

4. Loop Down 𝑗 = 𝑘 − 1, 𝑘 − 2,… , 2, 1

5. Set 𝑣𝑘 = 𝑣𝑘 = ⌊𝜇𝑘,𝑗⌉𝑣𝑗

6. End 𝑗 Loop

7. If ‖𝑣𝑘
∗‖2 ≥ (

3

4
− 𝜇𝑘,𝑘−1

2) ‖𝑣𝑘−1
∗ ‖2

8. Set 𝑘 = 𝑘 + 1.

9. Else

10. Swap 𝑣𝑘−1 and 𝑣𝑘

11. Set 𝑘 = max(𝑘 − 1,2)

12. End If

13. End 𝑘 loop

14. Return LLL reduced basis {𝑣1, … , 𝑣𝑛}
End

Definition B.6: (Hoffstein et al., 2014b, p. 409) Let 𝜙(𝑛) be a function of 𝑛. In a

lattice 𝐿 of dimension 𝑛, the approximate shortest vector problem is to find a nonzero

vector that is no more than 𝜙(𝑛) times longer than a shortest nonzero vector. In other

words, if 𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 is a shortest nonzero vector in 𝐿, find a nonzero vector 𝑣 ∈ 𝐿

satisfying

‖𝑣‖ ≤ 𝜙(𝑛)‖𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡‖.

LLL solves apprSVP to within a factor of 2𝑛 , where 𝑛 is the dimension of the lattice.

On termination, LLL returns a set of short vectors, beginning with the shortest vector

found, and then with vectors whose lengths increase as slowly as possible until we

reach the last vector in the basis in the lattice. The shortest vector 𝑣1 found in an 𝑛-

dimension lattice 𝐿 satisfies

C

‖𝑣1‖ ≤ 2(𝑛−1) 2⁄ min
0≠𝑣∈𝐿

‖𝑣‖ (B.6)

192

Appendix C: Examples of CPKC Scheme Encryption/ Decryption

Example C.1: Example of CPKC encryption/ Decryption. The example is close to

Example 7.1, from (Hoffstein et al., 2014b, p. 375).

Key creation: Let according to (2.29), (2.30), 𝑞 = 122430513839, 𝑓 = 231233,

and 𝑔 = 195696. According to (2.31), 𝐹𝑔 = 127505, and 𝐹𝑞 = 54368439252 as

shown in (1) and (2), Figure C.1 Public key component, ℎ, is calculated by (2.32) as

shown in (3) of Figure C.1:

ℎ = 𝐹𝑞 ⋅ 𝑔 𝑚𝑜𝑑 𝑞 = 107143708775.

 Public key is (ℎ, 𝑞), and private key is (𝑓 , 𝑔).

Encryption: Let according to (2.33) and (2.34), 𝑟 = 10101 and 𝑚 = 12345. The

ciphertext, 𝑒 as showin in (4) of Figure C.1, is computed according to (2.35):

𝑒 = 𝑟 · ℎ + 𝑚 𝑚𝑜𝑑 𝑞 = 95290525699.

 In Step 1 of the decryption process, equation (2.36) is applied as shown in (5) of Figure

C.1:

𝑎 = 𝑓 · 𝑒 𝑚𝑜𝑑 𝑞 = 𝑟 · 𝑔 + 𝑓 · 𝑚 = 4831296681.

 In Figure C.1, the message m is retrieved using (2.39) as shown in (6), Figure S1:

𝑚 = 𝐹𝑔 · 𝑎 𝑚𝑜𝑑 𝑔 = 12345.

193

 Thus, the plaintext 𝑚 = 12345 is revealed. It can be seen that CPKC

encryption/decryption procedure (2.35), (2.36), and (2.38), works correctly due to

(2.37) holding.

Figure C.1: Screenshot of LBRA by GLR using Maple code in Appendix B on

CPKC for the data from the Example C.1 finding the private key components,

(𝑓 , 𝑔) = 𝑣1, in 9 iterations.

194

Example C.2: Example of LBRA using GLR against CPKC

In this example, we try LBRA by GLR using Maple code in AppendixB on CPKC

private key/message for the data from the Example C.1. LBRA by GLR finds in 9

iterations the shortest vector, 𝑣1 = (231233, 195696) as shown in Figure C.1. The

shortest vector, 𝑣1, found by GLR corresponds to the private key components, (𝑓 , 𝑔),

because they were selected small, having order 𝒪(√𝑞) values according to (2.40). Note

that the norm of the vector, (𝑓,𝑔) = √𝑓2 + 𝑔2 = 3.029284141 × 105
 is small

compared to √𝑞 = 3.499007199 × 105. The message related vector, (r, e - m), is not

disclosed in the attack because 𝑒 = 𝒪(𝑞).

D

195

Appendix D: Example of HE1N Encryption/Decryption

Example D.1: Example of HE1N encryption/decryption.

Let 𝜆 = 14, 𝜌 = 8, 𝜌′ = 11 be the inputs of Algorithm 2.2, and let the parameters

(𝑝, 𝑣, 𝑘) selected by Algorithm 2.2 to be 𝑝 = 8200 ∈ [213, 214], 𝑣 = 3, and 𝑘 = 8 ∈

[22, 23]. Algorithm 2.2 outputs the key (𝑘, 𝑝).

Next, Algorithm 2.3 inputs (𝜆, 𝜌′, 𝑘, 𝑝). Algorithm 2.3 assigns 𝜂 ← 6 ≈ 𝜆2 𝜌′⁄ − 𝜆 =

5.8181. Let 𝑞 = 32 ∈ [25, 26]. Algorithm 2.3 assigns modulus ← 262400 = p ⋅ q.

Let the input plaintext messages bounded by 𝑀 = 32. Encryption of 𝑚 = 7 ∈ [0,32)

is performed by Algorithm 2.4. Let (𝑟, 𝑠) selected by Algorithm 2.4 to be 𝑟 = 15 ∈

[1, 𝑞), 𝑠 = 2 ∈ [0, 𝑘). Algorithm 2.4 finds 𝑐, the ciphertext encrypts 𝑚, 𝑐 = 𝑚 + 𝑠𝑘 +

𝑟𝑝 𝑚𝑜𝑑 modulus = 7 + 2 ⋅ 8 + 15 ⋅ 8200 mod 262400 =

123023 mod 262400 = 123023. Note that modulus operation in the encryption

step, has no effect, as we proved in Section 5.1.

