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ABSTRACT 

In this thesis, various additive and multiplicative homomorphic ciphers are analyzed 

and developed. New homomorphic encryption (HE) ciphers classification is proposed. 

The new classification of homomorphic ciphers is introduced allowing having a 

separate class for the newly developed herein HE cipher. It extends the previously used 

two criteria to five. In addition to the symmetric homomorphic scheme, HE1N, the 

asymmetric homomorphic schemes RSA, NTRU, RLWE-NCM-CSCM from the 

literature are considered. 

A new ciphertext-only attack finds RSA encrypted messages as the shortest vector in 

a 2-dimensional lattice is designed. For RSA not to be susceptible to the attack 

proposed, new settings for RSA public keys are presented. NTRU and HE1N are two 

homomorphic cryptosystems, encrypting the message by adding to it noise and then 

applying modulo operation. It is found that in both of them, the modulo operation may 

not have an effect because the sum is less than the modulus. NTRU modulo 𝑝 flaw 

attack against NTRU using IEEE standard parameters with non-negligible success 

probability is designed. To make the success probability negligible, parameter setting 

is recommended in the thesis. Two attacks against HE1N are designed, and new 

settings for HE1N parameters are recommended to mitigate these attacks. 

 The random congruential public-key cryptosystem (RCPKC) is developed, an NTRU 

variant using integers and immune against lattice basis reduction attacks (LBRA). 

RCPKC specifies a range from which the random numbers shall be selected to counter 

LBRA. Compared to NTRU, RCPKC is more efficient and it reduces energy 
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consumption, which allows increasing the lifetime of unattended wireless sensor 

networks.  

Ring learning with errors (RLWE)-based cryptosystem using ciphertexts size control 

mechanism (CSCM), called RLWE-CSCM is developed, advancing RLWE-NCM-

CSCM proposed by Brakerski and Vaikuntanathan in 2011. RLWE-CSCM is the first 

fully homomorphic with respect both to addition and multiplication scheme not 

affected by the growth of noise. The size of RLWE-CSCM ciphertext grows with each 

homomorphic multiplication operation. Therefore, two CSCMs are proposed in this 

thesis. RLWE-CSCM can be involved in a wide range of applications such as applying 

images filters homomorphically, homomorphic voting systems. 

Keywords: homomorphic encryption scheme, addition, multiplication, known 

plaintext attack, ciphertext only attack, lattice basis reduction, ring learning with errors 

  



v 

ÖZ 

Bu tezde, çeşitli toplamsal ve çarpımsal homomorfik şifreler analiz edilmiş ve 

geliştirilmiştir. Yeni homomorfik şifreleme (HE) şifreleme sınıflandırması 

önerilmiştir. Homomorfik şifrelerin yeni sınıflandırması, burada yeni geliştirilen HE 

şifresi için ayrı bir sınıfa izin vererek tanıtıldı. Daha önce kullanılan iki kriteri beşe 

kadar genişletir. Simetrik homomorfik şema HE1N'ye ek olarak, literatürden asimetrik 

homomorfik şemalar RSA, NTRU, RLWE-NCM-CSCM ele alınmaktadır. 

Yeni bir yalnızca şifreli metin saldırısı, 2 boyutlu bir kafesteki en kısa vektör 

tasarlandığından RSA şifreli mesajları bulur. RSA'nın önerilen saldırıya duyarlı 

olmaması için, RSA ortak anahtarları için yeni ayarlar sunulur. NTRU ve HE1N, 

mesajı gürültü ekleyerek ve ardından modulo işlemi uygulayarak şifreleyen iki 

homomorfik şifreleme sistemidir. Her ikisinde de toplamın modülden daha az olması 

nedeniyle modulo işleminin bir etkisi olmayabileceği bulundu. IEEE standart 

parametreleri kullanılarak NTRU'ya karşı NTRU modulo p kusur saldırısı ihmal 

edilemez başarı olasılığı ile tasarlanmıştır. Başarı olasılığının ihmal edilebilir olması 

için tezde parametre ayarı yapılması önerilir. HE1N'ye karşı iki saldırı tasarlanmıştır 

ve bu saldırıları azaltmak için HE1N parametreleri için yeni ayarlar önerilir. 

 Rastgele uyumlu ortak anahtar şifreleme sistemi (RCPKC), tamsayılar kullanan ve 

kafes tabanlı azaltma saldırılarına (LBRA) karşı bağışık olan bir NTRU varyantı 

olarak geliştirildi. RCPKC, LBRA'ya karşı rasgele sayıların seçileceği bir aralığı 

belirtir. NTRU ile karşılaştırıldığında, RCPKC daha verimlidir ve enerji tüketimini 

azaltır, bu da gözetimsiz kablosuz sensör ağlarının ömrünün artmasına olanak tanır. 
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2011 yılında Brakerski ve Vaikuntanathan tarafından önerilen RLWE-NCM-CSCM'yi 

ilerleterek, RLWE-CSCM adı verilen şifreli metin boyut kontrol mekanizmasını 

(CSCM) kullanan hatalarla öğrenme (RLWE) tabanlı şifreleme sistemi geliştirildi. 

RLWE-CSCM, ilgili ilk tam homomorfiktir. hem toplama hem de çarpma şemasına 

gürültünün büyümesinden etkilenmez. RLWE-CSCM şifreli metninin boyutu, her 

homomorfik çarpma işlemi ile büyür. Bu nedenle, bu tezde iki CSCM önerilmiştir. 

RLWE-CSCM, homomorfik olarak görüntü filtreleri uygulamak, homomorfik oylama 

sistemleri gibi çok çeşitli uygulamalarda yer alabilir. 

Anahtar Kelimeler: homomorfik şifreleme şemaları, toplama, çarpma, bilinen düz 

metin saldırısı, yalnızca şifreli metin saldırısı, kafes tabanlı indirgeme, ring hatalı 

öğrenme 
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Chapter 1 

1INTRODUCTION 

The Internet of Things (IoT) is a network paradigm enabling an enormous amount of 

devices and data to be shared, processed, and stored (Z. Han et al., 2018; Margaret 

Amala & Gnana Jayanthi, 2020). On the other hand, cloud computing is a cost-

effective approach enabling customers to benefit from high-performance computing 

and virtually unlimited storage resource (Ramesh & Govindarasu, 2020; Sinchana & 

Savithramma, 2020). CloudIoT has recently emerged as a paradigm leveraging IoT 

and cloud computing technologies (Benabbes & Hemam, 2019). Different applications 

such as wearables (e.g., smartwatches, fitness trackers), self-driving cars, healthcare 

(Shah & Bhat, 2020), smart grid (Rabie et al., 2021), smart cities (Kelaidonis et al., 

2017), and surveillance systems benefit from CloudIot. Due to the enormous amount 

of sensitive and personal data exchanged, processed, and stored in this environment, 

the importance of preserving data privacy (during transmitting or storing) becomes 

critical. 

Public key cryptosystems (PKC), such as RSA (R. L. Rivest, Shamir, and Adleman 

1978) and ECC (Stallings 2017, 330), are widely used nowadays in CloudIoT for 

verifying node identities to prevent weak authentication (Yakubu et al. 2019, 226; 

Pandey, Pandey, and Kumar 2020, 321). RSA is used in the Internet Key Exchange 

protocol that is designed specifically for use with Internet Protocol Security (IPsec) 

(Barker & Dang, n.d., p. 24) to provide peer authentication. RSA is also widely used 
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in X.509, the standard defining the format of public-key certificates (Algorithms and 

Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate 

Revocation List (CRL) Profile, 2002). PKC schemes provide security to the shared 

data in the environment, but performing operations over encrypted data, such as query 

databases, requires data to be decrypted first, and thus, compromises the privacy of 

sensitive and personal data stored on an untrusted third-party cloud server.  

Homomorphic encryption (HE) scheme is a form of encryption that allows performing 

computations over encrypted data without the decryption keys, i.e., given encryptions, 

𝐸(𝑚1), 𝐸(𝑚2) of plaintexts 𝑚1, 𝑚2, then, 𝐸(𝑚1) ⋄ 𝐸(𝑚2) = 𝐸(𝑚1 ⋄ 𝑚2). For 

example, RSA cryptosystem (R. L. Rivest, Shamir, and Adleman 1978) has the 

property of multiplicative homomorphism, i.e., a party having RSA public key 𝑝𝑘 =

(𝑒, 𝑁) and ciphertexts {𝑐𝑖 = 𝑚𝑖
𝑒 𝑚𝑜𝑑 𝑁}, can compute ∏ 𝑐𝑖𝑖 = (∏ 𝑚𝑖𝑖 )𝑒 𝑚𝑜𝑑 𝑁, a 

ciphertext that encrypts the product of the original plaintexts. Many applications 

involve RSA multiplicative homomorphism feature such as secure image sharing 

(Islam et al., 2011), and homomorphic signatures(R. Johnson et al. 2002; Freeman 

2012). HE schemes allow CloudIoT users to benefit from cloud services without 

compromising data confidentiality or their privacy (Ramesh and Govindarasu 2020).  

Some HE schemes can only support a limited number of allowed homomorphic 

operation types, such as RSA supports only the multiplication operation. Due to 

increasing the number of applied homomorphic operations, the noise used to mask the 

message increased, and thus, decryption fails if the value of the noise exceeds some 

predefined threshold. Therefore, such HE schemes can support a limited number of 

times to apply homomorphic operations. HE schemes can have an increase in the 

ciphertext size (number of components) with each homomorphic operation. Several 
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classifications have been proposed (Acar et al., 2018; Domingo-Ferrer et al., 2019; 

Feng et al., 2020; Martins et al., 2017; Shrestha & Kim, 2019; Sultan, 2019; L. Wang 

& Ahmad, 2016; Zhao et al., 2020), these classifications depend on a single criterion, 

that is the number of supported homomorphic operations type (Domingo-Ferrer et al., 

2019; Feng et al., 2020; Shrestha & Kim, 2019; Sultan, 2019; L. Wang & Ahmad, 

2016; Zhao et al., 2020), or the underlying hard problem of the HE scheme (Acar et 

al., 2018; Martins et al., 2017). The use of few classification criteria leads to group 

dissimilar HE schemes in one class, for example, using the number of supported 

homomorphic operation types as a classification criterion (Domingo-Ferrer et al., 

2019; Feng et al., 2020; Shrestha & Kim, 2019; Sultan, 2019; L. Wang & Ahmad, 

2016; Zhao et al., 2020) leads to group HE schemes having increasing ciphertext size 

(number of components) such as (Brakerski et al., 2013; Brakerski & Vaikuntanathan, 

2011b, 2011a) with HE schemes that don’t have increasing ciphertext size such as 

(Gentry, 2009b; Hoffstein et al., 1998). To overcome this issue, a new classification 

using five criteria is proposed in Chapter 2. Using this classification, known HE 

schemes are grouped into eight different classes (see Table 2.1 in Chapter 2).  

Due to the importance of RSA in preserving the privacy during transmitting or/and 

storing the data, analysis of RSA security is conducted in Sections 2.23.1, 3.2. Design 

for a cipher-text-only attack (COA) against RSA encrypted message using the lattice 

basis reduction algorithm LLL (Ibrahim, Chefranov, and Hamamreh 2021) is 

performed in Sections 3.3-3.5. 

The computational complexity for RSA is high due to modular exponentiation 

operations in the encryption/decryption process, which make such PKC schemes 

unsuitable for limited resources devices (Sethi et al. 2021), especially when using large 
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bit key size, such as 2048-bit for RSA as suggested by NIST in 2020 (Barker & Dang, 

n.d., p. 54), to meet the minimal security strength of 112-bit. Compared to RSA, 

elliptic curve cryptography (ECC) offers equal security for a smaller key size (Stallings 

2017). ECC is included in the IEEE P1363 Standard for Public-Key Cryptography 

(“IEEE Standard Specification for Public Key Cryptographic Techniques Based on 

Hard Problems over Lattices,” 2009). A transition to post-quantum algorithms is 

needed as cryptanalytic algorithms, such as Shor’s factorization algorithm, are 

developed to defeat the security provided by currently approved asymmetric 

algorithms(Barker, n.d., p. 27). NTRU (Jeffrey Hoffstein, Pipher, and Silverman 1998) 

cryptosystem, standardized as IEEE P1363.1(“IEEE Standard Specification for Public 

Key Cryptographic Techniques Based on Hard Problems over Lattices,” 2009), is 

faster than RSA and ECC (Hermans, Vercauteren, and Preneel 2010), is announced as 

one of seven candidate algorithms in the third-round finalists of NIST Post Quantum 

Cryptosystem Standardization Process (“PQC Third Round Candidate Announcement 

| CSRC” n.d.). NTRU, from Class 3, is homomorphic with respect to (w.r.t) two 

operations, multiplication and addition, therefore serves as a base to many 

homomorphic cryptosystems (Yarkln Doröz and Sunar 2020; Yarkın Doröz et al. 

2018; López-Alt, Tromer, and Vaikuntanathan 2012). Analysis of NTRU security is 

performed, and design of a new attack based on a flaw that allows for some parameters 

to compromise the encrypted message just by applying modulo 𝑝 operation to the 

ciphertext, where 𝑝 is a public parameter is performed in Section 4.1. On the other 

hand, NTRU is susceptible to LBRA using LLL (Jeffrey Hoffstein, Pipher, and 

Silverman 1998). Yang et. al. (Z. Yang et al. 2018) proposed a lower dimension lattice 

(w.r.t. the normal 2𝑁-dimensional NTRU lattice (Jeffrey Hoffstein, Pipher, and 

Silverman 1998, 273)) attack, called 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack. Experiments analysis of 
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attack is conducted in Section 4.2, we found that 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 is not so efficient as 

claimed in the paper. Thus, NTRU resists lattice basis reduction attacks by increasing 

the polynomial degree 𝑁, which leads to increase of the computational complexity of 

encryption/ decryption processes.  

In Section 6.1, CPKC (Jeffrey Hoffstein, Pipher, and Silverman 2014a) is analyzed. 

CPKC proposed by NTRU authors as a toy model prone to lattice attacks and uses 

polynomials of zero degree, that is integers modulo 𝑞 >> 1, thus, it outperforms 

NTRU. In Section 6.2, we developed NTRU-like RCPKC (Ibrahim et al. 2020), a 

random congruential public key cryptosystem using integers, based on CPKC, immune 

against lattice-based attacks, and faster than NTRU and its variants. 

HE1N cryptosystem (Dyer, Dyer, and Xu 2019), is homomorphic w.r.t two operations, 

and proved to be IND-CPA secure. HE1N, from Class 4, is recently proposed in (Dyer, 

Dyer, and Xu 2019) as a practical solution to the problem of privacy in the cloud 

providing homomorphism with respect to two operations, and efficient encryption as 

working on integers and performing simple modular arithmetic operations. Analysis 

of HE1N security is conducted, and the design of a new ciphertext-only attack, and 

known-plaintext attack (KPA) against HE1N is performed in Chapter 5.  

Due to increasing the noise used to mask the plaintext with increasing the number of 

homomorphic operations, HE1N allows computing function with a limited number of 

additions and multiplications on ciphertexts, such schemes are called leveled fully 

homomorphic encryption (L-FHE) schemes. L-FHE schemes by itself are suitable for 

some applications (Brakerski, 2019). In (Gentry, 2009a), Gentry proposed the first HE 

scheme that can compute arbitrary functions of any number of additions and 
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multiplications on ciphertexts, such scheme is called fully homomorphic encryption 

(FHE). In his proposal (Gentry, 2009a, 2009b) from Class 7. Gentry uses 

“Bootstrapping” to convert the L-FHE scheme to the FHE scheme.  

After Gentry’s FHE proposal in (Gentry 2009a; 2009b), many FHE schemes are 

proposed using different objects. All these FHE schemes are constructed from L-FHE 

schemes by using a noise control mechanism (NCM) such as bootstrapping (Gentry 

2009a), or modulus switching (Brakerski et al., 2014). FHE scheme (Brakerski & 

Vaikuntanathan, 2011b), from Class 6, using ring learning with errors (RLWE) is L-

FHE as it is affected with noise, and the ciphertext size (number of components) 

growth with the growth of the number of multiplication operations. Thus, hereafter, 

we call it RLWE-NCM-CSCM, as it is needs NCM and ciphertext size control 

mechanism (CSCM). In Chapter 7, RLWE-CSCM is proposed, the first FHE scheme 

not affected with noise growth by construction, thus, no NCM is needed. RLWE-

CSCM, is RLWE based and its ciphertext size increases with the growth of the number 

of multiplications. Thus, we propose two different CSCM to control the growth of 

ciphertext size. 

The rest of the dissertation is organized as follows. Chapter 2, provides a new 

classification for HE schemes, and reviews the state of the art. In Chapter 3, of RSA 

security is analyzed, and a new ciphertext-only attack against RSA encrypted message 

using lattice-based reduction is proposed. In Chapter 4, NTRU PKC security is 

analyzed, a new attack against RSA message is designed, and experimental analysis 

of the recently published attack, 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack (Z. Yang et al. 2018) is 

performed. Analysis of HE1N is security and development of several attacks again 

HE1N is performed in Chapter 5. Development of RCPKC, NTRU-like cryptosystem, 
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faster and more secure than NTRU is executed in Chapter 6. Development of RLWE-

CSCM, the first FHE scheme not affected by the growth of noise by structure, is 

performed in Chapter 7. Chapter 8 concludes the dissertation. Thesis contributions can 

be summarized as follows:  

1- New HE schemes classification is proposed extending the previously used 

criteria from two to five, and increases the number of classes from four to at 

least 32. 

2- A new COA attack against RSA private Key/ message using LBRA with LLL 

algorithm (Ibrahim, Chefranov, and Hamamreh 2021) is designed.  

3- A new attack against NTRU message, NTRU Modulo 𝑝 Flaw attack 

(Chefranov & Ibrahim, 2016; Ibrahim & Chefranov, 2016), is designed.  

4- Experimental experiments are conducted to verify the efficiency of  IN-Lattice 

attack (Z. Yang et al., 2018b) against NTRU keys (Easttom et al., 2020). 

5- RCPKC (Ibrahim et al., 2020), an efficient and secure variant of NTRU is 

developed.  

6- Several attacks are designed against HE1N (Dyer et al., 2019).  

7- RLWE-CSCM, the first fully homomorphic cryptosystem without noise 

control mechanism, advancing RLWE-NCM-CSCM by Brakerski et. al. 

(CRYPTO 2011).
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Chapter 2 

2ANALYSIS OF HOMOMORPHIC SCHEMES AND 

LATTICE ATTACKS ON THEM 

In this chapter, an analysis of HE schemes is presented, a new classification for HE 

schemes is proposed, state of the art is reviewed and problems addressed by this 

dissertation are stated. The rest of the chapter is as follows; in Section 2.1 an analysis 

of HE schemes is provided, and a new classification for HE schemes is proposed. In 

Section 2.2 reviews state of the art. Section 2.8 defines the problems addressed in this 

dissertation.  

2.1  Homomorphic Encryption Schemes and Their Classification 

HE schemes allow performing computations over its ciphertexts (Pulido-Gaytan et al. 

2021), where the computations are represented as arithmetic functions (circuits) 

(Brakerski, 2019), according to Definition 2.1 below: 

Definition 2.1: (Gentry, 2009b). Encryption scheme ℰ = (KeyGenℰ, Encryptℰ, 

Decryptℰ, Evaluateℰ) is homomorphic if, 

𝑐 = Evaluateℰ(pk, 𝐹, 𝐶) ⇒ 𝐹(𝑚0, . . , 𝑚𝑡−1) = Decryptℰ(sk, c), (2.1) 

where 𝐶 = (𝑐0, . . . , 𝑐𝑡−1) is a tuple of ciphertexts encrypting plaintexts (𝑚0, . . . , 𝑚𝑡−1), 

using the public key pk (with respective secret key sk), in case of asymmetric HE, and 

sk only for symmetric HE, a function 𝐹 ∈ ℱℰ, a set containing all functions that can 

be homomorphically evaluated by the scheme ℰ (for them (2.1) holds). It is most 
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common to consider the arithmetic circuit model to represent 𝐹. The algorithms 

KeyGenℰ, Encryptℰ, Decryptℰ satisfy the following:  

- KeyGenℰ outputs a public-key (pk) used for encryption, and the corresponding 

secret-key (sk) used for decryption in case of asymmetric HE, and sk only for 

symmetric HE; 

- Encryptℰ encrypts a plaintext using the public-key pk for asymmetric, or secret 

key, sk, for symmetric HE; 

- Decryptℰ decrypts the ciphertext, using the corresponding secret-key sk; 

- The computational complexity of KeyGenℰ, Encryptℰ, Decryptℰ, must be 

polynomial in security parameter λ; 

- The computational complexity of Evaluateℰ, must be polynomial in the depth 

of 𝛿, the arithmetic circuit representing 𝐹.  

Definition of the circuit depth follows. 

Definition 2.2: (Sipser 2013, 382) The depth (number of levels) of a circuit is the length 

(number of gates) of the longest path from the input gates to the output gates. 

For example, arithmetic circuit calculating 𝑦 = (𝑥1 + 𝑥2) × 𝑥3 + 𝑥4 × 𝑥5 shown in 

Figure 2.1 has depth equals to 3.  
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Figure 2.1: Depth 3 arithmetic circuit calculating 𝑦 = (𝑥1 + 𝑥2) × 𝑥3 + 𝑥4 × 𝑥5, 

with the longest path shown in red. 

HE schemes such as RSA (R. L. Rivest, Shamir, and Adleman 1978), El-Gamal 

(ElGamal 1985), can only evaluate homomorphically function 𝐹 in (2.1), that is 

composed of one type of arithmetic operations, and with no constraints on the depth 

of the arithmetic circuit represents 𝐹, such schemes are called partially homomorphic 

encryption (PHE) schemes (Acar et al., 2018; Martins et al., 2017; Shrestha & Kim, 

2019), according to Definition 2.3, 

Definition 2.3: (Acar et al., 2018, p. 3) “Partially homomorphic encryption (PHE) 

scheme allows only one type of operation with an unlimited number of times (i.e., no 

bound on the number of usages)”.  

In other words, PHE scheme supports one type of operations, with an unlimited 

number of times this type can be applied. On the other hand, L-FHE schemes such as 

NTRU (Jeffrey Hoffstein, Pipher, and Silverman 1998) and HE1N (Dyer, Dyer, and 

Xu 2019), can evaluate function 𝐹 in (2.1), composed of more than one type of 

+ × 

× 

+ 

𝑥1               𝑥2                   𝑥3   𝑥4               𝑥5 

𝑦 
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arithmetic operations, but with limited depth of the arithmetic circuit represents 𝐹, 

according to Definition 2.4 below,  

Definition 2.4: (Brakerski, 2019, p. 549). L-FHE scheme is the HE scheme ℰ(𝑑) that 

allows, for some 𝑑 ∈ 𝑍+, evaluation of depth-𝑑 circuits, i.e., ℱℰ(𝑑), is a set of functions 

represented by circuits of depth bounded by 𝑑. The parameters of the scheme are 

allowed to grow polynomially with 𝑑. 

In some works (Sun et al. 2017; Youn, Jho, and Chang 2016; Boulemtafes et al. 2021), 

the term “somewhat homomorphic encryption” (SHE) is used to indicate a scheme 

with homomorphic capabilities against a restricted class of functions (depth bounded). 

In this dissertation, the terms L-FHE and SHE are used interchangeably.  

In L-FHE schemes, increasing the number of applied homomorphic operations, leads 

to the growth of parameters used to mask the plaintext (noise), and thus, decryption 

fails if the value of the noise exceeds some predefined threshold. In addition to the 

growth of noise, some L-FHE schemes have also a growth of ciphertext size (number 

of components). Gentry in (Gentry 2009a; 2009b) proposed Bootstrapping, to control 

the growth of noise. Using Bootstrapping, Gentry managed to remove the constraints 

on the circuit depth of the evaluated function, and thus converted an L-FHE scheme 

into an FHE scheme defined by Definition 2.5, 

Definition 2.5: (Brakerski, 2019, p. 549). A homomorphic encryption scheme ℰ is FHE 

if ℱℰ is the set of all functions (or at least the set of all efficiently computable 

functions). 

All known FHE schemes, are following Gentry’s method of converting the L-FHE to 

FHE using a NCM, or both of NCM and CSCM in the case of the L-FHE scheme has 



12 

a growth of both of ciphertexts size and the noise masks the message.. Several 

classification attempts are made for HE schemes (Acar et al., 2018; Domingo-Ferrer 

et al., 2019; Feng et al., 2020; Martins et al., 2017; Shrestha & Kim, 2019; Sultan, 

2019; L. Wang & Ahmad, 2016; Zhao et al., 2020). In (Domingo-Ferrer et al., 2019; 

Feng et al., 2020; Shrestha & Kim, 2019; Sultan, 2019; L. Wang & Ahmad, 2016; 

Zhao et al., 2020), HE schemes are classified into PHE, SHE, FHE w.r.t two criteria: 

operation type, and the allowed number of homomorphic operations. Such 

classification criteria don’t show the difference between L-FHE schemes need NCM 

only, and the L-FHE schemes need CSCM only (to be proposed in Chapter 7), or need 

both of them. HE schemes differ in: 

1- the number of homomorphic operation types: while PHE supports one 

operation type, L-FHE supports more than the operation type. 

2- the need for NCM: while PHE supports performing an unlimited number of 

times of a specific operation type, L-FHE supports a limited number of times 

of several operation types. 

3- the need for CSCM; performing homomorphic operations leads to increase the 

size of some L-FHE’s ciphertext (number of components) such as (Brakerski 

et al., 2014; Brakerski & Vaikuntanathan, 2011a). 

4-  the underlying hard problem(s): HE with similar homomorphic features can 

be differ in the underlying hard problem(s). For example, both of RSA (R. L. 

Rivest, Shamir, and Adleman 1978) and El-Gamal (ElGamal 1985) support 

one type of operation, don’t need NCM or CSCM, and they only differ in the 

underlying hard problem (see Table 2.1). 

5- and the number of keys used: HE schemes can be symmetric or asymmetric. 
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Therefore, new classification is proposed. It extends the previously used criteria (Acar 

et al., 2018) (operation type, and the allowed number of homomorphic operations) to 

five: 

1- number of homomorphic operation types;  

2- the need for NCM;  

3- the need for CSCM; 

4-  the underlying hard problem(s);  

5- and the number of keys used.  

In the new criteria list, the previously used criterion, allowed number of homomorphic 

operations, is replaced by: the need for NCM, and the need for CSCM, so the new 

classification categorizes L-FHE schemes according to the control mechanism used. 

The proposed classification of known HE schmes is presented in Table 2.1. From 

Table 2.1, we can notice that: 

1-  PHE schemes (Classes 1, 2) are asymmetric encryption schemes, differing 

only in the underlying hard problem. Therefore, in Section 2.2 we consider one 

scheme as representative of Classes 1, 2 that is RSA.  

2- All HE schemes support more than one homomorphic operation type, Classes 

3-8, either need NCM only, or need both NCM and CSCM. 

Section 2.2 reviews HE schemes from Classes 1-9, Table 2.1.  
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Table 2.1: Classification of homomorphic schemes (col. 2) based on five criteria (cols. 3-7). 

1 2 3 4 5 6 7 

class 

number 

Particular instances of 

homomorphic schemes 

 

Number. of 

homomorphic 

arithmetic operations 

types (1, 2) 

Needs 

NCM 

(Yes, No) 

Needs 

Ciphertext 

Size 

Control 

Mechanism 

(Yes, No) 

Underlying hard problem 

(Set of problems defining 

methods resistance) 

Number of keys 

(Symmetric-1, 

Asymmetric-2) 

1 
RSA(R. L. Rivest, Shamir, and 

Adleman 1978) 
1 No No 

Discrete logarithm, integer 

factorization 
2 

2 El-Gamal(ElGamal 1985) 1 No No Discrete logarithm 2 

3 

NTRU(Jeffrey Hoffstein, Pipher, 

and Silverman 1998), López-Alt 

et al. (López-Alt, Tromer, and 

Vaikuntanathan 2012) 

2 Yes No 

Shortest Vector Problem in a 

Lattice(Jeffrey Hoffstein, 

Pipher, and Silverman 1998, 

273) 

2 

4 

Gentry(Gentry 2010), Van Dijk 

et al. (van Dijk et al. 2010), 

HE1N(Dyer, Dyer, and Xu 2019) 

2 Yes No 
Approximate GCD (Gentry 

2010, 101) 
1 

5 

Coron et. al. (Coron, Naccache, 

and Tibouchi 2012; Coron et al. 

2011), Yang et. al. (H. M. Yang 

et al. 2012), Cheon et. al. (Cheon 

et al. 2013), Chen et. al.(Chen, 

Ben, and Huang 2014), Ramaiah 

and Kumari (Ramaiah and 

Kumari 2012), Nuida and 

Kurosawa (Nuida and Kurosawa 

2015) 

2 Yes No Approximate GCD 2 



15 

6 

Brakerski and Vaikuntanathan 

(Brakerski & Vaikuntanathan, 

2011a, 2011b), Brakerski et. al. 

(Brakerski et al., 2014, 2013) 

2 Yes Yes Learning with errors (LWE) 2 

7 Gentry(Gentry 2009a) 2 Yes No 
Ideal Coset Problem (ICP) 

(Gentry 2009a, sec. 3.2) 
2 

8 
Smart and Vercauteren (Smart 

and Vercauteren 2010) 
2 Yes No 

Small Principal Ideal Problem, 

Polynomial Coset Problem 

(Smart and Vercauteren 2010, 

429,431) 

2 
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2.2 Review of Clasps 1 HE Schemes (RSA PKC) 

 In this section, RSA from Class 1 is reviewed. 

2.2.1 Review of RSA PKC 

A message, 𝑚 ∈ 𝑍𝑁, is encrypted using, 

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁, (2.2) 

where 𝑁 = 𝑝 · 𝑞, p and q are two different prime numbers, and the encryption 

exponent, e, is chosen according to, 

gcd(𝑒, (𝑝 − 1 )(𝑞 − 1)) = 1 (2.3) 

The message, 𝑚 ∈ ℤ𝑁, is retrieved by decryption of the ciphertext, 𝑐, from (2.2) as 

follows, 

𝑚 = 𝑐𝑑𝑚𝑜𝑑 𝑁, (2.4) 

where the decryption exponent, d, is the multiplicative inverse of e satisfying, 

𝑒 ⋅ 𝑑 𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1) = 1. (2.5) 

The public key is (𝑁, 𝑒), and the private key is (𝑁, 𝑑).  

An example of 40-bit RSA encryption/ decryption process is provided in Example A.1, 

Appendix A. Section 2.2.2 shows RSA homomorphism, Section 2.2.3 reviews lattice-

based attacks on RSA, and in Chapter 3, a new ciphertext-only attack (COA) (Ibrahim, 

Chefranov, and Hamamreh 2021) against RSA encrypted messages is proposed.  

2.2.2 Homomorphism of RSA with Respect to Multiplication 

RSA can only evaluate homomorphically unlimited number of multiplication 

operations on ciphertexts as shown below: 

From (2.2) 

𝑐(𝑖) = 𝑚(𝑖)
𝑒  𝑚𝑜𝑑 𝑁, 𝑖 = {1,… , 𝑛} 
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Thus, 

𝐶𝑚𝑢𝑙𝑡 = 𝑐(1) ⋅ 𝑐(2) ⋅ … ⋅ 𝑐(𝑛) = 𝑚(1)
𝑒 ⋅ 𝑚(2)

𝑒 ⋅ … ⋅ 𝑚(𝑛)
𝑒  𝑚𝑜𝑑 𝑁 = (∏𝑚(𝑖)

𝑛

𝑖=1

)

𝑒

 𝑚𝑜𝑑 𝑁. 

Thus, 𝐶𝑚𝑢𝑙𝑡 is the encryption of ∏ 𝑚(𝑖)
𝑛
𝑖=1 , and computed without the need to decrypt 

the ciphertexts 𝑐(1), … , 𝑐(𝑛). Therefore, RSA is homomorphic w.r.t to one type of 

operations that is multiplication. RSA encryption (2.2) does not use any noise to mask 

the plaintext. Thus, RSA does not need NCM or CSCM.  

In Chapter 3 a new ciphertext-only attack on RSA using lattices basis reduction is 

proposed. Therefore, Section 2.2.3 reviews lattice-based attacks on RSA. Appendix B 

provides a brief introduction to lattices and lattice basis reduction algorithms. 

2.2.3 Review of Lattice-Based Attacks on RSA 

LLL algorithm (A. K. Lenstra, Lenstra, and Lovász 1982) of lattice basis reduction is 

used for COA on RSA (Boneh et al., 1998; Coppersmith, 1996b, 1996a; Hastad, 1988, 

1986; Takayasu & Kunihiro, 2019, 2014) and NTRU (Jeff Hoffstein et al. 2010; 

Jeffrey Hoffstein, Pipher, and Silverman 1998; Kirchner and Fouque 2017; Z. Yang et 

al. 2018). Most of the attacks require either message broadcasting, or prior knowledge 

of a part of a message/private key. And the problem of attacking RSA is considered as 

a problem of solving SVP in a lattice dimension of which grows with the growth of 

the encryption exponent, e. LLL algorithm computational complexity exponentially 

depends on the lattice dimension (Jeffrey Hoffstein, Pipher, and Silverman 2014b, 

428), equation (7.49), (Jeffrey Hoffstein, Silverman, and Whyte 1999, 6), Table 1, and, 

hence, it solves SVP efficiently for low-dimensional lattices but the solution is 

infeasible for lattices with a dimension greater than 400 (“IEEE Standard Specification 

for Public Key Cryptographic Techniques Based on Hard Problems over Lattices,” 
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2009) to meet minimum security level of 112-bit. That is why, attacks on RSA using 

LLL assume low encryption exponent value (May 2010). next, the attacks on RSA 

private key and plaintext message are reviewed. 

2.2.3.1 Lattice-Based Attacks Against RSA Private Key 

In (Coppersmith, 1996a), prime factors of 𝑁 = 𝑝 · 𝑞, used as the modulus value in 

RSA encryption (2.2) with the public key, 𝑒, and decryption (2.4) with the private key, 

𝑑, are found as roots of a bivariate polynomial constructed using high order 

(
1

4
+ 𝜀) log2 𝑁 bits of 𝑝, 𝜀 > 2/ log2 𝑁 (high order bits of 𝑞 are known by division of 

𝑁 by 𝑝). LLL lattice basis reduction algorithm is used for dimension 𝑟 = 2𝑘 + 1, 𝑘 >

1/(4𝜀). In (Boneh & Durfee, 2000, 1999), LLL method is used to disclose the private 

key, 𝑑 < 𝑁𝛿 , 𝛿 = 0.292, that extends the attack applicability compared to attack 

(Wiener 1990) assuming 𝛿 = 0.25. In (de Weger, 2002), two parameters define the 

attack applicability: 𝛿, and 𝛽 such that Δ = |𝑝 − 𝑞| = 𝑁𝛽. In (de Weger, 2002, fig. 1), 

specifies that known attacks on RSA are not applicable for 𝛽 ∈ [0.5, 1], and mainly 

not applicable for 𝛿 ∈ [0.5, 1], 𝛽 ∈ [0.25, 0.5]. Using 𝛽, the attack extends the 

applicability of (Boneh & Durfee, 2000, 1999) attack up to 𝛿 → 1 for 𝛽 → 0.25 +

𝜀, 𝜀 → 0. In (Takayasu and Kunihiro 2014; 2019; Boneh, Durfee, and Franke 1998), 

LLL algorithm is used to disclose secret RSA exponent provided that part of it (least- 

or most-significant bits) are known. (Takayasu and Kunihiro 2019, fig. 1; 2014, fig. 2) 

show that 𝛿 can be extended to 0.57 and 0.37 for the use of most- and least-significant 

bits, respectively. 

2.2.3.2 Lattice-Based COA Against RSA Messages 

In (Coppersmith, 1996b), an encrypted RSA message is disclosed as a root of a 

univariate polynomial of low order, 𝑒. Exponent considered in the paper is 𝑒 = 3 

resulting in the polynomial of order, 𝑘 = 𝑒 = 3. The message, 𝑚, to be found shall be 
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rather small: |𝑚| < 𝑁
1

𝑘
−𝜀 , 𝜀 =

1

log𝑁
, 𝑘 < log 𝑁, (see (Hastad 1986, sec. 2)). 

Respective lattice size is, 

𝑆𝑖𝑧𝑒 = 2ℎ ⋅ 𝑘 − 𝑘 ≥ 2 ⋅
1

𝑘𝜀
𝑘 − 𝑘 = 2 log2 𝑁 − 𝑘 > 0, (2.6) 

where ℎ is such that ℎ · 𝑘 ≥ 7 and ℎ − 1 ≥ (ℎ𝑘 − 1)(
1

𝑘
− 𝜀). It is known from NTRU 

security requirements (“IEEE Standard Specification for Public Key Cryptographic 

Techniques Based on Hard Problems over Lattices,” 2009) that if the size of a lattice 

meets, 𝑆𝑖𝑧𝑒 ≥  400, then LLL attack is unfeasible. Thus, from (2.6), it follows that 

already for 512-bit RSA the attack is not feasible because log2 𝑁 = 512, 𝑘 < 512, 

and, hence, 𝑆𝑖𝑧𝑒 ≥ 1024 − 𝑘 ≥ 512. Note that in (Coppersmith, 1996b), estimates of 

RSA parameters, such that the proposed attack is feasible, are not defined. In (Hastad 

1986), Hastad showed that the message, 𝑚, can be revealed in polynomial time when 

it is encrypted with several public keys, (𝑒𝑖 , 𝑁𝑖), each having the same public exponent, 

𝑒, and different moduli values, 𝑁𝑖 , 𝑖 =  1,⋯ , 𝑘, expected to be mutually relatively 

prime, and meeting (2.7): 

𝑚 < min
𝑖=1,⋯,𝑘

𝑁𝑖,  (2.7) 

𝑘 >
𝑒(𝑒 + 1)

2
, 

(2.8) 

𝑁 > 𝑛
𝑒(𝑒+1)

2 (𝑘 + 𝑒 + 1)
(𝑘+𝑒+1)

2 2
(𝑘+𝑒+1)2

2 (𝑒 + 1)𝑒+1 , (2.9) 

𝑁 = ∏𝑁𝑖

𝑘

𝑖=1

, 
(2.10) 

(see (Hastad 1986, 405)). Method (Hastad 1988) is practically the same as in (Hastad 

1986) with slightly different lattice constructed, and, thus, slightly differing from (2.9) 

(see (Hastad 1988, 338)), and is also applied to a broadcasted message. The 
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broadcasted message, 𝑚, is revealed by applying LLL algorithm to the lattice defined 

using coefficients of the polynomials resulting from the message encryption using 

different moduli. Also, Chinese remainder theorem (CRT) is used. 

2.2.3.3 Non-Lattice-Based Attacks Against RSA Private Keys and Messages 

RSA secret key can be disclosed if the integer modulus, 𝑁, is factorized. Methods of 

integer factorization are reviewed in (Rabah 2006; Alimoradi and Arkian 2016), and 

application of one of them, number field sieve (NFS), in (Kleinjung et al. 2010) in 

December 2009, resulted in factoring 768-bit RSA modulus, RSA-768. RSA moduli 

RSA-240 and RSA-250 with 795 and 829 bits were factored by NFS on December 2, 

2019, and February 28, 2020, (“RSA Factoring Challenge - Wikipedia” n.d.) which 

took 4000 and 2700 core-years of Intel Xeon Gold 6130 CPUs as a reference (2.1GHz), 

respectively (Listserv - Nmbrthry Archives, n.d.),([Cado-Nfs-Discuss] Factorization 

of RSA-250, n.d.). 

In (Bunder et al. 2017), a method of factoring RSA modulus, 𝑁 =  𝑝𝑞, 𝑞 <  𝑝 <  2𝑞, 

in time polynomial in log𝑁 is proposed under assumption that an encryption exponent, 

𝑒, meets 𝑒 · 𝑥 − (𝑝2 − 1)(𝑞2 − 1)𝑦 = 𝑧,  𝑔𝑐𝑑(𝑦, 𝑥) = 1,  𝑧 ≠ 0,   𝑥 ·  𝑦 <

2𝑁– 4√2𝑁
3

4,  |𝑧| < (𝑝 –  𝑞)𝑁
1

4𝑦,  𝑒 < (𝑝2 –  1)(𝑞2 –  1). In (Wiener 1990), continued 

fractions are used for 𝑑 disclosure with 𝛿 ≤ 0.25. In (Wu et al. 2014), the applicability 

of the attack (Wiener 1990) is extended to 𝑑 ≤ 𝑁𝛿 ∙ 2𝑟,  𝑟 ≤ 7. In(Abd Ghafar et al., 

2020), a method of 𝑁 factorization is proposed applicable when |𝑁0.5 − 𝑝0.5 ∙ 𝑞0.5| is 

sufficiently small (less than 2112 as explained in (Abd Ghafar et al., 2020, p. 4)). 

Super-encryption (successive encryption of the ciphertexts) is proposed in (Simmons 

1977; Berkovits 1982). However, in (Jamnig 1988; Ronald L. Rivest 1978), it is shown 
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that the probability of success is about 10−90 for the parameters proposed for RSA in 

(Rivest et al., 1978) because 𝑝 − 1, 𝑞 − 1 shall have large prime factors, and similar 

for them as well. In (Bleichenbacher, 1997), Bleichenbacher defines that plaintexts 𝑚𝑖 

are related if 𝑚𝑖  =  𝑓𝑖(𝑚) for some known polynomials 𝑓𝑖 and shows that having 𝑙 

RSA public keys (𝑒1, 𝑁1),··· , (𝑒𝑙, 𝑁𝑙), 𝑁 =  𝑁1𝑁2  ··· 𝑁𝑙 and 𝑐𝑖 = 𝑓𝑖(𝑚)𝑒𝑖  mod 𝑁𝑖 for 

𝑖 =  1,···, 𝑙, the plaintext 𝑚 can be computed in time polynomial in log𝑁 using 

Coppersmith’s algorithm (Coppersmith, 1996b, p. 156). A method of the broadcasted 

message disclosure is proposed based on the use of the CRT allowing reducing the 

number of modular equations to a single equation and then finding 𝑒-th order root over 

integers, in the simplest case of broadcasting one and the same message, 

(Bleichenbacher, 1997, p. 241), or a univariate polynomial root finding using 

Coppersmith method (Coppersmith, 1996b) for broadcasting related messages based 

on a small message. The paper considers messages, 𝑚𝑖, related to the base message, 

𝑚, by an affine transformation, 𝑚𝑖 = 𝛼𝑖 ∙ 𝑚 + 𝛽𝑖 𝑚𝑜𝑑 𝑛𝑖 (Bleichenbacher, 1997, p. 