The message 𝑚 is retrieved by Algorithm 2.5. 𝑚 = (𝑐 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑘 =

(12302323 𝑚𝑜𝑑 8200) 𝑚𝑜𝑑 8 = 7

E

196

Appendix E: Examples of RLWE-NCM-CSCM Cryptosystem

Encryption/ Decryption

Example E.1: Example of failing decryption when condition (2.56) is not satisfied.

Let 𝑛 = 4, 𝑅 = ℤ[𝑥]/(𝑥4 + 1), 𝑞 = 7,𝑡 = 2, 𝑚 = 𝑥 + 1, 𝑒 = 𝑥3 + 2𝑥2, 𝑎 = 𝑥2, 𝑠 =

𝑥2 − 3. Note that |2𝑒 + 𝑚| = 2𝑥3 + 4𝑥2 + 𝑥 + 1, thus condition (2.56) is violated

since 4 > 3.5 = 𝑞/2. Encryption is performed according to (2.53), 𝑐 = (
𝑐0

𝑐1
) =

(2𝑥3 + 𝑥2 + 𝑥
−𝑥2) ∈ 𝑅𝑞

2. Decryption is performed according to (2.54), 𝑐0 + 𝑐1 ⋅

𝑠 𝑚𝑜𝑑 (𝑥4 + 1) 𝑚𝑜𝑑 7 𝑚𝑜𝑑 2 = 2𝑥3 − 3𝑥2 + 𝑥 + 1 𝑚𝑜𝑑 2 = 𝑥2 + 𝑥 + 1 ≠ 𝑚.

Example E.2: Example of successful decryption when condition (2.56) is satisfied.

Let 𝑛 = 4, 𝑅 =
ℤ[𝑥]

𝑥4+1
, 𝑞 = 7,𝑡 = 2, 𝑚 = 𝑥 + 1, 𝑒 = 𝑥3 + 𝑥2,𝑎 = 𝑥2, 𝑠 = 𝑥2 − 3.

Note that 2𝑒 + 𝑚 = 2𝑥3 + 2𝑥2 + 𝑥 + 1, thus condition (2.56) is satisfied as 𝑞/2 =

3.5. Encryption is performed according to (2.53), 𝑐 = (
𝑐0

𝑐1
) = (2𝑥3 − 𝑥2 + 𝑥

−𝑥2) ∈ 𝑅𝑞
2.

Decryption is performed according to (2.54), 𝑐0 + 𝑐1 ⋅ 𝑠 𝑚𝑜𝑑 (𝑥4 +

1) 𝑚𝑜𝑑 7 𝑚𝑜𝑑 2 = 2𝑥3 + 2𝑥2 + 𝑥 + 1 𝑚𝑜𝑑 7 𝑚𝑜𝑑 2 = 𝑥 + 1 = 𝑚.

F

197

Appendix F: Example of RCPKC Scheme Encryption/ Decryption

Example F.1 aims to show the process of finding RCPKC random interval, and how

LBRA using GLR fails to compromise RCPKC private key/message. For calculations,

Maple is used. See Figure F.1.

Example F.1: Example of Finding RCPKC Random Interval, and LBRA by GLR

Failure

Key Creation: Let 𝑚𝑔𝐿𝑒𝑛 = 16, 𝑞𝐿𝑒𝑛 = 80, meeting (6.10), 𝑞 = 2𝑞𝐿𝑒𝑛, private key

components, 𝑔 = 65,535, and 𝑓 = 1, 351, 417, 702, 001, are selected to meet (6.6)

and (6.8) respectively as shown in (2) and (3) of Figure F.1. Values 𝐹𝑞 and 𝐹𝑔 are found

in (4) and (5) of Figure F.1. The public key component, ℎ, is calculated according to

(2.32) as shown in (6) of Figure S4.

Finding Random Interval: To select random 𝒓, GLR algorithm shown in Appendix B

is launched with inputs 𝑉1 = (1, ℎ) and 𝑉2 = (0, 𝑞). GLR terminates in 18 iterations

as shown in (8) of Figure F.1, with 5 pairs (𝐹𝑖, 𝐺𝑖) satisfying (6.12) shown in (7) of

Figure F.1, it is noticed that none of these vectors is equal to (𝑓, 𝑔). Hence, (6.13) is

satisfied. Maximum 𝐹𝑖 and minimum 𝐺𝑖 are found in (9), and (10) of Figure F.1; value

𝑟𝑚𝑖𝑛 is defined according to (6.14) as shown in (11), 𝑟𝑚𝑖𝑛 also satisfies (6.15) as

shown in (18) of Figure F.1. 𝑟𝑚𝑎𝑥 is calculated in (12) of Figure F.1. After calculating

𝑚𝑎𝑥(𝛼 · 2𝑞𝑙𝑒𝑛/2, 𝑟𝑚𝑖𝑛) in (13) of Figure F.1, it is perceived that (6.19) is satisfied as

shown in (14) of Figure F.1. Thus, 𝑟 is selected from (6.18) as shown in (15) of Figure

F.1.

198

LBRA using GLR Failure: For the message 𝑚 = 14, it is noticed that decryption

correctness condition (6.17) is valid using private key (𝑓, 𝑔) as shown in (16) of Figure

F.1, and not valid for (𝐹𝑖, 𝐺𝑖) returned by GLR as shown in (17) of Figure F.1. Hence,

GLR attack fails to return keys usable for ciphertext decryption.

199

Figure F.1. Screenshot of Maple code of Example F.1.

G

200

Appendix G: NTRU Asymmetric Encryption Padding IND-CCA2

Security (NAEP)

NTRU asymmetric encryption padding (NAEP) (Howgrave-Graham, Silverman,

Singer, et al., 2003) has been proven IND-CCA2 secure. In the following, NAEP is

introduced, and then, its IND-CCA2 security is discussed.

NAEP Description: NAEP uses a function,

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑝(𝑥)) = 𝑝(𝑥) 𝑚𝑜𝑑 𝑞 𝑚𝑜𝑑 2, (G.1)

where 𝑝(𝑥) is a polynomial. NAEP encryption is introduced in Algorithm G.1.

Algorithm G.1: NAEP encryption

input: 𝑁 = 𝜃(𝑘);𝑁 > 𝑙 = 𝜃(𝑘) is the padding size; 𝐺: {0,1}𝑁−𝑙 × {0,1}𝑙 → 𝐷𝑟

and 𝐻: {0,1}𝑁 → {0,1}𝑁 are hash functions; 𝑚 ∈ {0,1}𝑁−𝑙 is the input

plaintext message; ℎ is the public key; 𝑞 is the modulus value.

output: 𝑒 ∈ 𝑅𝑞 is the ciphertext.

begin

1. Pick 𝜇 ←$ {0,1}𝑙, where ←$ means uniform random sampling

2. Let 𝜌 = 𝐺(𝑚, 𝜇), 𝑟 = 𝑔𝑒𝑛𝑟(𝜌), 𝑠 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑝 ⋅ 𝑟 ⋅ ℎ), and 𝜔 =

(𝑚||𝜇) ⊕ 𝐻(𝑠). 𝑔𝑒𝑛𝑟 is a function generating correct 𝑟; ⊕ denotes XOR;

3. If 𝜔 ∉ �̃�, goto 1. �̃� is the space of binary polynomials with the number of

ones such that the probability of NTRU decryption failure is negligible.

4. 𝑒 = 𝐹ℎ,𝑝
𝑁𝑇𝑅𝑈(𝜔, 𝑟), according to (2.20)

end

The 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠() binary string result is sed in Step 2 of NAEP encryption to hide the

padded message by XOR operation and hashing. NAEP decryption is introduced in

201

Algorithm G.2: NAEP decryption

input: 𝑁 = 𝜃(𝑘); 𝑁 > 𝑙 = 𝜃(𝑘) is the padding size; 𝐺: {0,1}𝑁−𝑙 × {0,1}𝑙 → 𝐷𝑟

and 𝐻: {0,1}𝑁 → {0,1}𝑁 are hash functions; 𝑒 ∈ 𝑅𝑞 is the ciphertext.

output: 𝑚 ∈ {0,1}𝑁−𝑙 is the decrypted plaintext message if decrypted correctly,

and Reject otherwise.

begin

1. 𝑎 = 𝑐𝑒𝑛𝑡𝑒𝑟(𝑓 ⋅ 𝑒 𝑚𝑜𝑑 𝑞)

2. 𝜔 = 𝐹𝑝 ⋅ 𝑎 𝑚𝑜𝑑 𝑝. According to NTRU step 2

3. 𝑠 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑒 − 𝑤)

4. 𝑚||𝜇 = 𝜔⨁𝐻(𝑠); 𝑟 = 𝑔𝑒𝑛𝑟(𝐺(𝑚||𝜇)).

5. If 𝑝 ⋅ 𝑟 ⋅ ℎ = 𝑠 𝑚𝑜𝑑 𝑞, then output 𝑚; else, output Reject.

end

Security of NAEP IND-CCA2: NAEP has been proven to be IND-CCA2 secure

(Howgrave-Graham, Silverman, Singer, et al., 2003).

Definition G.1: (Howgrave-Graham, Silverman, Singer, et al., 2003, p. 3) A time 𝜏

algorithm 𝒜 is a (𝜏; 𝜖)-chosen ciphertext algorithm, with advantage 𝜖 in attacking a

randomized encryption scheme (𝒦, ℰ, 𝒟) if there is a pair of sub-algorithms

𝒜1: 𝑃𝐾 → ℳ × ℳ × 𝒮,

𝒜2: 𝒞 × 𝒮 → {0,1},

such that if (𝑀0, 𝑀1, 𝑠) ← 𝒜1(𝑝𝑘) then

|Pr[𝒜2(𝑐
∗, 𝑠) = 𝑏∗] −

1

2
| = (1 2⁄)𝜖

where 𝑐∗ ← ℰ(𝑀∗, 𝑟∗) for some 𝑟∗ ∈ ℛℰ, and 𝑀∗ = 𝑀𝑏∗ for some 𝑏∗ ∈ {0, 1}. This

probability is defined over the choice of 𝑟∗ ←$ ℛℰ , 𝑏
∗ ∈ {0, 1} and 𝑘 ∈ ℛ𝒦, where ℛℰ

and ℛ𝒦 are defined below. The algorithms (𝒜1, 𝒜2) have access to a decryption

202

oracle 𝒟, which they can call on all but the challenge ciphertext 𝑐∗, but they must make

all hash function calls to 𝐻1, . . . 𝐻𝑛 public.

An encryption scheme is IND-CCA2 secure if there exist no polynomial (on security

parameter) time adversary with a non-negligible advantage. Key generation,

encryption, and decryption algorithms are formalized as follows (Howgrave-Graham,

Silverman, Singer, et al., 2003). For a given parameter set 𝒫, the encryption scheme

is specified by three algorithms:

𝒦: ℛ𝒦 → 𝒫𝒦 × 𝒮𝒦

ℰ:𝒫𝒦 × ℳ × ℛℰ → 𝒞

𝒟: 𝒮𝒦 × 𝒞 → ℳ,

called the key generation, encryption, and decryption algorithms, respectively. The

spaces ℛ𝒦, 𝒫𝒦, 𝒮𝒦, ℳ, ℛℰ , 𝒞 are called the key-gen randomness, public key, secret

key, message, encryption randomness, and ciphertext space, respectively

If (𝑝𝑘𝑘 , 𝑠𝑘𝑘) ← 𝒦(𝑘), then the algorithms should satisfy:

𝒟(𝑠𝑘𝑘, ℰ(𝑝𝑘𝑘, 𝑀, 𝑟)) = 𝑀

for all 𝑘 ∈ ℛ𝒦 ,𝑀 ∈ ℳ and 𝑟 ∈ ℛℰ. NTRU key, encryption, and decryption

procedures and respective spaces are defined in Section 2.3.1 according to (Howgrave-

Graham, Silverman, Singer, et al., 2003). Polynomials used in NAEP (Howgrave-

Graham et al., 2005; Howgrave-Graham, Silverman, Singer, et al., 2003) for keys are

invertible. The NTRU one-way (NTRU-OW) problem is defined as follows:

203

Definition G.28: NTRU-OW problem: For a parameter set, 𝒫𝑁𝑇𝑅𝑈, we denote by

𝑆𝑢𝑐𝑐𝑁𝑇𝑅𝑈
𝑂𝑊 (𝒜, 𝒫𝑁𝑇𝑅𝑈) the success probability of a probabilistic polynomial time

(PPT) adversary, 𝒜, for finding a pre-image of 𝐹ℎ,𝑝
𝑁𝑇𝑅𝑈,

𝑆𝑢𝑐𝑐𝑁𝑇𝑅𝑈
𝑂𝑊 (𝒜, 𝒫𝑁𝑇𝑅𝑈) = Pr(

(𝑀′, 𝑟′) ← 𝒜(𝑒, ℎ)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹ℎ,𝑝
𝑁𝑇𝑅𝑈(𝑀′, 𝑟′) = 𝑒

) .