242), whereas in Coppersmith method only translation transformation is expected to 

be used: 𝑚′ = 𝑚 + 𝑡 (Coppersmith, 1996b, p. 161). In (Delaurentis 1984), 

DeLaurentis considered two cases. In Case 1, a probabilistic algorithm is proposed that 

allows factoring modulus, 𝑁 = 𝑝 · 𝑞, using information on the public-private key pair 

of the attacker (insider) but not of the other users, neither public, nor private keys, 

within an average number of runs at most 2. In Case 2, without factoring of 𝑁, an own 

encryption-decryption key pair, as well as an encryption key of another valid user are 

used to disclose an equivalent for the private key of another user that may be used to 

disclose his messages and to forge his signature. Simmons (Belhaj & Kahla, 2013) 

considers one message encrypted by two different encryption keys resulting in two 

ciphertexts of one and the same message. If the encryption keys are co-prime, their 
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mutual inverses may be found and used for the message disclosing. In (Arjen K. 

Lenstra and Verheul 2000, 265), Lenstra et. al., clarified that selecting values of public 

exponent 𝑒, such as 3 and 17 can no longer be recommended, but commonly used 

values such as 216 + 1 = 65537 still seems to be fine. Lenstra et. al. (Arjen K. Lenstra 

and Verheul 2000, 265) asserted that if one prefers to stay on the safe side, an odd 32-

bit or 64-bit of public exponent at random may be chosen. 

If a known plaintext-ciphertext pair, (𝑃, 𝐶) is known, discrete logarithm problem 

(DLP) solution can be used to disclose the private key as 𝑑 = 𝑙𝑜𝑔𝐶,𝑁𝑃. DLP 

computational complexity is of the order of that of integer factorization and in parallel 

with factorization respective DLP solving is reported in ([Cado-Nfs-Discuss] 

Factorization of RSA-250, n.d.; Listserv - Nmbrthry Archives, n.d.). 

In (Coppersmith et al., 1996), a method for recovering RSA messages is proposed for 

rather large encryption exponent such as, 𝑒 =  216  +  1. The method assumes that 

two plain messages are encrypted with the same encryption exponent, 𝑒, and modulus, 

𝑁, and one of the messages, 𝑚2, is related with another one, 𝑚1, by an affine 

transformation, 𝑚2 = 𝑎 ⋅ 𝑚1  +  𝑏, and two respective ciphertexts are known, 𝑐1, 𝑐2. 

The message, 𝑚1, is found as a root of a polynomial which is the greatest common 

divisor (GCD) of two univariate polynomials modulo 𝑁, 𝑝1(𝑚1) = 𝑚1
𝑒 −

𝑐1, 𝑝2(𝑚1) = (𝑎 · 𝑚1 + 𝑏)𝑒 − 𝑐2. The GCD is obtained using Euclid’s algorithm. The 

method is generalized for the cases of 𝑚2 = 𝑝(𝑚1), where 𝑝( ) is a polynomial, and 

for multiple messages polynomially related, 𝑝(𝑚1,⋯ ,𝑚𝑘) = 0. As far as all the 

related messages, 𝑚2,···, 𝑚𝑘 depend on the single message, 𝑚1, this mode of operation 

can be considered as “broadcasting” of the message 𝑚1 and its dependent messages, 
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𝑚2,···, 𝑚𝑘 encrypted each with its own encryption exponent. The maximal encryption 

exponent mentioned in the paper is 𝑒 = 216 + 1. Figure 2.2 shows our implementation 

of the attack (Coppersmith et al., 1996) using Maple 2016 on Intel i7-7700 CPU 3.60 

GHz, 8GB RAM. The message, 𝑚 =  2, is recovered as the root of the GCD of two 

univariate polynomials, 𝑝1 = 𝑥𝑒 − 𝑐1 mod 𝑁 and 𝑝2 = (𝑥 + 1)𝑒 − 𝑐2 mod 𝑁, where 

𝑁 = 𝑝 · 𝑞 = (220 + 7) · (220 + 13), 𝑒 = 216 + 1, 𝑐1 = 𝑚𝑒 𝑚𝑜𝑑 𝑁, 𝑐2 = (𝑚 +

 1)𝑒 𝑚𝑜𝑑 𝑁. The GCD is found nearly in 6 minutes. 

 

Figure 2.2: Maple code implementation of GCD attack (Coppersmith et al., 

1996), recovering RSA message encrypted with large exponent 𝑒 = 216 + 1. 

In (Boneh et al., 2000), Boneh et al. proposed attacking 𝑛-bit RSA message, m, using 

meet-in-the-middle (MITM) attack. MITM attack is applied in two steps. A pre-

computation step where the message is represented as 𝑚 = 𝑚1𝑚2 with 𝑚1 ≤ 2𝑛1 and 
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𝑚2 ≤ 2𝑛2. Hence, 𝑐 𝑚2
𝑒⁄  =  𝑚1

𝑒  𝑚𝑜𝑑 𝑁. A table of size 2𝑛1   has to be built containing 

the values 𝑚1
𝑒 𝑚𝑜𝑑 𝑁 for all 𝑚1 ∈ 0,1,⋯ , 2𝑛1 −  1. Then, in the search step, we check 

for each 𝑚2 ∈ 0, 1,⋯ , 2𝑛2 − 1, whether 𝑐 𝑚2
𝑒⁄ 𝑚𝑜𝑑 𝑁 is present in the table. Any 

collision reveals the message 𝑚. We implemented MITM attack (Boneh, Joux, and 

Nguyen 2000) using NTL (“NTL: A Library for Doing Number Theory” n.d.) library 

(Intel i5-8250U CPU 1.60 GHz, 8GB RAM), and we managed to recover a 40-bit 

message from Example A.1, Appendix A, encrypted with 𝑒 =  216  + 1 in 2.25 

seconds for pre-computation step and 0.202 second for the searching step. Thus, from 

the analysis conducted we see that known lattice-based attacks against RSA private 

key, and against RSA messages practically use small public encryption exponent, a 

large part of the message to be known in advance, or a message to be broadcast. On 

the other hand, a non-lattice-based attack in (Coppersmith et al., 1996) has the cost of 

𝑂(𝑒2) for computing GCD (Micciancio 2016), where 𝑒 is the RSA encryption 

exponent, while MITM (Boneh, Joux, and Nguyen 2000) has the cost of 𝑂(𝑛√2𝑛), 

where n is the message length in bits. The analysis of the attacks on RSA conducted 

above shows that they are not applicable for key-size greater than 829 bits, with 𝑝, 𝑞 

such that 𝑝 − 1, 𝑞 − 1 have large prime factors, encryption and decryption keys are 

greater than 𝑁0.5, and 𝑟𝑜𝑢𝑛𝑑(𝑁0.5 − ⌊𝑝0.5⌋ ∙ ⌊𝑞0.5⌋) is large. In Chapter 3 a new 

ciphertext-only attack on RSA is proposed. 

2.3 Review of Class 3 (NTRU PKC) 

In this section, NTRU PKC and its variants are reviewed. 

2.3.1 Review of NTRU PKC 

NTRU is described below according to (Jeffrey Hoffstein, Pipher, and Silverman 

2014b, sec. 7.10.1). 
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NTRU has four positive integer parameters, (𝑁, 𝑝, 𝑞, 𝑑), and uses the rings, 

𝑅 =
ℤ[𝑥]

𝑥𝑁 − 1
, 𝑅𝑞 =

ℤ𝑞[𝑥]

𝑥𝑁 − 1
, 𝑅𝑝 =

ℤ𝑝[𝑥]

𝑥𝑁 − 1
. 

A polynomial, 𝑎(𝑥) ∈ 𝑅, loos as follows: 

𝑎(𝑥) = ∑ 𝑎𝑖𝑥
𝑖

𝑁−1

𝑖=0

= [𝑎0, 𝑎1, … , 𝑎𝑁−1] (2.11) 

NTRU uses trinary polynomials defined as follows, 

𝒯(𝑑1, 𝑑2) = {𝑎(𝑥) ∈ 𝑅:

𝑎(𝑥) ℎ𝑎𝑠 𝑑1 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 equal to 1,
𝑎(𝑥) ℎ𝑎𝑠 𝑑2 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 equal to -1,

𝑎(𝑥)ℎ𝑎𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑒𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 equal to 0
} (2.12) 

NTRU assumes that, 

𝑔𝑐𝑑( 𝑝, 𝑞) = 𝑔𝑐𝑑(𝑁, 𝑞) = 1, 𝑞 > (6𝑑 + 1)𝑝 (2.13) 

𝑝 > 2 is prime, 𝑑 ≥ 1 is an integer defining the structure used by NTRU polynomials, 

𝑓(𝑥), 𝑔(𝑥), 𝑟(𝑥), are introduced below. NTRU uses two private keys: 

𝑓(𝑥), 𝑔(𝑥). The first private key, 𝑓(𝑥), is generated as follows: 

𝑓(𝑥) = [𝑓0, 𝑓1, . . . , 𝑓𝑁−1] ∈ 𝒯(𝑑 + 1, 𝑑) (2.14) 

The private key (2.14), 𝑓(𝑥), must have inverses modulo 𝑝 and 𝑞, that is, 𝐹𝑝(𝑥), 𝐹𝑞(𝑥), 

respectively: 

𝑓 ⋅ 𝐹𝑞 ≡ 1 (𝑚𝑜𝑑 𝑞) 𝑎𝑛𝑑 𝑓 ⋅ 𝐹𝑝 ≡ 1 (𝑚𝑜𝑑 𝑝) (2.15) 

The private key, 𝑔(𝑥), is randomly chosen as follows: 

𝑔(𝑥) ∈ 𝒯(𝑑, 𝑑) (2.16) 

The public key, ℎ(𝑥), is computed using (2.15) and (2.16) as follows, 

ℎ(𝑥) = 𝐹𝑞 ⋅ 𝑔 𝑚𝑜𝑑 𝑞. (2.17) 

The plaintext message 𝑚(𝑥), is assumed to meet the following condition: 

𝑚(𝑥) ∈ 𝑅𝑝. (2.18) 
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Moreover, the coefficients of 𝑚 are assumed to be center-lifted, i.e., to be in 

(−
1

2
𝑝,

1

2
𝑝]. A pseudo-randomly generated blinding polynomial, 𝑟(𝑥), is chosen as 

follows: 

𝑟(𝑥) ∈ 𝒯(𝑑, 𝑑). (2.19) 

Ciphertext, 𝑒(𝑥), is computed as, 

𝐹ℎ,𝑝
𝑁𝑇𝑅𝑈(𝑚, 𝑟) = 𝑒(𝑥) = 𝑝 ⋅ 𝑟 ⋅ ℎ + 𝑚 ∈ 𝑅𝑞 . (2.20) 

Decryption in NTRU consists of Steps 1 and 2 described below. 

Step 1: The first private key, 𝑓(𝑥), is applied to (2.20): 

𝑎 = 𝑓 ⋅ 𝑒 𝑚𝑜𝑑 𝑞 = 𝑝 ⋅ 𝑟 ⋅ 𝑔 + 𝑓 ⋅ 𝑚 𝑚𝑜𝑑 𝑞, (2.21) 

Step 2: The second private key, 𝐹𝑝, is applied to (2.21) after 𝑎 is center-lifted 

𝑚 = 𝑎 ⋅ 𝐹𝑝 𝑚𝑜𝑑 𝑝, (2.22) 

Decryption correctness condition is, 

∀𝑖 ∈ {0, … , 𝑁 − 1}, |𝑎𝑖| < 𝑞/2 (2.23) 

Where 𝑎𝑖 is the 𝑖-th coefficient of the polynomial 𝑝 ⋅ 𝑟 ⋅ 𝑔 + 𝑓 ⋅ 𝑚.  

In equation(2.22), 𝐹𝑝 from (2.15) is used, and the contributor with factor 𝑝 in (2.21) 

vanishes due to the constraints (2.13), (2.14)-(2.16), (2.19) imposed which guarantee 

that sum in the rightmost expression in (2.21) is a polynomial with coefficients strictly 

less than 𝑞, so that mod 𝑞 operation, applied last in (2.21), does not change the 

coefficients. 

Howgrave et. al., in (Howgrave-Graham, Silverman, and Whyte 2005; Howgrave-

Graham, Silverman, et al. 2003) defined the following parameter settings for NTRU: 
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𝑝 = 2, 𝑞 > 4𝑑 + 1 is prime, 𝑁 > 3𝑘 + 8 is prime, 𝑘 is the security parameter, and 𝑑 

is the minimal integer such that (
𝑁 2⁄

𝑑 2⁄
) √𝑁⁄ > 2 𝑘, where (

𝑚
𝑛

) is the number of 

combinations of 𝑛 elements out of 𝑚. Secret polynomials, 𝑓, and 𝑔, are binary 

polynomials from 𝐷𝑓 and 𝐷𝑔, with 𝑑𝑓 = 𝑑𝑔 = 𝑑 coefficients equal to one. Both 𝑓 and 

𝑔 are invertible modulo 𝑞. The public key, ℎ, is defined as in (2.17). A binary message, 

𝑚 = 𝐷𝑚 ∈ 𝑅𝑝, is encrypted using a random binary polynomial 𝑟 from 𝐷𝑟 with the 

𝑑𝑟 = ⌊𝑁 2⁄ ⌋ ones according to (2.20). The decryption process is executed by (2.21), 

(2.22). The center-lifting to 𝑎, the LHS in (2.21) is done through the function 𝑐𝑒𝑛𝑡𝑒𝑟(). 

An implementation of 𝑐𝑒𝑛𝑡𝑒𝑟(), called 𝑐𝑒𝑛𝑡𝑒𝑟1(), provided in (Silverman et al., 

2003, p. 4) follows: 

1. Calculate 𝑚(1) as 𝑒(1) − 𝑝 ⋅ 𝑟(1) ⋅ ℎ(1) 𝑚𝑜𝑑 𝑞, reduced to the interval, 

𝑁 − 𝑞

2
≤ 𝑚(1) <

𝑁 + 𝑞

2
.  

(2.24) 

2. Denote 𝑎 reduced to the interval [0, 𝑞 − 1] by 𝑎. The underline is intended to 

indicate the minimal possible interval. 

3. Calculate 𝑎(1). This will differ from 𝑝 ⋅ 𝑟(1) ⋅ ℎ(1) + 𝑓(1) ⋅ 𝑚(1) by 𝑘 ⋅ 𝑞, 

for some integer, 𝑘. 

4. Add 𝑞 to the lowest 𝑘 entries of 𝑎 to obtain 𝑎 reduced into the correct interval. 

NTRU decryption fails if the following condition does not hold, 

𝑊𝑖𝑑𝑡ℎ(𝑝 ⋅ 𝑔 ⋅ 𝑟 + 𝑓 ⋅ 𝑚) < 𝑞.  (2.25) 

where 𝑊𝑖𝑑𝑡ℎ(𝑝(𝑥)) = max
𝑖=0,…,𝑁−1

(𝑝𝑖) − min
𝑖=0,…,𝑁−1

(𝑝𝑖). Application of the 𝑐𝑒𝑛𝑡𝑒𝑟() 

function to the left-hand side (LHS) makes the second equality in (2.21) true under 

condition (2.25). For the conditions imposed on NTRU parameters described 
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above, in particular, 𝑝 = 2, 𝑞 > 4𝑑 + 1, the second equality in (2.24)holds, and 

there is no need for centering. 

2.3.2 Homomorphism of NTRU with Respect to Addition and Multiplication 

NTRU is homomorphic w.r.t. two operations; addition and multiplication. From 

(2.20), let 𝑒(𝑖)(𝑥) be ta ciphertext encrypting the message 𝑚(𝑖),  𝑖 = {1,… , 𝑛}: 

𝑒(𝑖)(𝑥) = 𝑝 ⋅ 𝑟(𝑖) ⋅ ℎ + 𝑚(𝑖) ∈ 𝑅𝑞 . (2.26) 

Homomorphic addition and multiplication follow. 

2.3.2.1 Homomorphic Addition 

Let 𝑒(𝑥) be the ciphertext that encrypts the summation of 𝑒(1) and 𝑒(2) as follows: 

𝑒(𝑥) = 𝑒(1)(𝑥) + 𝑒(2)(𝑥) = 𝑝 ⋅ ℎ(𝑟(1) + 𝑟(2)) + 𝑚(1) + 𝑚(2). 

It follows that 

𝑒(𝑥) = ∑𝑒(𝑖)(𝑥)

𝑛

𝑖=1

= 𝑝 ⋅ ℎ ∑𝑟(𝑖)

𝑛

𝑖=1

+ ∑𝑚(𝑖)

𝑛

𝑖=1

= 𝑝 ⋅ ℎ ⋅ 𝑟 + 𝑚 

Decryption of 𝑒(𝑥) resulting in 𝑚 = ∑ 𝑚(𝑖)𝑛
𝑖=1  is performed by (2.21),(2.22). 

Decryption correctness condition is, 

∀𝑖 = {0,… ,𝑁 − 1}: |𝑏𝑖| < 𝑞, (2.27) 

where 𝑏𝑖 is the 𝑖-th coefficient of the polynomial 𝑝 ⋅ 𝑔 ∑ 𝑟(𝑖)𝑛
𝑖=1 + 𝑓 ∑ 𝑚(𝑖)𝑛

𝑖=1 , 

according to (2.23). Since 𝑟 has small coefficients (see (2.19)), many homomorphic 

additions can be executed correctly as the growth of the noise, ∑ 𝑟(𝑖) = 𝑛�̂�𝑛
𝑖=1 , is linear 

on 𝑛. 

2.3.2.2 Homomorphic Multiplication 

Multiplication of 𝑒(1)(𝑥), 𝑒(2)(𝑥) is performed as follows: 
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𝑒(𝑥) = 𝑒(1)(𝑥) ⋅ 𝑒(2)(𝑥) = (𝑝 ⋅ 𝑟(1) ⋅ ℎ + 𝑚(1))(𝑝 ⋅ 𝑟(2) ⋅ ℎ + 𝑚(2))

= 𝑝 ⋅ ℎ(𝑝 ⋅ 𝑟(1) ⋅ 𝑟(2) ⋅ ℎ + 𝑟(1) ⋅ 𝑚(2) + 𝑟(2) ⋅ 𝑚(1)) + 𝑚(1)𝑚(2)

= 𝑝 ⋅ ℎ ⋅ 𝑟𝑥 + 𝑚(1)𝑚(2) 

The decryption of 𝑒(𝑥) performed as follows: 

Step1: 

𝑎 = 𝑓2 ⋅ 𝑒(𝑥) 𝑚𝑜𝑑 𝑞 = (𝑝 ⋅ 𝑟(1) ⋅ 𝑔 + 𝑓 ⋅ 𝑚(1))(𝑝 ⋅ 𝑟(2) ⋅ 𝑔 + 𝑓 ⋅ 𝑚(2)) 𝑚𝑜𝑑 𝑞 

Step2: after center-lifting coefficients of polynomial 𝑎 from Step1, 

𝐹𝑝
2 ⋅ 𝑎 𝑚𝑜𝑑 𝑝 = 𝑚(1) ⋅ 𝑚(2). 

Decryption correctness condition is:  

∀𝑖 = {0,… ,𝑁 − 1}: |𝑐𝑖| < 𝑞, (2.28) 

where 𝑐𝑖 is the 𝑖-th coefficient of the polynomial 𝑝 ⋅ ℎ ⋅ 𝑟𝑥 + 𝑚(1)𝑚(2), and 𝑟𝑥 = 𝑝 ⋅

𝑟(1) ⋅ 𝑟(2) ⋅ ℎ + 𝑟(1) ⋅ 𝑚(2) + 𝑟(2) ⋅ 𝑚(1) = 𝒪(𝑟2). The growth of 𝑟𝑥 is exponential in 

the number of multiplications which limits the number of allowed multiplication 

operations. 

Thus, we conclude that NTRU is homomorphic w.r.t to addition and multiplication 

operations. NCM is needed when the thresholds defined in (2.27),(2.28) are exceeded. 

NTRU works with degree 𝑁 polynomials. The main problem NTRU faces is that it is 

susceptible to the lattice basis reduction attack (LBRA) using LLL algorithm. The 

LBRA using LLL algorithm solves the shortest vector problem (SVP) with exponential 

in 𝑁 running time revealing the secret key because the private keys are selected as 

polynomials with small coefficients for the decryption correctness (Hoffstein et al., 

1999). To overcome the problem of susceptibility, NTRU uses large 𝑁 resulting in 
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high computational complexity (Hoffstein et al., 1998; “IEEE Standard Specification 

for Public Key Cryptographic Techniques Based on Hard Problems over Lattices,” 

2009). 

NTRU variants (Bagheri et al., 2018; Banks & Shparlinski, 2002; Coglianese & Goi, 

2005; Gaborit et al., 2002; Gaithuru & Salleh, 2017; Hoffstein et al., 2014b, p. 373; 

Howgrave-Graham et al., 2005; Howgrave-Graham, Silverman, Singer, et al., 2003; 

Jarvis & Nevins, 2015; Karbasi & Atani, 2015; Malekian et al., 2011; Malekian & 

Zakerolhosseini, 2010; M.G. & R., 2016; Seck & Sow, 2019; Stehlé & Steinfeld, 2011; 

Thakur & P., 2016; Thakur & Tripathi, 2017; Vats, 2009; B. Wang et al., 2018; 

Yassein & Al-Saidi, 2016; Yu et al., 2017), shown in Section 2.3.4, try minimizing 

NTRU computational complexity by extending the coefficients of the polynomials 

used or using matrices of polynomials that allow preserving the security level while 

decreasing the polynomial degree. The extreme case is a polynomial of zero degrees, 

that is integers modulo 𝑞 >> 1, as used in the congruential public-key cryptosystem 

(CPKC) (Section 2.3.3.12.3.3), but CPKC with the NTRU encryption/encryption 

mechanism is insecure against LBRA by GLR (crackable in about 10 iterations) 

(Hoffstein et al., 2014b, pp. 373–376, 451). Therefore, the CPKC is considered as a 

toy model of NTRU because “it provides the lowest dimensional introduction to the 

NTRU public-key cryptosystem” (Hoffstein et al., 2014b, p. 374). The insecurity of 

CPKC stems from the choice of the private keys used as small numbers to provide 

decryption correctness. In Section 2.3.3, CPKC is reviewed, and LBRA using GLR is 

presented. Section 2.3.4 reviews known NTRU variants, and Section 2.3.5 reviews one 

of the main recent lattice attacks against NTRU, 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack(Z. Yang et al., 

2018b). 
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2.3.3 Review of CPKC and Lattice-Based Attack on CPKC 

In this section, a review of the CPKC scheme (Hoffstein et al., 2014a) is provided, 

then an introduction of lattice-based attack on CPKC is given. 

2.3.3.1 Review of CPKC Scheme 

Two secret integers, 𝑓, and 𝑔, are defined as follows: 

𝑓 < √𝑞 2⁄ ,    √𝑞 4⁄ < 𝑔 < √𝑞 2⁄  (2.29) 

gcd(𝑓, 𝑞 ⋅ 𝑔) = 1 (2.30) 

where 𝑞 is a public integer. The first secret value, 𝑓, has inverse modulo 𝑔 and 𝑞, that 

is 𝐹𝑔 and 𝐹𝑞, respectively, by virtue of (2.30), 

1 = 𝑓 ⋅ 𝐹𝑔 𝑚𝑜𝑑 𝑔,    1 = 𝑓 ⋅ 𝐹𝑞 𝑚𝑜𝑑 𝑞. (2.31) 

A public value, ℎ, is computed using (2.29) and (2.31) as follows: 

ℎ = 𝐹𝑞 ⋅ 𝑔 𝑚𝑜𝑑 𝑞. (2.32) 

Thus, CPKC has the private (secret) key, 𝑆𝐾 = (𝑓, 𝑔, 𝐹𝑔, 𝐹𝑞), and the public key, 𝑃𝐾 =

(ℎ, 𝑞). The plaintext message, 𝑚, meets the following condition, 

0 < 𝑚 < √𝑞 4⁄ . (2.33) 

A random integer, 𝑟, is chosen as follows: 

0 < 𝑟 < √𝑞 2⁄ . (2.34) 

The ciphertext, 𝑒, is computed using (2.32)-(2.34) as follows: 

𝑒 = 𝐹ℎ(𝑚, 𝑟) = 𝑟 ⋅ ℎ + 𝑚 𝑚𝑜𝑑 𝑞  (2.35) 

Decryption is described by Step 1 and 2 below: 

Step1: Multiply the ciphertext (2.35) by 𝑓, getting: 

𝑎 = 𝑓 ⋅ 𝑒 𝑚𝑜𝑑 𝑞 

= 𝑟 ⋅ 𝑓 ⋅ 𝐹𝑞 ⋅ 𝑔 + 𝑓 ⋅ 𝑚 𝑚𝑜𝑑 𝑞 (2.36) 
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Note that 𝑎 = 𝑟 ⋅ 𝑔 + 𝑓 ⋅ 𝑚 if (the remainder is allowed to be negative): 

|𝑟 ⋅ 𝑔 + 𝑓 ⋅ 𝑚| < 𝑞 (2.37) 

where (2.31), (2.32), and (2.35) are used. The CPKC decryption correctness condition 

(2.37) holds under conditions (2.29), (2.33) and (2.34): 

|𝑟 ⋅ 𝑔 + 𝑓 ⋅ 𝑚| < √𝑞 2⁄ √𝑞 2⁄ + √𝑞 2⁄ √𝑞 4⁄ < 𝑞. (2.38) 

Thus, the parameters, 𝑓 , 𝑔, and 𝑟, are selected as small compared to 𝑞 (see (2.29), 

(2.33) and (2.30)) to meet the CPKC correctness decryption condition (2.37) used in 

Step 2 of the decryption. Step 2: Multiply (2.36) by 𝐹𝑔, getting:  

𝑚 = 𝑎 ⋅ 𝐹𝑔 𝑚𝑜𝑑 𝑔, (2.39) 

where (2.31) is used and the contributor with the factor 𝑔 in (2.36) vanishes due to 

(2.37). Numerical Example C.1 of CPKC encryption/decryption is in Appendix C. 

In Section 2.3.3.2, lattice basis reduction attack (LBRA) using GLR algorithm against 

the CPKC private key/message is explained.  

2.3.3.2 Two-Dimensional CPKC Lattice 

In (Hoffstein et al., 2014b, p. 376), it is shown that the CPKC private key recovery 

problem can be formulated as the shortest vector problem (SVP) in the two-

dimensional lattice, 𝐿(𝑉1, 𝑉2). From (2.32), it can be noticed that for any pair of 

integers, 𝐹 and 𝐺, satisfying: 

𝐺 = 𝐹 ⋅ ℎ 𝑚𝑜𝑑 𝑞,   𝐹 = 𝒪(√𝑞),   𝐺 = 𝒪(√𝑞) (2.40) 

(𝐹, 𝐺) is likely to serve as the first two components, 𝑓, and 𝑔, of the private key, 𝑆𝐾 

(Hoffstein et al., 2014b, p. 376). Equation (2.40) can be written as 𝐹 ⋅ ℎ +  𝑞 ⋅ 𝑛 = 𝐺, 

where 𝑛 is an integer. Therefore, our task is to find a pair of comparatively small by 

absolute value integers, (𝐹, 𝐺), such that: 
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𝐹 · 𝑉1 + 𝑛 · 𝑉2 = (𝐹, 𝐺), (2.41) 

where 𝑉1 = (1, ℎ) and 𝑉2 = (0, 𝑞) are basis vectors, at least one of them having the 

Euclidean norm of order 𝒪(𝑞). Similarly, the CPKC message recovery problem can 

be formulated as the SVP in the two-dimensional lattice, 𝐿(𝑉1, 𝑉2), where 𝑉1 and 𝑉2 

are from (2.41). It can be also noticed from (2.35) that for any pair of integers, 

(𝑅𝑅, 𝐸𝑀), satisfying: 

𝐸𝑀 = 𝑅𝑅 ⋅ ℎ 𝑚𝑜𝑑 𝑞, 𝑅𝑅 = 𝒪( √𝑞), 𝐸𝑀 = 𝒪( √𝑞 ),  (2.42) 

(𝑅𝑅, 𝐸𝑀) is likely to serve as the vector (𝑟, 𝑒 − 𝑚) since the encryption Equation 

(2.35) can be written as 𝑟 · ℎ + 𝑞 · 𝑛 = 𝑒 − 𝑚, where 𝑛 is an integer. Therefore, our 

task is to find a pair of comparatively small by absolute value integers, (𝑅𝑅, 𝑅𝑀), such 

that: 

𝑅𝑅 · 𝑉1 + 𝑛 · 𝑉2 = (𝑅𝑅, 𝐸𝑀).  (2.43) 

We aim to find the shortest vector 𝑤 from 𝐿(𝑉1, 𝑉2) using LLL that might disclose 

(𝑟, 𝑒 − 𝑚) if 𝑒 and 𝑟 are of the order of 𝒪( √𝑞). Comparing (2.41) and (2.43), it is 

noticed that they are the same up to the unknowns’ names used, and hence, finding the 

shortest vector in 𝐿(𝑉1, 𝑉2) may reveal either the private key components, (𝐹, 𝐺)  =

 (𝑓 , 𝑔), or the message related vector, (𝑅𝑅, 𝐸𝑀)  =  (𝑟, 𝑒 −  𝑚). 

2.3.3.3 Gaussian Lattice Reduction Attack on CPKC Key/Message 

Maple code (shown in Code B.1, Appendix B) of LBRA by GLR on CPKC private 

key/message returned as the shortest vector 𝑤 = 𝑣1 of the lattice 𝐿(𝑉1, 𝑉2), where 𝑉1, 

𝑉2 are from (2.41). Example C.2 in Appendix C, provides an example of a GLR attack 

against CPKC. LBRA by GLR finds in 9 iterations the shortest vector, 𝑣1 = (𝑓, 𝑔) 

corresponds to the private key components, (𝑓 , 𝑔), because they were selected small, 

having order 𝒪(√𝑞) values according to (2.40).  
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2.3.4 Review of Known NTRU Variants 

Many variants of NTRU have been proposed and studied recently, targeting further 

decreasing its computational complexity. All these variants work with polynomials 

and mainly differ in the choice of their coefficients, the ring defining polynomial, or 

the polynomials used as the entries of such structures as matrices. The NTRU variants 

overview follows. 

2.3.4.1 NTRU Variants Differing in the Choice of Their Coefficients  

In (Jarvis & Nevins, 2015), the NTRU variant, ETRU, was proposed working with 

polynomials over Eisenstein integer coefficients and was faster than NTRU in 

encryption/decryption by 1.45/1.72 times. Karbasi and Atani (Karbasi & Atani, 2015) 

modified ETRU, called ILTRU (Karbasi and Atani 2015) so that it works with 

irreducible cyclotomic polynomial over Eisenstein integer coefficients. An NTRU 

variant, BITRU, working with polynomials over so-called binary numbers, usually 

known as complex numbers, was proposed in (M.G. & R., 2016). An NTRU variant, 

QTRU, working with polynomials over hyper-complex four-component numbers, 

quaternions, was proposed in (Malekian et al., 2011). Furthermore, Bagheri and 

colleagues proposed an NTRU variant, BQTRU, working over quaternions, but with 

bivariate polynomials, seven times faster than NTRU in encryption (Malekian et al., 

2011). A variant of NTRU working with polynomials over eight-component hyper-

complex numbers, octonions(Malekian & Zakerolhosseini, 2010)alekian & 

Zakerolhosseini, 2010). In (Yassein & Al-Saidi, 2016), NTRU variant, HXDTRU, was 

proposed working with polynomials over 16-component hyper-complex numbers, 

hexadecnions, also known as sedenions (Sedenion - Wikipedia, n.d.). Furthermore, a 

variant of NTRU working with polynomials over 16-component hyper-complex 

numbers, sedenions, was proposed in (Thakur & Tripathi, 2017). A variant of NTRU, 



35 

called CTRU, working with polynomials, the coefficients of which are also 

polynomials in one variable over a binary field, was proposed in (Gaborit et al., 2002). 

Furthermore, a variant of NTRU working with polynomials, the coefficients of which 

are polynomials in one variable over a rational field, called BTRU, was proposed in 

(Thakur & P., 2016). 

2.3.4.2 NTRU Variants Working with Different Rings  

An NTRU variant that works with polynomials with prime cyclotomic rings was 

proposed (Yu et al., 2017). A variant of NTRU working with non-invertib(Banks & 

Shparlinski, 2002) in (Banks & Shparlinski, 2002). 

2.3.4.3 NTRU Variants Working with Polynomials Inside More Complicated 

Structures 

An NTRU variant working with square matrices of polynomials was proposed in 

(Coglianese & Goi, 2005) and was shown to be 2.5 times better than NTRU encryption 

and decryption time. An NTRU variant, called NNRU, working with polynomials also 

being entries of square matrices forming a non-commutative ring, was proposed in 

(Vats, 2009). Apart from the polynomial variants, an NTRU-like cipher over the ring 

of integers, called ITRU, was proposed in (Gaithuru & Salleh, 2017) without 

referencing CPKC (Hoffstein et al., 2014b). In ITRU (Gaithuru & Salleh, 2017, pp. 

34, Table 1), the NTRU model specified above was given, but a model for the proposed 

ITRU was not defined. Its Algorithm 1, (Gaithuru & Salleh, 2017, p. 35), describes 

the key generation, and hence, it shall be made by the key owner (receiver). On the 

other hand, in (Gaithuru & Salleh, 2017, p. 37), the most important parameter, 𝑞, was 

selected by the sender (which encrypts a message using the public key, ℎ′ = 423,642, 

and a random value, 𝑟′ = 19, in (Gaithuru & Salleh, 2017, p. 37, eq. (19)) with the 

help of the private keys, 𝑓′, 𝑔′, which contradicts the NTRU model: the secret key is 
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known to only the key owner that uses the private key only for decryption, whereas 

the public key is used for encryption by the public user only. 

2.3.5 Review of IN−Lattice Attack on NTRU Private Keys 

In this section, lower dimension lattice (than the normal 2𝑁-dimensional NTRU lattice 

ℒ𝑛𝑡𝑟𝑢 (Hoffstein et al., 1998, p. 273, 2014b, p. 425)) attack on NTRU (Z. Yang et al., 

2018b), hereafter (𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack), is briefly reviewed. In (Z. Yang et al., 

2018b), a class of lower dimension lattices (lower than 2𝑁) is constructed, called 𝐼𝑁 −

𝐿𝑎𝑡𝑡𝑖𝑐𝑒, and a new lattice attack on NTRU is presented using these lattices. 

Definition 2.6: (Hoffstein et al., 2014b, p. 402). Let ℒ be a lattice of dimension 𝑛. The 

Gaussian expected shortest length is: 

𝜎(ℒ) = √
𝑛

2𝜋𝑒
(det(ℒ))1 𝑛⁄  .  

(2.44) 

More precisely, if 𝜖 > 0 is fixed, then for all sufficiently large 𝑛, a randomly chosen 

lattice of dimension 𝑛 will satisfy: 

(1 − 𝜖)𝜎(ℒ) ≤ ‖𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡‖ ≤ (1 + 𝜖)𝜎(ℒ)   (2.45) 

where 𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 is the shortest nonzero vector in ℒ. For 2𝑁-dimension lattice, 

‖𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡‖ ≤
(1 + 𝜖)(det(ℒ))1 (2𝑁)⁄

√2𝜋𝑒 
√2𝑁 <  

(2.46) 

Let 𝜏 > (1 + 𝜖)(det(ℒ))1 (2𝑁)⁄ √2𝜋𝑒 ⁄ . Then, 

‖𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡‖ < 𝜏√2𝑁  (2.47) 

Definition 2.7: (Z. Yang et al., 2018b). The NTRU problem is defined by four 

parameters: a ring 𝑅 of rank 𝑁 and endowed with an inner product, a modulus 𝑞, a 

uniform distribution 𝐷 in set ℓ(𝑑1, 𝑑2) which contains all polynomials with 𝑑1 

coefficients equal to 1, 𝑑2  coefficients equal to -1, and the rest 0., and a target norm 𝜏 
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in (2.47). Precisely, NTRU(𝑅, 𝑞, 𝐷, 𝜏) is the problem of, given ℎ = [𝑔𝑓−1]𝑞 

(conditioned on 𝑓 being invertible mod 𝑞) for 𝑓, 𝑔 ← 𝐷, finding a vector (𝑥, 𝑦)  ∈  𝑅2 

such that (𝑥, 𝑦) ≠ (0, 0) 𝑚𝑜𝑑 𝑞 and of Euclidean norm less than 𝜏√2𝑁 in the lattice 

ℒ𝑛𝑡𝑟𝑢 = {(𝑥, 𝑦) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ𝑥 − 𝑦 = 0 𝑚𝑜𝑑 𝑞} .  (2.48) 

In other words, the problem of NTRU finds the private key (𝑓, 𝑔) as the shortest vector 

(𝑥, 𝑦) in the lattice ℒ𝑛𝑡𝑟𝑢. 

Let 𝑓 ⋅ ℎ multiplied in 𝑅 = ℤ[𝑥]/(𝑥𝑁 − 1), then can be represented by 

(𝑓0, 𝑓1, … , 𝑓𝑁−1) [

ℎ0 ℎ1 ⋯ ℎ𝑁−1

ℎ𝑁−1 ℎ0 ⋯ ℎ𝑁−2

⋮ ⋮ ⋱ ⋮
ℎ1 ℎ2 ⋯ ℎ0

] = 𝑓𝐻 

The circular matrix of ℎ can be written as follows: 

𝐻 = (ℎ0
𝑇 , ℎ1

𝑇 , … , ℎ𝑁−1
𝑇 ).  (2.49) 

where ℎ𝑖
𝑇 (0 ≤  𝑖 ≤ 𝑁 − 1) is the i-th column vector in H. Let 𝑣 =

(𝑣0, 𝑣1, . . . , 𝑣𝑁−1) ∈ ℤ𝑁. Then we define 𝑣𝑙𝑠(𝑙) = (𝑣𝑙 , 𝑣𝑙+1, . . . , 𝑣𝑙−1) as cycle left-shift 

of 𝒗 by 𝑙 positions. 

Definition 2.8: (Z. Yang et al., 2018b) Let 𝐼 be a subset of {1,2, … ,𝑁} such that 𝑔𝑖+𝑘 

is 0 for all 𝑖 ∈ 𝐼, where 𝑘 is a constant integer belonging to {1,2, … ,𝑁}. And le 𝑡 =

#𝐼. Then, an IN-Lattice ℒ𝐼 with size 𝑡 is defined by 

ℒ𝐼 = {𝑥 ∈ ℤ𝑁: ∀𝑖∈ 𝐼, 𝑥 · ℎ𝑖 ≡ 0 𝑚𝑜𝑑 𝑞}. 

The new 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack is introduced in (Z. Yang et al., 2018b) 

Algorithm 2.1: 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack (Z. Yang et al., 2018b, p. 2) 

Require: Fix 𝑁, 𝑞, 𝑑𝑔ℎ, and find the probability Pr(𝒇𝑙𝑠(𝑘) ∈ ℒ𝐼) according to 

(2.50); 
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The probability of having the 𝒇𝑙𝑠(𝑘) belongs to ℒ𝐼 is calculated according to (2.50), 

Pr(𝑓𝑙𝑠(𝑘) ∈ ℒ𝐼) = 1 − (1 − ∏ (1 −
𝑡

𝑁 − 𝑖
)

2𝑑𝑔−1

𝑖=0

 )

𝑁

,  (2.50) 

where 2𝑑𝑔 is the Hamming weight of g and 𝑡 = #𝐼. 

The efficiency of 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack is investigated in Section 4.2, and a new attack 

is proposed in Section 4.1. 

  

Ensure: A valid private key 𝒇′; 

1. 𝑡 ← 2; 

2. While 𝑡 < 𝑁 do 

3.      count ← 1; 

4.      While count <=⌈1 Pr(𝒇𝑙𝑠(𝑘) ∈ ℒ𝐼)⁄ ⌉ do 

5.           Randomly choose a subset 𝐼 of {1,2, … ,𝑁} sch that #𝐼 = 𝑡; 

6.           Construct an 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 ℒ𝐼 with size 𝑡; 

7.           Reduce ℒ𝐼; 

8. if the reduced basis contains a vector 𝒗 which can be used to 

decrypt then 

9.                𝒇′ = 𝒗; 

10:                Output 𝒇′, 𝑡 and break; 

11:           end if 

12:           count=count+1; 

13:      end while 

14:      𝑡 ← 𝑡 + 1; 

15: end while 
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2.4 Review of Class 4 (HE1N) 

HE1N (Dyer et al., 2019, p. 8), the most recent HE scheme in this classis reviewed.  

2.4.1 Review of HE1N  

HE1N is defined as follows: 

2.4.1.1 Parameter Settings 

Let 𝑚1, 𝑚2, … ,𝑚𝑛 be distributed in [0,𝑀) according to a probability distribution 𝐷 

with entropy 𝜌, where 𝜌 is not large enough to negate a brute force attack. Therefore, 

the entropy of the plaintext is increased by adding “noise” term to the ciphertext. This 

will be a multiple 𝑠 (from 0 to 𝑘) of an integer 𝑘, chosen so that the entropy 𝜌′ = 𝜌 +

log 𝑘 is large enough to negate a brute force guessing attack. Let 𝜆 be a security 

parameter, measured in bits. Choose primes 𝑝, 𝑞 such that 𝑝 ∈ [2𝜆−1, 2𝜆], and 𝑞 ∈

[2𝜂−1, 2𝜂], where 𝜂 ≈ 𝜆2 𝜌′⁄ − 𝜆, and 𝑝 > (𝑛 + 1)𝑑(𝑀 + 𝑘2)𝑑, where 𝑑 is the degree 

of the polynomial 𝑃 homomorphically computed over ciphertexts, (𝑚1 + 𝑠1𝑘,𝑚2 +

𝑠2𝑘,… ,𝑚𝑁 + 𝑠𝑛𝑘), such that 𝑃(𝑚1 + 𝑠1𝑘,𝑚2 + 𝑠2𝑘, … ,𝑚𝑁 + 𝑠𝑛𝑘) < 𝑝, when 

𝑠1, 𝑠2, … , 𝑠𝑛 ∈ [0, 𝑘). Parameter 𝑘 is randomly chosen such that 𝑘 > (𝑛 + 1)𝑑𝑀𝑑. Key 

generation algorithm and parameter generation algorithm is presented in Algorithm 

2.2 and Algorithm 2.3 respectively. 