Assumption G.1: NTRU-OW assumption: For every PPT adversary, 𝒜, solving the

NTRU-OW problem, there exists a negligible function, 𝑣𝐴(𝑘), such that for

sufficiently large 𝑘, it holds:

𝑆𝑢𝑐𝑐𝑁𝑇𝑅𝑈
𝑂𝑊 (𝒜,𝒫𝑁𝑇𝑅𝑈) ≤ 𝑣𝐴(𝑘).

Definition G.3: (Howgrave-Graham, Silverman, Singer, et al., 2003) A function

𝜈: ℕ → ℝ is said to be negligible if for every constant 𝑐 ≥ 0, there exists an integer

𝑘𝑐 such that 𝜈(𝑘) < 𝑘−𝑐 for all 𝑘 ≥ 𝑘𝑐.

NTRU variants (Hoffstein et al., 1999; Howgrave-Graham, Silverman, Singer, et al.,

2003) can fail; hence, it was assumed in (Howgrave-Graham, Silverman, Singer, et al.,

2003) that the failure probability is negligible. Under these assumptions, the IND-

CCA2 security of NAEP was proven in (Howgrave-Graham, Silverman, Singer, et al.,

2003), Corollary 1.

H

204

Appendix H: Formulas for CPU Power Consumption Calculation

Power, 𝑃, and energy, 𝐸, are measured in watts (𝑊) and joules (𝐽) (Smith, 2002, p.

1028), respectively, and calculated as follows:

𝑃 = 𝑉 · 𝐼, (H.1)

𝐸 = 𝑃 · 𝑇, (H.2)

where 𝑉 is the potential difference measured in volts (𝑉), 𝐼 is the electric current

measured in amperes (𝐴), and 𝑇 is the running time in seconds. There are three

contributors to the CPU power consumption: dynamic, short-circuit, and power loss

due to transistor leakage currents (Beloglazov et al., 2011):

𝑃𝑐𝑝𝑢 = 𝑃𝑑𝑦𝑛 + 𝑃𝑠𝑐 + 𝑃𝑙𝑒𝑎𝑘. (H.3)

Power consumption is mainly defined by the dynamic and leakage components

(Nikolić, 2008). Leakage power, caused by leakage currents, is present in any active

circuit independent of clock rates and is calculated as follows:

𝑃𝑙𝑒𝑎𝑘 = 𝑉 · 𝐼𝑙𝑒𝑎𝑘, (H.4)

where 𝑉 is the supply voltage and 𝐼𝑙𝑒𝑎𝑘 is the leakage current. Dynamic power

consumption depends on circuit activity (i.e., transistor switches, changes of values in

registers, etc.) and is defined as follows:

𝑃𝑑𝑦𝑛 = 𝑎 · 𝐶 · 𝑉2 · 𝑓 , (H.5)

205

where 𝑎 is the switching activity factor, 𝐶 is the capacitance measured in farad (𝐹),

and 𝑓 is the clock frequency measured in hertz (𝐻𝑧). Mostly, the activity factor is 𝑎 =

 0.5 (Romli et al., 2015). MSP430FR5969, a Texas Instruments microcontroller with

capacitance 𝐶 = 20 𝑝𝐹 (Texas Instruments Incorporated, 2018) (Table 5–12), active

supply voltage from 1.8, . . . , 3.6 𝑉 (Texas Instruments Incorporated, 2018, p. 1), clock

frequency from 1, . . . , 16 𝑀𝐻𝑧 (Texas Instruments Incorporated, 2018, p. 19), 𝐼𝑙𝑒𝑎𝑘 =

20 𝑛𝐴 (Texas Instruments Incorporated, 2018) (Table 5–11), is used for RCPKC

power consumption evaluation in Subsection 6.5.2

I

206

Appendix I: Examples of RLWE-CSCM

Example I.1: Example of correct encryption/ decryption when (7.1) holds:

Let 𝑝 = 7, 𝑞 = 15 ⋅ 𝑝 = 105, and 𝑑 = 3, i.e., 𝑅 = ℤ[𝑥] (𝑥3 + 1)⁄ . Public and secret

keys’ components, 𝐴, 𝑠, and 𝑒 are defined as follows

𝐴 = 93𝑥2 + 110𝑥 + 17 = (𝑥 + 1)(93𝑥 + 17), (I.1)

𝑠 = 78𝑥2 + 85𝑥 + 101, (I.2)

𝑒 = 91𝑥2 + 58𝑥 + 62 , (I.3)

where 𝐴 meets (7.2). From (I.1)-(I.3), and (7.3), the public key, 𝑝𝑘 ∈ 𝑅𝑞
2, is defined as

follows:

𝑝𝑘 = (
𝑝𝑘1

𝑝𝑘2
) = (

𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒
−𝐴

) = (21𝑥2 + 37𝑥 + 51
12𝑥2 + 100𝑥 + 88

).
(I.4)

From (I.2) and (7.4), it follows that secret key, 𝑠𝑘 ∈ 𝑅𝑞
2, is

𝑠𝑘 = (
1
𝑠
) = (

1
78𝑥2 + 85𝑥 + 101

). (I.5)

Encryption of the message,

𝑚 = 4𝑥2 + 5𝑥 + 1 ∈ 𝑅𝑝, (I.6)

is performed using random 𝑟 meeting (7.7),

207

𝑟 = 67𝑥2 + 49𝑥 + 14 ∈ 𝑅𝑞 . (I.7)

Ciphertext is computed according to (7.5),

𝑐 = (
𝑐1

𝑐2
) = (

𝑝𝑘1 ⋅ 𝑟 + 𝑚
𝑝𝑘2 ⋅ 𝑟

) = (68𝑥2 + 40𝑥 + 42
44𝑥2 + 48𝑥 + 34

) ∈ 𝑅𝑞
2,

(I.8)

meeting (7.6). Decryption is executed through two steps in (7.8).

Step 1:

[〈𝑐, 𝑠𝑘〉]𝑞 = 𝑐1 + 𝑐2 ⋅ 𝑠 𝑚𝑜𝑑 𝑞 = 39𝑥2 + 26𝑥 + 57, (I.9)

with quotient 𝑘 = 551𝑥2 – 150𝑥 – 499 in (7.10), found as follows:

〈𝑐, 𝑠𝑘〉 = 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 = 57894𝑥2 − 15724𝑥 − 52338 ∈ 𝑅

𝑘 = ⌊
〈𝑐,𝑠𝑘〉

𝑞
⌋ = ⌊

57894

𝑞
⌋ 𝑥2 − ⌊

15724

𝑞
⌋ 𝑥 − ⌊

52338

𝑞
⌋ = 551𝑥2 − 150𝑥 – 499.

Step2: Modulo 𝑝 operation is applied to (I.9),

𝑚′ = [[〈𝑐, 𝑠𝑘〉]𝑞]𝑝 = 39𝑥2 + 26𝑥 + 57 𝑚𝑜𝑑 7 = 4𝑥2 + 5𝑥 + 1 = 𝑚, (I.10)

Figure I.1 shows a screenshot of Maple code of Example I.1.

Example I.2: Example of correct encryption/ decryption when (7.1) does not hold:

Let 𝑝 = 7, 𝑞 = 15 ∗ 𝑝 + 𝑡 = 106, 𝑡 = 1, and 𝑑 = 3, i.e., 𝑅 = ℤ[𝑥] (𝑥3 + 1)⁄ . Public

and secret keys’ components, 𝐴, 𝑠, and 𝑒, are defined in (I.1)-(I.3). From (I.1)-(I.3) and

(7.3), the public key 𝑝𝑘 ∈ 𝑅𝑞
2 is defined as follows:

208

Figure I.1: Screenshot of Maple code of RLWE-CSCM encryption and success

decryption when (7.1) holds using parameter settings of Example I.1

209

𝑝𝑘 = (
𝑝𝑘1

𝑝𝑘2
) = (

𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒
−𝐴

) = (36𝑥2 + 89𝑥 + 82
 13𝑥2 + 102𝑥 + 89

).
(I.11)

From (I.2) and (7.4) it follows that secret key, 𝑠𝑘 ∈ 𝑅𝑞
2, is

𝑠𝑘 = (
1
𝑠
) = (

1
78𝑥2 + 85𝑥 + 101

). (I.12)

Encryption of the message in (I.6), using the random, 𝑟, in (I.7) is performed according

to (I.5),

𝑐 = (
𝑐1

𝑐2
) = (

𝑝𝑘1 ⋅ 𝑟 + 𝑚
𝑝𝑘2 ⋅ 𝑟

) = (81𝑥2 + 101𝑥 + 100
13𝑥2 + 42𝑥 + 29

) ∈ 𝑅𝑞
2.

(I.13)

Decryption is executed through two steps in (7.8).

Step 1:

[〈𝑐, 𝑠𝑘〉]𝑞 = 𝑐1 + 𝑐2 ⋅ 𝑠 𝑚𝑜𝑑 𝑞 = 18𝑥2 + 70𝑥 + 26. (I.14)

Step2: Modulo 𝑝 operation is applied to (I.14) , and, recalling (I.6),

𝑚′ = [[〈𝑐, 𝑠𝑘〉]𝑞]𝑝 = 18𝑥2 + 70𝑥 + 26 𝑚𝑜𝑑 7 = 4𝑥2 + 5 ≠ 𝑚 = 4𝑥2 + 5𝑥 + 1,

where quotient 𝑘 = 546𝑥2 – 148𝑥 – 493 in (7.13), found as follows:

〈𝑐, 𝑠𝑘〉 = 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 = 57894𝑥2 − 15724𝑥 − 52338 ∈ 𝑅

𝑘 = ⌊〈𝑐, 𝑠𝑘〉 𝑞⁄ ⌋ = ⌊57894 𝑞⁄ ⌋𝑥2 − ⌊15724 𝑞⁄ ⌋𝑥 − ⌊52338 𝑞⁄ ⌋

= 546𝑥2 − 149𝑥 – 494.

Thus, decryption failed as by (7.14) 𝑚′ = 4𝑥2 + 5 = 𝑚 − 𝑘𝑡 𝑚𝑜𝑑 𝑝 = 4𝑥2 + 5𝑥 +

1 − 5𝑥 − 3 𝑚𝑜𝑑 7 = 4𝑥2 + 5 ≠ 𝑚. Figure I.2 shows a screenshot of Maple code of

Example I.2.

210

Figure I.2: Screenshot of Maple code of RLWE-CSCM encryption and success

decryption when (7.1) does not hold using parameter settings of Example I.2

211

Example I.3: Example of homomorphic addition of two terms

Let 𝑝 = 7, 𝑞 = 15 ⋅ 𝑝 = 105, and 𝑑 = 3, i.e., 𝑅 = ℤ[𝑥]/(𝑥3 + 1). Public and secret

keys, 𝐴, 𝑠, and 𝑒 are defined in (I.1)-(I.3). From (I.1)-(I.3), and (7.3), the public

key 𝑝𝑘 ∈ 𝑅𝑞
2, and secret key, 𝑠𝑘 ∈ 𝑅𝑞

2 are defined in (I.4) and (I.5). respectively.

Encryption of the messages,

𝑚(1) = 4𝑥2 + 5𝑥 + 1 ∈ 𝑅𝑝, (I.15)

𝑚(2) = 5𝑥2 + 2𝑥 + 4 ∈ 𝑅𝑝, (I.16)

with 𝑚(1) + 𝑚(2) = 2𝑥2 + 5. Using the random polynomials,

𝑟(1) = 62𝑥2 + 71𝑥 + 58 ∈ 𝑅𝑞 , (I.17)

𝑟(2) = 67𝑥2 + 49𝑥 + 14 ∈ 𝑅𝑞 , (I.18)

is performed according to (7.5),

𝑐(1) = (
𝑐1

(1)

𝑐2
(1)

) = (
𝑝𝑘1 ⋅ 𝑟(1) + 𝑚(1)

𝑝𝑘2 ⋅ 𝑟(1)
) = (2𝑥2 + 93𝑥 + 56

27𝑥2 + 23𝑥 + 101
) ∈ 𝑅𝑞

2,
(I.19)

𝑐(2) = (
𝑐1

(2)

𝑐2
(2)

) = (
𝑝𝑘1 ⋅ 𝑟(2) + 𝑚(2)

𝑝𝑘2 ⋅ 𝑟(2)
) = (69𝑥2 + 37𝑥 + 45

44𝑥2 + 78𝑥 + 34
) ∈ 𝑅𝑞

2.
(I.20)

Let

212

𝐶 = 𝑐(1) + 𝑐(2) = (71𝑥2 + 25𝑥 + 101
71𝑥2 + 101𝑥 + 30

) ∈ 𝑅𝑞
2.