Algorithm 2.2: Key generation algorithm 

Input: 𝜆 ∈ 𝑆, 𝜌 ∈ ℤ: entropy of inputs, 𝜌′ ∈ ℤ: effective entropy of inputs,  

Output: (𝑘, 𝑝): secret key 

1. 𝑝 ← [2𝜆−1, 2𝜆]; 

2. 𝑣 ← 𝜌′ − 𝜌  

3. 𝑘 ← [2𝑣−1, 2𝑣]  

4. Return (𝑘, 𝑝) 
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where 𝑆 is the security parameter space. 

2.4.1.2 Encryption  

The plaintext 𝑚 is encrypted using Algorithm 2.4 

The decryption process of ciphertext 𝑐 follows in Subsection 2.4.1.3 

2.4.1.3 Decryption  

Ciphertext 𝑐 is decrypted using Algorithm 2.5 

Algorithm 2.3: Parameter generation algorithm 

Input: 𝜆 ∈ 𝑆, 𝜌′ ∈ ℤ: effective entropy of inputs, (𝑘, 𝑝): secret key 

Output: modulus ∈ ℤ: modulus for encryption and homomorphic operations 

1. 𝜂 ← 𝜆2 𝜌′⁄ − 𝜆; 

2. 𝑞 ← [2𝜂−1, 2𝜂  ]  

3. modulus ← 𝑝𝑞  

4. Return modulus 

Algorithm 2.4: The encryption algorithm 

Input: 𝑚 ∈ 𝑀, (𝑘, 𝑝): a secret key, modulus: public modulus 

Output: 𝑐 ∈ 𝐶  

1. 𝑞 ← modulus/𝑝; 

2. 𝑟 ← [1, 𝑞)  

3. 𝑠 ← [0, 𝑘)  

4. 𝑐 ← 𝑚 + 𝑠𝑘 + 𝑟𝑝 𝑚𝑜𝑑 modulus  

5: Return 𝑐 

Algorithm 2.5: Decryption algorithm 

Input: 𝑐 ∈ 𝐶, 𝑝:secret key 

Output: 𝑚 ∈ ℳ  



41 

Decryption works since by definition 𝑚 + 𝑠𝑘 < 𝑝 and 𝑚 < 𝑘. Appendix D presents 

an example of the encryption-decryption process of HE1N scheme. Chapter 5, 

considers homomorphism of HE1N, the condition for HE1N to be homomorphic for 

any polynomial 𝑃 of degree 𝑑 is set, and several attacks are proposed against HE1N. 

2.4.2 Homomorphism of HE1N With Respect to Addition and Multiplication 

From Algorithm 2.4, let 𝑐(𝑖) = 𝑚(𝑖) + 𝑠(𝑖)𝑘 + 𝑟(𝑖)𝑝 𝑚𝑜𝑑 𝑝𝑞, 𝑖 = {1,… , 𝑛}. 

Homomorphic addition and multiplication operations follow 

2.4.2.1 Homomorphic Addition 

Let 𝑐 be the ciphertext encrypts the summation of 𝑐(1) and 𝑐(2) as follows: 

𝑐 = 𝑐(1) + 𝑐(2) = 𝑚(1) + 𝑚(2) + (𝑠(1) + 𝑠(2))𝑘 + (𝑟(1) + 𝑟(2))𝑝 𝑚𝑜𝑑 𝑝𝑞 

It follows that 

𝑐 = ∑𝑐(𝑖)

𝑛

𝑖=1

= ∑𝑚(𝑖)

𝑛

𝑖=1

+ 𝑘 ∑𝑠(𝑖)

𝑛

𝑖=1

+ 𝑝 ∑𝑟(𝑖)

𝑛

𝑖=1

𝑚𝑜𝑑 𝑝𝑞 

The decryption of 𝑐 is performed by Algorithm 2.5. Decryption works in the condition 

that: 

∑𝑚(𝑖)

𝑛

𝑖=1

+ 𝑘 ∑𝑠(𝑖)

𝑛

𝑖=1

< 𝑝. (2.51) 

For small 𝑠(𝑖), 𝑖 = {1,… , 𝑛}, many homomorphic additions can be executed correctly 

as the growth of the noise, ∑ 𝑠(𝑖) = 𝑛�̂�𝑛
𝑖=1 , is linear on 𝑠. 

2.4.2.2 Homomorphic Multiplication 

Multiplication of 𝑐(1), 𝑐(2)(𝑥) is performed as follows 

𝑐 = 𝑐(1) ⋅ 𝑐(2) = (𝑚(1) + 𝑠(1)𝑘 + 𝑟(1)𝑝 )(𝑚(2) + 𝑠(2)𝑘 + 𝑟(2)𝑝 ) 

1. 𝑚 ← (𝑐 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑘; 

2. Return 𝑚 
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= 𝑚(1)𝑚(2) + 𝑚(1)𝑠(2)𝑘 + 𝑚(1)𝑟(2)𝑝 + 𝑠(1)𝑘𝑚(2) + 𝑠(1)𝑘𝑠(2)𝑘 + 𝑠(1)𝑘𝑟(2)𝑝

+ 𝑟(1)𝑝𝑚(2) + 𝑟(1)𝑝𝑠(2)𝑘 + 𝑟(1)𝑝 𝑟(2)𝑝 = 

𝑚(1)𝑚(2) + (𝑚(1)𝑠(2) + 𝑠(1)𝑚(2) + 𝑠(1)𝑘𝑠(2))𝑘

+ (𝑚(1)𝑟(2) + 𝑠(1)𝑘𝑟(2) + 𝑟(1)𝑚(2) + 𝑟(1)𝑠(2)𝑘 + 𝑟(1) 𝑟(2)𝑝)𝑝 

= 𝑚(1)𝑚(2) + 𝑠𝑥𝑘 + 𝑟𝑥𝑝. 

The decryption of 𝑐 performed by Algorithm 2.5. Decryption correctness condition is, 

𝑠𝑥 < 𝑝, (2.52) 

where 𝑠𝑥 = 𝑚(1)𝑠(2) + 𝑠(1)𝑚(2) + 𝑠(1)𝑠(2)𝑘 = 𝒪(𝑟2). The growth of 𝑠𝑥 is 

exponential in the number of multiplications which limits the number of allowed 

multiplication operations. 

Thus, we conclude that HE1N is homomorphic w.r.t to addition and multiplication 

operations. NCM is needed when the thresholds defined in (2.51),(2.52) are exceeded. 

2.5 Review of Class 6 (RLWE-NCM-CSCM PKC) 

In this section, a HE scheme based on ring learning with errors (R-LWE) by Brakerski 

et. al. (Brakerski & Vaikuntanathan, 2011b), is considered. The scheme as shown in 

columns 4, 5 of Table 2.1 needs NCM and CSCM, therefore, hereafter we called it 

RLWE-NCM-CSCM. RLWE-NCM-CSCM (Brakerski & Vaikuntanathan, 2011b) has 

two versions; symmetric and asymmetric. In this section, the symmetric version is 

analyzed for simplicity.  

The plaintext 𝑚 ∈ ℤ𝑡[𝑥]/(𝑥𝑛 + 1) is encrypted by, 

𝑐 = (
𝑐0

𝑐1
) = (

𝑎 ⋅ 𝑠 + 𝑡 ⋅ 𝑒 + 𝑚
−𝑎

) ∈ 𝑅𝑞
2, (2.53) 
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where 𝑎 ← 𝑅𝑞 = ℤ𝑞[𝑥]/(𝑥𝑛 + 1), 𝑛 is a power of 2, 𝑞 is a prime number, and a prime 

𝑡 ∈ ℤ𝑞
+, 𝑒 and 𝑠 are polynomials which coefficients are sampled from a discrete 

Gaussian distribution 𝜒. The ciphertext (2.53) has two components. The decryption 

process is performed in two steps as follows: 

Step1: apply < 𝑐, 𝑠𝑘 > operation, where <> is the inner product, 𝑐 is the ciphertext 

(2.53), 𝑠𝑘 = (
1
𝑠
). 

𝑐0 + 𝑐1 ⋅ 𝑠 𝑚𝑜𝑑 (𝑥𝑛 + 1) 𝑚𝑜𝑑 𝑞 = 𝑡 ⋅ 𝑒 + 𝑚 𝑚𝑜𝑑 𝑡 (2.54) 

Step2: apply modulo 𝑡 operation to the output from Step1, 

𝑚 = 𝑡 ⋅ 𝑒 + 𝑚 𝑚𝑜𝑑 𝑡 (2.55) 

Decryption correctness condition is, 

∀𝑖 ∈ ℤ𝑛: |𝑡 ⋅ 𝑒𝑖 + 𝑚𝑖 | ≤ 𝑞/2, (2.56) 

where 𝑒𝑖, 𝑚𝑖 are 𝑖-th coefficients of 𝑒 and 𝑚 respectively. 

Example E.1 and Example E.2, Appendix E, are examples of failing decryption when 

condition (2.56) is not satisfied, and an example of successful decryption when 

condition (2.56) is satisfied, respectively. 

Let 𝑐(𝑖) be the ciphertext encrypting message 𝑚(𝑖): 

𝑐(𝑖) = (
𝑐0

(𝑖)

𝑐1
(𝑖)

) = (𝑎
(𝑖) ⋅ 𝑠 + 𝑡 ⋅ 𝑒(𝑖) + 𝑚(𝑖)

−𝑎(𝑖)
) , 𝑖 = 1, . . , 𝑘 (2.57) 

Homomorphic addition and multiplication of 𝑐(1), 𝑐(2) follow. 

2.5.1 Homomorphic Addition 

Homomorphic addition of 𝑐(1), 𝑐(2) is performed as follows: 
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𝐶𝑎𝑑𝑑 = (
𝐶𝑎𝑑𝑑,0

𝐶𝑎𝑑𝑑,1
) = (

𝑐0
(1)

+ 𝑐0
(2)

𝑐1
(1)

+ 𝑐1
(2)

) = 

(
(𝑎(1) + 𝑎(2))𝑠 + 𝑡(𝑒(1) + 𝑒(2)) + 𝑚(1) + 𝑚(2)

−(𝑎(1) + 𝑎(2))
) ∈ 𝑅𝑞

2. 

It follows that, 

𝑐𝑎𝑑𝑑 = ∑𝑐(𝑖)

𝑘

𝑖=1

=

(

 
 
 

∑(𝑠𝑎(𝑖) + 𝑡𝑒(𝑖) + 𝑚(𝑖))

𝑘

𝑖=1

−∑𝑎(𝑖)

𝑘

𝑖=1 )

 
 
 

= (
𝑠 ∙ �̅� + 𝑡 ∙ �̅� + 𝑚

−�̅�
), (2.58) 

Decryption of 𝑐𝑎𝑑𝑑 resulting in 𝑚 = ∑ 𝑚(𝑖)𝑛
𝑖=1  is performed by (2.54). The decryption 

correctness condition is ∀𝑖 ∈ ℤ𝑛: |𝑡 ⋅ �̅�𝑖 + 𝑚𝑖 | ≤ 𝑞/2 according to (2.54), where 

�̅�𝑖, 𝑚𝑖 are 𝑖-th coeffiecients of �̅� and 𝑚 respectively. For 𝑒 such that ∀𝑖 ∈ ℤ𝑛: 𝑒𝑖 ≪ 𝑞, 

many homomorphic additions can be executed correctly as the growth of the noise 

𝑡 ∑ 𝑒(𝑖)𝑘
𝑖=1 = 𝑡𝑘�̂� is linear on 𝑘. 

2.5.2 Homomorphic Multiplication 

From (2.54), (2.57), 𝑐0
(𝑖) + 𝑐1

(𝑖) ⋅ 𝑠 = 𝑡 ⋅ 𝑒(𝑖) + 𝑚(𝑖), for 𝑖 = 1, 2. Then, it holds that  

(𝑡 ⋅ 𝑒(1) + 𝑚(1))(𝑡 ⋅ 𝑒(2) + 𝑚(2)) = (𝑐0
(1)

+ 𝑐1
(1)

⋅ 𝑠)(𝑐0
(2)

+ 𝑐1
(2)

⋅ 𝑠) (2.59) 

= 𝑐0
(1)

⋅ 𝑐0
(2)

+ (𝑐0
(1)

⋅ 𝑐1
(2)

+ 𝑐1
(1)

⋅ 𝑐0
(2)

) ∙ 𝑠 + 𝑐1
(1)

⋅ 𝑐1
(2)

∙ 𝑠2 (2.60) 

= 𝑐𝑚𝑢𝑙𝑡,0 + 𝑐𝑚𝑢𝑙𝑡,1 ⋅ 𝑠 + 𝑐𝑚𝑢𝑙𝑡,2 ⋅ 𝑠2 (2.61) 

From (2.59)-(2.61), we see that a ciphertext, 𝑐𝑚𝑢𝑙𝑡 is defined in (2.62) can be decrypted 

using 𝑠𝑘 = (
1
𝑠
𝑠2

), 

𝐶𝑚𝑢𝑙𝑡 = (

𝐶𝑚𝑢𝑙𝑡,0

𝐶𝑚𝑢𝑙𝑡,1

𝐶𝑚𝑢𝑙𝑡,2

) = (

𝑐0
(1)

⋅ 𝑐0
(2)

𝑐0
(1)

⋅ 𝑐1
(2)

+ 𝑐1
(1)

⋅ 𝑐0
(2)

𝑐1
(1)

⋅ 𝑐1
(2)

) ∈ 𝑅𝑞
3. (2.62) 
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Note that the size (the number of components) of the ciphertext (2.62) increased due 

to multiplication from two to three. Thus, decryption represented by formula (2.54) 

can’t be used to decrypt the ciphertext (2.62), and new decryption must be defined to 

allow 3-dimension vectors as follows: 

𝑚 = 𝑚(1)𝑚(2) = 𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1 ⋅ 𝑠 + 𝐶𝑚𝑢𝑙𝑡,2.⋅ 𝑠
2 𝑚𝑜𝑑 𝑡. (2.63) 

= 𝑡(𝑡𝑒(1)𝑒(2) + 𝑒(1)𝑚(2) + 𝑒(2)𝑚(1)) + 𝑚(1)𝑚(2) 𝑚𝑜𝑑 𝑡 = 𝑡�̅� + 𝑚 𝑚𝑜𝑑 𝑡. 

Decryption correctness condition is, 

∀𝑖 ∈ ℤ𝑛: |𝑡 ⋅ �̅�𝑖 + 𝑚𝑖 | ≤ 𝑞/2, (2.64) 

where �̅�𝑖, 𝑚𝑖 are the 𝑖-th coefficients of �̅� = 𝑡𝑒(1)𝑒(2) + 𝑒(1)𝑚(2) + 𝑒(2)𝑚(1) =

𝑂(�̂�2), and 𝑚 = 𝑚(1)𝑚(2). The growth of the noise �̅� is exponential in the number of 

multiplications which limits the number of allowed multiplication operations. This 

restricts the depth 𝑑 of the homomorphic functions evaluated on the ciphertexts. 

Brakerski and Vaikuntanathan bootstrapped their scheme using Gentry’s method 

(Gentry, 2009b) to upgrade RLWE-NCM-CSCM into FHE. In (Brakerski & 

Vaikuntanathan, 2011a), Brakerski and Vaikuntanathan proposed a new method to 

control the increase in the ciphertext size, called “re-linearization” (Brakerski & 

Vaikuntanathan, 2011a), in which the secret key, 𝑠 and 𝑠2 are encrypted using a new 

secret key, called recryption key, 𝑢, as follows: 

𝑐(𝑠) = (
𝑐0

(𝑠)

𝑐1
(𝑠)

) = (𝑎
(3)𝑢 + 𝑡𝑒(3) + 𝑠

−𝑎(3)
) , and   𝑐(𝑠2) = (

𝑐0

(𝑠2)

𝑐1

(𝑠2)
) 

= (𝑎
(4)𝑢 + 𝑡𝑒(4) + 𝑠2

−𝑎(4)
), (2.65) 

where 𝑎(3), 𝑎(4) ← 𝑅𝑞 and  𝑒(3), 𝑒(4) ← 𝜒 From (2.65) one obtains,  

𝑠𝑒 = 𝑐0
(𝑠) + 𝑐1

(𝑠)𝑢 = 𝑡𝑒(3) + 𝑠, (2.66) 
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and, 

𝑠𝑒2 = 𝑐0

(𝑠2)
+ 𝑐1

(𝑠2)
𝑢 = 𝑡𝑒(4) + 𝑠2. (2.67) 

From (2.63), (2.66), (2.67): 

𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1 ⋅ 𝑠 + 𝐶𝑚𝑢𝑙𝑡,2.⋅ 𝑠
2 𝑚𝑜𝑑 𝑡; 

= 𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1 ⋅ 𝑠𝑒 + 𝐶𝑚𝑢𝑙𝑡,2.⋅ 𝑠𝑒2 𝑚𝑜𝑑 𝑡, (2.68) 

by substituting (2.66), (2.67) in (2.68): 

𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1 ⋅ 𝑠𝑒 + 𝐶𝑚𝑢𝑙𝑡,2.⋅ 𝑠𝑒2  

= 𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1 ⋅ (𝑐0
(𝑠) + 𝑐1

(𝑠)𝑢) + 𝐶𝑚𝑢𝑙𝑡,2. (𝑐0

(𝑠2)
+ 𝑐1

(𝑠2)
𝑢) 

= 𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1. 𝑐0
(𝑠) + 𝐶𝑚𝑢𝑙𝑡,2. 𝑐0

(𝑠2)
+ (𝐶𝑚𝑢𝑙𝑡,1. 𝑐1

(𝑠) + 𝐶𝑚𝑢𝑙𝑡,2. 𝑐1

(𝑠2)
) 𝑢. (2.69)  

From (2.69), a two-component vector, 

𝑐 = (
𝐶𝑚𝑢𝑙𝑡,0 + 𝐶𝑚𝑢𝑙𝑡,1 ⋅ 𝑐0

(𝑠) + 𝐶𝑚𝑢𝑙𝑡,2. 𝑐0

(𝑠2)

𝐶𝑚𝑢𝑙𝑡,1 ⋅ 𝑐1
(𝑠) + 𝐶𝑚𝑢𝑙𝑡,2. 𝑐1

(𝑠2)
), (2.70)  

can be decrypted using (2.54) for 𝑠𝑘 = 𝑢. Thus, re-linearization is represented by 

(2.70), and a chain of keys is needed for several multiplications. And to solve the issue 

of growing the noise, Brakerski and Vaikuntanathan (Brakerski & Vaikuntanathan, 

2011a), proposed the Dimension-Modulus Reduction method instead of Gentry’s 

Bootstrapping (Gentry, 2009b). In (Brakerski et al., 2014) Brakerski et. al. showed that 

modulus reduction and re-linearization (Brakerski & Vaikuntanathan, 2011a) have 

worse performance than Gentry’s bootstrapping (Gentry, 2009b). Wang et al. (X. 

Wang et al., 2018) proposed an FHE based on L-FHE using modulus switching and 

key switching to overcome the noise growth problem. In (Gao, 2018), Gao presents an 

FHE scheme based on LFHE using bootstrapping. Thus, we see that all LWE-based 

FHE are LFHE upgraded to FHE using Gentry’s bootstrapping or other tools such as 
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modulus switching. In Chapter 7, RLWE-CSCM is presented, the first FHE scheme 

that doesn’t affect noise growth by structure. Therefore, it does not need a noise control 

mechanism. RLWE-CSCM still needs a ciphertext size control mechanism; therefore, 

we present two different mechanisms to control the growth of the ciphertext.  

2.6 Review of Class 7 (Homomorphic Scheme Using Ideal Lattices) 

This section reviews a homomorphic scheme using ideal lattices proposed in (Gentry, 

2009b) from Class 7. The following description is adapted from (Gentry & Halevi, 

2011). 

Gentry’s Ideal lattice scheme can be seen as a GGH-type scheme over ideal lattices 

(Gentry & Halevi, 2011). The ring 𝑅 =
ℤ[𝑥]

𝑥𝑛+1
 is a set of polynomials of degree 𝑛 − 1 

with integer coefficients. A polynomial from 𝑅 can be represented as a coefficient 

vector in ℤ𝑛, e.g., the polynomial 𝑝(𝑥) = 3𝑥 + 1 can be represented by the vector �⃗� =

(1, 3), respectively, a vector �⃗� = (5,−2) can be equivalently represented by a 

polynomial 𝑝(𝑥) = −2𝑥 + 5. That is why order 𝑛 − 1 polynomials and 𝑛-dimensional 

vectors will be used hereafter interchangeably.  

The ideal 𝐽 = (�⃗�) ⊂ 𝑅, is a principal ideal set by choosing a vector �⃗� ∈ ℤ𝑛 at random. 

The basis matrix 𝑉 of the ideal 𝐽 = (�⃗�) is the rotational matrix 𝑉 = {�⃗�𝑖 = �⃗� ⋅

𝑥𝑖  𝑚𝑜𝑑 (𝑥𝑛 + 1): 𝑖 ∈ [0, 𝑛 − 1]}. 

The public key consists of a “bad” basis 𝐵𝑝𝑘 of an ideal lattice 𝐽. The public key, 𝐵𝑝𝑘 

is the HNF of the matrix 𝑉. The secret key is the “good” basis 𝐵𝑠𝑘 = 𝑉 of the ideal 

lattice 𝐽. 
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To encrypt the bit 𝑏, two steps are used. In the first step, �⃗� is calculated by (2.71) 

�⃗� = 2�⃗⃗� + 𝑏𝑒1 ∈ ℤ𝑛, (2.71) 

Where 𝑢𝑖 ∈ {−1,0,1} is a random vector, 𝑒1 = (1,0, … ,0) ∈ ℤ𝑛 is the unit vector. 

Then, in the second step, the ciphertext is calculated by (2.72), 

𝑐 = �⃗� 𝑚𝑜𝑑 𝐵𝑝𝑘. (2.72) 

When �⃗� has a small enough norm, i.e., less than 𝜆1(𝐿)/2, it can be computed from the 

difference between 𝑐 and the closest lattice vector. Thus, 

�⃗� = 𝑐 𝑚𝑜𝑑 𝐵𝑠𝑘. (2.73) 

where 𝐵𝑠𝑘, the secret key, is the good basis of 𝐽. The bit 𝑏 can be recovered by applying 

modulo 2 to  �⃗�(1), where  �⃗�(1) is the first element of the vector  �⃗�.  

𝑏 = �⃗�(1) 𝑚𝑜𝑑 2. (2.74) 

The reason for decryption works is that, if the parameters are chosen correctly, then 

the parallelepiped 𝒫(𝐵𝑠𝑘) of the secret key will be a “plump” parallelepiped that 

contains a sphere of radius bigger than ‖�⃗�‖, so that �⃗� is the point inside 𝒫(𝐵𝑠𝑘). On 

the other hand, the parallelepiped 𝒫(𝐵𝑝𝑘) of the public key will be very skewed, and 

will not contain a sphere of large radius (Gentry & Halevi, 2011, p. 134). Therefore 

𝐵𝑝𝑘 can’t be used to retrieve �⃗�. 

Example 2.1 Example of Homomorphic Scheme Using Ideal Lattices Encryption/ 

Decryption 

In this example, the homomorphic scheme (Gentry, 2009b) is considered using the 

settings in (Gentry & Halevi, 2011), 
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1- Parameter Settings: 

The scheme uses the ring 𝑅 = ℤ[𝑥]/(𝑥𝑛 + 1), for 𝑛 = 2. The ideal 𝐽 = (�⃗�) is 

generated by �⃗�, where the vector �⃗� be selected randomly according to (2.75), 

�⃗� = (7,3) ∈ 𝑅. (2.75) 

Recall that the vector �⃗� can be represented as polynomial, 𝑣(𝑥) = 3𝑥 + 7. Thus, the 

basis matrix 𝑉 of the ideal (�⃗�) in (2.76) is the rotational matrix 𝑉 =

{�⃗�𝑖 = �⃗� ⋅ 𝑥𝑖  𝑚𝑜𝑑 (𝑥𝑛 + 1): 𝑖 ∈ [0, 𝑛 − 1]}, 

𝑉 = [
7 3

−3 7
]. (2.76) 

The public key, 𝐵𝑝𝑘 in (2.77), is the bad basis, HNF of (2.76) found by Maple,  

𝐵𝑝𝑘 = 𝐻𝑁𝐹(𝑉) = [
1 17
0 58

]. (2.77) 

 

We can see from Figure 2.3, that Basis 𝐵𝑠𝑘 = 𝑉 (left) is better than 𝐵𝑝𝑘 =

𝐻𝑁𝐹(𝑉)(right). Hadamard ratio for both bases follows. 
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Hadamard ratio for 𝑉 is equal to 1 and computed using Maple according to (B.2) in 

Appendix B. 

 

Hadamard ratio for 𝐻𝑁𝐹(𝑉) is approximately 0.24 and computed using Maple 

according to (B.2) in Appendix B. 

 
Figure 2.3: Good basis 𝐵𝑠𝑘 = 𝑉 (vectors with green heads), the parallelepiped 

formed by the good basis (with green lines), the bad basis formed by 𝐻𝑁𝐹(𝑉) 

(vectors with blue heads), and the parallelepiped of the bad basis (with blue lines). 
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2- Encryption 

To encrypt the bit 𝑏 = 1, the vector �⃗⃗� is selected as in (2.78). 

�⃗⃗� = (1, −1). (2.78) 

The vector �⃗� is the vector encoding the message 𝑏 using the noise �⃗⃗� according to 

(2.73): 

�⃗� = 2�⃗⃗� + 𝑏 ⋅ 𝑒1⃗⃗⃗⃗ = (3, −2). (2.79) 

The vector �⃗� encoding the message 𝑏 in (2.79) can be seen in Figure 2.3 (the vector 

with black head). The ciphertext 𝑐, is the vector encrypting the encoded message �⃗� 

according to (B.3) in Appendix B and (2.72). 

𝑐 = �⃗� 𝑚𝑜𝑑 𝐵 = �⃗� − ⌊�⃗� × 𝐵−1⌉ × 𝐵 = 

[3 −2] − ⌊[3 −2] × [
1 −17 58⁄

0 1
58⁄

]⌉ × [
1 17
0 58

] 

= [3 −2] − ⌊[3 −
53

58
]⌉ × [

1 17
0 58

] 

= [3 −2] − [3 −1] × [
1 17
0 58

] 

= [3 −2] − [3 −7] = [0 5] (2.80) 

where 𝐵−1 = [
1 −17 58⁄

0 1
58⁄

], the ciphertext 𝑐 encrypts the message 𝑏 in (2.80) can be 

found in Figure 2.3 (the vector with red hrad). 
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3- The decryption of ciphertext (2.80) is done in two steps as follows: 

Step 1: The vector �⃗� is retrieved using 𝑉−1 = [
7/58 −3/58
3/58 7/58

] 

�⃗� = 𝑐 𝑚𝑜𝑑 𝑉 = 𝑐 − ⌊𝑐 × 𝑉−1⌉ × 𝑉

= [0 5] − ⌊[0 5] × [

7

58
−

3

58
3

58

7

58

]⌉ × [
7 3

−3 7
] 

= [0 5] − ⌊[0 5] × [

7

58
−

3

58
3

58

7

58

]⌉ × [
7 3

−3 7
] 

= [0 5] − ⌊[
15

58

35

58
]⌉ × [

7 3
−3 7

] 

= [0 5] − [0 1] × [
7 3

−3 7
] 

= [0 5] − [−3 7] 

= [3 −2] 

(2.81) 

Step 2: The message 𝑏 is retrieved by applying modulo 2 operation to the first 

component of 𝑎 according to (2.81). Thus, 𝑏 = 3 𝑚𝑜𝑑 2 = 1. 

As shown in Sections 2.3, all known HE schemes w.r.t. to more than one operation 

type need noise control mechanism such as bootstrapping (Gentry, 2009b), i.e., “the 

decryption procedure of the scheme is run homomorphically, using an encryption of 

the secret key that can be found in the public key, resulting in a new ciphertext that 

encrypts the same plaintext but has smaller noise (Halevi & Shoup, 2021)”. Using 

NCM each time the noise exceeds some threshold, makes it impractical to implement 

these FHE for arbitrary functions in cloud applications. According to (Sarkar et al., 

2021, p. 133,134), the implementations of such encryption schemes remain unsuitable 
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for real-time applications yet due to the following reasons; long-time key generation, 

long-time circuit evaluation, and usage of memory, costly noise control mechanisms.  

Experiments by (Gentry & Halevi, 2011) for implementing (Gentry, 2009b) showed 

that time required for key generation takes up to 2.2 hours, NCM consumes up to 31 

minutes, and public-key size requires up to 2.25 GB. Therefore, in Chapter 7, we 

present the first FHE scheme not affected by noise growth and thus doesn’t need NCM 

by construction. 

2.7 Summary  

A new homomorphic schemes classification is proposed, which addresses the 

challenge of grouping dissimilar HE into the same class by taking into account 

additional factors such as the necessity for CSCM, the underlying hard problem, and 

the number of encryption keys. The proposed classification increases the number of 

classes from four to at least 32. The proposed classification facilitates considering and 

studying the existent HE schemes in the literature, and better accommodate newly 

proposed HE schemes.  

In order to outline challenges to be addressed in this thesis, a review of the HE 

schemes: RSA, NTRU, and HE1N has been presented from the literature, with the key 

shortcomings of each scheme emphasized. The problems that have been addressed are 

listed in the next section. 

2.8 Problem Definition 

The problems to be solved in the thesis are: 

1. The problem of investigating RSA security. RSA is one of the first HE 

schemes, it supports homomorphism w.r.t. one operation that is multiplication. 
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It is used in CloudIoT for verifying node identities to prevent weak 

authentication (Pandey et al., 2020, p. 321; Yakubu et al., 2019, p. 226). RSA 

is used in the Internet Key Exchange protocol (IKE) that is designed 

specifically for use with IPsec Click or tap here to enter text.(Barker & Dang, 

n.d., p. 24) to provide peer authentication. RSA is also widely used in X.509, 

the standard defining the format of public-key certificates (Rfc3279, n.d.). 

Therefore, this thesis considers the problem of investigating RSA security. 

2. Investigating NTRU Security. NTRU (Hoffstein et al., 1998) is a HE PKC 

w.r.t. two operations standardized as IEEE P1363.1 (“IEEE Standard 

Specification for Public Key Cryptographic Techniques Based on Hard 

Problems over Lattices,” 2009)and announced as one of seven candidate 

algorithms in the third-round finalists of NIST Post Quantum Cryptosystem 

Standardization Process ((PQC Third Round Candidate Announcement | 

CSRC, n.d.). Therefore, this thesis considers the problem of investigating the 

security of NTRU. 

3. The problem of proposing a new NTRU variant that is more efficient than 

NTRU and immune to LBRA attack. NTRU is prone to LBRA using LLL for 

low polynomial degrees. For this reason, NTRU polynomials are 

recommended to have degree 𝑁 > 400 (“IEEE Standard Specification for 

Public Key Cryptographic Techniques Based on Hard Problems over Lattices,” 

2009) to meet a minimum-security level of 112-bit. Increasing polynomials 

degree increases the complexity of the encryption and decryption process. 

Therefore, the problem of proposing a new NTRU variant that is more efficient 

than NTRU and immune to LBRA attack is to be considered in this thesis. 
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4. The problem of investigating HE1N security is to be addressed in this thesis. 

HE1N (Dyer et al., 2019) is a symmetric HE schemes w.r.t two operations 

proposed as a practical scheme for cloud computing. 

5. The problem of proposing an FHE scheme that is not affected by noise growth 

is to be considered in this thesis. As shown in Table 2.1, all known FHE 

schemes are L-FHE schemes need for NCM to be converted to FHE. For this 

reason,.all known FHE schemes are not practically used. Therefore, this thesis 

addresses the problem of proposing an FHE scheme that is not affected by 

noise growth. 
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Chapter 3 

3DESIGN OF CIPHERTEXT-ONLY ATTACK ON RSA 

(CLASS 1) USING LATTICE BASIS REDUCTION 

We consider ciphertext-only attack (COA) on textbook RSA (Rivest et al., 1978), 

hereafter RSA, without preprocessing of the plaintext such as Optimal Asymmetric 

Encryption Padding (OAEP) used in RSA standard (Kaliski et al., 2016). Herein, we 

propose a new line of COA on RSA using LLL (Lenstra et al., 1982) algorithm to solve 

SVP in a 2-dimensional lattice. It is based on the first found herein opportunity of RSA 

encryption representation in terms of a 2-dimensional lattice. It doesn’t require 

message broadcasting, prior knowledge of a part of a message/private key, or 

limitations on the size of public exponent e, contrary to all known approaches as shown 

in the last row of Table 3.1 but imposes constraints on the recoverable messages. 

Table 3.1: Comparison between lattice-based COA and other known RSA 

attacks. 

Attack 

Attack’s Requirements 

Prior 

knowledge of a 

number of bits 

A small 

value of 

exponent 𝑒 

Broadcast 

messages 

Coppersmith (Coppersmith, 

1996a)  
Yes No No 

Boneh et al. (Boneh et al., 

1998)Yes 
No 

No 
No 

Takayasu-Kunihiro ((Takayasu & 

Kunihiro, 2019)  
Yes No No 

Coppersmith (Coppersmith, 

1996b) 
No Yes No 

Hastad (Hastad, 1988)  No No Yes 

Bleichenbacher (Bleichenbacher, 

1997) 
No No Yes 
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Our COA attack computational complexity is 𝑂(𝑛2), see Section 3.4. In our 

experiments, see Example 3.2, our attack on 2001 RSA 2050-bit messages took 45.775 

seconds with about 0.1 success rate.  

The rest of this chapter is organized as follows. Section 3.1, shows that RSA 

encryption forms a 2-dimensional RSA lattice. Section 3.2, shows that the plaintext 

message can be revealed as a component of the shortest vector in the RSA lattice. 

Section 3.3, proposes using LLL for COA on RSA by solving SVP in the RSA lattice. 

Section 3.4, evaluates the complexity of the proposed COA on RSA, and Section 3.5, 

conducts experiments for up to 8193-bit messages. Section 3.6 summarizes Chapter 3 

3.1 Proposed Two-Dimensional RSA Lattice 

RSA message recovery problem can be formulated as SVP in a 2-dimensional lattice, 

𝐿(𝑉1, 𝑉2). From (3), we can see that: 

𝑐 = 𝑚𝑗 ⋅ 𝑚𝑒−𝑗𝑚𝑜𝑑 𝑁 , 𝑗 = 1. . 𝑒 − 1 (3.1) 

and, hence, 

𝑚𝑗 = (𝑚𝑒−𝑗)
−1

⋅ 𝑐 𝑚𝑜𝑑 𝑁. (3.2) 

From (3.2), we see that for any pair of integers, 𝐴 and 𝐵, satisfying: 

𝐵 =  𝐴 · 𝑐 𝑚𝑜𝑑 𝑁. (3.3) 

Hastad (Hastad, 1986) No No Yes 

Simmons (Simmons, 1977)  No No Yes 

DeLaurentis (Delaurentis, 1984) No No Yes 

Boneh (Boneh et al., 2000) No No No 

Bunder (Bunder et al., 2017)  No Yes No 

Proposed Lattice-Based COA  No No No 
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 (𝐴, 𝐵) is likely to be ((𝑚𝑒−𝑗)
−1

, 𝑚𝑗), or (𝑚−𝑗, 𝑚𝑒−𝑗). Hence, equation (3.3) can be 

written as: 

𝐴 · 𝑐 + 𝑁 · 𝑟 =  𝐵, (3.4) 

where 𝑟 is an integer. It forms a 2-dimensional RSA lattice, 

𝐴 · 𝑉1 + 𝑟 · 𝑉2 = (𝐴, 𝐵), (3.5) 

where 𝑉1 = (1, 𝑐) and 𝑉2 = (0, 𝑁) are basis vectors, at least one of them having 

Euclidean norm of order 𝑂(𝑁), and determinant of the lattice equal to 𝑁. 

3.2 Define RSA Message as the Shortest Vector in the RSA Lattice 

According to Minkowski’s Second theorem (B.5), vector (𝐴, 𝐵) (3.5) likely is the 

shortest vector in the RSA lattice, if  

||𝐴, 𝐵|| < 1.07√𝑁. (3.6) 

Hence, our task is to find a pair of comparatively small, (𝐴, 𝐵), satisfying (3.5) where 

𝑉1  =  (1, 𝑐) and 𝑉2 = (0, 𝑁) are known vectors. Then, (𝐴, 𝐵) is likely to be 

((𝑚𝑒−𝑗)
−1

, 𝑚𝑗), or (𝑚−𝑗, 𝑚𝑒−𝑗). In our attack we adopt LLL to find the shortest 

vector in the 2-dimensional RSA lattice (3.5). 

3.3 Design of LLL Attack on RSA Message as a Shortest Vector in the 

RSA Lattice 

We want to find the shortest vector w from 𝐿(𝑉1, 𝑉2) using LLL that might disclose 

(𝐴, 𝐵) =  ((𝑚𝑒−𝑗)
−1

, 𝑚𝑗) (3.7) 

if ||((𝑚𝑒−𝑗)
−1

, 𝑚𝑗)|| from (3.7) is of the order of 𝑂(√𝑁) meeting (3.6). In our 

experiments, we used the LLL algorithm implemented in Maple 2016.2. Example 3.1 

shows LLL attack on Example A.1 message, Appendix A. 
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Example 3.1: LLL attack on 40-bit RSA message from Example A.1 in Appendix A 

The ciphertext from Example A.1, 𝑐 = 480808351840, and modulus 𝑁 =

1099559862701. Hence, 𝑉1 = (1 , 480808351840), and 𝑉2 =

 (0 , 1099559862701). LLL attack with 𝑉1 = (1 ,480808351840), 𝑉2 =

(0 ,1099559862701), defined in (3.5) terminates in 15 milliseconds using Maple, 

obtaining the shortest vector (see Figure 3.1) given in (3.8): 

We also run Example 3.1 in C using NTL (NTL: A Library for Doing Number Theory, 

n.d.) and found that the LLL attack terminates in 4 × 10−5 seconds. Thus, we see that 

our attack, both in Maple and C, takes less time than attacks mentioned in Subsection 

2.2.3. LLL attack succeeds to retrieve message since it is a component of the shortest 

vector in the lattice, 

||(𝑚𝑒−1)−1,𝑚|| ≈ 990090.6 <  1.07√𝑁  ≈  1124497.2. 

𝑣1 = (82493,986648). (3.8) 

 
Figure 3.1: LLL attack on RSA message in Example A.1 using Maple 2016.2 
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The complexity of the LLL algorithm is presented in Section 3.4. 

3.4 Complexity of LLL Lattice Basis Reduction Algorithm 

Lenstra, Lenstra, and Lovasz (Lenstra et al., 1982) state that for n-dimensional lattices 

with integer input basis vectors of bounded length 𝑁, the LLL algorithm terminates 

after at most 𝑂(𝑛2 log 𝑁) iterations. 

3.5 Experiments on RSA Cracking for Up To 8193-Bit Messages 

We have conducted experiments using Maple 2016.2 in Windows 8.1 on Lenovo 

laptop with Intel i5-6200U CPU 2.30 GHz, 8 GB RAM, for RSA with 𝑝, 𝑞 values 

specified in Table 3.2 with sizes of 

𝑁 = 𝑝 ⋅ 𝑞, (3.9) 

from 40 to 8193 bits more than twice exceeding recommended RSA key size, 4047 

bits, for the 2050 year according to the requirements of (Lenstra & Verheul, 2000). 

Values of 𝑝, 𝑞 are defined as integer expressions (see Table 3.2). Experiments in Table 

3.2 conducted using Digits=10 and C = 0 in Maple.   

Table 3.2: Number of cracked messages under different parameter settings.  

1 2 3 4 5 6 7 8 

Pair 

(𝑝, 𝑞)# 
𝑝 𝑞 

Bit size 

of 𝑁 

(𝑎, 𝑏) 

from 

(3.13) for 

which 

RSA was 

cracked, 

𝑘 = 1 

𝛿𝑚𝑖𝑛 𝛿𝑚𝑎𝑥 

Number 

of RSA 

cracks 

0 220 +33 220  + 13 40 

(8, 1), 
(4, ±1), 
 (2, ±1) 

0.025 0.508625 153 

1 2130
− 5 2131 +39 261 

(14,−1), 
 (4, 2), 
 (2, ±1) 

0.01 0.5010325 58 

2 3 × 2250 + 17 
(2129

− 1)
2

− 2 
509 

(2, ±1), 
 (4, −1), 
(22, ±1) 

0.01 0.5007125 59 
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Note that the prime values (𝑝, 𝑞) used in Rows 1, 2 of Table 3.2 are strong according 

to (Rivest et al., 1978, p. 124), since 𝑝 − 1, 𝑞 − 1 have large primes as their factors, 

that is confirmed by the following Maple code: 

 

3 3 × 2512 + 349 
3 × 2512

− 511 
1026 

(4, 1), 
 (8, −1), 
(2, ±1) 

0.01 0.5007065 85 

4 3 × 21024 + 515 
3 × 21024

− 1717 
2050 

(20, 6), 
(4, 2), 
 (2, ±1) 

0.01 0.5005 64 

5 3 × 22048 + 595 
3 × 22048

− 1105 
4098 

(26, 5), 
(4, 2), 
 (2, ±1) 

0.001 0.5007 68 

6 3 × 24096 + 1075 
24096

− 2549 
8193 

(28,4), 
 (4,2), 
(2, ±1), 
 (14, −1) 

0.00375 0.50003 66 



62 

It can be checked that (𝑝, 𝑞) values in rows 1, 2, and 6 of Table 3.2 have large 

𝑟𝑜𝑢𝑛𝑑(𝑁0.5 − ⌊𝑝0.5⌋ ∙ ⌊𝑞0.5⌋) values precluding attack. In our experiments, messages 

are defined via a parameter, 

𝛿 ∈ (0,1), (3.10) 

as follows, 

𝑚 =  𝑖𝑛𝑡(𝑁𝛿) + 𝑖𝑖, 𝑖𝑖 ∈  −𝐶,⋯ , 𝐶, 𝐶 ≥ 0, (3.11) 

where 𝐶 ≥  0 is an integer and 𝑖𝑛𝑡( ) returns the integer part of its input. Calculations 

on the float-point numbers are done with an accuracy of 10, 15, 100, 200, 600, 800, 

and 1600 digits: 

 

We try vectors 

𝑣(𝑗) = ((𝑚𝑒−𝑗)
−1

,𝑚𝑗) (3.12) 

meeting the following two-dimensional lattice equation 

𝑣(𝑗)1 ⋅ 𝑉1 + 𝑟 ⋅ 𝑉2 = 𝑣(𝑗) (3.13) 

with  

𝑉1 = (
1
𝑐
) , 𝑉2 = (

0
𝑁

) (3.14) 

For 𝑗 = 1,⋯ ,100, according to (3.5), by the following code: 

Code 3.1: Maple code for RSA cracking using LLL with j∈ {1,···,100}. Initial 

conditions for the code are defined in Code 3.3 and Example 3.2. It tries cracking 2001 

RSA messages in the range 𝑚0 − 1000 …𝑚0 + 1000, where m0 is defined in its first 

line as trunc(𝑁𝛿). 
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In Code 3.1, with C = 1000, we check the both returned by LLL vectors and each their 

component on equality to 𝑚𝑗. Exponentiation function and LLL used in Code 3.1 are 

introduced in Code 3.2 as follows: 

Code 3.2: Maple code introducing exponentiation function and LLL. 