Decryption is executed through two steps in (7.8).

Step 1:

[〈𝐶, 𝑠𝑘〉]𝑞 = 𝐶1 + 𝐶2 ⋅ 𝑠𝑚𝑜𝑑 𝑞 = 2𝑥2 + 98𝑥 + 33. (I.21)

Step 2: modulo 𝑝 operation is applied to (7.21),

𝑚′ = [[〈𝐶, 𝑠𝑘〉]𝑞]𝑝 = 2𝑥2 + 98𝑥 + 33 𝑚𝑜𝑑 7 = 2𝑥2 + 5 = 𝑚(1) + 𝑚(2) ∈ 𝑅𝑝.

Figure I.3 shows a screenshot of Maple code of Example I.3.

Example I.4: Example of homomorphism for 1000 ∙ 𝑐(1) + 2000 ∙ 𝑐(2)

Let 𝑝 = 7, 𝑞 = 15 ⋅ 𝑝 = 105, and 𝑑 = 3, i.e., 𝑅 = ℤ[𝑥]/(𝑥3 + 1). Public and secret

keys, 𝐴, 𝑠, and 𝑒 are defined in (I.1)-(I.3). From (I.1)-(I.3), and (7.3), the public

key 𝑝𝑘 ∈ 𝑅𝑞
2, and secret key, 𝑠𝑘 ∈ 𝑅𝑞

2 are defined in (I.4) and (I.5). respectively.

Encryption of the messages 𝑚(1) and 𝑚(2) in (I.15) and (I.16), using the random, 𝑟(1)

and 𝑟(2) in (I.17) and (I.18) is 𝑐(1) and 𝑐(2) in (I.19) and (I.20). Let us calculate

1000 ⋅ 𝑚(1) + 2000 ⋅ 𝑚(2) = 5𝑥 + 5 ∈ 𝑅𝑝, (I.22)

Let

213

𝐶 = 1000 ⋅ 𝑐(1) + 2000 ⋅ 𝑐(2) = (35𝑥2 + 50𝑥 + 50
25𝑥2 + 80𝑥 + 55

) ∈ 𝑅𝑞
2,

(I.23)

214

Figure I.3: Screenshot of Maple code of RLWE-CSCM homomorphic additions of

two ciphertexts in Example I.3

Decryption is executed through two steps in (7.8).

Step 1:

[〈𝐶, 𝑠𝑘〉]𝑞 = 𝐶1 + 𝐶2 ⋅ 𝑠 𝑚𝑜𝑑 𝑞 = 40 𝑥 + 75. (I.24)

Step2: modulo 𝑝 operation is applied to (I.24),

𝑚′ = [[〈𝐶, 𝑠𝑘〉]𝑞]𝑝 = 40 𝑥 + 75 𝑚𝑜𝑑 7 = 5𝑥 + 5, (I.25)

We see that result (I.25) of decryption of (I.23) matches (I.22). Figure I.4 shows a

screenshot of Maple code of Example I.4

Example I.5: Example of a single homomorphic multiplication

Let 𝑝 = 7, 𝑞 = 15 ⋅ 𝑝 = 105, and 𝑑 = 3, i.e., 𝑅 = ℤ[𝑥]/(𝑥3 + 1). Public and secret

keys, 𝐴, 𝑠, and 𝑒 are defined in (I.1)-(I.3). From (I.1)-(I.3), and (7.3), the public

key 𝑝𝑘 ∈ 𝑅𝑞
2, and secret key, 𝑠𝑘 ∈ 𝑅𝑞

2 are defined in (I.4) and (I.5). respectively.

Encryption of the messages 𝑚(1) and 𝑚(2) in (I.15) and (I.16), using the random, 𝑟(1)

and 𝑟(2) in (I.17) and (I.18) respectively, yielding 𝑐(1) and 𝑐(2) in (I.19) and (I.20).

Let us calculate

215

𝑚(1) ∙ 𝑚(2) = 3𝑥2 + 2𝑥 + 6 ∈ 𝑅𝑝 , (I.26)

Figure I.4: Screenshot of Maple code of Example I.4

Let 𝑀(𝑐1, 𝑐2) be computed according to (7.23).

216

𝑀(𝑐1, 𝑐2) = (
45𝑥2 + 29𝑥 + 19
26𝑥2 + 61𝑥 + 35
16𝑥2 + 17𝑥 + 1

) ∈ 𝑅𝑞
2 ,

(I.27)

and the secret key, 𝑠𝑘𝑀(𝑐1,𝑐2), be found according to (7.25),

𝑠𝑘3 = (
1
𝑠
𝑠2

) = (
1

78𝑥2 + 85𝑥 + 101
91𝑥2 + 61𝑥 + 91

).
(I.28)

Decryption is executed as follows

Step 1: Calculate 〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉 by (7.26). According to (7.8) and (7.23),

[〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞 = 𝑐1
(1)

𝑐1
(2)

+ (𝑐1
(1)

𝑐2
(2)

+ 𝑐2
(1)

𝑐1
(2)

)𝑠 + 𝑐2
(1)

𝑐2
(2)

𝑠2

= 45𝑥2 + 44𝑥 + 34. (I.29)

Step 2. By (I.29), (2.27),

[[〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞]𝑝 = 45𝑥2 + 44𝑥 + 34 𝑚𝑜𝑑 𝑝 = 3𝑥2 + 2𝑥 + 6

= 𝑚(1) ∙ 𝑚(2). (I.30)

We see that result (I.30) of decryption of (I.27) matches (I.26). Figure 5 shows a

screenshot of Maple code of Example 5.

217

Figure I.5: Screenshot of Maple code of Example I.5

218

Example I.6: Example of recrypting the product of ciphertexts encrypting 𝑚(1) and

𝑚(2) in (I.15) and (I.16).

Let 𝑝 = 7, 𝑞 = 15 ⋅ 𝑝 = 105, and 𝑑 = 3, i.e., 𝑅 = ℤ[𝑥]/(𝑥3 + 1). Public and secret

keys, 𝐴 and 𝑒 are defined in (I.1) and (I.3). Let 𝛽, 𝛾, and 𝑠 defined as follows,

𝛽 = 10, 𝛾 = 3, 𝑠 = 30𝑥2 + 30𝑥 + 90, (I.31)

From (I.1), (I.3), (I.31), and (7.3) the public key 𝑝𝑘 ∈ 𝑅𝑞
2, is defined as follows,

𝑝𝑘 = (7𝑥2 + 46𝑥 + 74
12𝑥2 + 100𝑥 + 88

),
(I.32)

Secret key 𝑠𝑘, is defined according (7.40),

𝑠𝑘 = (
10

90𝑥2 + 90𝑥 + 60
) ∈ 𝑅𝑞 .