 

RSA was successfully cracked under conditions (3.16)-(3.18) on the encryption key, 

e, defined via Euler totient function, 



64 

𝜙(𝑁) = (𝑝 − 1) ⋅ (𝑞 − 1), (3.15) 

in a general form 

𝑒 = 𝑘 ⋅
𝜙(𝑁)

𝑎
− 𝑏, 

(3.16) 

such that 

gcd(𝑒, 𝜙(𝑁)) = 1, (3.17) 

𝜙(𝑁) 𝑚𝑜𝑑 𝑎 = 0. (3.18) 

It is implemented in Maple by the following Code 3, for Digits=1600: 

Code 3.3: Maple implementation of RSA encryption key, e, calculation according to 

(3.16)-(3.18), for N of 2050 bit size from Table 3.2. 

 

For the example of data shown in Code 3.2, 𝑒 ≈
𝑁

2
, 𝑑 ≈

𝑁

10
, thus attacks described in 

Section 2.2.3 are not applicable. We try finding a range of the parameter, 
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𝛿 ∈ [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥], (3.19) 

or a set of values, { 𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥}, for which our method successfully cracks RSA (see 

Table 3.2, columns 7, 8). In Table 3.2, columns 5, 6, pairs (𝑎, 𝑏), for which RSA was 

successfully cracked, and number of successful cracks are given (for C = 0 in (3.11)). 

We found that for all successful cracks, 

𝑗 = |𝑏|, (3.20) 

holds, where j,b are from(3.12), (3.13), and (3.16), respectively, i.e., the power of the 

plaintext message, m, revealed by our attack on RSA, always is equal to |b| from 

(3.16). Thus, in the experiments, we find two conditions, (3.18) and (3.20), holding 

that need explanation. Also, the results of all our experiments show that condition 

(3.21) holds 

𝛿𝑚𝑎𝑥 ⋅ |𝑏| ≈ 0.501. (3.21) 

To verify (3.21), we have conducted a special massive investigation of its validity for 

(𝑝, 𝑞) pair from Table 3.2, row 4, results of which are given in Table 3.3, and confirm 

its validity. Hence, we need explaining (3.18), (3.20), and (3.21). Experiments in Table 

3.3 are conducted with Digits=600, p:= 3 · 21024 + 515, 𝑞:=  3 · 21024 − 1717, 

(3.16)-(3.18) hold, 𝑘 = 1, 𝐶 = 1000 , and 𝛿𝑚𝑎𝑥 is from (3.19). 

Table 3.3: Results of experiments on RSA cracking with 𝑁 = 2050 

𝒂 𝒃 
Number of 

cracks 
𝜹𝒎𝒂𝒙 𝜹𝒎𝒂𝒙 ⋅ |𝒃| 

20 6 9205 0.0835 0.501 

20 10 4987 0.050107 0.50107 

20 -4 2082 0.12521 0.50084 

20 -6 1642 0.038348 0.50088 

20 -8 1913 0.062615 0.50092 

20 -14 1336 0.035769 0.500766 

5 -1 5626 0.501 0.501 

5 -25 2896 0.020045 0.501125 

4 2 21599 0.25066 0.50132 

4 6 22937 0.083528 0.501168 
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Explanation of (3.18): Consider (3.10)-(3.12) for C = 0, (3.15), and (3.16). Then, RSA 

ciphertext, c, is defined as follows: 

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁 = 𝑚𝑘⋅
𝜙(𝑁)

𝑎
−𝑏𝑚𝑜𝑑 𝑁. (3.22) 

Experiments show that with high probability, ranging from 0.1 to 0.5, (3.23) holds: 

𝑚
𝑘𝜙(𝑁)

𝑎 𝑚𝑜𝑑 𝑁 = 1. (3.23) 

Note that due to Euler’s theorem (Stallings, 2014), 

𝑚𝑘𝜙(𝑁)𝑚𝑜𝑑 𝑁 = 1, (3.24) 

and the left-hand side (LHS) of (3.23) is the a-th root of unity from LHS of (3.24), 

which is highly likely to be also unity. The probability of our COA on RSA success 

estimate is illustrated in Example 3.2. 

Example 3.2: Conducting calculations by Code 3.1 in Maple 2016.2, with 

Digits=1600, 𝑞 = 3 · 21024 − 1717,𝑝 = 3 · 21024 + 515, 𝛿 = 0:071435 considering 

2001 numbers, m = ⌊𝑁𝛿⌋ + ii, ii ∈ [-C,··· ,C],C = 1000, we find 216 cases when (3.23) 

holds, in particular, for ii = −998,−992,−988, etc. Respective Maple output is shown 

in Figure 3.2. Thus, the probability of (3.24) holding, and thus our attack takes 45.775 

seconds, its success probability under conditions (3.16)-(3.18), may be estimated as 

216/2001=0.1079, and (3.17) is explained. Now, we explain (3.19) and (3.20). 

10 13 6469 0.0385503 0.501154 

Total cracks: 80692 Average 𝜹𝒎𝒂𝒙 ⋅ |𝒃|: 0.501022 
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Figure 3.2: Screenshot of Maple implementation of Code 3.1 using parameter 

settings in Example 3.2 

Explanation of (3.19) and (3.20): Our method of cracking of RSA ciphertext is as 

follows (recall (3.1)-(3.5), (3.12), (3.13)). Rewrite (3.22): 

𝑐 = 𝑚𝑒−𝑗 ⋅ 𝑚𝑗 𝑚𝑜𝑑 𝑁, 0 < 𝑗 < 𝑒. (3.25) 

From (3.15), we get 
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𝑐(𝑚𝑒−𝑗)
−1

= 𝑚𝑗  𝑚𝑜𝑑 𝑁. (3.26) 

Reminding (3.12), from (3.26), we arrive at (3.13). Applying LLL algorithm to the 

lattice defined by (3.14), we obtain the shortest vector, (
𝑆1

𝑆2
), of the lattice such that 

(
𝑆1

𝑆2
) = 𝑣(𝑗), if the norm of 𝑣(𝑗) meets Minkowski’s Second theorem: 

||(
𝑆1

𝑆2
)|| ≤ ||𝑣(𝑗)|| = √𝑣(𝑗)1

2 + 𝑣(𝑗)2
2 ≤ √𝛾2 ⋅ 𝑁 = √

2

√3
⋅ 𝑁 

(3.27) 

where 𝛾2 ≈ 1.1547 is Hermite’s constant for the 2-dimensional lattice. To meet 

(3.27), from (3.12), we have: 

√(𝑚−𝑒+𝑗)2 + 𝑚𝑗2
≤ √

2

√3
⋅ 𝑁 

(3.28) 

From, (3.11) with C = 0, (3.16), (3.23), (3.28), we have: 

√(𝑚𝑏+𝑗)2 + 𝑚𝑗2
= √⌊𝑁𝛿⌋

𝑏+𝑗
+ ⌊𝑁𝛿⌋

𝑗2

≤ √2 ⋅
𝑁

√3
≈ 𝑁0.50005 

(3.29) 

From (3.29), we have two cases: 

Case 1: 𝑏 ≥ 0. Let 𝑗 = 0 in (3.29). Then, 𝑣(𝑗) = (𝑚
𝑏

1
), and we have: 

√⌊𝑁𝛿⌋
𝑏2

+ 1 ≈ 𝑁𝑏⋅𝛿 ≤ 𝑁0.5005, (3.30) 

and thus, 

𝑏 ⋅ 𝛿 ≤ 0.50005 (3.31) 

Case 2: 𝑏 < 0. Let 𝑗 = −𝑏 = |𝑏|. Then, 𝑣(𝑗) = (
1

𝑚𝑏), and we have 

√⌊𝑁𝛿⌋
|𝑏|2

+ 1 ≈ 𝑁|𝑏|⋅𝛿 ≤ 𝑁0.5005, (3.32) 

and then, 
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|𝑏| ⋅ 𝛿 ≤ 0.50005. (3.33) 

Thus, from (3.30), (3.32), we may have RSA cracks the form 

|𝑣(𝑗)| = (𝑚
𝑏

1
) or |𝑣(𝑗)| = (

1
𝑚𝑏), (3.34) 

that have been observed in all our experimental results shown in Table 3.2 and Table 

3.3. Example 3.2 confirms that (3.34) holds in a particular experiment as in all other 

ones. 

Example 3.3: Maple output for RSA cracking with k = 9, a = 20, b = ±6, d = 0:071435, 

showing that (3.23) holds, and values found by LLL in 𝑉𝑅[1,1. .2], see Code 3.1, meet 

(3.34). 
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Also, the range for 𝛿 defined by (3.31), (3.33) is confirmed by our experiments. From 

Table 3.3, the last row, we see that (3.33) holds on average with accuracy 

0.00097=0.50102-0.50005. Table 3.3 contains the number of RSA successful cracks 

for different values of a,b, maximal 𝛿𝑚𝑎𝑥 from (3.19) and LHS of (3.33). Thus, (3.34) 

explains (3.20), and (3.34) explains (3.21). To find the relation between a and number 

of RSA successfully cracked messages, we run Code 3.1 with p, q from rows 3-6 of 

Table 3.2, 𝛿 ∈  0.01,… ,0.52 yields to launch 104,052 attacks on each (𝑝, 𝑞, 𝑎) value. 

Figure 3.3 shows an inverse proportion between value of 𝑎 and number of successful 

cracks. Thus, decreasing the public key leads to a decrease in the success rate of our 

attack. 

  
(a) (b) 

  

(c) (d) 

Figure 3.3: Inverse relation between the value of parameter 𝑎 (horizontal axis) in 

(3.16) and number of successful RSA message cracks (vertical axis) out of 

104,052 message attacks. 
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In Figure 3.3, (a) shows 20010 message cracks at a =2 and drops to 51 message cracks 

at a = 2048 out of 104,052 message attacks. (b) shows 34017 message cracks at a = 2 

and drops to 18 message cracks at a=2053 out of 104,052 message attacks. (c) shows 

20010 message cracks at a = 2 and drops to 0 message cracks at a = 33739 out of 

104,052 message attacks. (d) shows 20010 message cracks at a = 2 and drops to 199 

message cracks at a = 222 out of 104,052 message attacks 

3.6 Summary  

In this chapter, we show that RSA-encrypted message considered as a component of 

the shortest vector of the RSA lattice can be revealed by LLL attack. LLL attack runs 

in time quadratic in the bit number of modulo 𝑁 (see Section 3.4). LLL attack targets 

messages meeting (3.2)-(3.6) being the shortest vector in the RSA lattice. Our attack 

works in the conditions discussed in Section 3.2 in which known attacks can’t work, 

and it does not impose any other requirements, such as the need for very small public 

exponent, 𝑒, part of the plaintext to be known in advance, or a message broadcasting 

to sufficiently many participants, each holding a different modulus with a known affine 

transformation, or using common modulus as other attacks do (Boneh et al., 1998; 

Coppersmith, 1996a, 1996b; Hastad, 1988, 1986; Takayasu & Kunihiro, 2019). Our 

attack shows significant speed (15 milliseconds using Mupad, and 4 × 10−5 seconds 

using NTL library for Example 3.1) in recovering a 40- bit message in comparison to 

our implementation for Boneh MITM attack (Boneh et al., 2000) where 2.202 seconds 

are needed to recover the same length message (2 seconds for pre-computation step, 

and 0.202 seconds for searching step using NTL library). Additionally, we have 

conducted experiments with the proposed method for 𝑁 with bit sizes up to 8193 in 

Maple 2016.2, with results presented in Table 3.2, Table 3.3, in which thousands of 

successful RSA cracks were conducted using Code 3.1 run-time of which in the 
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conditions of Example 3.2 for 2001 RSA 2050-bit messages cracking is about 45 

seconds. The cracks were made for large public key values meeting (3.16)-(3.18) for 

which truth of (3.18), (3.20), (3.21) was discovered. Based on these findings, for RSA 

not to be susceptible to the attack proposed herein, it is recommended RSA public keys 

be selected such that (3.16)-(3.18) are not satisfied. 

RSA is HE cryptosystem that is widely used in the Interned to provide authentication, 

and many applications exploit its homomorphic multiplicative feature, such as digital 

signature in electronic voting. Therefore, it is crucial to select RSA public keys such 

that (3.16)-(3.18) are not satisfied in order to prevent the proposed COA attack.  
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Chapter 4 

4SECURITY ANALYSIS OF NTRU (CLASS 3) 

In this chapter, the security of NTRU is analyzed through two sections; Section 4.1 

presents the NTRU flaw that allows in some cases revealing encrypted messages 

without the need for the private key, non-negligibility of the attack is derived, and 

recommended settings are proposed to avoid this attack. Section 4.2 presents 

experiments that examine the efficiency of 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack (Z. Yang et al., 

2018b), and Section 4.3 summarizes results of Chapter 4 

4.1 Design of NTRU Modulo p Flaw Attack 

In this section, we prove that for some parameters NTRU has the modulo 𝑝 flaw 

(Chefranov & Ibrahim, 2016; Ibrahim & Chefranov, 2016), so NTRU-encrypted 

plaintext can be disclosed just by applying modulo 𝑝 operation to the ciphertext 

without the need of using any of NTRU secret keys. We provide also statistical 

estimates of the probability of having NTRU modulo 𝑝 flaw cases for different values 

of 𝑁, where 𝑁 is the order of polynomial ring used in NTRU. The probabilities show 

that NTRU modulo 𝑝 flaw may take place rather often. NTRU amendment to withstand 

the flaw is proposed. The rest of this section is organized as follows. In Subsection 

4.1.1, the NTRU modulo 𝑝 flaw is shown by example; explanations are given for the 

example. In Subsection 4.1.3, we present statistics of cases when NTRU has modulo 

𝑝 flaw for different 𝑁 values.  

4.1.1 NTRU Modulo p Flaw Attack 

Attack on NTRU using modulo 𝑝 flaw may be conducted as follows. 
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Step 1: Center-lift ciphertext, 𝑒, (2.20) w.r.t 𝑞  

Step 2: Apply modulo 𝑝 operation to center-lifted ciphertext from Step 1. 

A numerical example of NTRU mod 𝑝 flaw is presented in Example 4.1 the 

explanation of the example follows. 

Example 4.1: Example of NTRU modulo 𝑝 flaw 

Let according to (2.13), 

𝑁 = 5; 𝑑 = 1; 𝑝 = 3; 𝑞 = 32 > (6𝑑 + 1)𝑝 = 21, (4.1) 

Let according to (2.14), 

𝑓(𝑥) = 𝑥3 + 𝑥2 − 1 = [−1,0,1,1,0] (4.2) 

Then, according to (2.15), 

𝐹𝑞 = 𝑥4 + 𝑥 − 1 𝑚𝑜𝑑 32, 𝐹𝑝 = 𝑥4 + 𝑥 − 1 𝑚𝑜𝑑 3  (4.3) 

Let according to (2.16), (2.18) and (2.19), (𝑥) ,𝑟(𝑥), and 𝑚(𝑥) are selected as, 

𝑟(𝑥) = 𝑥 − 1,   𝑔(𝑥) = 𝑥 − 1,   𝑚(𝑥) = 𝑥2 + 𝑥 + 1 ∈ 𝑅𝑝. (4.4) 

The public key, ℎ, according to (2.17) is: 

ℎ = 𝐹𝑞 ⋅ 𝑔 𝑚𝑜𝑑 𝑞 = (𝑥4 + 𝑥 − 1)(𝑥 − 1) = −𝑥4 + 𝑥2 − 2𝑥 + 2 ∈ 𝑅𝑞 . (4.5) 

Ciphertext according to (2.20),(4.4), and  (4.5), is: 

𝐹ℎ,𝑝
𝑁𝑇𝑅𝑈(𝑚, 𝑟) = 𝑒 = 𝑝 ⋅ 𝑟 ⋅ ℎ + 𝑚 𝑚𝑜𝑑 𝑞 

= 3𝑥4 + 3𝑥3 + 24𝑥2 + 13𝑥 + 24 ∈ 𝑅𝑞 . (4.6) 

Attack on NTRU using modulo 𝑝 flaw may be conducted as follows. 
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Step 1. Center-lift ciphertext,𝑒, (4.6) w.r.t 𝑞 = 32: 

Step 2. Apply modulo 𝑝 operation to center-lifted ciphertext from Step 1. 

𝑒 = 3𝑥4 + 3𝑥3 + 24𝑥2 + 13𝑥 + 24 

3𝑥4 + 3𝑥3 − 8𝑥2 + 13𝑥 − 8 𝑚𝑜𝑑 𝑞. (4.7) 

Then according to Step 2, we apply modulo 𝑝 operation directly to the center-lifted 

ciphertext (4.7), we also disclose the original plaintext,𝑚(𝑥), from (4.4), as follows 

𝑚 = 𝑒 𝑚𝑜𝑑 𝑝 = (3𝑥4 + 3𝑥3 − 8𝑥2 + 13𝑥 − 8)𝑚𝑜𝑑 3 

= 𝑥2 + 𝑥 + 1 ∈ 𝑅𝑝. (4.8) 

Comparing (4.8) and (4.4), we see that actually, the plaintext is restored without any 

key, by knowledge of the public value of public parameter 𝑝 only. Thus, the example 

represents NTRU flaw that we call “modulo 𝑝 flaw”. 

4.1.2 Explanation of Example 4.1 

The reason for the NTRU modulo 𝑝 flaw in Example 4.1 is that in the encryption (2.20) 

it might happen that the polynomial, 𝐴, used for hiding the plaintext, 𝑚(𝑥), from 

(2.18),  

𝐴 = 𝑝 ⋅ 𝑟 ⋅ ℎ = [𝛼0, . . . , 𝛼𝑁−1]. (4.9) 

has all its coefficients by an absolute value less than 𝑞 considering ℎ center-lifted. This 

condition can be written as follows: 

∀𝑖 ∈ {0, . . . , 𝑁 − 1},  |𝛼𝑖| < 𝑞, (4.10) 

Where 𝛼𝑖 is the 𝑖-th coefficient of polynomial 𝐴 in (4.9). We can see that (4.10) holds 

in Example 1 (see (4.6)). In such a case, modulo 𝑞 operation used in (4.6), preserves 

𝐴 being a multiple of 𝑝 that can be eliminated from (4.6) just by modulo 𝑝 operation 

applied to the ciphertext, 𝑒, as we exactly made in (4.8) after center-lifting 𝑒 in (4.7). 
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For the NTRU modulo 𝑝 flaw realization, we need to find such inverse of (2.14) that 

the products (2.17), (4.9) used in (2.20), have coefficients by an absolute value less 

than 𝑞 (see (4.10)). Hence, we need finding dependence of the products’ coefficients 

on the coefficients of (2.14). It is done in the next Subsection 4.1.2.1. Then, in 

Subsection 4.1.2.1, we find such polynomial (2.14) that the product (4.9) likely has 

coefficients by an absolute value less than 𝑞. 

4.1.2.1 Finding Inverse of the Polynomial f(x) Modulo (xN-1) 

Consider the finding of an inverse, 𝑓−1(𝑥) = [𝑏0, 𝑏1, . . . , 𝑏𝑁−1], of (2.14) in 𝑅. 

𝑓(𝑥) ⋅  𝑓−1(𝑥) 𝑚𝑜𝑑 𝑥𝑁 − 1 = 1 (4.11) 

From (4.11), 

𝑓(𝑥) ⋅ 𝑓−1(𝑥) = 𝑐(𝑥) ⋅ (𝑥𝑁 − 1) + 1 (4.12) 

𝑐(𝑥) = ∑ 𝑐𝑖𝑥
𝑖

𝑁−2

𝑖=0

 (4.13) 

From (2.14), (4.12), and (4.13): 

∑

(

 
 

∑ 𝑓𝑗𝑏𝑘

𝑗+𝑘=𝑖,
0≤𝑗,𝑘<𝑁 )

 
 

𝑥𝑖

2𝑁−2

𝑖=0

 = ∑ 𝑐𝑖−𝑁𝑥𝑖 − ∑ 𝑐𝑖𝑥
𝑖 + 1

𝑁−2

𝑖=0

2𝑁−2

𝑖=𝑁

 (4.14) 

Equating coefficients near respective powers, we get from (4.14) the following system 

of linear algebraic equations w.r.t unknowns, 𝑏0, . . , 𝑏𝑁−1, 𝑐0, . . , 𝑐𝑁−2, 

∑ 𝑓𝑗𝑏𝑖−𝑗

𝑁−1

𝑗=𝑖−𝑁+1

= 𝑐𝑖−𝑁 , for 𝑖 = 𝑁, . . . ,2𝑁 − 2 (4.15) 

∑ 𝑓𝑗𝑏𝑁−1−𝑗

𝑁−1

𝑗=0

= 0 (4.16) 
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∑𝑓𝑗𝑏𝑖−𝑗

𝑖

𝑗=0

= −𝑐𝑖, 𝑖 = 1, . . . , 𝑁 − 2 (4.17) 

1 − 𝑓0𝑏0 = 𝑐0 (4.18) 

Preserving 𝑏0, . . , 𝑏𝑁−1 only, from (4.15) -(4.18), we get 

∑𝑓𝑖−𝑁−𝑗𝑏𝑗

𝑖−𝑁

𝑗=0

+ ∑ 𝑓𝑖−𝑗𝑏𝑗

𝑁−1

𝑗=𝑖−𝑁+1

= 0, for 𝑖 = 2𝑁 − 2, . . . , 𝑁 + 1 (4.19) 

𝑓0𝑏0 + ∑ 𝑓𝑁−𝑗𝑏𝑗

𝑁−1

𝑗=1

= 1 (4.20) 

∑ 𝑓𝑁−1−𝑗𝑏𝑗

𝑁−1

𝑗=0

= 0 (4.21) 

For 𝑁 = 5, the matrix of coefficients in (4.19)-(4.20) is as follows 

𝛥 =

[
 
 
 
 
𝑓3 𝑓2 𝑓1 𝑓0 𝑓4
𝑓2 𝑓1 𝑓0 𝑓4 𝑓3
𝑓1 𝑓0 𝑓4 𝑓3 𝑓2
𝑓0
𝑓4

𝑓4
𝑓3

𝑓3
𝑓2

𝑓2
𝑓1

𝑓1
𝑓0]

 
 
 
 

 (4.22) 

Determinant of (4.22), 𝑑𝑒𝑡( 𝛥), calculated using Maple 2016, is as follows (Figure 

4.1): 

 
Figure 4.1: Definition of the matrix (4.22), and its determinant, in Maple 2016 
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Right hand side, RHS, of equations (4.19) -(4.22), for 𝑁 = 5 is as follows 

𝑅𝐻𝑆 = (0,0,0,1,0) (4.23) 

Using Cramer’s rule (Strang, 2016), find 

𝑏𝑖 =
𝑑𝑒𝑡( 𝛥𝑖)

𝑑𝑒𝑡( 𝛥)
, for 𝑖 = 0, . . . , 𝑁 − 1, (4.24) 

where the matrix 𝛥𝑖 is the matrix 𝛥 with column 𝑖 replaced by 𝑅𝐻𝑆 = (0,0,0,1,0), 

(4.24) is the right side of (4.27). 

Division in (4.24) is made modulo 𝑝 or 𝑞 to find 𝐹𝑝 or 𝐹𝑞 from (2.15) respectively. For 

the correctness of the division in (4.24), determinant in the denominator shall have 

multiplicative inverse modulo 𝑝 and 𝑞, and shall be co-prime to them. For arbitrary 

determinants, their inverses may be rather large integers resulting in large coefficients 

𝑏𝑖 in (4.24), hence, leading to large coefficients in h (2.17), and, thus, to violation of 

(4.10). To minimize the coefficients, we need the absolute value of the determinant 

value,𝑑𝑒𝑡( 𝛥) (see (4.22)), equal to 1. Such a case is considered in the next Subsection 

4.1.2.2 and was used in Example 4.1. 

4.1.2.2 Getting |det(Δ)|=1 

For the polynomial (4.2) used in Example 4.1, from (4.22) and Figure 4.1, we have, 

|𝑑𝑒𝑡( 𝛥)| = 1; (4.25) 

𝑑𝑒𝑡( 𝛥0) = −1; 𝑑𝑒𝑡( 𝛥1) = 1; 𝑑𝑒𝑡( 𝛥2) = 0; 𝑑𝑒𝑡( 𝛥3) = 0; 𝑑𝑒𝑡( 𝛥4) = 1. (4.26) 

By substituting (4.25),(4.26) into (4.24), 

𝑓−1(𝑥) = 𝑥4 + 𝑥 − 1 (4.27) 

From (2.15), (4.27), we get (4.3). 
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We need to emphasize that having 𝑑𝑒𝑡( 𝛥) satisfies (4.25), doesn’t guarantee (4.10) to 

hold since the product (4.9) depends on the value of polynomial (2.16) used in (2.17) 

and polynomial (2.19) used in. In the following Example 4.2, we show a case when 

(4.25) holds but (4.10) doesn’t hold and NTRU modulo 𝑝 flaw is not applicable in that 

case. 

Example 4.2 Example of failing NTRU mod 𝒑 flaw when (4.25) holds but (4.10) 

doesn’t hold.  

Let according to (2.13), 

𝑁 = 11; 𝑑 = 2; 𝑝 = 3; 𝑞 = 40 > (6𝑑 + 1)𝑝 = 39 (4.28) 

Let us according to (2.14) and (4.25), 

𝑓(𝑥) = −𝑥10 − 𝑥9 + 𝑥7 + 𝑥4 + 𝑥 = [0,1,0,0,1,0,0,1,0, −1,−1] (4.29) 

For 𝑁 = 11, the matrix of coefficients in (4.19) -(4.21) is as follows 

𝛥 =

[
 
 
 
 
 
 
 
 
 
 
 
𝑓10 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9
𝑓9 𝑓10 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8
𝑓8 𝑓9 𝑓10 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7
𝑓7 𝑓8 𝑓9 𝑓10 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6
𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5
𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4
𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓0 𝑓1 𝑓2 𝑓3
𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓0 𝑓1 𝑓2
𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓0 𝑓1
𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓0
𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10]

 
 
 
 
 
 
 
 
 
 
 

 (4.30) 

To calculate the determinant of  (4.30), Maple is used, Figure 4.2. 
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Then according to (2.15), 

𝐹𝑞 = 5𝑥10 − 6𝑥9 + 7𝑥8 − 7𝑥7 + 7𝑥6 − 6𝑥5 

+5𝑥4 − 3𝑥3 + 𝑥2 + 𝑥 − 3 ∈ 𝑅𝑞  

𝐹𝑝 = 5𝑥10 − 6𝑥9 + 7𝑥8 − 7𝑥7 + 7𝑥6 − 6𝑥5 

+5𝑥4 − 3𝑥3 + 𝑥2 + 𝑥 − 3 𝑚𝑜𝑑 𝑝 (4.31) 

Let according to (2.16), (2.18) and (2.19), 𝑔(𝑥), 𝑟(𝑥), and 𝑚(𝑥) are selected as, 

𝑟(𝑥) = 𝑥4 + 𝑥2 − 𝑥 − 1, 

𝑔(𝑥) = 𝑥4 + 𝑥2 − 𝑥 − 1, 

𝑚(𝑥) = 𝑥2 + 𝑥 + 1, (4.32) 

The public key, ℎ, according to (2.17), (4.31), (4.32) is 

ℎ = 15𝑥10 − 14𝑥9 + 12𝑥8 − 9𝑥7 + 5𝑥6 − 𝑥5 

   − 4𝑥4 + 8𝑥3 − 11𝑥2 + 14𝑥 − 15 𝑚𝑜𝑑 𝑞, (4.33) 

Ciphertext according to (2.20), (4.28), (4.32),(4.33) is: 

𝑒 = 8𝑥10 + 16𝑥9 + 34𝑥8 + 33𝑥7 + 23𝑥6 + 𝑥5 + 30𝑥4 

   + 16𝑥3 + 25𝑥2 + 5𝑥 + 12. (4.34) 

After obtaining ciphertext,𝑒(𝑥) in (4.34), we try to attack (4.34) with NTRU modulo 

𝑝 attack steps introduced in Subsection 4.1.1. 

 

Figure 4.2: Definition of the matrix (4.30), and its determinant, in Maple 2016 
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First, we center-lift the ciphertext (4.34) w.r.t 𝑞 = 40,  

𝑒 = 8𝑥10 + 16𝑥9 − 6𝑥8 − 7𝑥7 − 17𝑥6 + 𝑥5 − 10𝑥4 

   + 16𝑥3 − 15𝑥2 + 5𝑥 + 12 𝑚𝑜𝑑 𝑞. (4.35) 

Then applying modulo 𝑝 operation directly to the center-lifted ciphertext (4.35), we 

get the message, 𝑚′ , that is not same as the plaintext message, 𝑚(𝑥), from (4.32), 

and, hence, the NTRU modulo 𝑝 attack doesn’t work in that case: 

𝑚′ = 𝑒 𝑚𝑜𝑑 𝑝 = 2𝑥10 + 𝑥9 + 2𝑥7 + 𝑥6 + 𝑥5 + 2𝑥4 + 𝑥3 + 2𝑥

≠ 𝑥2 + 𝑥 + 1. (4.36) 

Thus, Example 4.2 shows that despite (4.24) holding, condition (4.10) for NTRU 

modulo 𝑝 applicability does not hold, and applying modulo 𝑝 operation to the 

ciphertext (4.34) after center-lifting in (4.35), we do not get back the plaintext (4.32) 

in (4.36). 

In Example 4.2, we used 𝑓(𝑥) (4.29) modulo 𝑥𝑁 − 1, with 𝑁 = 11 since inverses, 𝐹𝑞, 

𝐹𝑝, (2.15), (4.31) have integer coefficients other than {-1,0,1} which makes holding of 

(4.25) and violating of (4.10) possible. 

4.1.3 Estimate of the Probability of NTRU Modulo p Flaw 

As discussed in Section 4.1.2.1, we need the determinant value, 𝑑𝑒𝑡( 𝛥), be equal to 1 

in order to minimize coefficients (4.24). 𝑆𝑢𝑐𝑐𝑀𝑜𝑑𝑝𝐹𝑙𝑎𝑤(𝑁, 𝑑) in (4.37) defines the 

probability a user will choose permutation of ±1 coefficients of (2.14) that ends up 

with (4.25),  

𝑆𝑢𝑐𝑐𝑀𝑜𝑑𝑝𝐹𝑙𝑎𝑤(𝑁, 𝑑) =
# 𝑓(𝑥) such that |𝑑𝑒𝑡( 𝛥)| = 1

# 𝑓(𝑥)
. (4.37) 

The number of the possible different private key, 𝑓(𝑥), the denominator of (4.37) for 

fixed (𝑁, 𝑑), is found by 
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# 𝑓(𝑥) = (
𝑁

𝑑 + 1
) (

𝑁 − (𝑑 + 1)
𝑑

) 

=
𝑁!

(𝑑 + 1)! (𝑁 − 𝑑 − 1)!
⋅

(𝑁 − 𝑑 − 1)!

𝑑! (𝑁 − 2𝑑 − 1)!
 

=
𝑁!

(𝑑 + 1)! ⋅ 𝑑! ⋅ (𝑁 − 2𝑑 − 1)!
 

=
𝑁 ⋅ (𝑁 − 1) ⋅ … ⋅ (𝑁 − 2𝑑)

(𝑑 + 1)! ⋅ 𝑑!
= 𝑂(𝑁2𝑑+1). 

(4.38) 

According to (“IEEE Standard Specification for Public Key Cryptographic Techniques 

Based on Hard Problems over Lattices,” 2009, p. 55), 1 < 𝑑 < 𝑁/3. Thus, 𝑂(𝑁2𝑑+1) 

in (4.38) is polynomial in 𝑁, and 𝑆𝑢𝑐𝑐𝑀𝑜𝑑𝑝𝐹𝑙𝑎𝑤(𝑁, 𝑑) is not negligible (see Definition, 

p. 203). Howgrave et. al., (Howgrave-Graham et al., 2005), set 𝑑 = ⌊
𝑁

2
⌋  which makes 

𝑂(𝑁2𝑑+1) exponential in 𝑁, and thus, 𝑆𝑢𝑐𝑐𝑀𝑜𝑑𝑝𝐹𝑙𝑎𝑤(𝑁, 𝑑) becomes negligible, 

Therefore, we support settings of Howgrave et. al., (Howgrave-Graham et al., 2005), 

to set 𝑑 = ⌊
𝑁

2
⌋. We conducted a statistical experiment for 𝑁 = 5, 7,  and 11, with 𝑑 =

1, … , 5. Table 4.1 shows number of different 𝑓(𝑥) formed such (4.25) holds for 

different 𝑁 values and corresponding 𝑑. 

From Table 4.1, we can see that number of 𝑓(𝑥) such (4.25) holds increases as 𝑁 

growth with fixed 𝑑. It’s also noticed that number of 𝑓(𝑥) such (4.25) holds equals to 

zero when 𝑑 = ⌊𝑁/2⌋, and thus mod 𝑝 flaw attack fails.  

Table 4.1: Numerator of (4.37) for different 𝑁 values and 

corresponding 𝑑. 

𝑵 

𝒅 

1 2 3 4 5 

5 10 0 − − − 

7 21 21 0 − − 

11 55 165 110 55 0 
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𝑆𝑢𝑐𝑐𝑀𝑜𝑑𝑝𝐹𝑙𝑎𝑤(𝑁, 𝑑) estimate roughly probability of the NTRU modulo 𝑝 flaw since 

(4.10) most likely might happen in the cases when (4.25) holds (see Example 4.2). 

4.2 Experimental Analysis of IN−Lattice Attack on NTRU Private 

Keys 

In this section, experiments were conducted (Easttom et al., 2020) to verify results in 

(Z. Yang et al., 2018b) and its supplementary material (Z. Yang et al., 2018a). 𝐼𝑁 −

𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack shown in Algorithm 2.1 has been implemented with Block-Korkine-

Zolotarev(BKZ) reduction algorithm from NTL package, parameter listed in Table 4.2 

are used to setup the experiments.  

The value of 𝑡 was recorded when a valid private key 𝑓′was found, and the probability 

prob(𝑓𝑙𝑠(𝑘) ∈ ℒ𝐼) was calculated using (2.50). Those results are listed in Table 4.3. 

Table 4.2: The parameters used in our experiments. 

 𝒅𝒇 𝒅𝒈 𝒅𝒓 𝒒 
19 2 2 2 41 

37 4 4 2 79 

57 6 6 2 113 

73 6 6 2 113 

83 8 8 2 151 

97 9 9 2 167 

107 14 14 2 257 

Table 4.3: The results of new attack in different ntru security levels. 

𝑁 19 37 57 73 83 97 107 

𝑡 3 5 10 13 18 27 Not 

found 

prob 0.99999 0.99999 0.98741 0.99691 0.64895 0.12546 Not 

found 
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Contrary to results in (Z. Yang et al., 2018a), Table 4.3 shows the exponential growth 

of parameter 𝑡 as 𝑁 increases when 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack succeeds, it means that a 

target vector 𝑓𝑙𝑠(𝑘) will belong to ℒ𝐼 with low probability. Thus 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack 

is infeasible for sufficiently large 𝑁 (see Table 4.4). In our experiment for 𝑁 = 107, 

we have not got result after 6 hours of running the code, and no valid private key 𝑓′was 

found. Figure 4.3 shows an exponential growth of 𝑡 as 𝑁 increases.  

To determine the practicality of 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack, we used the BKZ-NTL algorithm 

of NTL package  inside Yang’s algorithm to reduce those lattices and recorded the 

runtime only when we found a target vector 𝑓𝑙𝑠(𝑘) successfully. Figure 4.4 gives the 

results of the experiments. Time in this figure is given in seconds. 

 
Figure 4.3: Exponential growth of 𝑡 as 𝑁 increases 
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Since those experiments were run on a 2.0 GHz Core machine, the time in seconds is 

converted to the time in MIPS-years by first multiplying by 2.0 × 1024 (to account 

for the 2.0 GHz machine) and then dividing by 31557600 which is the number of 

seconds in a year (Z. Yang et al., 2018a). In this case, the experimental data were 

approximated by linear and quadratic fitting functions respectively as follows 

log10(𝑇) ≈ 0.05717 ⋅ 𝑁 − 6.725, (4.39) 

log10(𝑇) ≈ 0.0002817 ⋅ 𝑁2 +  0.02158 ⋅ 𝑁 − 5.852 (4.40) 

Fitting curves and data are shown in Figure 4.3. The mean squared error for linear 

approximation is 1.063, and for quadratic approximation is 0.1077. Hence, we use the 

quadratic approximation for extrapolation of time for greater 𝑁 values shown in Table 

4.4 which shows greater time than extrapolation line in (Z. Yang et al., 2018a): 

log10(𝑇) ≈ 0.065𝑁 − 7.3 (4.41) 

In Table 4.4, the expected time (MIPS-years) to break NTRU cryptosystem in 

comparison to (Z. Yang et al., 2018a) are given.  

 
Figure 4.4: Decimal logarithm of runtime in seconds of 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack (blue 

asterisks), approximation fitting line (black), and quadratic fitting (red). 
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From Table 4.4, we see that our expected time for 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack is greater than 

shown in (Z. Yang et al., 2018a). 

4.3 Summary 

In this chapter, the security of NTRU is analyzed in two sections 4.1 and 4.2. In Section 

4.1, a new attack on NTRU messages is proposed. The attack exploiting a flaw of 

NTRU allows in some cases revealing encrypted messages without the need for the 

private key. A numerical example of the attack is presented in Example 4.1. Probability 

of the attack, 𝑂(𝑁2𝑑+1), is estimated in (4.38), and it is found to be polynomial in N 

using IEEE standard parameters. In Section 4.2, 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack (Z. Yang et al., 

2018b) is experimentally tested. Experiments are conducted using parameter settings 

in Table 4.2. The results of the conducted experiments in Table 4.3 and Figure 4.3 

show an exponential growth of the parameter 𝑡. Thus, the attack becomes infeasible 

for sufficiently large 𝑁. Runtime of 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 Attack is approximated by linear 

and quadratic fitting in (4.39) and (4.40) respectively. The quadratic fitting has less 

mean squared error, 0.1077, compared to, 1.063, for linear fitting. Hence, Quadratic 

fitting is selected for extrapolation of time for greater 𝑁. Quadratic fitting time 

extrapolation shown in (4.41) shows more time than extrapolation line in (Z. Yang et 

al., 2018a). Expected time (MIPS-years) to break NTRU cryptosystem using our 

quadratic fitting in comparison to linear fitting in (Z. Yang et al., 2018a) shown in 

Table 4.4. 

Table 4.4: Expected time (MIPS-years) to break NTRU cryptosystem in 

comparison to (Z. Yang et al., 2018a) 

Parameter settings of NTRU Our results results of (Z. Yang et al., 

2018a) 

NTRU-167 105.61 103.55 

NTRU-263 1019.31 109.80 

NTRU-503 1076.28 1025.4 
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NTRU, is a standardized HE scheme that is expected to be a standardized quantum 

homomorphic cryptosystem. Therefore, it is crucial to use the parameter setting, 𝑑 =

⌊𝑁/2⌋, recommended in Howgrave et. al., (Howgrave-Graham et al., 2005) to avoid 

NTRU mod 𝑝 flaw attack. 

 



88 

Chapter 5 

5ANALYSIS OF HE1N CRYPTOSYSTEM (CLASS 4) 

In this chapter, the security of HE1N (Dyer et al., 2019) from Class 4 is analyzed 

through three sections; Section 5.1 proves that the modulus in HE1N encryption is not 

working, and thus, can be omitted. In Section 5.2, a new COA against HE1N private 

key is designed, the complexity of the attack is found, and the success probability of 

the attack is estimated. In Section5.3 a new KPA against HE1N private key is 

designed, the complexity of the attack is found, and the success probability of the 

attack is estimated. Section 5.4 summarizes the results of Chapter 5. 

5.1 Analysis of the Use of Modulus in HE1N Encryption 

Recall from Step 4 of Algorithm 2.4 HE1N encryption: 

𝑐 = 𝑚 + 𝑠𝑘 + 𝑟𝑝 𝑚𝑜𝑑 𝑝𝑞. 

The modulus operation does not work since 𝑚 + 𝑠𝑘 + 𝑟𝑝 < 𝑝𝑞 according to Theorem 

5.1 below, 

Theorem 5.1: For any valid for HE1N parameters; 𝑚 ∈ [0,𝑀);  𝑠 ∈ [0, 𝑘);  𝑘 >

(𝑛 + 1)𝑑𝑀𝑑;  𝑟 ∈ [1, 𝑞);  𝑝 > (𝑛 + 1)𝑑(𝑀 + 𝑘2)𝑑;  𝑞 > 𝑝, and 𝑑 is the degree of 

polynomial homomorphically computed over 𝑛 inputs, the following holds: 

𝑒 = 𝑚 + 𝑠𝑘 + 𝑟𝑝 𝑚𝑜𝑑 𝑝𝑞 = 𝑚 + 𝑠𝑘 + 𝑟𝑝, (5.1) 

i.e., 𝑚 + 𝑠𝑘 + 𝑟𝑝 < 𝑝𝑞, and, hence, modulus operation does not work and can be 

omitted in HE1N encryption. 

Proof. Let’s prove that 
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𝑚 + 𝑠𝑘 + 𝑟𝑝 < 𝑝𝑞, (5.2) 

 Inequality (5.2) holds if the following holds: 

𝑀 − 1 + 𝑘(𝑘 − 1) + (𝑞 − 1)𝑝 < 𝑝𝑞, (5.3) 

or 

𝑀 − 1 + 𝑘(𝑘 − 1) + 𝑝𝑞 − 𝑝 < 𝑝𝑞, (5.4) 

or 

𝑘(𝑘 − 1) + 𝑀 − 1 < 𝑝, (5.5) 

or 

𝑘2 − 𝑘 + 𝑀 − 1 < 𝑝. (5.6) 

Inequality (5.6) holds since by definition 

𝑝 > (𝑛 + 1)𝑑(𝑀 + 𝑘2)𝑑 > 2𝑀 + 2𝑘2 > 𝑘2 − 𝑘 + 𝑀 − 1, (5.7) 

 where 𝑑, 𝑛 ≥ 1. Thus, (5.1) is true, and, Theorem is proved. 

QED 

In Sections 5.2 and 5.3, new COA and KPA against HE1N private key are designed 

by exploiting the not-functioning modulus,  

5.2 Design of Ciphertext-Only Attack (COA) Against HE1N Private 

Key p 

In subsections 5.2.1-5.2.4, a new COA against HE1N private key is designed, the 

success probability of the attack has been estimated.  

5.2.1 COA Against HE1N Private Key p 

In this attack, the attacker is assumed to collect a set of 𝓂 HE1N’s ciphertexts. Then, 

the attacker applies the COA in Algorithm 5.1: 
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Algorithm 5.1 succeeds to find 𝑝 as the greatest common divisor of any pair, 

(𝑒𝑖 − 𝑒𝑗 , 𝑝𝑞), 𝑖 ≠ 𝑗, if 𝑠𝑖 = 𝑠𝑗 and 𝑚𝑖 = 𝑚𝑗.  Then, gcd(𝑒𝑖 − 𝑒𝑗 , 𝑝𝑞) = gcd(𝑘(𝑠𝑖 −

𝑠𝑗) + 𝑝(𝑟𝑖 − 𝑟𝑗) + 𝑚𝑖 − 𝑚𝑗 , 𝑝𝑞) = gcd(𝑝(𝑟𝑖 − 𝑟𝑗), 𝑝𝑞) = 𝑝. Thus, the probability 

that the attack succeeds is the probability that among 𝓂 ciphertexts can be found at 

least one pair (𝑒𝑖, 𝑒𝑗), 𝑖 ≠ 𝑗 such that 𝑠𝑖 = 𝑠𝑗 and 𝑚𝑖 = 𝑚𝑗 . 

The following section discusses the problem of estimating the probability of finding a 

matching pair in a finite set. 

Algorithm 5.1: COA Against HE1N Private Key 𝑝 

Input: a set of 𝓂 HE1N’s ciphertexts, 𝑒𝑖 = 𝑠𝑖𝑘 + 𝑟𝑖𝑝 + 𝑚𝑖 , since the modulus 

operation is not used (see Theorem 5.1) 

Output: either the private key 𝑝, or the message: “key not found”.  

1. flag = 0 

2. for 𝑖 = 1…𝓂 do 

3.    for 𝑗 = 1…𝓂 do 

4.      if 𝑖 ≠ 𝑗 and gcd(𝑒𝑖 − 𝑒𝑗 , 𝑝𝑞) ≠ 𝑞, then  

5.         𝑝 = gcd(𝑒𝑖 − 𝑒𝑗 , 𝑝𝑞) = gcd(𝑝(𝑟𝑖 − 𝑟𝑗), 𝑝𝑞)   

6.         flag=1; 

7.         break; 

8.      end if 

9.    end loop// on 𝑗 

10. end loop// on 𝑖 

11. if flag== 1 then 

12.     return 𝑝 

13. else return “key not found” 
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5.2.2 Computational Complexity of the KPA Attack 

In the worst case, Algorithm 5.1 tries step 5 for a number of runs = 𝓂2, since 𝑖, 𝑗 =

1…𝓂. Thus, the average computational complexity of Algorithm 5.1 is, 

𝓂2

2
, (5.8) 

5.2.3 Probability of Finding a Matching Pair in a Finite Set 

The birthday problem (Gorroochurn, 2012) concerns the probability of finding a 

matching pair in a finite set, and is defined as follows: 

“What is the probability that, in a group of 𝓂 people, two of them share the same 

birthday?” 

Let 𝕊 be a set of 𝓂 members randomly selected from the range [0, 𝑘),  

𝕊 = {𝑠𝑖}, 𝑖 = 1…𝓂, 𝑠𝑖 ∈ [0, 𝑘), (5.9) 

and let Pr𝑛𝑜(𝓂) be the probability that among 𝕊 no two members have the same value. 

Then, 

Pr𝑛𝑜(𝓂) = Pr(𝑠𝑖 ≠ 𝑠𝑗)  for all 𝑖, 𝑗 = 1…𝓂, and 𝑖 ≠ 𝑗, (5.10) 

Pr𝑛𝑜(𝓂) is calculated as follows (see (Diaconis & Mosteller, 1989, sec. 7.1)): 

Pr𝑛𝑜(𝓂) =  ∏(1 −
𝑖

𝑘
)

𝓂

𝑖=1

, where  1 < 𝓂 < 𝑘 . (5.11) 

The first-order Taylor series approximation for 𝑒−𝑥 can be used when 𝑥 is close to 

zero: 

𝑒−𝑥 ≈ 1 −
𝑥

1!
= 1 − 𝑥.   (5.12) 

Then, since 
𝑖

𝑘
< 1,  
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1 −
𝑖

𝑘
≈ 𝑒−𝑖 𝑘⁄ ,  (5.13) 

and thus, 

Pr𝑛𝑜(𝓂) ≈  ∏𝑒−𝑖 𝑘⁄

𝓂

𝑖=1

= 𝑒−
𝓂(𝓂+1)

2𝑘 ≈ 𝑒−𝓂2 2𝑘⁄ , where  1 ≪ 𝓂 < 𝑘 . (5.14) 

Approximation (5.14) is greater than actual Pr𝑛𝑜(𝓂) in (5.11) for 𝑘 ≥ 2; proof and 

analysis are provided in Section 5.2.4. 

Let Pr1(𝓂, 𝑘) be the probability of having at least one pair among 𝕊 with the same 

value. Then, 

Pr1(𝓂, 𝑘) + Pr𝑛𝑜(𝓂) =  1. (5.15) 

From (5.14) and (5.15),  

Pr1(𝓂, 𝑘) ≈ 1 − 𝑒−𝓂2 2𝑘⁄  . (5.16) 

HE1N’s secret parameter 𝑘 is selected such that 𝑘 ≈ 2𝛾. Substituting it into (5.16), 

one gets 

Pr1(𝓂, 𝛾) ≈ 1 − 𝑒−𝓂2 2𝛾+1 ⁄ . (5.17) 

Secret parameter 𝑠𝑖 is selected from the range [0, 𝑘), and the plaintext 𝑚𝑖 is selected 

from the range [0,
𝑘

2
) for 𝑛 = 1 and 𝑑 = 1 (see (Diaconis & Mosteller, 1989, sec. 

3.2.1)). Thus, from (5.16), (5.17), Pr2(𝓂, 𝛾), the probability of having at least two 

pairs (𝑠𝑖, 𝑠𝑗) and (𝑚𝑖, 𝑚𝑗), such that 𝑠𝑖 = 𝑠𝑗 and 𝑚𝑖 = 𝑚𝑗 is 

Pr2(𝓂, 𝛾) =Pr1(𝓂, 𝑘) ∙ Pr1 (𝓂,
𝑘

2
) ≈ (1 − 𝑒−𝓂2 2𝑘⁄ )(1 − 𝑒−𝓂2 𝑘⁄ )

< (1 − 𝑒−𝓂2 𝑘⁄ )
2
. (5.18) 

According to the definition, Pr2(𝓂, 𝛾) is negligible if  
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Pr2(𝓂, 𝛾) < (1 − 𝑒−𝓂2 2𝛾⁄ )
2

<
1

𝛾𝑐
, for any 𝑐 ≥ 0 (5.19) 

for 𝛾 > 𝛾𝑐 > 0. Let us define 𝛾𝑐. From (5.18), (5.19), taking square root from both 

sides, 

1 − 𝑒−𝓂2 2𝛾⁄ < 𝛾−
𝑐
2. (5.20) 

From (5.20), 

1 − 𝛾−
𝑐
2 < 𝑒−𝓂2 2𝛾⁄ , (5.21) 

and, applying natural logarithm to both sides of (5.21), 

− ln (1 − 𝛾−
𝑐
2) > 𝓂2 2𝛾⁄ . (5.22) 

From (5.22), we get 

2𝛾 2⁄  √− ln(1 − 𝛾−
𝑐
2) > 𝓂. (5.23) 

The minimal 𝛾 for which (5.23) holds is 𝛾𝑐. For example, when 𝑚 = 100, 𝑐 = 10, 

(5.23) holds for 𝛾 ≥ 𝛾10 = 40, and for 𝑐 = 100, 𝛾100 = 455. Thus, Pr2(𝓂, 𝛾) is 

negligible. 

Let us estimate the number, 𝓂, of members in a set 𝕊 that is required to have at least 

two matching pairs from (5.18), is 

√Pr2(𝓂, 𝛾) < 1 − 𝑒−𝓂2 𝑘⁄ , (5.24) 

and, from (5.24), 

𝑒−𝓂2 2𝛾 ⁄ < 1 − √Pr2(𝓂, 𝛾). (5.25) 

By applying natural logarithm to both sides in (5.25), 

𝓂 > 2
𝛾
2√− ln (1 − √Pr2(𝓂, 𝛾)). (5.26) 
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From (5.26), the number, 𝓂, of members in a set 𝕊 that is required to have at least two 

matching pairs is with Pr(𝓂) = 50% 

𝓂 > 2
𝛾
2
 √− ln(1 − √1/2) ≈ 1.11 ∙ 2

𝛾
2, (5.27) 

and with Pr(𝓂) = 99.9% is: 

𝓂 > 2
𝛾
2
 √− ln(1 − √0.999) ≈ 2.76 ∙ 2

𝛾
2. (5.28) 

5.2.4 Analysis of Prno(𝓶) Approximation 

In the following, the proof that Pr𝑛𝑜(𝓂) approximation, 𝑃𝑟𝑛�̃�(𝑚), is greater than 

Pr𝑛𝑜(𝓂) for 𝑘 ≥ 2. 

𝑃𝑟𝑛�̃�(𝑚) = ∏𝑒−𝑖 𝑘⁄

𝓂

𝑖=1

> ∏(1 −
𝑖

𝑘
)

𝓂

𝑖=1

= 𝑃𝑟𝑛𝑜(𝑚) (5.29) 

Proof: Inequality (5.29) holds if  

𝑒−𝑖 𝑘⁄ > 1 −
𝑖

𝑘
=

𝑘 − 𝑖

𝑘
, (5.30) 

for 𝑘 ≥ 2. Multiplying both sides of (5.30) by 𝑒𝑖 𝑘⁄  (
𝑘

𝑘−𝑖
), 

𝑘

𝑘 − 𝑖
> 𝑒𝑖 𝑘⁄ , (5.31) 

and, 

(
𝑘

𝑘 − 𝑖
)
𝑘

> 𝑒𝑖. (5.32) 

Applying ln operation to both sides of (5.32), 

𝑘 ln (
𝑘

𝑘 − 𝑖
) > 𝑖. (5.33) 

Inequality (5.33) can be written as follows: 

𝑘 ln 𝑘 − ln(𝑘 − 𝑖) > 𝑖. (5.34) 



95 

By adding ln(𝑘 − 𝑖) for both sides of (5.34): 

𝑘 ln 𝑘 > 𝑖 + ln(𝑘 − 𝑖). (5.35) 

Since 1 ≤ 𝑖 ≤ 𝓂 ≤ 𝑘 − 1. Then 

𝑘 ln 𝑘 > 𝑖 ln 𝑘 > 𝑖 + ln(𝑘 − 𝑖). (5.36) 

Inequality (5.36) holds for 𝑘 ≥ 2.  Thus, (5.29) is proved. 

QED 

Figure 5.1 shows the difference between approximated, 𝑃𝑟𝑛�̃�(𝑚), and actual 

probability Pr𝑛𝑜(𝓂) for 𝑘 = 1000 plotted by Code 5.1 From Figure 5.1, we can see 

that the difference is less than 0.015, and the difference becomes close to zero as 𝓂 

increases.  

Code 5.1: Maple code for plotting the differences between approximated and 

actual Pr𝑛𝑜(𝓂), where 1 ≤ 𝑖 ≤ 𝓂, 1 ≤ 𝓂 ≤ 𝑘, and 𝑘 = 1000. 

1. 𝐷𝑖𝑔𝑖𝑡𝑠 ∶=  100;  

 
Figure 5.1: The difference between approximated and actual probability Pr𝑛𝑜(𝓂) 

for 1 ≤ 𝑖 ≤ 𝓂, 1 ≤ 𝓂 ≤ 𝑘, and 𝑘 = 1000 
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2. 𝑒 ∶= exp(1) ;  

3. 𝑘 ∶=  1000;  

4. 𝑝𝑙𝑜𝑡([𝑒−𝑚2 (2∗𝑘)⁄ − 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(1 − 𝑖/𝑘, 𝑖 =  1 . . 𝑚)], 𝑚 = 1 . . 𝑘, 𝑐𝑜𝑙𝑜𝑟 =

 ["𝑅𝑒𝑑"])  

5.3 Design of Known Plaintext Attack Against HE1N Private Key p 

In subsections 5.3.1-5.3.3, a new KPA against HE1N private key is designed, the 

complexity of the attack, the success probability of the attack has been estimated. 

5.3.1 KPA Against HE1N Private Key p 

In this attack, the attacker is assumed to collect 𝓂 (ciphertext, plaintext) pairs of 

HE1N cryptosystem. Then the attacker applies the KPA in Algorithm 5.2: 

Algorithm 5.2: KPA Against HE1N Private Key 𝑝 

Input: a set of 𝓂 HE1N’s (ciphertext, plaintext) pairs 

Output: either the private key 𝑝, or the message: “key not found”.  

1. flag = 0 

2. 𝑥𝑖 = 𝑒𝑖 − 𝑚𝑖 = 𝑠𝑖𝑘 + 𝑟𝑖𝑝, where 𝑖 = 1…𝓂, note the modulus 

operation is not used (see Theorem 5.1) 

3. for 𝑗 = 1…𝓂 do 

4.   for 𝑗 = 1…𝓂 do  

5.      if 𝑖 ≠ 𝑗 and  gcd(𝑥𝑖 − 𝑥𝑗 , 𝑝𝑞) ≠ 1, then 

6.         set 𝑝 = gcd(𝑥𝑖 − 𝑥𝑗 , 𝑝𝑞) = gcd(𝑝(𝑟𝑖 − 𝑟𝑗), 𝑝𝑞), where 𝑝𝑞 is the 

public modulus. 

7.         set flag=1 

8.         break 

9.      end if 

10.   end loop// on 𝑗 

11. end loop// on 𝑖 

12. if flag== 1 then 

13.      return 𝑝 
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14. else return “key not found” 

Algorithm 5.2 succeeds to find 𝑝 as the greatest common divisor of any pair, 

(𝑥𝑖 − 𝑥𝑗 , 𝑝𝑞), 𝑖 ≠ 𝑗, if 𝑠𝑖 = 𝑠𝑗.  Then, gcd(𝑥𝑖 − 𝑥𝑗 , 𝑝𝑞) = gcd(𝑘(𝑠𝑖 − 𝑠𝑗) + 𝑝(𝑟𝑖 −

𝑟𝑗), 𝑝𝑞) = gcd(𝑝(𝑟𝑖 − 𝑟𝑗), 𝑝𝑞) = 𝑝. Thus, the probability that the attack succeeds is 

the probability that among 𝓂 (ciphertext, plaintext) pairs can be found at least one 

pair (𝑥𝑖 , 𝑥𝑗), 𝑖 ≠ 𝑗 such that 𝑠𝑖 = 𝑠𝑗.  

Section 5.3.2 discusses the computational complexity of Algorithm 5.2, and Section 

5.4 discusses the problem of estimating the probability of finding matching pairs in a 

finite set. 

5.3.2 Computational Complexity of The KPA Attack 

In the worst case, Algorithm 5.2 tries step 5 for a number of runs = 𝓂2, since 𝑖, 𝑗 =

1…𝓂. Thus, the average computational complexity of Algorithm 5.2 is, 

𝓂2

2
, (5.37) 

5.3.3 Probability of Finding a Matching Pair in a Finite Set 

Let 𝕊 and Pr𝑛𝑜(𝓂) be defined in (5.9) and (5.10) respectively, Pr𝑛𝑜(𝓂) is calculated 

according to (5.14). 

Let Pr1(𝓂, 𝑘) be defined in (5.15) and calculated according to (5.17) for 𝑘 ≈ 2𝛾. 

According to Definition, Pr1(𝓂, 𝛾) is negligible if  

Pr1(𝓂, 𝛾) <
1

𝛾𝑐
. for any 𝑐 ≥ 0 (5.38) 

for 𝛾≥ 𝛾𝑐. From (5.17), 
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1 − 𝑒−𝓂2 2𝛾+1 ⁄ < 𝛾−𝑐, (5.39) 

Multiplying both sides of (5.39) by 𝛾𝑐, 

𝛾𝑐 − 1 < 𝑒−𝓂2 2𝛾+1 ⁄ 𝛾𝑐. (5.40) 

Applying natural logarithm operation to both sides of (5.40), 

ln(𝛾𝑐 − 1) < ln 𝑒−𝓂2 2𝛾+1 ⁄ + 𝑐 ln 𝛾, (5.41) 

Thus, from (5.41) 

ln(𝛾𝑐 − 1) < 𝑐 ln 𝛾 −
𝓂2

2𝛾+1 
 , (5.42) 

and, from (5.42) 

𝓂2

2𝛾+1 
< ln (

𝛾𝑐

𝛾𝑐 − 1
). (5.43) 

Then, from (5.43), 

𝑚 < √2𝛾+1 ln (
1

1 − 𝛾−𝑐
). (5.44) 

The minimal 𝛾 for which (5.44) holds is 𝛾𝑐. For example, when 𝑚 = 100, 𝑐 = 1, (5.42) 

holds for 𝛾 ≥ 𝛾1 = 17, and for 𝑐 = 5, 𝛾5 = 39. Thus, Pr1(𝓂, 𝛾) is negligible. 

To estimate the required number of collected (plaintext, ciphertext) pairs to 

successfully attack with a certain probability, from (5.17), we get 

1 − Pr1(𝓂, 𝛾) = 𝑒−𝓂2 2𝛾+1 ⁄ . (5.45) 

Applying natural logarithm operation to both sides of (5.45), 

𝓂 = √−2𝛾+1 ln(1 − Pr1(𝓂, 𝛾)), (5.46) 

From (5.46), the number, 𝓂, of members in a set 𝕊 required to have at least one 

matching pair with Pr1(𝓂, 𝛾) = 50% is 
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𝓂 = √2𝛾+1 ln(2) = √1.39 ∙ 2𝛾/2 = 1.18 ∙ 2𝛾/2 , (5.47) 

and with Pr1(𝓂, 𝛾) = 99.9% : 

𝓂 = √2𝛾+1 ln(1000) = 3.72 ∙ 2𝛾/2 . (5.48) 

Thus, to attack HE1N using Algorithm 5.2 with 50% success probability for = 32, 

attacker, according to (5.47), needs 𝑚 > 1.18 ⋅ 216 ≈ 7.73 ∙ 104 (plaintext, 

ciphertext) pairs.  

The success probability of attacking HE1N by collecting 𝓂 = 100 

(plaintext/ciphertext) pairs and 𝛾 = 32 according to (5.17) is as follows: 

Pr1(𝓂, 𝛾) = 1 − 𝑒−𝓂2 2𝑘⁄ =  1 − 𝑒−1002 232+1⁄ ≈ 1.16 ⋅ 10−6. (5.49) 

Table 5.1 shows success probability (5.17) and computational complexity of 

Algorithm 5.2 (5.37), for KPA against HE1N using different 𝓂 values, at 𝛾 = 32. 

Table 5.1: KPA success probability and computational complexity, for different 𝓂 

𝓶 𝐏𝐫𝟏(𝓶, 𝛾 = 𝟑𝟐) Computational Complexity (
𝓶𝟐

𝟐
) 

100 1.16 ⋅ 10−6 5 ⋅ 103 

103 1.16 ⋅ 10−4 5 ⋅ 105 

104 0.01 5 ⋅ 107 

2 ⋅ 104 0.05 2 ⋅ 108 

5 ⋅ 104 0.25 1.25 ⋅ 109 

7.73 ⋅ 104 0.50 2.99 ⋅ 109 

105 0.69 5 ⋅ 109 

2.43 ⋅ 105 0.999 2.95 ⋅ 1010 

From Table 5.1, we can see that success probability increases as the number of 

collected (plaintext, ciphertext) pairs increases, the success probability 50%, of having 

at least one matching pair can be achieved by collecting 7.73 ⋅ 104 pairs and the 

probability of 99.9% can be achieved by collecting 2.43 ⋅ 105 pairs. 
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5.4 Summary 

In this chapter, HE1N security is analyzed. Section 5.1 proved that the modulus 

operation in HE1N encryption is effictive due to the fact that under proposed parameter 

settings, the value of the encryption is less than the modulus. Having ineffective 

modulus makes HE1N vulnerable to various attacks targeting its private key. Sections 

5.2.1 and 5.3.1 new COA and KPA attacks exploiting the not functioning modulus are 

proposed. In sections 5.2.3, 5.2.4 the success probability of the COA attack is 

analyzed. The parameters 𝛾, the length of 𝑘 in bits, and 𝓂 the number of collected 

ciphertexts can be set by eq. (5.23) so that the success probability of the COA becomes 

negligible. In Section 5.3.3, the success probability of KPA is estimated. The 

parameters 𝛾, the length of 𝑘 in bits, and 𝓂 the number of collected ciphertexts can 

be set by eq. (5.44) so that the success probability of the KPA becomes negligible. 

Complexity of both attacks is found to be 𝑂(𝓂2)   by (5.37) and (5.44). 

HE1N scheme is proposed as efficient homomorphic scheme to provide security for 

cloud computation. HE1N encryption uses an ineffective modulus operation which 

makes HE1N private key and encrypted message prone to various attacks such as KPA 

and COA attacks proposed in this chapter. In order to prevent such attacks it is 

important to select parameters such that the condition (5.2) is not satisfied.  
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Chapter 6 

6DEVELOPMENT OF RANDOM CONGRUENTIAL 

PUBLIC-KEY CRYPTOSYSTEM (RCPKC) 

NTRU, and its known variants, shown in Section 2.3.4, work with degree 𝑁 

polynomials. The main problem NTRU faces is that it is susceptible to the lattice basis 

reduction attack (LBRA) using GLR algorithm (see Appendix B) for two-dimensional 

lattices and the LLL algorithm (see Appendix B) for higher dimensions. LBRA using 

LLL algorithm solves SVP with exponential in 𝑁 running time revealing the secret 

key because the private keys are selected as polynomials with small coefficients for 

the decryption correctness (Hoffstein et al., 1999). To overcome the problem of 

susceptibility, NTRU uses large 𝑁 resulting in high computational complexity 

(Hoffstein et al., 1998; “IEEE Standard Specification for Public Key Cryptographic 

Techniques Based on Hard Problems over Lattices,” 2009). Therefore, NTRU variants, 

shown in Section 2.3.4, try minimizing NTRU computational complexity by extending 

the coefficients of the polynomials used or using matrices of polynomials that allow 

preserving the security level while decreasing the polynomial degree. The extreme 

case is a polynomial of zero degree, that is integers modulo 𝑞 >> 1, as used in the 

congruential public key cryptosystem (CPKC), shown in Section 2.3.3, but CPKC with 

the NTRU encryption/encryption mechanism is insecure against LBRA by GLR 

(crackable in about 10 iterations) (see Example C.2 in Appendix C). Therefore, the 

CPKC is considered as a toy model of NTRU because “it provides the lowest 

dimensional introduction to the NTRU public-key cryptosystem” (Hoffstein et al., 
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2014a, p. 374). The insecurity of CPKC stems from the choice of the private keys used 

as small numbers to provide decryption correctness. If CPKC could be made resistant 

to GLR attack, it would be the best possible choice for the NTRU modifications. 

Therefore, in Section 6.2, we propose a CPKC modification, random CPKC (RCPKC), 

working on degree 𝑁 = 0 polynomials modulo 𝑞. The norm of a two-dimensional 

vector formed by its private key is greater than √𝑞. RCPKC works as NTRU, and it is 

a secure version of insecure CPKC. It specifies a range from which the random 

numbers shall be selected and provides correct decryption for valid users and incorrect 

decryption for an attacker using LBRA by GLR. In Section 6.3, the security of RCPKC 

against various kinds of attacks is proved. In Section 6.4, RCPKC asymmetric 

encryption padding (RAEP), is proposed. RAEP similar to its NTRU analog, NAEP, 

is IND-CCA2 secure. Due to the use of big numbers instead of high degree 

polynomials, RCPKC is about 27 times faster in encryption and decryption than 

NTRU. Furthermore, RCPKC is more than three times faster than the most effective 

known NTRU variant, BQTRU. Compared to NTRU, RCPKC reduces energy 

consumption at least thirty times, which allows increasing the life-time of unattended 

WSNs more than thirty time. RCPKC is performance and power analysis are 

conducted in Section 6.5. Section 6.6 summarizes the chapter.  

To modify CPKC to become resistant to GLR attack, first, in Section 6.1, a region 

where GLR attack fails is shown. 

6.1 Region Resistant to GLR Attack on the CPKC Private 

Key/Message 

Recall from (B.5),  

𝜆 ≤ √𝛾2 det(𝐿)1 2⁄ , 
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where det(𝐿) = 𝑞 for the lattice 𝐿(𝑉1, 𝑉2) in (2.41). Therefore, (B.5) can be written as 

follows: 

𝜆 ≤ 𝛼√𝑞, (6.1) 

where 𝛼 = √𝛾2 ≈ 1.07. From (6.1), one gets for the relative norm, 

𝜆′ =
𝜆

√𝑞
, 

(6.2) 

the following inequality (6.3): 

𝜆′ ≤ 𝛼. (6.3) 

 GLR fails in attacking the CPKC private key/message when (6.3) is not satisfied for 

the secret vector relative norm (𝑓, 𝑔), i.e., if: 

‖(𝑓, 𝑔)‖ √𝑞⁄ > 𝛼 (6.4) 

holds, GLR fails to find the CPKC private key/message.  

CPKC selects small values for the private key (𝑓, 𝑔) in (2.29) to satisfy the decryption 

correctness condition (2.37). Hence, our goal is to propose in Section 6 a modification 

for CPKC, that is RCPKC, where (𝑓, 𝑔) satisfies (6.4) and provides correct decryption 

for valid users and incorrect decryption for an attacker using GLR. 

6.2 The proposed RCPKC 

In this section, RCPKC, an adjustment of CPKC described in Section 2.3.3.1, so that 

it becomes resistant to GLR attack, is proposed. 

6.2.1 RCPKC Main Ideas 

The main two ideas of RCPKC are: 

• Contrary to the settings (2.29) of CPKC, which uses the secret key (𝑓, 𝑔) with 

a small norm not exceeding √𝑞 so that (𝑓, 𝑔) may be found as a shortest vector 
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(SV) in the lattice 𝐸(𝑉1, 𝑉2) defined by (2.41), RCPKC uses the private key 

(𝑓, 𝑔) with a large norm meeting (6.4) so that it cannot be returned by LBRA 

using GLR as the SV, but (𝑓, 𝑔) also meets (2.37) due to the skew in its 

components. 

• However, as we mentioned in section 2.3.3.2, for any pair of integers, 𝐹 and 

𝐺, satisfying (2.42), (𝐹, 𝐺) is likely to serve as the first two components, 𝑓, 𝑔, 

of the private key. That means, in spite of the large norm of (𝑓, 𝑔), the 

SV=(𝐹, 𝐺), obtained in the result of LBRA using GLR may meet decryption 

correctness condition (2.37) and, thus, may be used for the correct plaintext 

message disclosure. That is why, our proposed RCPKC before encrypting by 

(2.35), (contrary to CPKC using a random number from the predefined range 

(2.34)), defines a range for the random number selection using the SV, (𝐹, 𝐺) 

(returned by GLR attack on the lattice 𝐸(𝑉1, 𝑉2) defined by (2.41)), so that 

decryption correctness condition (2.37) holds for (𝑓, 𝑔) but does not hold for 

(𝐹, 𝐺) which leads to the failure of LBRA using GLR on RCPKC. 

Thus, RCPKC assumes that the private key owner selects a range for a random 

value, 𝑟 (used in encryption (2.35)), based on the secret key, (𝑓, 𝑔), and respective 

SV, (𝐹, 𝐺), in the lattice, 𝐸(𝑉1, 𝑉2), defined by (2.43), guaranteeing correct 

decryption for a valid user and incorrect decryption for an attacker using GLR. 

Because of the special choice of the random value range, the proposed algorithm 

is called Random CPKC, RCPKC. The problem for RCPKC might happen is that 

the range for random numbers such as kind defined may be rather narrow and, thus, 

the security of RCPKC may suffer. However, as will be shown, the range is rather 

large and may significantly exceed the range for a secret message. 



105 

In Subsection 6.2.2, CPKC is modified to RCPKC so that it becomes immune to 

GLR attacks. Example F.1 in Appendix F shows GLR attack failure to disclose 

RCPKC encrypted message. 

6.2.2 RCPKC Proposal 

To meet (6.4), it is required that 

𝑓, 𝑟 ≥ 𝛼 ⋅ √𝑞. (6.5) 

The LBRA by GLR failure condition (6.4) holds if (6.5) is true since 

‖(𝑓, 𝑔)‖

√𝑞
=

√𝑓2 + 𝑔2

√𝑞
=

√𝛼2 ⋅ 𝑞 + 𝑔2

√𝑞
> 𝛼, 

for 𝑔 > 0. Condition (6.5), in RCPKC, substitutes for the conditions (2.29), (2.34) on 

𝑓, 𝑟, in CPKC. The message, 𝑚, and the private key, 𝑔, instead of (2.33), (2.29), used 

in CPKC, are redefined in RCPKC as follows: 

2𝑚𝑔𝐿𝑒𝑛 > 𝑔 ≥ 2𝑚𝑔𝐿𝑒𝑛−1 > 𝑚 ≥ 0 (6.6) 

where 𝑚𝑔𝐿𝑒𝑛 represents the length of 𝑚 and 𝑔 in bits. 

For RCPKC, correctness decryption condition (2.37) shall hold, that is true (see (6.11)) 

when 𝑓, 𝑟 values in addition to (6.5) meet (6.7): 

𝑞

2 ⋅ 2𝑚𝑔𝐿𝑒𝑛
> 𝑓, 𝑟. (6.7) 

since 𝑞 = 2𝑞𝐿𝑒𝑛. Then, (6.5), (6.7) can be rewritten: 

2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒𝑛−1 > 𝑓, 𝑟 ≥ 𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ . (6.8) 

To have a non-empty range for 𝑓, 𝑟, of the width at least 𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ , from (6.8), the 

following condition is obtained: 

2𝑞𝐿𝑒𝑛 2⁄

2 ⋅ 𝛼
> 2𝑚𝑔𝐿𝑒𝑛+1. 

(6.9) 
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By defining 𝛽 = log2 1/(2 ⋅ 𝛼) ≈ −1.103, (6.9) shows that 

2𝛽 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ > 2𝑚𝑔𝐿𝑒𝑛+1, 

𝑞𝐿𝑒𝑛 + 2 ⋅ 𝛽 > 2 ⋅ (𝑚𝑔𝐿𝑒𝑛 + 1), 

𝑞𝐿𝑒𝑛 > 2 ⋅ (𝑚𝑔𝐿𝑒𝑛 + 1 − 𝛽). (6.10) 

Let’s show that the decryption correctness condition (2.37) holds when (6.6), (6.8), 

and (6.10) hold: 

𝑟 ⋅ 𝑔 + 𝑓 ⋅ 𝑚 < 2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒𝑛−1 ⋅ 2𝑚𝑔𝐿𝑒𝑛 + 2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒𝑛−1 ⋅ 2𝑚𝑔𝐿𝑒𝑛−1 

< 2𝑞𝐿𝑒𝑛−1 + 2𝑞𝐿𝑒𝑛−1 = 2𝑞𝐿𝑒𝑛 = 𝑞. (6.11) 

Thus, for RCPKC, the norm (𝑓, 𝑔) meets (6.4) and the decryption correctness 

condition (6.11) holds. We need additionally that decryption correctness condition 

(6.11) to be violated for (𝐹, 𝐺), that is the SV obtained in the result of GLR attack on 

the lattice 𝐸(𝑉1, 𝑉2) defined by (2.41). Hence, it cannot be used as a private key for 

the plaintext message correct decryption. 

All vectors (𝐹𝑖, 𝐺𝑖) obtained in the course of GLR reduction that have norms 

‖(𝐹𝑖, 𝐺𝑖)‖ < 𝜇‖(𝑓, 𝑔)‖, 𝑖 = 1,… ,𝑁, (6.12) 

must be listed, where 𝑁 is the number of (𝐹, 𝐺) pairs satisfying (6.12), 𝜇 is a threshold, 

e.g., 𝜇 = 10, and then it must be checked that 

(∀𝑖 = 1,… ,𝑁)((𝐹𝑖, 𝐺𝑖) ≠ (𝑓, 𝑔)). (6.13) 

If (6.13) is violated, i.e., one of the vectors in the list is our vector (𝑓, 𝑔), then another 

(𝑓, 𝑔) is used. 

Inequality (6.8) defines a range for 𝑟 so that 𝑓, 𝑔, 𝑟, 𝑚 meet (2.37). Now, constraint 

on 𝑟 is defined as follows: 
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𝑞

𝑔
− 𝑓 ≥ 𝑟𝑚𝑎𝑥 ≥ 𝑟 ≥ 𝑟𝑚𝑖𝑛 ≥ (𝑞 + 𝑔 ⋅ max

𝑖=1,…,𝑁
|𝐹𝑖|) min

𝑖=1,…
|𝐺𝑖|⁄ , (6.14) 

such that 𝐹𝑗, 𝐺𝑗, 𝑟, 𝑚 violate (2.37) for any 𝑗 = 1,… ,𝑁. We require also that  

ℎ ⋅ 𝑟𝑚𝑖𝑛 > 𝑞. (6.15) 

Using (6.14) and (6.6), it is noticed that actually decryption correctness condition 

(2.37) for any 𝑗 = 1,… ,𝑁, is violated: 

|𝐺𝑗 ⋅ 𝑟 + 𝐹𝑗 ⋅ 𝑚| ≥ |𝐺𝑗 ⋅ 𝑟| − |𝐹𝑗 ⋅ 𝑚| ≥ |𝐺𝑗| ⋅
𝑞 + 𝑔 ⋅ max

𝑖=1,…,𝑁
|𝐹𝑖|

min
𝑖=1,…,𝑁

|𝐺𝑖|
− |𝐹𝑗 ⋅ 𝑚| 

≥ 𝑞 + 𝑔 ⋅ max
𝑖=1,…,𝑁

|𝐹𝑖| − |𝐹𝑗 ⋅ 𝑚| > 𝑞. (6.16) 

From (6.6), (6.14), it is also perceived that the decryption correctness condition (2.37) 

holds for the original (𝑓, 𝑔): 

𝑔 ⋅ 𝑟𝑚𝑎𝑥 + 𝑓 ⋅ 𝑚 ≤ 𝑔(𝑞 𝑔⁄ − 𝑓) + 𝑓 ⋅ 𝑚 = 𝑞 − 𝑓(𝑔 + 𝑚) < 𝑞. (6.17) 

Thus, inequality (6.8) is used for 𝑓, but for 𝑟 from (6.14) and (6.8): 

𝑟𝑚𝑎𝑥 > 𝑟 ≥ max (𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ , 𝑟𝑚𝑖𝑛). (6.18) 

For RCPKC security, the range defined by (6.18) shall be rather large, such as, e.g., 

max(𝑎 · 2𝑞𝐿𝑒𝑛 2⁄ , 𝑟𝑚𝑖𝑛), hence, it is desirable having: 

𝑟𝑚𝑎𝑥 ≥ 2 ⋅ max(𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ , 𝑟𝑚𝑖𝑛). (6.19) 

To provide CCA indistinguishability (see Section Definition G.28), it is required to 

have 

gcd(𝑔, 𝑞) > 1. (6.20) 

Thus, RCPKC proposal follows. 
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RCPKC proposal: 

The private key components, (𝑓, 𝑔), meet (2.30), (2.31), (6.6), (6.8), and (6.20), where 

𝑞𝐿𝑒𝑛, 𝑚𝑔𝐿𝑒𝑛 meet (6.10). The public key component, ℎ, is defined by (2.32). 

Message, 𝑚, meets (6.6), and random integer, 𝑟, is selected from the range defined in 

(6.14), (6.15) and (6.18). Encryption and decryption follow (2.35), (2.36) and (2.39), 

respectively. The decryption correctness condition (2.37) is proven for RCPKC in 

(6.17). 

Example F.1 shown in Appendix F is an example of RCPKC encryption and 

decryption, and GLR failure to find RCPKC private key/message. RCPKC is also 

resistant to various attacks, as shown in the security analysis presented in the next 

section.  

6.3 Security Analysis 

In this section, attacks on NTRU are considered: brute force (on the key and message), 

and meet-in-the-middle (MITM) in Subsection 6.3.1, lattice basis reduction in 

Subsection 6.3.2, hybrid lattice basis reduction, and MITM (Howgrave-Graham, 2007) 

in Subsection 6.3.3, multiple transmission (MTA) (Hoffstein et al., 1998) in 

Subsection 6.3.5, and also, the most recent, chosen-ciphertext (Gama & Nguyen, 2007; 

Hoffstein et al., 2017; Howgrave-Graham, Nguyen, et al., 2003; Jaulmes & Joux, 

2000), in Subsection 6.3.5), and we try applying them to RCPKC. Herein, the NTRU 

parameters used, EES401EP1 (“IEEE Standard Specification for Public Key 

Cryptographic Techniques Based on Hard Problems over Lattices,” 2009), of the 

security level, 𝑘 = 112 bits:  

𝑁 = 401, 𝑝 = 3, 𝑞 = 2048, 𝑑𝑓1 = 𝑑𝑓2 = 8, 

 𝑑𝑓3 = 6, 𝑑𝑔 = 133, 𝑑𝑟1 = 𝑑𝑟2 = 8, 𝑑𝑟3 = 6 (6.21) 
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To meet the same security level, the RCPKC settings satisfying (6.10) are: 

𝑞𝐿𝑒𝑛 = 473,𝑚𝑔𝐿𝑒𝑛 = 255, (6.22) 

The key space cardinality (defined in Subsection 6.3.1 for the parameters (6.21) and 

(6.22)) is greater than or equal to 22·𝑘 for 𝑘 = 112 to avoid the MITM attack explained 

in Subsection 6.3.1. 

6.3.1 Brute Force and MITM Attacks 

An attacker can recover the NTRU private key by trying all possible values of 𝑔 and 

testing whether 𝑓 · ℎ 𝑚𝑜𝑑 𝑞 has small coefficients (the product corresponds to 𝑔 

according to (2.32)). On the other hand, an attacker can try all possible values of 𝑔 and 

test whether ℎ−1 · 𝑔 𝑚𝑜𝑑 𝑞 (corresponding to 𝑓 by virtue of (2.32)) has small 

coefficients. Equations (6.23) and (6.24) show the search space cardinalities for 𝑔 and 

𝑓 for the security level, 𝑘 = 112 (taking into account the MITM attack explained later 

in this section). The search space cardinality for 𝑓 is computed as follows (see 

(Hoffstein et al., 2017) (Section 7)): 

𝐶𝑁𝑇𝑅𝑈(𝑓, 𝑘) = (
𝑁
𝑑𝑓1

) (
𝑁 − 𝑑𝑓1

𝑑𝑓1
) (

𝑁
𝑑𝑓2

) (
𝑁 − 𝑑𝑓2

𝑑𝑓2
) (

𝑁
𝑑𝑓3

) (
𝑁 − 𝑑𝑓3

𝑑𝑓3
) 

= (
401
8

) (
393
8

) (
401
8

) (
393
8

) (
401
6

) (
395
6

) 

= 1.16 × 1090 ≥ 22⋅𝑘 = 2224. (6.23) 

Similarly, for 𝑔: 

𝐶𝑁𝑇𝑅𝑈(𝑔, 𝑘) = (
𝑁
𝑑𝑓1

) (
𝑁 − 𝑑𝑓1

𝑑𝑓1
) = (

401
133

) (
268
133

)

= 4.34 × 10188 ≥ 22⋅𝑘2224. 