(I.33)

In order to encrypt messages encrypting 𝑚(1) and 𝑚(2) in (I.15) and (I.16), 𝐾 = 5 is

used to pad the messages according to (7.37)

𝑚𝐾(1) ← 𝐾 ⋅ 𝑚(1) = 6𝑥2 + 4𝑥 + 5 ∈ 𝑅𝑝, (I.34)

𝑚𝐾(2) ← 𝐾 ⋅ 𝑚(2) = 4𝑥2 + 3𝑥 + 6 ∈ 𝑅𝑝. (I.35)

Let’s find the product of 𝑀(1), 𝑀(2),

𝑚𝐾(1) ⋅ 𝑚𝐾(2) = 5𝑥2 + 𝑥 + 3 ∈ 𝑅𝑝. (I.36)

Encryption of 𝑀(1),𝑀(2) is performed according to (7.5),

219

𝑐(1) ← 𝐸𝑛𝑐𝑝𝑘,𝑟(1)(𝑚𝐾(1)) = (9𝑥2 + 89𝑥 + 52
27 𝑥2 + 23 𝑥 + 101

) ,
(I.37)

𝑐(2) ← 𝐸𝑛𝑐𝑝𝑘,𝑟(2)(𝑚𝐾(2)) = (69𝑥2 + 24𝑥 + 32
44 𝑥2 + 78 𝑥 + 34

).
(I.38)

where 𝑟(1) and 𝑟(2)in (I.17) and (I.18). The product 𝑀(𝑐(1), 𝑐(2)) is computed

according to (7.23),

𝑀(𝑐(1), 𝑐(2)) = (
27 𝑥2 + 10 𝑥 + 32
71 𝑥2 + 3 𝑥 + 37
16 𝑥2 + 17 𝑥 + 1

).
(I.39)

Recryption key, 𝑘𝑟𝑒𝑐is defined according to (7.42),

𝑘𝑟𝑒𝑐 = (
80

90 𝑥2 + 90 𝑥 + 60
60 𝑥

) ∈ 𝑅𝑞
3.

(I.40)

Recryption process of 𝑀(𝑐(1), 𝑐(2)) is performed by Algorithm 7.1,

1- 𝑀𝑐12 ← 𝑀(𝑐(1), 𝑐(2))

2- 𝑚𝐾′ ← 𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑀𝑐12) = [[〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞(𝐾𝛽2) −1]

𝑝

=[(15𝑥2 + 80𝑥 + 100) (5)]𝑝 = 5𝑥2 + 𝑥 + 3 = 𝑀(1)𝑀(2).

3- 𝐶_𝐾_𝑚1_2 ← 𝐸𝑛𝑐𝑝𝑘,𝑟3(𝑚𝐾′) = (90 𝑥2 + 8 𝑥 + 30
43 𝑥2 + 11 𝑥 + 73

), where 𝑟(3) =

103𝑥2 + 39𝑥 + 17.

Retrieving the product of 𝑚(1) and 𝑚(2)is done by executing Algorithm 7.2,

220

1- 𝑡𝑚𝑝 ← 𝐷𝑒𝑐𝑠𝑘3(𝐶_𝐾_𝑚1_2) = [[〈𝐶𝐾𝑚12
, 𝑠𝑘〉]

𝑞
𝛾−1]

𝑝

=[(15𝑥2 + 80𝑥 + 30)(5)]𝑝 = 5𝑥2 + 𝑥 + 3

2- 𝑚′ ← 𝑡𝑚𝑝 ⋅ (𝐾−1)2 𝑚𝑜𝑑 𝑝 = (5𝑥2 + 𝑥 + 3)(3)2 𝑚𝑜𝑑 7

 = 3𝑥2 + 2𝑥 + 6 = 𝑚(1) ⋅ 𝑚(2) in (I.26)

Figure I.6 shows a screenshot of Maple code of Example I.6.

Example I.7: Example of calculating 512 multiplications homomorphically of 𝑚(1) in

Example I.6 using Power2Exponent.

Let the message 𝑚 from (I.15) be encrypted by conditions of Example I.6. Thus, the

encryption of the padded message is (I.37).

Let’s calculate 𝑚𝑝𝑤𝑟, 𝑝𝑤𝑟 = 512.

𝑚𝑝𝑤𝑟 = 5 𝑥2 + 𝑥 + 3 ∈ 𝑅𝑝. (I.41)

In order to compute 𝑚𝑝𝑤𝑟, first, Algorithm 3 is executed and return 𝐶 = 𝑚𝐾𝑝𝑤𝑟. Our

Maple implementation computed the result (I.39) in less than 5 milliseconds.

𝐶 = 𝑚𝐾𝑝𝑤𝑟 = (68 𝑥2 + 78 𝑥 + 87
39 𝑥2 + 89 𝑥 + 50

).
(I.42)

Extracting 𝑚𝑝𝑤𝑟 out of 𝐶 (I.42) is done by executing Algorithm 4,

1- 𝑡𝑚𝑝 ← 𝐷𝑒𝑐𝑠𝑘(𝐶) = 6𝑥2 + 4𝑥 + 5

2- 𝑚′ ← 𝑡𝑚𝑝 ⋅ (𝐾−1)𝑝𝑤𝑟 𝑚𝑜𝑑 𝑝 = 5𝑥2 + 𝑥 + 3 = 𝑚𝑝𝑤𝑟

Figure 9 shows Maple code of Example 7.

221

Figure I.6: Screenshot of Maple code of Example I.6

222

Figure I.7: Screenshot of Maple code of Example I.7

223

Example I.8: Example of Successful Modulo 𝑐2 Attack.

Let 𝑝 = 7, 𝑞 = 15 ∙ 𝑝 = 105, and 𝑑 = 7, i.e., 𝑅 = ℤ[𝑥]/(𝑥7 + 1). Public and secret

keys, 𝐴, 𝑠, and 𝑒 are defined in (I.1)-(I.3).

From (I.1)-(I.3) and (7.3), the public key 𝑝𝑘 ∈ 𝑅𝑞
2, is defined as follows:

𝑝𝑘 = (
𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒

−𝐴
) = (9𝑥4 + 21𝑥2 + 46𝑥 + 51

12𝑥2 + 100𝑥 + 88
).