(6.24) 

it is perceived the search space cardinality for 𝑓 is less than that for 𝑔, so the best 

strategy for an attacker is to search for 𝑓 values. 
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An attacker can reduce the search space cardinality from 2𝑘 to 2𝑘 2⁄  (Howgrave-

Graham, Silverman, & Whyte, 2003) using MITM by splitting the private key 𝑓 

(which is a polynomial of degree 𝑁 − 1) into two polynomials, 𝑓 = 𝑓1 + 𝑓2, where 𝑓1 

is a polynomial of degree at most 𝑁/2 − 1 and polynomial 𝑓2 contains terms of degree 

between 𝑁/2 and 𝑁 − 1, and then trying matches: 𝑓1 · ℎ 𝑚𝑜𝑑 𝑞 = (𝑔 − 𝑓2 ·

ℎ) 𝑚𝑜𝑑 𝑞. Hence, to meet the 𝑘 = 112 security level, the NTRU parameters must be 

chosen to meet the 𝑘 = 224 security level, as it is already made in (6.21). For RCPKC, 

the secret value, 𝑔, is selected from the interval [2𝑚𝑔𝐿𝑒𝑛−1 , 2𝑚𝑔𝐿𝑒𝑛) (see (6.6)); hence, 

the search space cardinality for 𝑔 to meet the 2 ⋅ 𝑘-bit security level against the brute 

force attack shall satisfy: 

𝐶𝑅𝐶𝑃𝐾𝐶(𝑔, 𝑘) = 2𝑚𝑔𝐿𝑒𝑛−1 ≥ 22⋅𝑘 (6.25) 

The secret value, 𝑓, is selected from the interval [𝛼 · 2𝑞𝐿𝑒𝑛 2⁄ , 2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒𝑛−1) (see 

(6.8)); hence, the search space cardinality for 𝑓 to meet the 2 · 𝑘-bit security level 

against the brute force attack shall satisfy: 

𝐶𝑅𝐶𝑃𝐾𝐶(𝑓, 𝑘) = 2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒𝑛−1 − 𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ ≥ 22⋅𝑘 (6.26) 

For the parameters (6.22), 𝐶𝑅𝐶𝑃𝐾𝐶(𝑔, 𝑘) = 2224, while 𝐶𝑅𝐶𝑃𝐾𝐶(𝑓 , 𝑘) ≈ 2247. In order 

to provide the security level for 𝑘 = 112, the parameters (6.22) are chosen to meet the 

twice greater security level of 2 · 𝑘 = 224 to counter the MITM attack, considered 

below, which reduces the brute force attack effort by the square root. Since 

𝐶𝑅𝐶𝑃𝐾𝐶(𝑔, 𝑘) < 𝐶𝑅𝐶𝑃𝐾𝐶(𝑓 , 𝑘), the best strategy for an attacker is to search for 𝑔 

values. Similar to NTRU, the MITM attack can be applied to the RCPKC private key 

component, 𝑔. Since 𝑚𝑔𝐿𝑒𝑛 is the bit length of 𝑔, then 𝑔 = 𝑔1 + 2(𝑚𝑔𝐿𝑒𝑛−1)/2 ⋅ 𝑔2, 

and then, 𝑔1 and 𝑔_2 , each of a bit length equal to (𝑚𝑔𝐿𝑒𝑛 − 1)/2, can be enumerated 

with the resulting search space cardinality 𝒪(2(𝑚𝑔𝐿𝑒𝑛−1) 2⁄ ) trying to find matching 



111 

(𝑓 ⋅ ℎ − 𝑔1) 𝑚𝑜𝑑 𝑞 = 2(𝑚𝑔𝐿𝑒𝑛−1) 2⁄ ⋅ 𝑔2 𝑚𝑜𝑑 𝑞. 

Thus, the RCPKC parameters (6.22) provide the security level 𝑘 = 112 against the 

brute force attack with MITM. Now, let us consider the brute force attack on the 

message. 

An attacker can compromise an NTRU message by trying all possible values of 𝑟 and 

testing whether 𝑒 − 𝑟 · ℎ 𝑚𝑜𝑑 𝑞 has small coefficients. Similarly, the attacker can 

compromise the RCPKC message by trying all possible values of 𝑟 and testing if 𝑒 −

𝑟 ⋅ ℎ 𝑚𝑜𝑑 𝑞 ∈  [0, 2𝑚𝑔𝐿𝑒𝑛−1) by virtue of (6.6). 

The RCPKC message search space is defined by the interval [0, 2𝑚𝑔𝐿𝑒𝑛−1) (see (6.6)); 

hence, the search space cardinality 𝑓 or 𝑚 to meet the 2 · 𝑘-bit security level against 

the brute force attack shall satisfy: 

𝐶𝑅𝐶𝑃𝐾𝐶(𝑚, 𝑘) = 2𝑚𝑔𝐿𝑒𝑛−1 ≥ 22⋅𝑘, (6.27) 

while the search space of 𝑟 is defined by (6.14), (6.18), and (6.19). Hence, the search 

space cardinality for 𝑟 to meet the 2 · 𝑘-bit security level against the brute force attack 

shall satisfy: 

𝐶𝑅𝐶𝑃𝐾𝐶(𝑟, 𝑘) = 𝑟𝑚𝑎𝑥 − max(𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ , 𝑟𝑚𝑖𝑛) ≥ 22⋅𝑘. (6.28) 

Table 6.1: Width of the range for the 𝑟 value for different security levels. 

# RCPKC Parameter 𝟐 × 𝒌 

  224 336 448 
1 𝑚𝑔𝐿𝑒𝑛 225 337 450 
2 𝑞𝐿𝑒𝑛 473 743 909 
3 𝑓 = 2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒−1

− 1 

2.26 × 1074 8.26 × 10121 7.44 × 10137 

4 𝑔 2𝑚𝑔𝐿𝑒𝑛 − 1
= 5.39 × 1067 

2𝑚𝑔𝐿𝑒𝑛 − 5
= 2.79 × 10101 

2𝑚𝑔𝐿𝑒𝑛 − 11
= 2.90 × 10135 

5 𝑟𝑚𝑎𝑥 2.26 × 1074 8.26 × 10121 7.44 × 10137 

6 max(𝛼2𝑞𝐿𝑒𝑛 2⁄ , 𝑟𝑚𝑖𝑛) 7.41 × 1072 1.62 × 10119 1.10 × 10137 
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Table 6.1 shows the 𝑚𝑔𝐿𝑒𝑛 and 𝑞𝐿𝑒𝑛 values to meet different 2 · 𝑘-bit security levels’ 

condition (6.28) (see Rows 1 and 2) and the width of the range for 𝑟 (Row 7) with 𝑓 

and 𝑔 specified in Rows 3 and 4, respectively. It proves that the method can be 

practically used. 

6.3.2 Lattice Basis Reduction Attacks 

The NTRU lattice basis, 𝐿ℎ
𝑁𝑇𝑅𝑈, associated with public key ℎ defined in (2.17) is 
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, 

where ℎ0, . . . , ℎ𝑁−1 are coefficients of the polynomial ℎ. For convenience, matrix 

𝐿ℎ
𝑁𝑇𝑅𝑈 is abbreviated as  

𝐿ℎ
𝑁𝑇𝑅𝑈 = (

𝐼 ℎ

0 𝑞𝐼
). 

The NTRU private key recovery problem can be formulated as the SVP in 2𝑁-

dimensional lattice, 𝐿ℎ
𝑁𝑇𝑅𝑈. If a polynomial, 𝑏, of degree 𝑁 − 1 with integer 

coefficients satisfying: 

𝑓 ⋅ ℎ + 𝑞 ⋅ 𝑏 = 𝑔 

exists, then: 

(𝑓, 𝑏) = 𝐿ℎ
𝑁𝑇𝑅𝑈 = (𝑓, 𝑔). 

7 𝑐𝑅𝐶𝑃𝐾𝐶(𝑟, 𝑘) 2.1 × 1074 8.24 × 10121 6.34 × 10137 
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Therefore, the vector (𝑓, 𝑔) is in the lattice 𝐿ℎ
𝑁𝑇𝑅𝑈. Vector (𝑓, 𝑔) or its rotation (rotation 

of a polynomial, 𝑓, by 𝑖 steps, is 𝑥𝑖  · 𝑓 ∈ 𝑅𝑞 for an integer 𝑖) can be found if it is the 

shortest vector in 𝐿ℎ
𝑁𝑇𝑅𝑈. The lattice reduction algorithm LLL (see Appendix B) finds 

the shortest vector in 𝐿ℎ
𝑁𝑇𝑅𝑈 in time exponential in 𝑁. According to (Hoffstein et al., 

1999), LLL takes 1.05 × 1031 MIPS (million instructions per second)-years to find 

the shortest vector or its rotation for 𝑁 = 400 (as in (6.21)) that most likely is the 

NTRU private key part, (𝑓 , 𝑔). 

Contrary to NTRU, RCPKC is resistant to LBRA since the GLR attack fails for it (see 

Subsection 6.2.2). LBRA is one of the most used and effective techniques in attacking 

an NTRU private key (e.g., it is used in the hybrid lattice attack, the most efficient on 

practical NTRU parameters (Kirchner & Fouque, 2017); see Subsection 6.3.4), but it 

does not apply to RCPKC. 

6.3.3 A Hybrid Lattice Basis Reduction and MITM Attack 

The attack (Howgrave-Graham, 2007) on the NTRU secret key combines the LBRA 

and MITM strategies. The hybrid attack, first, splits the original lattice of order 2𝑁, 

𝑁 > 1, into three subparts, only one of which is further reduced, whereas the vectors 

from the other parts are just enumerated, thus combining the concepts of the LBRA 

and MITM attacks. The hybrid attack is not applicable to RCPKC since:  

- The RCPKC lattice is two-dimensional and cannot be split into three subparts; 

- RCPKC uses a large norm secret (𝑓 , 𝑔) vector (see (6.6) and (6.8)) that cannot 

be found by LBRA looking for an SV, and the SV cannot be used for correct 

decryption (see (6.16)) 
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6.3.4 Multiple Transmission Attack 

MTA reveals a large part of an NTRU message by sending 𝑛 times the same message, 

𝑚, using the same public key, ℎ, but different random values, 𝑟𝑖. For NTRU encryption 

(2.35) 

𝑒𝑖𝑟𝑖 ⋅ ℎ + 𝑚 𝑚𝑜𝑑 𝑞 

for 𝑖 = 1,2, … , 𝑛. An adversary computes: 

(𝑒𝑖 − 𝑒1) ⋅ ℎ−1 𝑚𝑜𝑑 𝑞, 

There by recovering 𝑟𝑖 − 𝑟1 𝑚𝑜𝑑 𝑞, 𝑖 = 1,… , 𝑛, and from these relations, many 

coefficients of 𝑟1 may be revealed. Knowledge of 𝑟1 allows disclosing the message, 

𝑚. RCPKC is not susceptible to MTA because no special structure is assumed for 𝑟1 

contrary to the case of NTRU. 

6.3.5 Chosen Ciphertext Attack 

Three chosen-ciphertext attacks (CCA) on NTRU are known. The first key recovering 

CCA described in (Jaulmes & Joux, 2000) uses a ciphertext of a special shape, which 

can be countered by message padding (Hoffstein et al., 2017). Standardized parameters 

(Hoffstein et al., 2017) allow decryption failure, i.e., a ciphertext could fail to be 

decrypted correctly by NTRU. In (Howgrave-Graham, Nguyen, et al., 2003), a CCA 

was presented where an attacker collects a large number of decryption failures; see the 

NTRU correction decryption condition (2.29) in Subsection 2.3.1. Another CCA was 

presented in (Gama & Nguyen, 2007), which is more efficient than (Howgrave-

Graham, Nguyen, et al., 2003), but still depends on decryption failures. RCPKC works 

on non-structured integers, and the parameters, set in Subsection6.2.2, guarantee 

correct decryption. Thus, neither of the CCAs described above apply to RCPKC. 
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6.4 RCPKC Asymmetric Encryption Padding and its IND-CCA2 

Security 

In this section, we prove the security of the RCPKC one-way function based on the 

discussions of the security of the NTRU one-way function in (Howgrave-Graham et 

al., 2005), define RCPKC asymmetric encryption padding (RAEP), and prove its IND-

CCA2 security as a particular case of NAEP (see Appendix G). According to Section 

6.2.2, RCPKC defines the following four sets: 

• 𝒟𝑓 = [𝛼 ⋅ 2𝑞𝐿𝑒𝑛 2⁄ , 2𝑞𝐿𝑒𝑛−𝑚𝑔𝐿𝑒𝑛−1): private key space, an interval from which 

a private key, 𝑓, is selected; 

• 𝒟𝑔 = [2𝑚𝑔𝐿𝑒𝑛−1, 2𝑚𝑔𝐿𝑒𝑛): private key space, an interval from which a private 

key, 𝑔, is selected; 

• 𝒟𝑚 = [0,2𝑚𝑔𝐿𝑒𝑛−1): RCPKC plaintext space, an interval from which a 

plaintext, 𝑚, is selected; 

• 𝒟𝑟 = [max (𝛼 ⋅ 2
𝑞𝐿𝑒𝑛

2 , 𝑟𝑚𝑖𝑛) , 𝑟𝑚𝑖𝑛]: RCPKC random value space. 

The RCPKC encryption primitive is specified by the parameter set,𝒫 =

(𝑞,𝒟𝑓 , 𝒟𝑔, 𝒟𝑚, 𝒟𝑟). The one-way function underlying RCPKC is: 

𝐹ℎ: 𝒟𝑚 × 𝒟𝑟 → ℤ𝑞 , 

𝐹ℎ(𝑚, 𝑟) = 𝑟 ⋅ ℎ + 𝑚 𝑚𝑜𝑑 𝑞. 

Definition 6.1. RCPKC-OW problem: For a parameter set, 𝒫, we denote by 

𝑆𝑢𝑐𝑐𝑅𝐶𝑃𝐾𝐶
𝑂𝑊 (𝒜,𝒫) the success probability of a PPT adversary, 𝒜, for finding a pre-

image of 𝐹ℎ, 

𝑆𝑢𝑐𝑐𝑅𝐶𝑃𝐾𝐶
𝑂𝑊 (𝒜,𝒫) = Pr (

(𝑚′, 𝑟′) ← 𝒜(𝑒, ℎ)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡(∃𝑟′ ∈ 𝒟𝑟)(𝐹ℎ(𝑚′, 𝑟′) = 𝑒)
) . 
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Assumption 6.1: RCPKC-OW assumption: For every PPT adversary, 𝒜, solving the 

RCPKC-OW problem, there exists a negligible function, 𝑣𝐴(𝑘), such that for 

sufficiently large 𝑘, we have: 

𝑆𝑢𝑐𝑐𝑅𝐶𝑃𝐾𝐶
𝑂𝑊 (𝒜,𝒫) ≤ 𝑣𝐴(𝑘). 

An adversary 𝒜1 can compromise (𝑚, 𝑟) by picking 𝑟′ ∈ 𝒟𝑟, substituting it in 

(𝑒 − 𝑟′ ⋅ ℎ) 𝑚𝑜𝑑 𝑞, and checking, if the result is in 𝒟𝑚. Thus, 𝑆𝑢𝑐𝑐𝑅𝐶𝑃𝐾𝐶
𝑂𝑊 (𝒜1, 𝒫) is: 

𝑆𝑢𝑐𝑐𝑅𝐶𝑃𝐾𝐶
𝑂𝑊 (𝒜1, 𝒫) =

2𝑚𝑔𝐿𝑒𝑛

2𝑞𝐿𝑒𝑛
. 

Since 𝑞𝐿𝑒𝑛 > 𝑚𝑔𝐿𝑒𝑛 by definition (6.10), 𝑆𝑢𝑐𝑐𝑅𝐶𝑃𝐾𝐶
𝑂𝑊 (𝒜1, 𝒫) decreases 

exponentially in 𝑞𝐿𝑒𝑛, and Assumption holds. Similarly, the attacker can try the 

following methods with an exponentially decreasing success probability: 

1. The adversary, 𝒜2, chooses randomly a pair (𝑟′ ∈ 𝒟𝑟 , 𝑚′ ∈ 𝒟𝑚) and checks 

if 𝑟′ · ℎ + 𝑚′ 𝑚𝑜𝑑 𝑞 = 𝑒. 

2. The adversary, 𝒜3, picks 𝑓′ ∈ 𝒟𝑓 , substitutes it in 𝑓′ · ℎ 𝑚𝑜𝑑 𝑞, and checks 

whether the result is in 𝒟𝑔. 

3. The adversary, 𝒜4, chooses randomly a pair (𝑓′ ∈ 𝒟𝑓 , 𝑔
′ ∈ 𝒟𝑔), if possible, 

calculates ℎ′, decrypts 𝑒 to (𝑟′,𝑚′), and checks if 𝑟′ · ℎ′ + 𝑚′ 𝑚𝑜𝑑 𝑞 = 𝑒.  

4. Furthermore, the adversary can apply the GLR attack to get (𝑓 , 𝑔). However, 

by construction, RCPKC is immune to that attack, and hence, the success 

probability is zero. Therefore, the Assumption is true for all the above attacks. 

RCPKC encryption (2.35) differs from NTRU encryption (2.20) just by setting 

𝑁 = 𝑝 = 1. The conclusion of (Howgrave-Graham, Silverman, Singer, et al., 

2003) on NAEP IND-CCA2 security is also true for asymmetric encryption 

padding, RAEP. However, NAEP cannot be used as-is for 𝑁 = 𝑝 = 1 because it 
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utilizes specific true polynomial functions center() and compress(). Since the 

decryption correctness condition (2.37) holds for RCPKC due to the parameter 

choice, the center() function is not used in RCPKC and RAEP. The function 

compress() as in NAEP shall map its input, 𝑝 · 𝑟 · ℎ, to a binary string, 𝑏𝑠, of the 

padded message size. In NAEP, it is done in two steps: 𝑠 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑝 · 𝑟 ·

ℎ 𝑚𝑜𝑑𝑞); 𝑏𝑠 = 𝐻(𝑠). In RAEP, both transforms are done by one hash function, 

𝐻: ℤ𝑞 → {0, 1}𝑚𝑔𝐿𝑒𝑛. Algorithm 6.1 and Algorithm 6.2 show RAEP encryption 

and decryption, respectively. 

Algorithm 6.1: RAEP encryption algorithm 

Input: 𝑁 = 𝑚𝑔𝐿𝑒𝑛 = 𝜃(𝑘) is the length of the RCPKC encrypted message; 

𝑁 > 𝑙 = 𝜃(𝑘) is the padding size; 𝐺: {0,1}𝑁−𝑙 × {0,1}𝑙 → 𝒟𝑟 and 

𝐻: ℤ𝑞 → {0,1}𝑁 are hash functions; 𝒟𝑟 is defined by (6.13), (6.17) and 

(6.18); 𝑚 ∈ {0,1}𝑁−𝑙 is the input plaintext message. 

Output: 𝑒 ∈ ℤ𝑞 is the ciphertext. 

1. 
Pick 𝜇

$
← {0,1}𝑙 

2. Let 𝜌 = 𝐻(𝑚, 𝜇), 𝑟 = 𝑔𝑒𝑛𝑟(𝜌), 𝑠 = 𝑟 ⋅ ℎ 𝑚𝑜𝑑 𝑞, and 𝜔 = (𝑚||𝜇) ⊕

𝐻(𝑠)// 𝑔𝑒𝑛𝑟( ) is a function generating correct 𝑟 according to (6.14), 

(6.15), (6.18), and (6.19). 

3. Let 𝑒 = 𝐹ℎ(𝑚, 𝑟) // according to (2.35) 

 

Algorithm 6.2: RAEP decryption algorithm 

Input: 𝑁 = 𝜃(𝑘) is the length of the RCPKC encrypted message; 𝑁 > 𝑙 =

𝜃(𝑘) is the padding size; 𝐺: {0,1}𝑁−𝑙 × {0,1}𝑙 → 𝒟𝑟 and 𝐻: {0,1}𝑁 →

{0,1}𝑁 are hash functions; 𝒟𝑟 is defined by the space for 𝑟; 𝑒 ∈ ℤ𝑞 id the 

ciphertext. 

Output: 𝑚 ∈ {0,1}𝑁−𝑙 is the decrypted plaintext message if decrypted 

correctly, and Reject, otherwise. 

1. 𝑎 = 𝑓 ⋅ 𝑒 𝑚𝑜𝑑 𝑞 // according to (2.36) 
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Evaluations of performance and power consumption are provided in Section6.5. 

6.5 RCPKC Performance and Power Consumption Evaluation 

6.5.1 RCPKC Performance Evaluation 

Experiments were conducted using the NTRU code (GitHub - 

NTRUOpenSourceProject/Ntru-Crypto: Open Source NTRU Public Key 

Cryptography and Reference Code, n.d.) and RCPKC implementation in the C99 

language similar to (GitHub - NTRUOpenSourceProject/Ntru-Crypto: Open Source 

NTRU Public Key Cryptography and Reference Code, n.d.) with the NTL library 

(NTL: A Library for Doing Number Theory, n.d.) on a PC equipped with 1.6 GHz Intel 

Core i5-8250U, 8 GB RAM, and Windows 10 (see the main part of RCPKC source 

code is available in Appendix J, and the full code is available in (Anasnet/RCPKC-

Project: Open Source RCPKC Cryptosystem Reference Code, n.d.)). Both the NTRU 

code (GitHub - NTRUOpenSourceProject/Ntru-Crypto: Open Source NTRU Public 

Key Cryptography and Reference Code, n.d.) and the proposed RCPKC were 

implemented in Visual Studio 2017. The NTRU parameters (6.21) and the RCPKC 

parameters (6.22) were used. The CPU encryption and decryption time of RCPKC and 

NTRU was measured for 103, 104, and 105 runs. In each run, a distinct 128-bit 

message was encrypted/decrypted with both cryptosystems. The NTL function 

2. 𝜔 = 𝐹𝑔 ⋅ 𝑎 𝑚𝑜𝑑𝑔 // according to (2.39). 

3. 𝑠 = 𝑒 − 𝜔 𝑚𝑜𝑑 𝑞  

4. 𝑚||𝜇 = 𝜔 ⊕ 𝐻(𝑠);𝑟 = 𝑔𝑒𝑛𝑟(𝐺(𝑚‖𝜇)) 

5. if 𝑟 ⋅ ℎ = 𝑠 𝑚𝑜𝑑 𝑞 

6.      output 𝑚 

7. else  

8.      output Reject 
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RandomLen() was used to pseudo-randomly generate the messages. RandomLen() 

was seeded with the output of the function clock(). The generated messages were 

stored in a separate file and used to test RCPKC and NTRU. The CPU time was 

measured via QueryPerformanceCounter() with ns accuracy. 

Table 6.2 shows the sample mean, �̅�, standard deviation, 𝜎, and confidence interval 

with the confidence level 𝐶 ∈ {0.95, 0.99, .0.999} for the number of runs 𝑛 ∈

{103, 104, 105}, respectively for RCPKC and NTRU. The confidence interval, [𝑙, 𝑢], 

is calculated using (Moore, 2006, p. 350): 

[𝑙, 𝑢] = [�̅� − 𝑧∗
𝜎

√𝑛
, �̅� + 𝑧∗

𝜎

√𝑛
 ], (6.29) 

where �̅� = (∑ 𝑥𝑖
𝑛
𝑖=1 ) 𝑛⁄ , 𝜎 = √∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1 (𝑛 − 1)⁄ , 𝑥𝑖, and 𝑛 are the sample 

mean, sample standard deviation, the value of the run, and number of runs, 

respectively; 𝑧∗ is the critical value required for the specific confidence level; see 

Table C in (Moore, 2006, p. 687). For example, in Table 6.2 for RCPKC encryption 

with 𝐶 = 95%, 𝑛 = 103, �̅� = 6.19 × 10−6 , 𝜎 = 3.966 × 10−6 , 𝑧∗ = 1.960, the 

confidence interval is calculated as follows: 

[𝑙, 𝑢] = (6.190 × 10−6 −
1.960(3.966×10−6)

√1000
 , 6.190 × 10−6 +

1.960(3.966×10−6)

√1000
) =

 (6.112 × 10−6 , 6.267 × 10−6 ). 

Table 6.2: RCPKC and NTRU CPU encryption/decryption time sample mean, 

standard deviation, and confidence interval for different runs 

Algorithm Measured 

Value 

Run number 

  103 104 105 

 𝐶 0.95 0.99 0.999 

 𝑧∗ 1.960 2.576 3.291 

Sample Mean, �̅� 6.190 × 10−6 5.492 × 10−6 4.708 × 10−6 
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Figure 6.1 shows the NTRU/RCPKC encryption and decryption average CPU time 

ratio for 103, 104, and 105 runs. From Figure 6.1, it is observed that RCPKC is 

27.08 ± 3.75 times faster than NTRU in encryption and 26.9 ± 5.09 times faster in 

decryption, respectively.  

Table 6.3 compares NTRU versus RCPKC and several NTRU variants presented in 

Subsection 2.3.4. It is observed that RCPKC is faster than the fastest most recently 

published NTRU variant, BQTRU, more than four times in encryption. 

RCPKC 

(Encryption) 

Sample Standard 

Deviation, 𝜎 

3.966 × 10−6 2.076 × 10−6 2.923 × 10−6 

Confidence 

Interval [𝑙, 𝑢] 
(6.112
× 10−6, 6.267
× 10−6 ) 

(5.475
× 10−6, 5.508
× 10−6 ) 

(4.677
× 10−6, 4.738
× 10−6 ) 

NTRU 

(Encryption) 

Sample Mean, �̅� 1.444 × 10−4 1.964 × 10−4 1.440 × 10−4 

Sample Standard 

Deviation, 𝜎 
6.878 × 10−5 1.123 × 10−5 6.437 × 10−5 

Confidence 

Interval [𝑙, 𝑢] 
(1.430
× 10−4, 1.457
× 10−4) 

(1.430
× 10−4, 1.973
× 10−4) 

(1.430
× 10−4, 1.447
× 10−4) 

RCPKC 

(Decryption) 

Sample Mean, �̅� 9.506 × 10−6 8.812 × 10−6 7.493 × 10−6 

Sample Standard 

Deviation, 𝜎 

2.781 × 10−6 2.370 × 10−6 2.795 × 10−6 

Confidence 

Interval [𝑙, 𝑢] 
(9.451
× 10−6, 9.560
× 10−6) 

(8.792
× 10−6, 8.831
× 10−6) 

(7.464
× 10−6, 7.522
× 10−6) 

NTRU 

(Decryption) 

Sample Mean, �̅� 2.079 × 10−4 2.826 × 10−4 2.088 × 10−4 

Sample Standard 

Deviation, 𝜎 
9.700 × 10−5 1.594 × 10−4 8.633 × 10−5 

Confidence 

Interval [𝑙, 𝑢] 
(2.060
× 10−4, 2.098
× 10−4) 

(2.813
× 10−4, 2.839
× 10−4) 

(2.079
× 10−4, 2.097
× 10−4) 
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From Table 6.3, we can see that RCPKC is faster than the fastest most recently 

published NTRU variant, BQTRU, more than four times in encryption. 

6.5.2 RCPKC Power Consumption Evaluation 

In this section, RCPKC’s power consumption is compared to NTRU in two cases: 

applying both algorithms using the same or different frequencies. 

 
Figure 6.1: NTRU/RCPKC encryption and decryption average CPU time ratio 

for 103, 104, and 105 runs. 

Table 6.3: Ratios of encryption and decryption times of NTRU and the variants 

𝐴 ∈ {𝑅𝐶𝑃𝐾𝐶, 𝐵𝑄𝑇𝑅𝑈,𝑀𝑎𝑇𝑅𝑈, 𝐸𝑇𝑅𝑈}. 
Algorithm, 𝑨 Encryption Time Ratio,  

=
𝑇𝑁𝑇𝑅𝑈

𝐸𝑁𝐶

𝑇𝐴
𝐸𝑁𝐶  

Decryption Time Ratio,  

=
𝑇𝑁𝑇𝑅𝑈

𝐷𝐸𝐶

𝑇𝐴
𝐷𝐸𝐶  

Proposed RCPKC 27 27 

BQTRU (Bagheri 

et al., 2018) 

7 No Data 

MaTRU 

(Coglianese & 

Goi, 2005) 

2.5 2.5 

ETRU (Jarvis & 

Nevins, 2015) 

1.45 1.75 
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Same frequencies: Let the RCPKC and NTRU execution time be 𝑇𝑅𝐶𝑃𝐾𝐶 and 𝑇𝑁𝑇𝑅𝑈, 

respectively. Then, from equation (H.1) in Appendix H, the consumed energy by 

NTRU and RCPKC 𝐸𝑁𝑇𝑅𝑈 and 𝐸𝑅𝐶𝑃𝐾𝐶 is: 

𝐸𝑁𝑇𝑅𝑈 = 𝑃 ⋅ 𝑇𝑁𝑇𝑅𝑈    and     𝐸𝑅𝐶𝑃𝐾𝐶 = 𝑃 ⋅ 𝑇𝑅𝐶𝑃𝐾𝐶 . (6.30) 

Since 𝑇𝑁𝑇𝑅𝑈 is greater than 𝑇𝑅𝐶𝑃𝐾𝐶 by more than 27 times, then from (6.30): 

𝐸𝑁𝑇𝑅𝑈

𝐸𝑅𝐶𝑃𝐾𝐶
=

𝑇𝑁𝑇𝑅𝑈

𝑇𝑅𝐶𝑃𝐾𝐶
≥ 27. 

(6.31) 

From (6.31), RCPKC consumes twenty-seven times less energy than NTRU using the 

same frequency.  

Different frequencies: Since RCPKC is 27 times faster than NTRU, the former takes 

approximately the same run time on 27 times lower clock frequency CPU than that of 

the latter. Dynamic and leakage power consumption, calculated for frequencies from 

(Texas Instruments Incorporated, 2018, p. 19) according to (H.5) in Appendix H, are 

shown in Table 6.4. 

It follows from Table 6.4 that 𝑃𝑙𝑒𝑎𝑘 ≪ 𝑃𝑑𝑦𝑛, and it can be neglected. From Table 6.4, 

it follows that reducing the clock frequency from 16 to 1 MHz leads to a 16 times 

power consumption reduction from 1440 to 90 µW. Note that MSP430FR5969, at a 

lower frequency, operates at a lower voltage: operating on a 1 MHz frequency at 2.2V 

results in 48.4 µW of dynamic power consumption. Hence, the total power reduction 

Table 6.4: Microcontroller MSP430FR5969 dynamic and leakage power 

consumption, 𝑃𝑑𝑦𝑛 and 𝑃𝑙𝑒𝑎𝑘, for different frequencies and active supply voltages. 

 2.2 V 3 V 

Frequency (MHz) 𝑷𝒅𝒚𝒏 (𝝁W) 𝑷𝒍𝒆𝒂𝒌 (nW) 𝑷𝒅𝒚𝒏 (𝝁W) 𝑷𝒍𝒆𝒂𝒌 (nW) 

1 48.4 
44 

90 
60 

16 774.4 1440 
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is 
1440

48.4
≈ 30 times. Therefore, RCPKC, compared to NTRU, is better applicable to 

WSNs with power-constrained devices. 

6.6 Summary 

In this chapter, RCPKC is proposed, a secure and effective congruential, modulo 𝑞, 

public-key cryptosystem using big numbers. It uses the same encryption/decryption 

mechanism as NTRU does, but works with numbers. Contrary to NTRU, RCPKC is 

resistant to LBRA because its private key components, 𝑓, and 𝑔, are chosen w.r.t √𝑞 

to form a two-component vector with the norm exceeding Minkowski’s boundary 

(B.4), (6.1)-(6.3) for the shortest vector in a two-dimensional lattice and meeting (6.4). 

Hence, LBRA by the GLR algorithm returning the shortest vector in a two-

dimensional lattice fails at finding the large norm private key vector, (𝑓, 𝑔). 

Despite the big numbers, 𝑓 and 𝑟, meeting (6.8) used in RCPKC, it guarantees that the 

decryption correctness condition (2.37) holds (see (6.11)) due to the use of Conditions 

(6.6), (6.8), (6.10), (6.14) and (6.18) instead of Conditions (2.29), (2.33), and (2.34), 

used in the original insecure CPKC (see Section 2.3.3.1) considered in (Hoffstein et 

al., 2014a). It was found that the insecurity of the original CPKC stems from the use 

of Conditions (2.29), (2.33), and (2.34), defining smaller than √𝑞 numbers 𝑓, 𝑔, 𝑚, 𝑟 

meeting Minkowski’s boundary (B.4) and the decryption correctness condition (2.37). 

RCPKC is resistant to the LBRA by GLR attack due to the special choice of the range 

for the random value, 𝑟, used in the encryption (2.35) that guarantees correctness 

condition (2.37) violation for the short vectors returned by GLR, but holding for the 

original private key, (𝑓, 𝑔). Section 6.3 shows also that the security of RCPKC with 

respect to other known attacks on NTRU is not less than that of NTRU, which allows 
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us to conclude that RCPKC is more secure than NTRU. Section 6.4 proves the IND-

CCA2 security of RCPKC asymmetric encryption padding (RAEP). 

RCPKC uses numbers, i.e., minimal possible, degree zero, polynomials, which makes 

it about 27 times more effective in encryption and decryption than NTRU and more 

than three times more effective in encryption w.r.t the fastest most recently published 

NTRU variant, BQTRU (Bagheri et al., 2018), as the experiments show (see Table 

6.3). Compared to NTRU, RCPKC reduces the energy consumption at least 27 times, 

which allows increasing the life-time of unattended WSNs by more than 27 times. 

The efficiency and security of proposed RCPKC allows it to be used to provide 

security of various applications running on battery dependent devices such as 

smartphones, and devices with limited computational power such as medical devices 

and sensors. 
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Chapter 7 

7DEVELOPMENT OF FULLY HOMOMORPHIC 

CRYPTOSYSTEM WITHOUT NOISE CONTROL 

MECHANISM (RLWE-CSCM) 

HE schemes based on LWE such as (Brakerski et al., 2014, 2013; Brakerski & 

Vaikuntanathan, 2011a, 2011b) from Class 6 need NCM and CSCM. In this chapter, 

RLWE-CSCM, the first HE scheme supports two arithmetic operations and doesn’t 

need NCM by construction. i.e., the growth of noise doesn’t lead to decryption failure 

by construction. In Section 7.1, RLWE-CSCM is proposed advancing a previously 

proposed RLWE-NCM-CSCMin (Brakerski & Vaikuntanathan, 2011b). In Section 

7.2, homomorphism of RLWE-CSCM w.r.t addition and multiplication are proved. In 

Section 7.3, the security of RLWE-CSCM against several attacks is presented. Section 

7.4 summarizes Chapter 7. 

7.1 Proposed RLWE-CSCM 

RLWE-CSCM is a public-key cryptosystem that works in the ring 𝑅 =

ℤ[𝑥] (𝑥𝑑 + 1)⁄ . of RLWE-CSCM parameter definition follows 

7.1.1 Parameter Setup 

Select integers 𝑝 and 𝑞 such that 

𝑞 = 𝛼 ⋅ 𝑝. (7.1) 

Let rings 𝑅 = ℤ[𝑥] (𝑥𝑑 + 1)⁄ , and 𝑅𝑛 = ℤ𝑛[𝑥] (𝑥𝑑 + 1)⁄ , where parameters 𝛼 > 1, 

𝑝 > 1, 𝑑 > 1, 𝑛 ∈ ℤ+. 



126 

7.1.2 Key Generation 

Let 𝐴, 𝑠, and 𝑒 be selected from 𝑅𝑞, where 𝐴 is not invertible meets 

deg(𝑔𝑐𝑑(𝐴, 𝑥𝑑 + 1)) ≠ 0,   (7.2) 

where deg(𝐚) is the degree of a polynomial 𝐚. The public key, 𝑝𝑘 ∈ 𝑅𝑞
2, is computed 

as follows: 

𝑝𝑘 = (
𝑝𝑘1

𝑝𝑘2
) = (

𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒
−𝐴

).   
(7.3) 

Secret key, 𝑠𝑘 ∈ 𝑅𝑞
2, is: 

𝑠𝑘 = (
𝑠𝑘1

𝑠𝑘2
) = (

1
𝑠
).  

(7.4) 

7.1.3 Encryption 

Let 𝑟 be a random polynomial selected from 𝑅𝑞. Encryption of the message, 𝑚 ∈ 𝑅𝑝, 

is computed as follows 

𝑐 ← 𝐸𝑛𝑐𝑝𝑘,𝑟(𝑚) = (
𝑐1

𝑐2
) = (

𝑝𝑘1 ⋅ 𝑟 + 𝑚
𝑝𝑘2 ⋅ 𝑟

) ∈ 𝑅𝑞
2. 

(7.5) 

7.1.4 Anti Ciphertext Only Attacks Condition 

Two ciphertext-only attacks (COA) are shown in subsections 7.3.17.3.2 and 7.3.2. To 

counter these attacks, the message owner selects a random 𝑟 in (7.5), such that 

deg(𝑐2) ≤ deg(𝑚), (7.6) 

and, 

∃ 𝑖 ∈ ℤ𝑑 ∶ 𝑟𝑖 𝑚𝑜𝑑 𝑝 > 0, (7.7) 

where 𝑟𝑖 is the i-th coefficient of 𝑟. 

7.1.5 Decryption 

The process of decryption is: 

𝑚′ = 𝐷𝑒𝑐𝑠𝑘(𝑐) = [[〈𝑐, 𝑠𝑘〉]𝑞]𝑝, (7.8) 
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where 〈𝑎, 𝑏〉 is the inner product of vectors 𝑎 and 𝑏, and [𝑎]𝑞 = 𝑎 𝑚𝑜𝑑 𝑞. 

7.1.6 Proof of Decryption Correctness 

Theorem 7.1 RLWE-CSCM decryption (7.8) of 𝑐 encrypted by (7.5) is correct, i.e., 

𝑚′ = 𝑚, if (7.1) holds. If (7.1) is not true, decryption fails with probability 1 −

(1 𝑝𝑑⁄ ). 

Part 1: If (7.1) holds and ciphertext 𝑐 is encrypted by (7.5), then decryption by (7.8) 

results in 𝑚′ = 𝑚. 

Proof of Part 1: According to (7.8), decryption is performed in two steps: 

Step 1: According to (7.3)-(7.8), 

[〈𝑐, 𝑠𝑘〉]𝑞 = 𝑐1 ∙ 𝑠𝑘1 + 𝑐2 ∙ 𝑠𝑘2 𝑚𝑜𝑑 𝑞, 

= (𝑝𝑘1 ⋅ 𝑟 + 𝑚) ∙ 1 + (𝑝𝑘2 ⋅ 𝑟) ⋅ 𝑠 𝑚𝑜𝑑 𝑞 

= (𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒) ∙ 𝑟 + 𝑚 + (−𝐴 ⋅ 𝑟 ⋅ 𝑠) 𝑚𝑜𝑑 𝑞 

= 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 − 𝑘 ⋅ 𝑞, (7.9) 

where 𝑘 ∈ 𝑅. Recalling (7.1), one gets from (7.9), 

[〈𝑐, 𝑠𝑘〉]𝑞 = 𝑚 + 𝑝 ∙ (𝑒 ⋅ 𝑟 − 𝛼 ⋅ 𝑘). (7.10) 

Step 2: Modulo 𝑝 operation applied to (7.10) vanishes the contributor with 𝑝 and leaves 

the message 𝑚: 

𝑚′ = [[〈𝑐, 𝑠𝑘〉]𝑞]𝑝 = 𝑚 + 𝑝 ∙ (𝑒 ⋅ 𝑟 − 𝛼 ⋅ 𝑘) 𝑚𝑜𝑑 𝑝 = 𝑚. (7.11) 

Part 1 is proved. 

Part 2: If (7.3)-(7.5) are satisfied, but (7.1) doesn’t hold, then 𝑚′ ≠ 𝑚 with the 

probability 1 − (1 𝑝𝑑⁄ ). 
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Proof of Part 2: Let 𝑞 = 𝛼 ⋅ 𝑝 + 𝑡, 𝑡 > 0, 𝑡 ∈ ℤ𝑝. Then, from (7.9), 

[〈𝑐, 𝑠𝑘〉]𝑞 = 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 − 𝑘 ⋅ 𝑞 (7.12) 

= 𝑚 + 𝑝 ⋅ 𝑒 ⋅ 𝑟 − 𝑘 ⋅ 𝛼 ⋅ 𝑝 − 𝑘 ⋅ 𝑡 

𝑚 − 𝑘 ⋅ 𝑡 + 𝑝 ∙ (𝑒 ⋅ 𝑟 − 𝑘 ⋅ 𝛼), (7.13) 

where 𝑘 ∈ 𝑅. In Step 2 of decryption, the message 𝑚′ retrieved by applying modulo 𝑝 

operation to the last expression in (7.13) is 

𝑚′ = 𝑚 − 𝑘 ⋅ 𝑡 + 𝑝 ∙ (𝑒 ⋅ 𝑟 − 𝑘 ⋅ 𝛼) 𝑚𝑜𝑑 𝑝 = 𝑚 − 𝑘 ∙ 𝑡 𝑚𝑜𝑑 𝑝. (7.14) 

From (7.14), 

𝑚′ − 𝑚 = −𝑘 ∙ 𝑡 𝑚𝑜𝑑 𝑝. 

Therefore, 𝑚′ ≠ 𝑚 for 𝑘 ≠ 0 𝑚𝑜𝑑 𝑝, 𝑘 ∈ 𝑅. Assuming all coefficients’ values are 

equally likely, the probability of having all coefficients 𝑘𝑖 = 0 𝑚𝑜𝑑 𝑝, 𝑖 ∈ 𝑍𝑑, is 

(𝛼 𝑞⁄ )𝑑 = (𝛼 (𝛼 ⋅ 𝑝)⁄ )𝑑 = 1 𝑝𝑑⁄ . Thus, the probability of having at least one 

coefficient 𝑘𝑖 ≠ 0 𝑚𝑜𝑑 𝑝, 𝑖 ∈ 𝑍𝑑, i.e., probability of 𝑚′ ≠ 𝑚 is 1 − (1 𝑝𝑑⁄ ). Thus, 

Part 2 is proved. 

QED. 

Example I.1 in Appendix I is an example of correct encryption/decryption when (7.1) 

holds, and Example I.2 in Appendix I is an example of incorrect decryption when (7.1) 

does not hold. 

Homomorphism of RLWE-CSCM w.r.t addition and multiplication is proved in 

Section 7.4 
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7.2 Homomorphism of RLWE-CSCM with Respect to Addition and 

Multiplication 

7.2.1 Homomorphic Addition 

First, homomorphism of single addition operation is proved in Subsection 7.2.1.1. 

Then, homomorphism for any number of additions is proved in Subsection 7.2.1.2 

7.2.1.1 Single Homomorphic Addition  

Theorem 7.2: Let 𝑐(𝑖), 𝑖 ∈ {1,2} is a ciphertext encrypting the plaintext messages 𝑚(𝑖) 

using random 𝑟(𝑖) according to (7.5), 

𝑐(𝑖) = (
𝑐1

(𝑖)

𝑐2
(𝑖)

) = (
𝑝𝑘1 ⋅ 𝑟(𝑖) + 𝑚(𝑖)

𝑝𝑘2 ⋅ 𝑟(𝑖)
) ∈ 𝑅𝑞

2, 𝑖 = 1,2. 
(7.15) 

Then, RLWE-CSCM decryption (7.8) of 𝐶 = 𝑐(1) + 𝑐(2) is 𝑚′ = 𝑚(1) + 𝑚(2), i.e., 

RLWE-CSCM is homomorphic w.r.t single addition. 

Proof: Let 𝐶 be the sum of the ciphertexts 𝑐(1) and 𝑐(2), then, 

𝐶 = 𝑐(1) + 𝑐(2) = (
𝑐1

(1)
+ 𝑐1

(2)

𝑐2
(1)

+ 𝑐2
(2)

) 

= (
(𝑟(1) + 𝑟(2))𝑝𝑘1 + (𝑚(1) + 𝑚(2))

(𝑟(1) + 𝑟(2))𝑝𝑘2

) (7.16) 

Decrypting of 𝐶 is performed by (7.8) as follows: 

[〈𝐶, 𝑠𝑘〉]
𝑞
 

= ((𝑟(1) + 𝑟(2))𝑝𝑘1 + (𝑚(1) + 𝑚(2))) 1 + ((𝑟(1) + 𝑟(2))𝑝𝑘2) 𝑠 𝑚𝑜𝑑 𝑞 

= (𝑟(1) + 𝑟(2))(𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒) + (𝑚(1) + 𝑚(2)) + (𝑟(1) + 𝑟(2))(−𝐴 ⋅ 𝑠) 𝑚𝑜𝑑 𝑞 

= (𝑟(1) + 𝑟(2))𝑝 ⋅ 𝑒 + (𝑚(1) + 𝑚(2)) 𝑚𝑜𝑑 𝑞 

= (𝑚(1) + 𝑚(2)) + (𝑟(1) + 𝑟(2))𝑝 ⋅ 𝑒 − 𝑘 ⋅ 𝑞, 



130 

where 𝑘 ∈ 𝑅. Recalling (7.1), one gets 

[〈𝐶, 𝑠𝑘〉]𝑞 = (𝑚(1) + 𝑚(2)) + ((𝑟(1) + 𝑟(2)) ∙ 𝑒 − 𝛼 ⋅ 𝑘 ) 𝑝. 
(7.17) 

In Step 2 of decryption, modulo 𝑝 operation applied to (7.21) vanishes the contributor 

with 𝑝 and leaves the message (𝑚(1) + 𝑚(2)): 

𝑚′ = [〈𝐶, 𝑠𝑘〉𝑞]𝑝
 

= (𝑚(1) + 𝑚(2)) + ((𝑟(1) + 𝑟(2))𝑒 − 𝛼 ⋅ 𝑘 ) ∙ 𝑝 𝑚𝑜𝑑 𝑝 = 𝑚(1) + 𝑚(2).  (7.18) 

QED. 

Example I.3 in Appendix I, is an example of the homomorphic addition of two terms. 

Homomorphism for any number of additions follows. 

7.2.1.2 Homomorphism for Any Number of Additions 

Theorem 7.3: If 𝑐(𝑖), is a ciphertext encrypting the plaintext message 𝑚(𝑖) using 

random 𝑟(𝑖) according to (7.5), 

𝑐(𝑖) = (
𝑐1

(𝑖)

𝑐2
(𝑖)

) = (
𝑝𝑘1 ⋅ 𝑟(𝑖) + 𝑚(𝑖)

𝑝𝑘2 ⋅ 𝑟(𝑖)
) ∈ 𝑅𝑞

2, 𝑖 = 1. . 𝑁. 
(7.19) 

Then, RLWE-CSCM decryption (7.8) of 𝐶 = 𝑐(1) + ⋯+ 𝑐(𝑁) is 𝑚′ = 𝑚(1) + ⋯+

𝑚(𝑁), i.e., RLWE-CSCM is homomorphic w.r.t any number 𝑁 of additions. 

Proof: Let 𝑐(𝑖) be a ciphertext defined in (7.19), and let 

𝐶 = 𝑐(1) + ⋯+ 𝑐(𝑁) = (
𝑐1

(1)
+ ⋯+ 𝑐1

(𝑁)

𝑐2
(1)

+ ⋯+ 𝑐2
(𝑁)

). 
(7.20) 

Decrypting of 𝐶 is performed by (7.8) as follows: 

[〈𝐶, 𝑠𝑘〉]𝑞 = ((𝑟(1) + ⋯+ 𝑟(𝑁))𝑝𝑘1 + (𝑚(1) + ⋯+ 𝑚(𝑁))) 1

+ ((𝑟(1) + ⋯+ 𝑟(𝑁))𝑝𝑘2) 𝑠 𝑚𝑜𝑑 𝑞 
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= (𝑟(1) + ⋯+ 𝑟(𝑁))(𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒) + (𝑚(1) + ⋯+ 𝑚(𝑁))

+ (𝑟(1) + ⋯+ 𝑟(𝑁))(−𝐴 ⋅ 𝑠) 𝑚𝑜𝑑 𝑞 

= (𝑟(1) + ⋯+ 𝑟(𝑁)) ∙ 𝑝 ⋅ 𝑒 + (𝑚(1) + ⋯+ 𝑚(𝑁)) 𝑚𝑜𝑑 𝑞 

= (𝑚(1) + ⋯+ 𝑚(𝑁)) + (𝑟(1) + ⋯+ 𝑟(𝑁)) ∙ 𝑝 ⋅ 𝑒 − 𝑘 ⋅ 𝑞, 

where 𝑘 ∈ 𝑅. Recalling (7.1), one gets 

[〈𝐶, 𝑠𝑘〉]𝑞 = (𝑚(1) + ⋯+ 𝑚(𝑁)) + ((𝑟(1) + ⋯+ 𝑟(2))𝑒 − 𝛼 ⋅ 𝑘 ) ∙ 𝑝. (7.21) 

In Step 2 of decryption, the modulo 𝑝 operation applied to (7.21) vanishes the 

contributor with integer 𝑝 and leaves the message (𝑚(1) + ⋯+ 𝑚(𝑁)): 

𝑚′ = [〈𝐶, 𝑠𝑘〉𝑞]𝑝
 

= (𝑚(1) + ⋯+ 𝑚(𝑁)) + ((𝑟(1) + ⋯+ 𝑟(𝑁))𝑒 − 𝛼 ⋅ 𝑘 ) 𝑝 𝑚𝑜𝑑 𝑝 

= 𝑚(1) + ⋯+ 𝑚(𝑁).   (7.22) 

Thus, homomorphism for any number of additions is proved. Corollary 7.1 follows 

immediately from Theorem 7.3: 

Corollary 7.1: If 𝐶 is encryption of 𝑁 ⋅ 𝑚, then decryption of 𝐶 by (7.8) results in 𝑁 ⋅

𝑚,𝑁 ∈ 𝑍. 

Corollary 7.1 means that RLWE-CSCM is also homomorphic w.r.t multiplication by 

any integer. 

Example I.4 in Appendix I, is an example of homomorphic for 1000𝑐(1) + 2000𝑐(2). 

7.2.2 Homomorphic Multiplication of Ciphertexts 

In this section, the homomorphism of RLWE-CSCM w.r.t multiplication is explained. 

In Subsection 7.2.2.1, homomorphism for single multiplication is proved, and the 
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growth of ciphertext size due to homomorphic multiplication is explained. In 

Subsections 7.2.2.2-7.2.2.4, two CSCMs are presented; ciphertext recryption; 

ciphertext re-linearization. 

7.2.2.1 Homomorphism for Single Multiplication 

Definition 7.1. Let 𝑐(1) and 𝑐(2) be the ciphertexts of the plaintexts 𝑚(1), 𝑚(2) obtained 

by (7.5). Product of the ciphertexts, 𝑀(𝑐(1), 𝑐(2)), is defined in (7.23) 

𝑀(𝑐(1), 𝑐(2)) = (

𝑐1
(1)

𝑐1
(2)

𝑐1
(1)

𝑐2
(2)

+ 𝑐2
(1)

𝑐1
(2)

𝑐2
(1)

𝑐2
(2)

) (7.23) 

Theorem 7.4: If 𝑐(𝑖), is a ciphertext encrypting the plaintext messages 𝑚(𝑖) using 

random 𝑟(𝑖) according to (7.5), 𝑖 ∈ {1,2}, then, RLWE-CSCM decryption (7.26), using 

𝑠𝑘3 (7.25), of 𝑀(𝑐(1), 𝑐(2)) is 𝑚′ = 𝑚(1) ∙ 𝑚(2), i.e., RLWE-CSCM is homomorphic 

with respect to a single multiplication. 

𝑚′ = 𝐷𝑒𝑐𝑠𝑘3(𝑀(𝑐1, 𝑐2)) = [[〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞]𝑝. (7.24) 

Note that 𝐷𝑒𝑐𝑠𝑘3 is a scalar product of 3-component vectors. 

𝑠𝑘3 = (
1
𝑠
𝑠2

).  (7.25) 

Proof: Let 𝑐(𝑖) be ciphertext encrypting message 𝑚(𝑖), 𝑖 = 1,2, and 𝑠𝑘 is the secret key 

(7.4). Then, 

〈𝑐(1), 𝑠𝑘〉 = 𝑐1
(1)

+ 𝑐2
(1)

⋅ 𝑠, 

〈𝑐(2), 𝑠𝑘〉 = 𝑐1
(2)

+ 𝑐2
(2)

⋅ 𝑠, 

and 

〈𝑐(1), 𝑠𝑘〉 ⋅ 〈𝑐(2), 𝑠𝑘〉 = (𝑐1
(1)

+ 𝑐2
(1)

⋅ 𝑠)(𝑐1
(2)

+ 𝑐2
(2)

⋅ 𝑠) 
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= 𝑐1
(1)

𝑐1
(2)

+ (𝑐1
(1)

𝑐2
(2)

+ 𝑐2
(1)

𝑐1
(2)

)𝑠 + 𝑐2
(1)

𝑐2
(2)

𝑠2 = 〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉, (7.26) 

where 𝑀(𝑐1, 𝑐2) in (7.23) and 𝑠𝑘3 in (7.25). Decryption 𝐶𝑀𝑢𝑙(1,2)  is performed using 

the secret key 𝑠𝑘3 according to (7.24).  

Steps of computing 𝐷𝑒𝑐𝑠𝑘3(𝑀(𝑐1, 𝑐2)): 

Step 1: Calculate [〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞 by (7.26), 

[〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞 = [〈𝑐(1), 𝑠𝑘〉 ∙ 〈𝑐(2), 𝑠𝑘〉]
𝑞

= 〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉 

= (𝑚(1) + 𝑝 ∙ (𝑒 ⋅ 𝑟(1) − 𝛼 ⋅ 𝑘)) ∙ (𝑚(2) + 𝑝 ∙ (𝑒 ⋅ 𝑟(2) − 𝛼 ⋅ 𝑘)) (7.27) 

Step 2: By (7.27), 

[〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞 𝑚𝑜𝑑 𝑝

= (𝑚(1) + 𝑝(𝑒 ⋅ 𝑟(1) − 𝛼 ⋅ 𝑘1)) (𝑚(2) + 𝑝(𝑒 ⋅ 𝑟(2) − 𝛼 ⋅ 𝑘2))𝑚𝑜𝑑 𝑝 

= 𝑚(1) ∙ 𝑚(2) (7.28) 

QED. 

Example I.5 in Appendix I is an example of a single homomorphic multiplication. As 

shown in (7.23) and (7.25), the dimension of the ciphertext of the product of two 

plaintexts and the respective decryption key is three, contrary to the original RLWE-

CSCM encryption (7.5) with the dimension of two. Thus, the complexity of the 

decryption process (7.26) and required storage increases with the increase of the 

number of multipliers, and extending the multiplication to many terms will have more 

and more increasing complexity. To avoid the dimension rise, two CSCM’s are 

proposed; ciphertext recryption; ciphertext linearization are proposed in Subsections 

7.2.2.2, 7.2.2.4 respectively. 
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7.2.2.2 Homomorphic Multiplication Using Recryption  

Recryption allows returning result of homomorphic multiplication of two ciphertexts 

to the form of standard single plaintext encryption (7.5) but additionally encrypted by 

multiplication with a secret recryption constant. Dimension of the ciphertext product, 

(𝑐(1), 𝑐(2)) ∈ 𝑅𝑞
3, in (7.23), three, is greater than the dimension, two, of RLWE-CSCM 

encryption, 𝑐 ∈ 𝑅𝑞
2, in (7.5). Hence, the complexity of decryption process will increase 

for each multiplication which makes it infeasible to extend the multiplication to many 

terms. To solve this problem, a ciphertext recryption algorithm is proposed. It takes 

𝑀(𝑐(1), 𝑐(2)) ∈ 𝑅𝑞
3, a recryption key, 𝑘𝑟𝑒𝑐, which is the secret key multiplied by a 

recryption constant, 𝐾 ∈ ℤ𝑝, and the public key as inputs, and outputs a RLWE-CSCM 

ciphertext, 𝐶_𝐾_𝑚1_2  ∈ 𝑅𝑞
2 , that encrypts by (7.5) the product of two plaintexts 

multiplied by 𝐾. The principle steps of the ciphertext recryption follow: 

1. Decrypt 𝑀(𝑐(1), 𝑐(2)) ∈ 𝑅𝑞
3, in (7.23) according to (7.24) using recryption key, 𝑘𝑟𝑒𝑐 

𝑘𝑟𝑒𝑐 = 𝐾 ⋅ 𝑠𝑘3 = (
𝐾
𝐾𝑠
𝐾𝑠2

) ∈ 𝑅𝑞
3, (7.29) 

where 𝐾 ∈ ℤ𝑝 is a secret recryption constant that is defined by the owner of the secret 

key (7.25). The decryption process results in 

𝑘𝑚1_2 ← 𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑀(𝑐(1), 𝑐(2))) = 𝐾 ⋅ 𝑚(1) ⋅ 𝑚(2) (7.30) 

(Proof of (7.30) is provided next page). 

And thus, the secret key, 𝑠𝑘3, in (7.29) and the product 𝑚(1) ⋅ 𝑚(2) in (7.30) are 

encrypted by 𝐾. Recryption constant, 𝐾, can be removed using multiplicative inverse, 

𝐾−1 existing if 𝐾 meets, 

gcd(𝐾, 𝑝) = 1.  (7.31) 
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2. Next, 𝑘𝑚1_2 is encrypted using 𝑝𝑘, according to (7.5), obtaining 𝐶_𝐾_𝑚1_2 ∈ 𝑅𝑞
2. 

Therefore, by applying the ciphertext recryption process after each multiplication, 

the ciphertext will be defined by (7.5), and hence, there is no increase in the 

decryption complexity or the memory needed to store the ciphertext and respective 

keys. 

Proof of (7.30): Let 𝑘𝑟𝑒𝑐 defined in (7.29) and 𝑀(𝑐(1), 𝑐(2)) in (7.23), then 

𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑀(𝑐(1), 𝑐(2))) is computed as follows: 

Step 1: Calculate [〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞 by (7.26), 

[〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞

= 𝑐1
(1)

⋅ 𝑐1
(2)

⋅ 𝐾 + (𝑐1
(1)

⋅ 𝑐2
(2)

+ 𝑐2
(1)

⋅ 𝑐1
(2)

) ⋅ 𝐾 ⋅ 𝑠 + 𝑐2
(1)

⋅ 𝑐2
(2)

⋅ 𝐾 ⋅ 𝑠2 

= [〈𝑐(1), 𝑠𝑘〉 ∙ 〈𝑐(2), 𝐾 ⋅ 𝑠𝑘〉]
𝑞
 (7.32) 

Step 2: By (7.32), 

[[〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞]𝑝

= (𝑚(1) + 𝑝(𝑒 ⋅ 𝑟(1) − 𝛼 ⋅ 𝑘)) (𝐾 ⋅ 𝑚(2) + 𝐾

⋅ 𝑝(𝑒 ⋅ 𝑟(2) − 𝛼 ⋅ 𝑘))𝑚𝑜𝑑 𝑝 

= 𝐾 ⋅ 𝑚(1) ⋅ 𝑚(2). (7.33) 

QED. 

Recryption key, 𝑘𝑟𝑒𝑐 (7.29), reveals secret recryption constant, 𝐾, as the first 

component. Thus, the secret key, 𝑠, can be found from the second component as well. 

Compromises 𝑠 leads to discover secret key, 𝑠𝑘, and thus all encrypted messages can 

be compromised by an unauthorized party.  This issue happens due to the structure of 
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𝑠𝑘, where the first component is constant equals to 1. To overcome this issue, a new 

structure of 𝑠𝑘 is proposed with no constants. 

Proposed changes to 𝑠𝑘 and the consequent modifications are as follows: 

A. parameters  𝛽 ∈ ℤ𝑞 , 𝛾 ∈ ℤ𝑝 are selected such that, 

𝛽 − 𝛾 = 𝜔 ⋅ 𝑝 𝑚𝑜𝑑 𝑞, 𝜔 ∈ ℤ𝑞 , (7.34) 

and, 

gcd(𝛽, 𝑠) > 1 , gcd(𝛾, 𝑠) > 1, gcd(𝛽, 𝐾) > 1, gcd(𝛾, 𝑝) = 1. (7.35) 

B. Instead of (7.4), secret key, 𝑠𝑘, is defined as follows  

𝑠𝑘 = (
𝑠𝑘1

𝑠𝑘2
) = (

𝛽
𝛾 ⋅ 𝑠

). (7.36) 

C. Instead of the message, 𝑚, its product with the recryption constant, 𝐾, is 

encrypted using (7.5), 

𝑐 ← 𝐸𝑛𝑐𝑝𝑘,𝑟(𝑚𝐾) = (
𝑐1

𝑐2
) = (

𝑝𝑘1 ⋅ 𝑟 + 𝑚𝐾
𝑝𝑘2 ⋅ 𝑟

) ∈ 𝑅𝑞
2, (7.37) 

𝑚𝐾 = 𝑚 ⋅ 𝐾 ∈ 𝑅𝑝. (7.38) 

The decryption process of ciphertext, 𝑐 (7.37), encrypting 𝑚𝐾 (7.38) is performed 

using 𝑠𝑘 (7.36) as follows: 

𝑚𝐾′ ← 𝐷𝑒𝑐𝑠𝑘(𝑐) = [[〈𝑐, 𝑠𝑘〉]𝑞 ⋅ 𝛾−1]
𝑝
 (7.39) 

D. Recryption key, 𝑠𝑘3 (7.40), is used instead of (7.25), 

𝑠𝑘3 = (
𝛽2

𝛾 ⋅ 𝛽 ⋅ 𝑠

(𝛾 ⋅ 𝑠)2

).  (7.40) 

Derivation of 𝑠𝑘3 (7.40) is as follows: 

〈𝑐(1), 𝑠𝑘〉 ⋅ 〈𝑐(2), 𝑠𝑘〉 = (𝑐1
(1) ⋅ 𝛽 + 𝑐2

(1) ⋅ 𝛾 ⋅ 𝑠) ⋅ (𝑐1
(2) ⋅ 𝛽 + 𝑐2

(2) ⋅ 𝛾 ⋅ 𝑠) 
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= 𝑐1
(1)

⋅ 𝑐1
(2)

⋅ 𝛽2 + (𝑐1
(1)

⋅ 𝑐2
(2)

+ 𝑐2
(1)

⋅ 𝑐1
(2)

) ⋅ 𝛽 ⋅ 𝛾 ⋅ 𝑠 + 𝑐2
(1)

⋅ 𝑐2
(2)

⋅ (𝛾 ⋅ 𝑠)2 

= 〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉, (7.41) 

𝑀(𝑐1, 𝑐2) is defined in (7.23). 

E. Recryption key, 𝑘𝑟𝑒𝑐 (7.29), is computed using 𝑠𝑘3 (7.40), as follows 

𝑘𝑟𝑒𝑐 = 𝐾 ⋅ 𝑠𝑘3 = (
𝐾 ⋅ 𝛽2

𝐾 ⋅ 𝛾 ⋅ 𝛽 ⋅ 𝑠

𝐾 ⋅ (𝛾 ⋅ 𝑠)2

) ∈ 𝑅𝑞
3,  (7.42) 

Thus, in (7.42), the secret recryption constant, 𝐾, is encrypted using secret 

parameters 𝛽, 𝛾, and 𝑠, contrary to (7.29). 

Decryption of 𝑀(𝑐1, 𝑐2) (7.23) using 𝑘𝑟𝑒𝑐 (7.42) is performed as follows, 

𝑚𝐾′ ← 𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑀(𝑐1, 𝑐2)) 

= [[〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞(𝐾𝛽2) −1]
𝑝

= 𝑚𝐾(1) ⋅ 𝑚𝐾(2) 

= 𝐾2𝑚(1)𝑚(2), (7.43) 

where 𝑚𝐾(𝑖) = 𝐾 ∗ 𝑚𝑖 is the padded message of 𝑚(𝑖) according to (7.37). 

Proof of (7.43): Let 𝑘𝑟𝑒𝑐 defined in (7.42) and 𝑀(𝑐(1), 𝑐(2)) in (7.23), then 

𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑀(𝑐(1), 𝑐(2))) = [[〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞(𝐾𝛽2) −1]

𝑝
 is computed as follows: 

Step 1: Calculate [〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞 by (7.26), 

[〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞

= 𝑐1
(1)𝑐1

(2) ⋅ 𝐾 ⋅ 𝛽2 + (𝑐1
(1)𝑐2

(2) + 𝑐2
(1)𝑐1

(2)
) ⋅ 𝐾 ⋅ 𝛾 ⋅ 𝛽 ⋅ 𝑠 + 𝑐2

(1)𝑐2
(2)

⋅ 𝐾 ⋅ (𝛾 ⋅ 𝑠)2 = [〈𝑐(1), 𝑠𝑘〉 ∙ 〈𝑐(2), 𝐾 ⋅ 𝑠𝑘〉]
𝑞
 

= (𝛽 ⋅ 𝑚𝐾(1) + 𝑝 ∙ (𝑒 ⋅ 𝑟(1) − 𝛼 ⋅ 𝑘1))

∙ (𝐾 ⋅ 𝛽 ⋅ 𝑚𝐾(2) + 𝑝 ∙ (𝐾 ⋅ 𝛽 ⋅ 𝑒 ⋅ 𝑟(2) − 𝛼 ⋅ 𝑘2)). (7.44) 
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Step 2. By (7.44), 

[[〈𝑀(𝑐1, 𝑐2), 𝑘𝑟𝑒𝑐〉]𝑞(𝐾𝛽2) −1]
𝑝
 

= 𝑚𝐾(1) ⋅ 𝑚𝐾(2) 𝑚𝑜𝑑 𝑝 = 𝐾2 ⋅ 𝑚(1) ∙ 𝑚(2). (7.45) 

QED. 

The process of getting a ciphertext, 𝐶_𝐾_𝑚1_2, of (7.43) using the product of two 

ciphertexts and recryption is defined in Algorithm 7.1(MultRecrypt). Algorithm 

7.2(DecRecrypt) describes the process of decrypting 𝐶_𝐾_𝑚1_2, obtaining the product 

of two plaintexts 𝑚(1) and 𝑚(2). 

Proving that the proposed last variant has no problems as the first one 

Algorithm 7.1 MultRecrypt: Algorithm of getting RLWE-CSCM ciphertext, 

𝐶_𝐾_𝑚1_2 (7.5) of (7.43) using product of two RLWE-CSCM 

ciphertexts and Recryption. 

Input: 𝑐(1), 𝑐(2) : ciphertexts of the messages 𝑚𝐾(1) = 𝐾 ⋅ 𝑚(1), 𝑚𝐾(2) = 𝐾 ⋅

𝑚(2), respectively, using (7.5); 𝑝𝑘, public key; 𝑘𝑟𝑒𝑐, recryption key in 

(7.42) 

Output: 𝐶_𝐾_𝑚1_2 ∈ 𝑅𝑞
2, 𝑚𝑘′ encrypted by (7.5) using 𝑝𝑘 

1. Set 𝑀𝑐1_2 ← 𝑀(𝑐(1), 𝑐(2)), where 𝑀(𝑐(1), 𝑐(2)) is the product of 

ciphertexts 𝑐(1) and 𝑐(2) defined in (7.23).; 

2. Decrypt 𝑀𝑐1_2 using 𝑘𝑟𝑒𝑐 according to (7.24), obtaining 𝑚𝐾′ (7.43) 

3. 
Set 𝐶_𝐾_𝑚1_2 ← 𝐸𝑛𝑐(𝑝𝑘,𝑟)(𝑚𝐾′) = (

𝑝𝑘1 ⋅ 𝑟 + 𝑚𝐾′

𝑝𝑘2 ⋅ 𝑟
) ∈ 𝑅𝑞

2  

4. Return 𝐶_𝐾_𝑚1_2 

Algorithm 7.2 DecRecrypt: Getting product of the plaintexts from the output of 

Algorithm 7.1MultRecrypt. 



139 

Note that Algorithm 7.1 outputs, 𝑚𝐾′, the product (𝑚(1) ⋅ 𝑚(2)) encrypted with 𝐾2
, 

while Algorithm 7.2, retrieves the product (𝑚(1) ⋅ 𝑚(2)) out of 𝑚𝐾′. 

Example I.6 in Appendix I is an example of recrypting the product of two ciphertexts. 

In the next section computation of exponentiation homomorphically using recryption 

is shown. 

7.2.2.3 Computing Exponentiation Homomorphically Using Recryption 

In this section, we introduce computing plaintext, 𝑚, exponent, 𝑚𝑒, where 𝑒 = 2𝑛, 

homomorphically using ciphertext 𝑐 of 𝑚 by Algorithm 7.3 and Algorithm 7.4 below. 

Algorithm 7.3 (Power2Exponent) calculates ciphertext (7.5) of 𝑀𝑒, where 𝑀 is the 

padded message of 𝑚. Algorithm 7.4 (DecPower2Exponent) gets 𝑚𝑒from the output 

of Algorithm 7.3. 

Input: 𝐶_𝐾_𝑚1_2, recrypted ciphertext output by Algorithm 1; 𝑠𝑘3, in (7.40), 

𝐾, recryption constant meeting (7.31). 

Output: 𝑚′ ∈ 𝑅𝑝, the product of messages 𝑚(1) and 𝑚(2). 

1. Using (7.39), set 𝑡𝑚𝑝 ← 𝐷𝑒𝑐𝑠𝑘(𝐶_𝐾_𝑚1_2) = 𝑀(1) ⋅ 𝑀(2) = 𝐾2 ⋅

𝑚(1) ⋅ 𝑚(2). 

2. Set 𝑚′ ← 𝑡𝑚𝑝 ⋅ (𝐾−1)2 𝑚𝑜𝑑 𝑝 = 𝑚(1) ⋅ 𝑚(2). 

3. Return 𝑚′ 

Algorithm 7.3: Power2Exponent: Algorithm of homomorphic plaintext 

exponentiation 𝑀𝑝𝑤𝑟 with 𝑝𝑤𝑟 = 2𝑛 using ciphertext 𝑐 of 𝑀 

Input: 𝑐, an RLWE-CSCM ciphertext of the message 𝑀; 𝑝𝑤𝑟 = 2𝑛, exponent; 

𝑘𝑟𝑒𝑐 recryption key (7.42) with recryption constant 𝐾 ∈ ℤ𝑝; 𝑝𝑘, public 

key of RLWE-CSCM; 𝑟_𝑟𝑒𝑐, random polynomial used in encryption 

(7.5). 
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Algorithm 7.4 (DecPower2Exponent) describes the process of retrieving 𝑚𝑝𝑤𝑟 from 

𝐶 obtained by Algorithm 7.3. 

Output: 𝐶, an RLWE-CSCM ciphertext of 𝑀𝑝𝑤𝑟. 

1. Set 𝐶 ←  𝑐. 

2. 𝑤ℎ𝑖𝑙𝑒 (𝑝𝑤𝑟 > 1)  

3.   Calculate 𝑡𝑚𝑝 = 𝑀(𝐶, 𝐶) ∈ 𝑅𝑞
3 according to (7.23). 

4.   Set 𝐷𝑒𝑐_𝑡𝑚𝑝 ← 𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑡𝑚𝑝) according to (7.43). 

5.   Set 𝐶 ← 𝐸𝑛𝑐𝑝𝑘,𝑟_𝑟𝑒𝑐( 𝐷𝑒𝑐_𝑡𝑚𝑝) ∈ 𝑅𝑞
2, where 𝐸𝑛𝑐𝑝𝑘,𝑟_𝑟𝑒𝑐( 𝐷𝑒𝑐_𝑡𝑚𝑝) 

is performed according to (7.5). 

6.   Set 𝑝𝑤𝑟 ←
𝑝𝑤𝑟

2
. 

7. End while 

8. Return 𝐶. 

Algorithm 7.4: DecPower2Exponent: describes the process of retrieving 𝑚𝑝𝑤𝑟 from 

𝐶 obtained by Algorithm 7.3 

Input: 𝑐, an RLWE-CSCM ciphertext of the message 𝑀; 𝑝𝑤𝑟 = 2𝑛, exponent; 

𝑘𝑟𝑒𝑐 recryption key (7.42) with recryption constant 𝐾 ∈ ℤ𝑝; 𝑝𝑘, public 

key of RLWE-CSCM; 𝑟_𝑟𝑒𝑐, random polynomial used in encryption 

(7.5). 

Output: 𝐶, an RLWE-CSCM ciphertext of 𝑀𝑝𝑤𝑟. 

1. Set 𝐶 ←  𝑐. 

2. 𝑤ℎ𝑖𝑙𝑒 (𝑝𝑤𝑟 > 1)  

3.   Сalculate 𝑡𝑚𝑝 = 𝑀(𝐶, 𝐶) ∈ 𝑅𝑞
3 according to (7.23). 

4.   Set 𝐷𝑒𝑐_𝑡𝑚𝑝 ← 𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑡𝑚𝑝) according to (7.43). 

5.   Set 𝐶 ← 𝐸𝑛𝑐𝑝𝑘,𝑟_𝑟𝑒𝑐( 𝐷𝑒𝑐_𝑡𝑚𝑝) ∈ 𝑅𝑞
2, where 𝐸𝑛𝑐𝑝𝑘,𝑟_𝑟𝑒𝑐( 𝐷𝑒𝑐_𝑡𝑚𝑝) 

is performed according to (7.5). 

6.   Set 𝑝𝑤𝑟 ←
𝑝𝑤𝑟

2
. 

7. End while 

8. Return 𝐶. 
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Figure I.8 and Figure I.9 of Appendix I show Maple code implementation of Algorithm 

7.3 Power2Exponent, and Algorithm 7.4 DecPower2Exponent respectively. 

Example I.7: Example of calculating 512 multiplications homomorphically of 𝑚(1) in 

Example I.6 using Power2Exponent. in Appendix I shows the calculation of 𝑚512 

homomorphically using Power2Exponent, for 𝑚 = 4𝑥2 + 5𝑥 + 1. 

To compute an exponent, 𝑝𝑤𝑟, that is not a power of two, the exponent pwr can be 

represented in binary. For example, to compute 𝑐1000, the power, 𝑝𝑤𝑟 = 1000 =

512 + 256 + 128 + 64 + 32 + 8 = 11111010002, therefore 𝑐1000 can be computed 

as  

𝑐1000 = 𝑐512 ⋅ 𝑐256 ⋅ 𝑐128 ⋅ 𝑐64 ⋅ 𝑐32 ⋅ 𝑐8 

The values, 𝑐512, 𝑐256, 𝑐128, 𝑐64, 𝑐32, 𝑐8 can be found using Power2Exponent. 

7.2.2.4 Homomorphic Multiplication Using Re-Linearization 

The main idea of ciphertext re-linearization is to re-encrypt the product (7.23) under a 

new secret key, 𝑟𝑠𝑘, defined in (7.46), so that the original ciphertext form in (7.5) will 

be obtained. 

𝑟𝑠𝑘 = (1, 𝑟𝑠), (7.46) 

where 𝑟𝑝𝑘, the corresponding public key is defined in (7.47) 

𝑟𝑝𝑘 = (𝑟𝐴 ∙ 𝑟𝑠 + 𝑝 ∙ 𝑟𝑒, −𝑟𝐴) = (𝑟𝑝𝑘1, 𝑟𝑝𝑘2). (7.47) 

The steps of ciphertext re-linearization follow: 

A- Encrypt the variable parts of the secret key, 𝑠𝑘3, from (7.25)  

𝑐𝑠 = (𝑟𝑝𝑘1 ∙ 𝑟3 + 𝑠, 𝑟𝑝𝑘2 ∙ 𝑟3) = (𝑐𝑠0, 𝑐𝑠1),  (7.48) 

𝑐𝑠2 = (𝑟𝑝𝑘1 ∙ 𝑟4 + 𝑠2, 𝑟𝑝𝑘2 ∙ 𝑟4) = (𝑐𝑠20, 𝑐𝑠21). , (7.49) 

where 𝑟3, 𝑟4 are random variables. From (7.46)−(7.49) 



142 

𝑠𝑒 = 𝑠 + 𝑝 ∙ 𝑟𝑒 = 𝑐𝑠0 + 𝑐𝑠1 ∙ 𝑟𝑠,  (7.50) 

𝑠2𝑒 = 𝑠2 + 𝑝 ∙ 𝑟𝑒 = 𝑐𝑠20 + 𝑐𝑠21 ∙ 𝑟𝑠. (7.51) 

Recall from (7.26),(7.28), 

𝑚(1) ⋅ 𝑚(2) = 〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉 𝑚𝑜𝑑 𝑝 = ⟨𝑐(1), 𝑠𝑘⟩ ⋅ ⟨𝑐(2), 𝑠𝑘⟩ 𝑚𝑜𝑑 𝑝 

= 𝑐1
(1)

𝑐1
(2)

+ (𝑐1
(1)

𝑐2
(2)

+ 𝑐2
(1)

𝑐1
(2)

)𝑠 + 𝑐2
(1)

𝑐2
(2)

𝑠2 𝑚𝑜𝑑 𝑝

= (𝑐𝑚0 + 𝑐𝑚1 ∙ 𝑠 + 𝑐𝑚2 ∙ 𝑠2) 𝑚𝑜𝑑 𝑝 (7.52) 

B- Substituting (7.50),(7.51) into (7.52), one gets 

𝑚1 ∙ 𝑚2 = < 𝑐𝑚 ∙ 𝑠𝑘3 >   𝑚𝑜𝑑 𝑝 

= (𝑐𝑚0 + 𝑐𝑚1 ∙ 𝑠 + 𝑐𝑚2 ∙ 𝑠2) 𝑚𝑜𝑑 𝑝 

= (𝑐𝑚0 + 𝑐𝑚1 ∙ 𝑠𝑒 + 𝑐𝑚2 ∙ 𝑠2𝑒) 𝑚𝑜𝑑 𝑝 

= (𝑐𝑚0 + 𝑐𝑚1 ∙ (𝑐𝑠0 + 𝑐𝑠1 ∙ 𝑟𝑠) + 𝑐𝑚2 ∙ (𝑐𝑠20 + 𝑐𝑠21 ∙ 𝑟𝑠)) 𝑚𝑜𝑑 𝑝 

= (𝑐𝑚0 + 𝑐𝑚1 ∙ 𝑐𝑠0 + 𝑐𝑚2 ∙ 𝑐𝑠20 + (𝑐𝑚1 ∙ 𝑐𝑠1 + 𝑐𝑚2 ∙ 𝑐𝑠21)

∙ 𝑟𝑠) 𝑚𝑜𝑑 𝑝 

= (𝑐𝑟𝑠0 + 𝑐𝑟𝑠1 ∙ 𝑟𝑠) 𝑚𝑜𝑑 𝑝 = < 𝑐𝑟𝑠 ∙ 𝑟𝑠𝑘 > 𝑚𝑜𝑑 𝑝 (7.53) 

From (7.53), we get that ciphertext re-linearization of the product, 𝑚1 ∙ 𝑚2, is 

 (𝑐𝑟𝑠0, 𝑐𝑟𝑠1) = (𝑐𝑚0 + 𝑐𝑚1 ∙ 𝑐𝑠0 + 𝑐𝑚2 ∙ 𝑐𝑠20, 𝑐𝑚1 ∙ 𝑐𝑠1 + 𝑐𝑚2

∙ 𝑐𝑠21) (7.54) 

which is decrypted using 

𝑚1 ∙ 𝑚2 = (𝑐𝑟𝑠0 + 𝑐𝑟𝑠1 ∙ 𝑟𝑠) 𝑚𝑜𝑑 𝑝 = < 𝑐𝑟𝑠 ∙ 𝑟𝑠𝑘 > 𝑚𝑜𝑑 𝑝 (7.55) 

if 

𝑟𝑠 = 𝑠, (7.56) 

then the ciphertext (7.54) can be decrypted with the original secret key (7.4). 
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7.3 Security Analysis 

7.3.1 Ciphertext Only Attack Against RLWE-CSCM Messages (Modulo C2 

Attack) 

Modulo 𝑐2 Attack can be launched against RLWE-CSCM messages if the conditions 

(7.57) and (7.58) are satisfied 

deg(𝑝𝑘1 ⋅ 𝑟 + 𝑚) < 𝑑, (7.57) 

and, 

deg(𝑐2) > deg(𝑚) . (7.58) 

If (7.57) is satisfied, then, from (7.5), 

𝑐1 = 𝑝𝑘1 ⋅ 𝑟 + 𝑚 𝑚𝑜𝑑 (𝑥𝑑 + 1) 𝑚𝑜𝑑 𝑞 

= 𝑝𝑘1 ⋅ 𝑟 + 𝑚 𝑚𝑜𝑑 𝑞. 

= 𝑝𝑘1 ⋅ 𝑟 + 𝑚 − 𝑘 ⋅  𝑞. (7.59) 

And if (7.58) is satisfied, then, applying 𝑚𝑜𝑑 𝑐2 operation to the message 𝑚, returns 

exact value of 𝑚. Therefore, if (7.57) and (7.58) are satisfied, the attacker can perform 

the following two steps of the attack: 

Step 1: From (7.3), (7.5), (7.57), (7.58), applying 𝑚𝑜𝑑 𝑐2 operation to 𝑐1 we have 

𝑆1 = 𝑐1 𝑚𝑜𝑑 𝑐2 = 𝐴 ⋅ 𝑠 ⋅ 𝑟 + 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 − 𝑘 ⋅  𝑞 𝑚𝑜𝑑 (−𝐴 ⋅ 𝑟) 

= 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 − 𝑘 ⋅  𝑞. (7.60) 

Step2: Applying 𝑚𝑜𝑑 𝑝 operation to (7.60), and recalling (7.1), one gets, 

𝑚′ = 𝑆1 𝑚𝑜𝑑 𝑝 = 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 − 𝑘 ⋅  𝑞 𝑚𝑜𝑑 𝑝 = 𝑚. (7.61) 

Example I.8 of Appendix I is an example of a successful modulo 𝑐2 attack. To counter 

this attack, it is enough to make sure one of the conditions (7.57) and (7.58) are not 

satisfied. Fulfilling constraint (7.6) violates condition (7.58). Example I.9 of Appendix 

I is an example of failing modulo 𝑐2 attack. 
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7.3.2 Ciphertext Only Attack Against RLWE-CSCM Messages (Modulo p 

Attack) 

Modulo  𝑝 attack can be launched against RLWE-CSCM messages if the following 

condition is satisfied 

∀𝑖 ∈ {0, . . , 𝑑 − 1}: 𝑎𝑖 = 𝛼𝑖 ⋅ 𝑝, (7.62) 

where 𝑎𝑖 is a coefficient of polynomial 𝐴 ⋅ 𝑠 ⋅ 𝑟 ∈ 𝑅𝑞, and 𝛼𝑖 ∈ ℤ+, i.e., the attack can 

be launched if all the coefficients of 𝐴 ⋅ 𝑠 ⋅ 𝑟 are multiple of 𝑝. In such case, from (7.3) 

and (7.5), one gets, 

𝑐1 = ∑(𝑎𝑖 + 𝑏𝑖 + 𝑚𝑖)𝑥
𝑖

𝑑−1

𝑖=0

= ∑(𝛾𝑖 ⋅ 𝑝 + 𝑚𝑖)𝑥
𝑖

𝑑−1

𝑖=0

, 

where 𝑏𝑖, 𝑚𝑖 are coefficients of polynomials 𝑝 ⋅ 𝑒 ⋅ 𝑟, and 𝑚 respectively. Thus, 

applying 𝑚𝑜𝑑 𝑝 operation to 𝑐1 retrieves the message. Since 𝑎𝑖 ∈ 𝑅𝑞, and according 

to (7.1), there are 𝛼 numbers multiple of 𝑝 in 𝑅𝑞.therefore, the probability of satisfying 

(7.62) is (𝛼 𝑞⁄ )𝑑 = (𝛼 (𝛼 ⋅ 𝑝)⁄ )𝑑 = (1/𝑝)𝑑 

7.3.3 Ciphertext Only Attack Against RLWE-CSCM Messages Using Public Key 

The encrypted message, 𝑚, can be compromised using the public key as follows, 

Step1: Obtain random, 𝑟, from 𝑐2, 

𝑟 = 𝐴−1 ⋅ (−𝑐2) 𝑚𝑜𝑑 𝑞 = (𝐴−1 ⋅ 𝐴 ⋅ 𝑟) 𝑚𝑜𝑑 𝑞, (7.63) 

where 𝐴−1 is the multiplicative inverse of 𝐴′ in 𝑅. 

Step2: Revealing message, 𝑚, from 𝑐1, 

𝑚 = 𝑐2 − 𝑝𝑘1 ⋅ 𝑟. (7.64) 

This attack can be mitigated if the public key part, 𝐴, has no multiplicative inverse in 

𝑅. This can be guaranteed by setting 𝐴 meetings (7.2). 
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7.4 Summary 

In this chapter, RLWE-CSCM is proposed, the first FHE scheme homomorphic w.r.t 

to two arithmetic operations and doesn’t need NCM. It is based on RLWE and uses 

polynomials from the ring 𝑅 = ℤ[𝑥]/(𝑥𝑑 + 1). Section 7.1.5 shows that RLWE-

CSCM decryption uses two moduli 𝑞, 𝑝, where the former is a multiple of the latter. 