(I.43)

Encryption of the message,

𝑚 = 5𝑥3 + 𝑥2 + 1 ∈ 𝑅𝑝, (I.44)

using random,

𝑟 = 67𝑥2 + 49𝑥 + 14 ∈ 𝑅𝑞 , (I.45)

is performed according to (7.5),

𝑐 = (78𝑥6 + 21𝑥5 + 63𝑥4 + 21𝑥3 + 86𝑥2 + 98 + 85
69𝑥4 + 43𝑥3 + 44𝑥2 + 42𝑥 + 77

) ∈ 𝑅𝑞
2.

(I.46)

From (I.46), deg(𝑝𝑘1 ⋅ 𝑟 + 𝑚) = 6 < 7 = 𝑑 meeting (7.57), and deg(𝑝𝑘2 ⋅ 𝑟) = 4 >

3 = deg (𝑚) meeting (7.58). Thus, message can be revealed by the COA attack steps:

Step 1: Applying 𝑚𝑜𝑑 𝑐2 operation to 𝑐1, from (I.46)

224

𝑐1𝑚𝑜𝑑 𝑐2 = −
3050639

109503
𝑥3 −

401434

109503
𝑥2 +

4024783

36501
𝑥 +

5584805

109503

(I.47)

Step 2: Applying 𝑚𝑜𝑑 𝑝 operation to (I.47),

𝑚′ = (𝑐1𝑚𝑜𝑑 𝑐2)𝑚𝑜𝑑 𝑝 = 3𝑥3 + 𝑥2 + 1 = 𝑚 (I.48)

Figure I.10 shows a screenshot of Maple code of Example I.8

Figure I.8: Maple code implementation of Power2Exponent

Figure I.9: Maple code implementation of DecPower2Exponent

225

Figure I.10: A screenshot of Maple code of Example I.8.

226

Example I.9: Example of Failing Modulo 𝑐2 Attack.

Let 𝑝, 𝑞, and 𝑑 from Example I.8. And let, 𝐴, 𝑠, and 𝑒 are defined in (I.1)-(I.3). Public

key 𝑝𝑘 ∈ 𝑅𝑞
2, is defined in (I.43).

Encryption of the message, 𝑚, in (I.44) is performed using random, 𝑟 with degree= 1,

satisfying (I.6),

𝑟 = 49𝑥 + 14 ∈ 𝑅𝑞 . (I.49)

Encryption is performed according to (7.5),

𝑐 = (73𝑥8 + 10𝑥6 + 47𝑥5 + 81𝑥4 + 30𝑥3 + 60𝑥2 + 35𝑥 + 102
11𝑥5 + 3𝑥 + 5

) ∈ 𝑅𝑞
2.

(I.50)

From (7.5) and (7.6), deg(𝑐2) = deg(𝑝𝑘2 ⋅ 𝑟) = 3 ≤ 3 = deg (𝑚) meeting (7.6).

Thus, message can’t be revealed by the COA attack steps:

Step 1: Applying 𝑚𝑜𝑑 𝑐2 operation to 𝑐1, from (I.50)

𝑐1𝑚𝑜𝑑 𝑐2 = −
8620

243
𝑥2 +

3013

81
𝑥 −

80

243

(I.51)

Step2: Applying 𝑚𝑜𝑑 𝑝 operation to (I.51)

𝑚′ = (𝑐1𝑚𝑜𝑑 𝑐2)𝑚𝑜𝑑 𝑝 = 5𝑥2 + 6𝑥 + 5 ≠ 𝑚 (I.52)

Figure I.11 shows a screenshot of Maple code of Example I.9.

227

Figure I.11: A screenshot of Maple code of Example I.8.

J

228

Appendix J: Source Code of RCPKC Performance Tests

#define

_CRT_SECUR

E_NO_DEPRE

CATE

#include <stdio.h>

#include <NTL/ZZ.h>

#include <fstream>

#include <iostream>

#include <iomanip>

#include <Windows.h>

using namespace std;

using namespace NTL;

int main()

{

 double pcFreq; // Counter

frequency (timer resolution)

 __int64 counterStart; // Timer

value

 LARGE_INTEGER li; // Large

interger for timer value

 char

 str[255]; // String for name

 double elapsed; // Elapsed

time in seconds

 int retcode; // Return

code

 retcode = QueryPerformanceFrequency(&li);

 if (retcode == 0)

 printf("***

ERROR - QueryPerformanceFrequency() failed \n");

 pcFreq = li.QuadPart / 1000000000.0;

 double st, ft;

 /* Fix qLen = 473, mgLen = 225 */

 long mgLen = 225, qLen = 473;

 ZZ two = conv<ZZ>("2"), f, g, m, r, e, a,

q, h, Fg, ans;

 // Fix RCPKC parameters

 q = power(two, qLen);

 g = power(two, mgLen) - 1;

 f = power(two, qLen - mgLen - 1) - 1;

229

 r =

conv<ZZ>("74129131083665807358974056958218535166040292950373780021

72858339760148934");

 h =

conv<ZZ>("12194330274671844653834364178879555881830461494785043558

043581873536834511135081193454831097582526575739060606284520411066

902075628778099310593");

 Fg =

conv<ZZ>("36526378940800627493944514404790998968012833465800336156

784404945621");

 FILE *fptr = fopen("ResultsFile.csv",

"w");

 ifstream

in("Message_samples3.csv");//Select Message_samples3.csv,

Message_samples4.csv, Message_samples5.csv for 10^3, 10^4, 10^5

plaintext messages respectively

 while (!in.eof()) {

 in.getline(str,

255);

 m =

conv<ZZ>(str);

 QueryPerformanceCounter(&li);

 counterStart =

li.QuadPart;

 rem(e, h*r + m,

q); //RCPKC encryption

 QueryPerformanceCounter(&li);

 elapsed =

((li.QuadPart - counterStart) / pcFreq);

 fprintf(fptr,

"%f%s", elapsed, ",");

 QueryPerformanceCounter(&li);

 counterStart =

li.QuadPart;

 rem(a, f*e, q);

//Step 1 of RCPKC Decryption

 rem(ans, Fg*a,

g); //Step 2 of RCPKC Decryption

 QueryPerformanceCounter(&li);

 elapsed =

((li.QuadPart - counterStart) / pcFreq);

230

 fprintf(fptr,

"%f\n", elapsed);

 }

 return 0;

}