Section 7.2.1 proves that applying modulo 𝑞 operation in the first step of decryption, 

leaves the noise results from homomorphic addition(s) as a multiple of 𝑝, which 

vanishes by applying modulo 𝑝 operation in the second step. Thus, the reason RLWE-

CSCM is not affected by noise growth is the definition of moduli 𝑞 in (7.1). 

ciphertext results from the product of two ciphertexts (7.23) is greater than the original 

RLWE-CSCM ciphertext (7.5) by one. To avoid the increase of the ciphertext size, 

two CSCM’s; ciphertext recryption; ciphertext linearization are proposed in 

Subsections 7.2.2.2, 7.2.2.4 respectively. 

In ciphertext recryption, the product of two ciphertexts is decrypted using recryption 

key, 𝑘_𝑟𝑒𝑐, that results from the product of two plaintexts encrypted by multiplication 

with a secret recryption constant, 𝐾. 

In ciphertext re-linearization, the product of two ciphertexts is encrypted again under 

a new secret key, 𝑟𝑠𝑘 in (7.46), so that the form of the original ciphertext (7.5) is 

retrieved. In the case 𝑟𝑠𝑘 in (7.46) is defined to be equal to 𝑠𝑘 in (7.4), then the re-

linearized ciphertext (7.54) can be decrypted with the original secret key (7.4). 
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Three different COA against RLWE-CSCM messages have been defined in Section 

7.3. It is also shown that RLWE-CSCM settings (7.2), (7.6), and (7.7) counter these 

attacks.  

RLWE-CSCM is the first HE scheme not affected by noise growth, which allows 

performing an unlimited number of homomorphic additions and multiplications on the 

cihpertext. RLWE-CSCM can be used efficiently to protect data privacy in untrusted 

environment such as cloud. RLWE-CSCM can be used to provide security for various 

fields such as distance learning and medical applications.  
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Chapter 8 

8CONCLUSION 

In this thesis, new HE ciphers classification is proposed. Contrary to all previously 

classifications proposed in (Domingo-Ferrer et al., 2019; Feng et al., 2020; Martins et 

al., 2017; Shrestha & Kim, 2019; Sultan, 2019; L. Wang & Ahmad, 2016; Zhao et al., 

2020) it has the capability to accommodate new cryptosystems with new features. 

Therefore, it allows having a separate class for the newly developed herein RLWE-

CSCM. The new HE classification introduced extends the previously used two criteria 

(homomorphic operation type, the permitted number of homomorphic operations) to 

five, adding: use of ciphertext size control mechanism; the number of keys used 

(symmetric, asymmetric); and the underlying hard problem. The proposed 

classification presented in Table 2.1, grouped known HE ciphers in eight classes.  

RSA is the first developed PKC, it can provide multiplication operation 

homomorphically. Therefore, RSA is widely used in the Internet to prevent weak 

authentication, and in the public key certificates (Housley et al., 2002; Pandey et al., 

2020, p. 321; Yakubu et al., 2019, p. 226). Many applications also involve the RSA 

multiplicative homomorphism feature such as secure image sharing (Islam et al. 2011), 

and homomorphic signatures (R. Johnson et al. 2002; Freeman 2012). Security 

analysis for RSA (Rivest et al., 1978) is considered in Chapter 3. We managed to 

formulate RSA encryption (2.2) to a 2-dimentional lattice (3.5). A new COA using 

LLL algorithm is proposed, which finds the encrypted message meeting (3.2)-(3.6), as 
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a component of the shortest vector in the lattice (3.5). The proposed COA has an 

advantage over previously proposed attacks against RSA, that it does not require prior 

knowledge of a number of bits; a small value of exponent 𝑒; message to be broadcasted 

(see Table 3.1). Experiments shown in Section 3.5, managed to reveal thousands of 

encrypted messages for 𝑁 with bit sizes up to 8193 in Maple 2016.2 with success rate 

0.1. Results presented in Table 3.3 show 80692 cracked messages for 𝑁 = 2050 using 

Code 3.1. LLL attack runs in time quadratic in the bit number of modulo 𝑁 (see Section 

3.4). Our attack shows significant speed (15 milliseconds using Mupad, and 4 × 10−5 

seconds using NTL (NTL: A Library for Doing Number Theory, n.d.) library for 

Example 3.1) in recovering a 40-bit message in comparison to our implementation for 

Boneh MITM attack (Boneh et al., 2000) where 2.202 seconds are needed to recover 

the same length message (2 seconds for pre-computation step, and 0.202 seconds for 

searching step using NTL library). Experiments show that proposed attack succeeds in 

the case when RSA public keys meet (3.16)-(3.18). Hence, to prevent proposed COA 

attack, it is important to select RSA public keys such that (3.16)-(3.18) are not 

satisfied. 

NTRU is standardized as IEEE P1363.1, and it has been selected as a finalist in the 

NIST PQC standardization effort. Security of NTRU, representative of Class 3, is 

considered in Chapter 4. Modulo 𝑝 flaw attack is designed, exploits a flaw found that 

in case (4.10) is satisfied, the encrypted message can be revealed without the need for 

the decryption key. The success probability of modulo 𝑝 attack, 𝑂(𝑁2𝑑+1), is derived 

in (4.38) and found to be not negligible using IEEE standardized parameters (“IEEE 

Standard Specification for Public Key Cryptographic Techniques Based on Hard 
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Problems over Lattices,” 2009, p. 55). On other hand, the success probability becomes 

negligible by fixing the parameter 𝑑 = ⌊
𝑁

2
⌋  as in (Howgrave-Graham et al., 2005).  

Experiments conducted in Section 4.2 to test 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 (Z. Yang et al., 2018b) 

attack on NTRU private keys use the settings in Table 4.2. They showed contrary to 

results in (Z. Yang et al., 2018b), the exponential growth of parameter 𝑡 as 𝑁 increases 

when 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack succeeds (see Figure 4.3). It means that the success 

probability of the attack is low for large value of 𝑁. For 𝑁 = 107, we failed to attack 

NTRU private key using 𝐼𝑁 − 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 attack after 6 hours. Experimental data were 

approximated using quadratic fitting in (4.40) instead of linear fitting presented in (Z. 

Yang et al., 2018b). Thus, extrapolation of time for greater 𝑁 values presented in (4.41) 

using a quadratic approximation in (4.40), and shown in Table 4.4, has greater time 

than extrapolation line in (Z. Yang et al., 2018a). Therefore, we conclude that the 

attack is not so efficient as claimed, and the attack is infeasible for large values of 𝑁.  

To counter LBRA using LLL, NTRU and its variants are shown in section 2.3.4 uses 

high order 𝑁, which increases the computational complexity. To solve this issue, 

RCPKC, which is presented in Chapter 6, uses polynomials of zero degrees, that is 

integer. RCPKC is a secure variant of insecure CPKC presented by the authors of 

NTRU as a toy model (Hoffstein et al., 2014a). The insecurity of CPKC stems from 

the choice of the private keys used as small numbers to provide decryption correctness. 

Thus, it is prone to LBRA using GLR (crackable in about 10 iterations) (see Example 

C.2 in Appendix C). RCPKC specifies a range from which the random numbers shall 

be selected and provides correct decryption for valid users and incorrect decryption 

for an attacker using LBRA by GLR. Security of RCPKC is proved against various 
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attacks in Section 6.3. In Section 6.4, RCPKC asymmetric encryption padding 

(RAEP), is proposed. RAEP similar to its NTRU analog, NAEP, is IND-CCA2 secure. 

Due to the use of big numbers instead of high degree polynomials, RCPKC is about 

27 times faster in encryption and decryption than NTRU. Furthermore, RCPKC is 

more than three times faster than the most effective known NTRU variant, BQTRU. 

Compared to NTRU, RCPKC reduces energy consumption at least thirty times, which 

allows increasing the life-time of unattended WSNs more than thirty times. RCPKC 

performance and power analysis are conducted in Section 6.5. 

In Chapter 5, the security of HE1N (Dyer et al., 2019), representative of Class 4, is 

considered. Section 5.1 proves that the modulus operation used in HE1N encryption, 

Algorithm 2.4, is not working, which leaves HE1N private key prone to various 

attacks. In sections 5.2.1 and 5.3.1 a new COA and KPA against HE1N private key 

are presented respectively. In sections 5.2.3 and 5.3.3 it is proved that the success 

probability of both attacks becomes negligible as the length of parameter 𝑘 in bits 

increases. The computational complexity of COA and KPA is 𝑂(𝓂2). HE1N is one 

of several cryptosystems that are proposed in (Dyer et al., 2019) as a practical solution 

to provide security for clouds. Therefore, it is important to select parameters so that 

the success probability of both KPA and COA become negligible.   

From Table 2.1, we can see that all HE schemes support two homomorphic schemes 

that need NCM to overcome the issue of noise growth due to increasing executed 

homomorphic operations. In Chapter 7, RLWE-CSCM, the first FHE that is not 

affected by noise growth by construction, is proposed. It is based on RLWE and uses 

polynomials in 𝑅 = ℤ[𝑥]/(𝑥𝑑 + 1). Homomorphism of RLWE-CSCM with respect 

to addition and multiplication is proved in Section 7.2. Ciphertext size of RLWE-
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CSCM increases by executing multiplication operation. Therefore, CSCM is needed. 

Two CSCMs are proposed; ciphertext recryption and ciphertext re-linearization in 

sections 7.2.2.2 and 7.2.2.4 respectively. Security of RLWE-CSCM against various 

attacks is presented in Section 7.3. Experiments by (Gentry & Halevi, 2011) showed 

that bootstrapping NCM consumes significant time, and according to (Sarkar et al., 

2021, p. 133,134), the implementations of such encryption schemes remain unsuitable 

for real-time applications yet. Therefore, proposed an FHE without NCM can be 

involved in many real-time applications. 

The practical results of the thesis work are:  

1. A new HE ciphers classification is proposed. Contrary to all previous HE 

ciphers classifications; it has the capability to accommodate new 

cryptosystems with new features. Hence, it allows having a separate class for 

the newly developed herein HE cipher, RLWE-CSCM. 

2. The proposed COA attack against RSA compromises messages encrypted with 

large modulus greater than 8000 bits efficiently. Proposed attack threatens 

users of RSA on Internet and applications exploiting homomorphic 

multiplicative feature of RSA. The attack can be avoided by having RSA public 

key to violate conditions (3.16)-(3.18). 

3. NTRU modulo 𝑝 flaw attack is proposed exploiting a flaw that in case of (4.10) 

is satisfied, the encrypted message can be revealed without the need for the 

private key. The attack threatens the users of NTRU with IEEE standard 

parameters in (“IEEE Standard Specification for Public Key Cryptographic 

Techniques Based on Hard Problems over Lattices,” 2009, p. 55) with non-

negligible success probability. To make the success probability of NTRU 
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modulo 𝑝 attack negligible, users are recommended to set the parameter 𝑑 =

⌊
𝑁

2
⌋  as in (Howgrave-Graham et al., 2005). 

4. RCPKC, the random congruential public key cryptosystem is developed. 

RCPKC is resistant to LBRA using GLR. It is more secure and efficient than 

NTRU and all its variants. Therefore, it can run on devices with constrained 

computational capability, and devices with constrained power, such as 

unattended WSNs. 

5.  RLWE-CSCM, ring learning with errors with ciphertext size control 

mechanism is proposed. RLWE-CSCM is the first HE cipher not affected by 

noise growth due to homomorphic operations. Therefore, RLWE-CSCM is a 

practical solution to provide data privacy for users rely on cloud computing 

services.  

 As a future work, RLWE-CSCM performance analysis will be conducted, a more 

extensive RLWE-CSCM security analysis will be executed, a hardware 

implementation of both RCPKC and RLWE-CSCM will be made, and both of RCPKC 

and RLWE-CSCM will be applied to telemedicine to secure the data collected by 

medical sensors and cameras. 

Finally, I would like to mention that the publication requirement for the Ph.D. degree 

of having at least one conference paper, and one SCI-Expanded journal paper are 

fulfilled with the following published papers: (Chefranov & Ibrahim, 2016; Easttom 

et al., 2020; Ibrahim et al., 2020, 2021, 2019; Ibrahim & Chefranov, 2016).    
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Appendix A: Example of RSA Encryption/ Decryption 

Example A.1: Example of 40-bit RSA encryption/decryption.  

Let 𝑝 =  220 + 33 = 1048609 and 𝑞 = 220 + 13 =  1048589 be two prime 

numbers. Then modulus 𝑁 =  𝑝 · 𝑞 = 1099559862701. According to (2.3), let 

encryption exponent, 𝑒 = 216 + 1 = 65537. According to (2.5), decryption exponent, 

𝑑 =  1082377437569. The public key is (𝑁, 𝑒) = (1099559862701, 65537), and 

the private key is (𝑁, 𝑑) = (1099559862701, 1082377437569). Let the message, 

𝑚 =  986648, then the ciphertext is calculated according to (2.2): 

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁 = 480808351840. (A.1) 

Message, 𝑚, is retrieved by decryption of the ciphertext (A.1) according to (2.4) as 

shown in (A.2): 

𝑚 = 𝑐𝑑  𝑚𝑜𝑑 𝑁 = 986648. (A.2) 

 

 

 

B  



183 

Appendix B: Lattice and Lattice Basis Reduction Algorithms 

Lattices are defined according to Definition B.1 below 

Definition B.1: (Hoffstein et al., 2014b, p. 388) Let 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑚 be a set of 

linearly independent vectors. The lattice ℒ generated by 𝑣1, … , 𝑣𝑛 is the set of linear 

combinations of 𝑣1, … , 𝑣𝑛 with coefficients in ℤ, 

ℒ = {𝑎1𝑣1 + 𝑎2𝑣2 + ⋯+ 𝑎𝑛𝑣𝑛: 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℤ}. 

Definition B.2: (Hoffstein et al., 2014b, p. 388) A set of vectors 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑚 is 

(linearly) independent if the only way to get 

𝑎1𝑣1 + 𝑎2𝑣2 + ⋯+ 𝑎𝑛𝑣𝑛 = 0 

is to have 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑛 = 0. 

The rank of the lattice ℒ is 𝑛 and its dimension is 𝑚, 𝑛 ≤ 𝑚. A full rank lattice is the 

lattice having its rank and dimensions are equal i.e., 𝑛 = 𝑚. basis for ℒ is any set of 

independent vectors 𝑉 = {𝑣1, … , 𝑣𝑛} that generates ℒ. The same lattice can be 

represented by different bases, any two matrices 𝐵1 and 𝐵2 associated with the same 

lattice, 𝐿, are related by an integer matrix 𝑈 with |𝑑𝑒𝑡(𝑈 )| = 1, that is, 𝐵1 = 𝑈 × 𝐵2. 

Therefore, 𝑑𝑒𝑡(𝐵1) = ± 𝑑𝑒𝑡(𝐵2). Determinant of lattice 𝐿 is defined as follows 

det(𝐿) = |det(𝐵)|, (B.1) 

where 𝐵 is a basis matrix of 𝐿. Figure B.1 illustrates two different bases for the same 

lattice. The first basis is “good” in the sense that the vectors are short, “nearly 
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orthogonal”; the second basis is “bad” because the vectors are long and quite skewed, 

i.e., the angle between the basis vectors is small. 

 
Figure B.1: Two different bases for the same lattice. 

Note. Adapted from (Hoffstein et al., 2014b, p. 405). 

Hadamard ratio can be used to check the orthogonality (wellness) of basis, where 

Hadamard ratio is defined according to Definition B.3 below 

Definition B.3: (Hoffstein et al., 2014b, p. 397) Let ℒ be an 𝑛-dimensional lattice 

with the basis ℬ = {𝑣1, … , 𝑣𝑛}, then, the Hadamard ratio of the basis ℬ = {𝑣1, … , 𝑣𝑛} 
is defined to be the quantity, 

ℋ(ℬ) = (
det (ℒ)

‖𝑣1‖‖𝑣2‖…‖𝑣𝑛‖
)
1 𝑛⁄

, 
(B.2) 

where 0 < ℋ(ℬ) ≤ 1, and the closer that the value is to 1, the more orthogonal (good) 

the basis. A bad basis has the ratio close to 0. 

The Hermite Normal Form (HNF) unique basis of ℒ is bad basis 𝐻 and defined 

according to Definition B.4 below 
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Definition B.4: (Joe, 2016, p. 439; Micciancio, 2001, p. 128) The basis 𝐻 of ℒ is in 

upper triangular HNF if it is represented by an 𝑛 × 𝑛 matrix with 

1- ℎ𝑖𝑗 = 0 for 𝑖 > 𝑗 

2- 0 ≤ ℎ𝑖𝑗 < ℎ𝑗𝑗  for1 ≤ 𝑖 < 𝑗 ≤ 𝑛 

3- 0 < ℎ𝑖𝑖 for 0 ≤ 𝑖 ≤ 𝑛 

that is the elements of the main diagonal are positive integers, and in each column, the 

elements above the diagonal are less than the diagonal and at least zero.  

Example of HNF. Let 𝐿 be a 3-dimensional lattice with the basis 𝑣1 = (−97,19,19), 

𝑣2 = (−36,30,86), 𝑣3 = (−184,−64, 78). Thus, the basis matrix 𝐵 is  

𝐵 = [
−97 19 19
−36 30 86
−184 −64 78

], 

Determinant of lattice 𝐿 associated with 𝐵 is 859516 and computed using Maple 

according to (B.1), 

 

Hadamard ratio is approximately 0.746 and computed using Maple according to (B.2) 

as follows: 
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Hence, the basis is rather good as its Hadamard ratio is close to 1. Let’s compute the 

bad basis HNF of𝐿 using Maple: 

 

Hadamard ratio of it is approximately 0.000338 and computed using Maple according 

to (B.2) 

 

Thus, we see that the basis 𝐵 is better than the bad basis HNF of 𝐿, skewed and having 

large norm vectors 
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Let 𝑅 =
ℤ[𝑥]

𝑥𝑛+1
 be the ring of polynomials with integer coefficients modulo 𝑥𝑛 + 1, and 

𝐼 be an ideal of 𝑅. Ideal 𝐼 is a subset of R that is closed under addition and 

multiplication by elements of R (Gentry & Halevi, 2011, p. 138). Thus, 𝐼 satisfies  

1- 0 ∈ 𝐼 ⊆ 𝑅 

2- If 𝑓, 𝑔 ∈ 𝐼, then 𝑓 + 𝑔 ∈ 𝐼. 

3- If 𝑓 ∈ 𝐼 and ℎ ∈ 𝑅, then ℎ𝑓 ∈ 𝐼. 

For example, 𝐼 can be the set of polynomials with all with integer even coefficients of 

degree up to 𝑛 − 1. The set (𝑣) = {𝑣𝑟: 𝑟 ∈ 𝑅} of all multiples of any 𝑣 ∈ 𝑅 is an ideal, 

called the principal ideal generated by 𝑣 (Stillwell, 2003, p. 196). Each element of 𝑅 

is a polynomial of degree at most 𝑛 −  1, and thus is associated to a coefficient vector 

in 𝑍𝑛. This way, we can view each element of 𝑅 as a polynomial and a vector. The 

Euclidean norm ‖𝑥‖ of vector 𝑥 = (𝑥1, … , 𝑥𝑝) is defined as (∑ 𝑥𝑖
2𝑝

𝑖=1 )
1/2

 (J. Han et 

al., 2012, p. 78). 

The ideal (𝑗) generated by 𝑗 ∈ 𝑅 corresponds to the lattice, 𝐽, generated by the basis 

vectors {𝑗𝑖⃗⃗⃗ = 𝑗 ⋅ 𝑥𝑖  𝑚𝑜𝑑 (𝑥𝑛 + 1): 𝑖 ∈ [0, 𝑛 − 1]}. “Every Basis 𝐵 = (�⃗⃗�0, … , �⃗⃗�𝑛−1) 

has a corresponding half open parallelepiped 𝒫(𝐵) = ∑ 𝑧𝑖𝑏𝑖
⃗⃗⃗ ⃗𝑛−1

𝑖=0 : 𝑧𝑖 ∈

(−
1

2
,
1

2
](Martins et al. , 2017, p. 83: 6)”. The length of the shortest nonzero vector in 

a lattice 𝐿 is denoted 𝜆1(𝐿). 

Every lattice induces a congruence relation, wherein two vectors, �⃗�, �⃗�, are congruent 

if �⃗� − �⃗� ∈ ℒ. The reduction of a vector �⃗� modulo lattice basis 𝐵, �⃗� = �⃗� 𝑚𝑜𝑑 𝐵, 

corresponds to determining �⃗� ∈ 𝒫(𝐵) congruent with �⃗�. This operation can be 

computed as (Martins, Sousa, and Mariano 2017, 83: 6 − 83: 7) 
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�⃗� 𝑚𝑜𝑑  𝐵 = �⃗� − ⌊�⃗� × 𝐵−1⌉ × 𝐵, (B.3) 

where × is a vector-matrix multiplication, ⌊⋅⌉ means rounding to the nearest integer.  

Shortest vector problem (SVP) is one of the most widely studied computational 

problem on lattices (Micciancio, 2016) is defined as follows: 

Definition B.5: (Chuang et al., 2018; Hoffstein et al., 2014b, p. 395) Given a linearly 

independent basis 𝑉 = {𝑣1, … , 𝑣𝑛} ∈ ℝ𝑚×𝑛 that generates ℒ, find a nonzero vector 𝑣 

such that ‖𝑣‖ = min
𝑥∈𝑉

‖𝑥‖ i.e., 𝑣 ∈ 𝐿 that minimizes the Euclidean norm ‖𝑣‖. 

The Euclidean norm ‖𝑥‖ of vector 𝑥 = (𝑥1, … , 𝑥𝑝), defined as (∑ 𝑥𝑖
2𝑝

𝑖=1 )
1/2

 (J. Han 

et al., 2012, p. 78). 

Remark 1: There may be more than one solution to the SVP.  

For example, the integer lattice ℤ2, is the set of all 2-dimensional vectors with integer 

entries. Integer lattice ℤ2 can be represented by basis vectors 𝑉1 = (1,1) and 𝑉2= (1, 2), 

while the four nonzero vectors (0, ±1), (±1,0) are the solutions to the SVP. 

Minkowski’s Second Theorem (The LLL Algorithm - Survey and Applications | Phong 

Q. Nguyen | Springer, n.d., p. 35), sets an upper bound for the norm, 𝑙, of the shortest 

nonzero vector in a full rank 2-dimensional lattice given by (B.4): 

𝜆 ≤ √𝛾2 det(𝐿)1 2⁄ , (B.4) 

where 𝛾2 =
2

√3
≈ 1.154 is Hermit’s constant (The LLL Algorithm - Survey and 

Applications | Phong Q. Nguyen | Springer, n.d., p. 41), 𝜆 is the norm of the shortest 
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nonzero vector, and 𝑑𝑒𝑡(𝐿(𝑉1, 𝑉2)) is the determinant of the lattice matrix formed by 

its basis vectors. Hence, 

𝜆 ≤ √1.154 det(𝐿) ≈ 1.07 √det(𝐿). (B.5) 

Gaussian lattice reduction algorithm (GLR) (Hoffstein et al., 2014c) proposed by 

Gauss in the 19th century, and shown in Algorithm B.1 (our Maple implementation is 

shown in Code B.1) solves SVP in a 2-dimensioal lattice.  

GLR algorithm shown in Algorithm B.1, upon termination returns the shortest vector 

𝑣1 in 𝐿 generated by the basis 𝑉 = {𝑉1, 𝑉2}:  

Algorithm B.1: GLR algorithm pseudocode (Hoffstein et al., 2014b, p. 437). 

input: basis vectors 𝑉1, 𝑉2 

output: the shortest vector 𝑣1 in 𝐿 

begin  

1. 𝑣1 = 𝑉1; 𝑣2 = 𝑉2; 

2. Loop  
3.    If ||𝑣2|| < ||𝑣1|| 
4.       swap 𝑣1 and 𝑣2. 

5.    Compute 𝑚 = ⌊𝑣1 · 𝑣2 ||𝑣1||
2

⁄ ⌉ 

6.    If 𝑚 =  0 

7.      return the shortest vector v1 of the basis, {𝑣1, 𝑣2}. 
8.    Replace 𝑣2 with 𝑣2 − 𝑚𝑣1. 

End Loop  
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Code B.1: Maple implementation for GLR Algorithm in Algorithm B.1 

 

However, Solving SVP for higher dimensional lattice remains unsolved until LLL 

(Lenstra et al., 1982) proposed in 1982. LLL, shown in Algorithm B.2, runs in a 

polynomial time to solve approximate shortest vector problem (apprSVP) for higher 

dimension lattices. apprSVP defined as follows 
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Algorithm B.2: The LLL lattice reduction algorithm (Hoffstein et al., 2014b, p. 444) 

input: basis vectors {𝑣1, … , 𝑣𝑛} for the lattice 𝐿 

output: Reduced basis vector {𝑣1, … , 𝑣𝑛} 
begin  

1. Set 𝑘 = 2 

2. Set 𝑣1
∗ = 𝑣1 

3. Loop while 𝑘 ≤ 𝑛 

4.    Loop Down 𝑗 = 𝑘 − 1, 𝑘 − 2,… , 2, 1 

5.       Set 𝑣𝑘 = 𝑣𝑘 = ⌊𝜇𝑘,𝑗⌉𝑣𝑗 

6.    End 𝑗 Loop 

7.    If ‖𝑣𝑘
∗‖2 ≥ (

3

4
− 𝜇𝑘,𝑘−1

2 ) ‖𝑣𝑘−1
∗ ‖2  

8.       Set 𝑘 = 𝑘 + 1. 

9.    Else 

10.       Swap 𝑣𝑘−1 and 𝑣𝑘 

11.       Set 𝑘 = max(𝑘 − 1,2) 

12.    End If 

13. End 𝑘 loop 

14. Return LLL reduced basis {𝑣1, … , 𝑣𝑛} 
End  

 

Definition B.6: (Hoffstein et al., 2014b, p. 409) Let 𝜙(𝑛) be a function of 𝑛. In a 

lattice 𝐿 of dimension 𝑛, the approximate shortest vector problem is to find a nonzero 

vector that is no more than 𝜙(𝑛) times longer than a shortest nonzero vector. In other 

words, if 𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 is a shortest nonzero vector in 𝐿, find a nonzero vector 𝑣 ∈ 𝐿 

satisfying 

‖𝑣‖ ≤ 𝜙(𝑛)‖𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡‖. 

LLL solves apprSVP to within a factor of 2𝑛 , where 𝑛 is the dimension of the lattice. 

On termination, LLL returns a set of short vectors, beginning with the shortest vector 

found, and then with vectors whose lengths increase as slowly as possible until we 

reach the last vector in the basis in the lattice. The shortest vector 𝑣1 found in an 𝑛-

dimension lattice 𝐿 satisfies 

C  

 

‖𝑣1‖ ≤ 2(𝑛−1) 2⁄ min
0≠𝑣∈𝐿

‖𝑣‖  (B.6) 
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Appendix C: Examples of CPKC Scheme Encryption/ Decryption 

Example C.1: Example of CPKC encryption/ Decryption. The example is close to 

Example 7.1, from (Hoffstein et al., 2014b, p. 375).  

Key creation: Let according to (2.29), (2.30), 𝑞 =  122430513839, 𝑓 =  231233, 

and 𝑔 =  195696. According to (2.31), 𝐹𝑔  =  127505, and 𝐹𝑞 = 54368439252 as 

shown in (1) and (2), Figure C.1 Public key component, ℎ, is calculated by (2.32)  as 

shown in (3) of Figure C.1: 

ℎ = 𝐹𝑞 ⋅ 𝑔 𝑚𝑜𝑑 𝑞 =  107143708775. 

 Public key is (ℎ, 𝑞), and private key is (𝑓 , 𝑔). 

Encryption: Let according to (2.33) and (2.34), 𝑟 =  10101 and 𝑚 =  12345. The 

ciphertext, 𝑒 as showin in (4) of Figure C.1, is computed according to (2.35): 

𝑒 =  𝑟 ·  ℎ +  𝑚 𝑚𝑜𝑑 𝑞 =  95290525699. 

 In Step 1 of the decryption process, equation (2.36) is applied as shown in (5) of Figure 

C.1: 

𝑎 =  𝑓 ·  𝑒 𝑚𝑜𝑑 𝑞 =  𝑟 ·  𝑔 +  𝑓 ·  𝑚 =  4831296681. 

 In Figure C.1, the message m is retrieved using (2.39) as shown in (6), Figure S1: 

𝑚 =  𝐹𝑔 ·  𝑎 𝑚𝑜𝑑 𝑔 =  12345. 
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 Thus, the plaintext 𝑚 =  12345 is revealed. It can be seen that CPKC 

encryption/decryption procedure (2.35), (2.36), and (2.38), works correctly due to 

(2.37) holding. 

 
Figure C.1: Screenshot of LBRA by GLR using Maple code in Appendix B on 

CPKC for the data from the Example C.1 finding the private key components, 

(𝑓 , 𝑔) = 𝑣1, in 9 iterations. 
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Example C.2: Example of LBRA using GLR against CPKC 

In this example, we try LBRA by GLR using Maple code in AppendixB on CPKC 

private key/message for the data from the Example C.1. LBRA by GLR finds in 9 

iterations the shortest vector, 𝑣1 = (231233, 195696) as shown in Figure C.1. The 

shortest vector, 𝑣1, found by GLR corresponds to the private key components, (𝑓 , 𝑔), 

because they were selected small, having order 𝒪(√𝑞) values according to (2.40). Note 

that the norm of the vector, (𝑓,𝑔) = √𝑓2 + 𝑔2 = 3.029284141 × 105
 is small 

compared to √𝑞 = 3.499007199 × 105. The message related vector, (r, e - m), is not 

disclosed in the attack because 𝑒 =  𝒪(𝑞). 

 

 

 

D  
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Appendix D: Example of HE1N Encryption/Decryption 

Example D.1: Example of HE1N encryption/decryption.  

Let 𝜆 = 14, 𝜌 = 8, 𝜌′ = 11 be the inputs of Algorithm 2.2, and let the parameters 

(𝑝, 𝑣, 𝑘) selected by Algorithm 2.2 to be 𝑝 = 8200 ∈ [213, 214], 𝑣 = 3, and 𝑘 = 8 ∈

[22, 23]. Algorithm 2.2 outputs the key (𝑘, 𝑝).  

Next, Algorithm 2.3 inputs (𝜆, 𝜌′, 𝑘, 𝑝). Algorithm 2.3 assigns 𝜂 ← 6 ≈  𝜆2 𝜌′⁄ − 𝜆 =

5.8181. Let 𝑞 = 32 ∈ [25, 26]. Algorithm 2.3 assigns modulus ← 262400 = p ⋅ q. 

Let the input plaintext messages bounded by 𝑀 = 32. Encryption of 𝑚 = 7 ∈ [0,32) 

is performed by Algorithm 2.4. Let (𝑟, 𝑠) selected by Algorithm 2.4 to be 𝑟 = 15 ∈

[1, 𝑞), 𝑠 = 2 ∈ [0, 𝑘). Algorithm 2.4 finds 𝑐, the ciphertext encrypts 𝑚, 𝑐 = 𝑚 + 𝑠𝑘 +

𝑟𝑝 𝑚𝑜𝑑 modulus = 7 + 2 ⋅ 8 + 15 ⋅ 8200 mod 262400 =

123023 mod 262400 = 123023. Note that modulus operation in the encryption 

step, has no effect, as we proved in Section 5.1. 

The message 𝑚 is retrieved by Algorithm 2.5. 𝑚 = (𝑐 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑘 =

(12302323 𝑚𝑜𝑑 8200) 𝑚𝑜𝑑 8 = 7 

 

E  
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Appendix E: Examples of RLWE-NCM-CSCM Cryptosystem 

Encryption/ Decryption 

Example E.1: Example of failing decryption when condition (2.56) is not satisfied.  

Let 𝑛 = 4, 𝑅 = ℤ[𝑥]/(𝑥4 + 1), 𝑞 = 7,𝑡 = 2, 𝑚 = 𝑥 + 1, 𝑒 = 𝑥3 + 2𝑥2, 𝑎 = 𝑥2, 𝑠 =

𝑥2 − 3. Note that |2𝑒 + 𝑚| = 2𝑥3 + 4𝑥2 + 𝑥 + 1, thus condition (2.56) is violated 

since 4 > 3.5 = 𝑞/2. Encryption is performed according to (2.53), 𝑐 = (
𝑐0

𝑐1
) =

(2𝑥3 + 𝑥2 + 𝑥
−𝑥2 ) ∈ 𝑅𝑞

2. Decryption is performed according to (2.54), 𝑐0 + 𝑐1 ⋅

𝑠 𝑚𝑜𝑑 (𝑥4 + 1)  𝑚𝑜𝑑 7 𝑚𝑜𝑑 2 = 2𝑥3 − 3𝑥2 + 𝑥 + 1 𝑚𝑜𝑑 2 = 𝑥2 + 𝑥 + 1 ≠ 𝑚. 

Example E.2: Example of successful decryption when condition (2.56) is satisfied.  

Let 𝑛 = 4, 𝑅 =
ℤ[𝑥]

𝑥4+1
, 𝑞 = 7,𝑡 = 2, 𝑚 = 𝑥 + 1, 𝑒 = 𝑥3 + 𝑥2,𝑎 = 𝑥2, 𝑠 = 𝑥2 − 3. 

Note that 2𝑒 + 𝑚 = 2𝑥3 + 2𝑥2 + 𝑥 + 1, thus condition (2.56) is satisfied as 𝑞/2 =

3.5. Encryption is performed according to (2.53), 𝑐 = (
𝑐0

𝑐1
) = (2𝑥3 − 𝑥2 + 𝑥

−𝑥2 ) ∈ 𝑅𝑞
2. 

Decryption is performed according to (2.54), 𝑐0 + 𝑐1 ⋅ 𝑠  𝑚𝑜𝑑 (𝑥4 +

1) 𝑚𝑜𝑑 7 𝑚𝑜𝑑 2 = 2𝑥3 + 2𝑥2 + 𝑥 + 1 𝑚𝑜𝑑 7 𝑚𝑜𝑑 2 = 𝑥 + 1 = 𝑚.  

 

F  
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Appendix F: Example of RCPKC Scheme Encryption/ Decryption 

Example F.1 aims to show the process of finding RCPKC random interval, and how 

LBRA using GLR fails to compromise RCPKC private key/message. For calculations, 

Maple is used. See Figure F.1. 

Example F.1: Example of Finding RCPKC Random Interval, and LBRA by GLR 

Failure 

Key Creation: Let 𝑚𝑔𝐿𝑒𝑛 = 16, 𝑞𝐿𝑒𝑛 = 80, meeting (6.10), 𝑞 = 2𝑞𝐿𝑒𝑛, private key 

components, 𝑔 = 65,535, and 𝑓 = 1, 351, 417, 702, 001, are selected to meet (6.6) 

and (6.8) respectively as shown in (2) and (3) of Figure F.1. Values 𝐹𝑞 and 𝐹𝑔 are found 

in (4) and (5) of Figure F.1. The public key component, ℎ, is calculated according to 

(2.32) as shown in (6) of Figure S4. 

Finding Random Interval: To select random 𝒓, GLR algorithm shown in Appendix B 

is launched with inputs 𝑉1 = (1, ℎ) and 𝑉2 = (0, 𝑞). GLR terminates in 18 iterations 

as shown in (8) of Figure F.1, with 5 pairs (𝐹𝑖, 𝐺𝑖) satisfying (6.12) shown in (7) of 

Figure F.1, it is noticed that none of these vectors is equal to (𝑓, 𝑔). Hence, (6.13) is 

satisfied. Maximum 𝐹𝑖 and minimum 𝐺𝑖 are found in (9), and (10) of Figure F.1; value 

𝑟𝑚𝑖𝑛 is defined according to (6.14) as shown in (11), 𝑟𝑚𝑖𝑛 also satisfies (6.15) as 

shown in (18) of Figure F.1. 𝑟𝑚𝑎𝑥 is calculated in (12) of Figure F.1. After calculating 

𝑚𝑎𝑥(𝛼 ·  2𝑞𝑙𝑒𝑛/2, 𝑟𝑚𝑖𝑛) in (13) of Figure F.1, it is perceived that (6.19) is satisfied as 

shown in (14) of Figure F.1. Thus, 𝑟 is selected from (6.18) as shown in (15) of Figure 

F.1. 
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LBRA using GLR Failure: For the message 𝑚 = 14, it is noticed that decryption 

correctness condition (6.17) is valid using private key (𝑓, 𝑔) as shown in (16) of Figure 

F.1, and not valid for (𝐹𝑖, 𝐺𝑖) returned by GLR as shown in (17) of Figure F.1. Hence, 

GLR attack fails to return keys usable for ciphertext decryption. 
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Figure F.1. Screenshot of Maple code of Example F.1. 

G  
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Appendix G: NTRU Asymmetric Encryption Padding IND-CCA2 

Security (NAEP) 

NTRU asymmetric encryption padding (NAEP) (Howgrave-Graham, Silverman, 

Singer, et al., 2003) has been proven IND-CCA2 secure. In the following, NAEP is 

introduced, and then, its IND-CCA2 security is discussed. 

NAEP Description: NAEP uses a function, 

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑝(𝑥)) = 𝑝(𝑥) 𝑚𝑜𝑑 𝑞 𝑚𝑜𝑑 2,  (G.1) 

where 𝑝(𝑥) is a polynomial. NAEP encryption is introduced in Algorithm G.1. 

Algorithm G.1: NAEP encryption 

input: 𝑁 = 𝜃(𝑘);𝑁 > 𝑙 = 𝜃(𝑘) is the padding size; 𝐺: {0,1}𝑁−𝑙 × {0,1}𝑙 → 𝐷𝑟 

and 𝐻: {0,1}𝑁 → {0,1}𝑁 are hash functions; 𝑚 ∈ {0,1}𝑁−𝑙 is the input 

plaintext message; ℎ is the public key; 𝑞 is the modulus value. 

output: 𝑒 ∈ 𝑅𝑞 is the ciphertext. 

begin  

1. Pick 𝜇 ←$ {0,1}𝑙, where ←$ means uniform random sampling 

2. Let 𝜌 = 𝐺(𝑚, 𝜇), 𝑟 = 𝑔𝑒𝑛𝑟(𝜌), 𝑠 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑝 ⋅ 𝑟 ⋅ ℎ), and 𝜔 =

(𝑚||𝜇) ⊕ 𝐻(𝑠). 𝑔𝑒𝑛𝑟 is a function generating correct 𝑟; ⊕ denotes XOR;  

3. If 𝜔 ∉ �̃�, goto 1. �̃� is the space of binary polynomials with the number of 

ones such that the probability of NTRU decryption failure is negligible. 

4.  𝑒 = 𝐹ℎ,𝑝
𝑁𝑇𝑅𝑈(𝜔, 𝑟), according to (2.20) 

end  

The 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠() binary string result is sed in Step 2 of NAEP encryption to hide the 

padded message by XOR operation and hashing. NAEP decryption is introduced in  
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Algorithm G.2: NAEP decryption 

input: 𝑁 = 𝜃(𝑘); 𝑁 > 𝑙 = 𝜃(𝑘) is the padding size; 𝐺: {0,1}𝑁−𝑙 × {0,1}𝑙 → 𝐷𝑟 

and 𝐻: {0,1}𝑁 → {0,1}𝑁 are hash functions; 𝑒 ∈ 𝑅𝑞 is the ciphertext. 

output: 𝑚 ∈ {0,1}𝑁−𝑙 is the decrypted plaintext message if decrypted correctly, 

and Reject otherwise. 

begin  

1. 𝑎 = 𝑐𝑒𝑛𝑡𝑒𝑟(𝑓 ⋅ 𝑒 𝑚𝑜𝑑 𝑞) 

2. 𝜔 = 𝐹𝑝 ⋅ 𝑎 𝑚𝑜𝑑 𝑝. According to NTRU step 2  

3. 𝑠 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑒 − 𝑤)  

4. 𝑚||𝜇 = 𝜔⨁𝐻(𝑠); 𝑟 = 𝑔𝑒𝑛𝑟(𝐺(𝑚||𝜇)). 

5. If 𝑝 ⋅ 𝑟 ⋅ ℎ = 𝑠 𝑚𝑜𝑑 𝑞, then output 𝑚; else, output Reject. 

end  

Security of NAEP IND-CCA2: NAEP has been proven to be IND-CCA2 secure 

(Howgrave-Graham, Silverman, Singer, et al., 2003). 

Definition G.1: (Howgrave-Graham, Silverman, Singer, et al., 2003, p. 3) A time 𝜏 

algorithm 𝒜 is a (𝜏;  𝜖)-chosen ciphertext algorithm, with advantage 𝜖 in attacking a 

randomized encryption scheme (𝒦, ℰ, 𝒟) if there is a pair of sub-algorithms 

𝒜1: 𝑃𝐾 → ℳ × ℳ × 𝒮, 

𝒜2: 𝒞 × 𝒮 → {0,1}, 

such that if (𝑀0, 𝑀1, 𝑠) ← 𝒜1(𝑝𝑘) then 

|Pr[𝒜2(𝑐
∗, 𝑠) = 𝑏∗] −

1

2
| = (1 2⁄ )𝜖 

where 𝑐∗ ← ℰ(𝑀∗, 𝑟∗) for some 𝑟∗ ∈ ℛℰ, and 𝑀∗ = 𝑀𝑏∗   for some 𝑏∗ ∈ {0, 1}. This 

probability is defined over the choice of 𝑟∗ ←$  ℛℰ , 𝑏
∗ ∈ {0, 1} and 𝑘 ∈ ℛ𝒦, where ℛℰ 

and ℛ𝒦 are defined below. The algorithms (𝒜1, 𝒜2) have access to a decryption 
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oracle 𝒟, which they can call on all but the challenge ciphertext 𝑐∗, but they must make 

all hash function calls to 𝐻1, . . . 𝐻𝑛 public. 

An encryption scheme is IND-CCA2 secure if there exist no polynomial (on security 

parameter) time adversary with a non-negligible advantage. Key generation, 

encryption, and decryption algorithms are formalized as follows (Howgrave-Graham, 

Silverman, Singer, et al., 2003). For a given parameter set 𝒫, the encryption scheme 

is specified by three algorithms: 

𝒦: ℛ𝒦 → 𝒫𝒦 × 𝒮𝒦 

ℰ:𝒫𝒦 × ℳ × ℛℰ → 𝒞 

𝒟: 𝒮𝒦 × 𝒞 → ℳ,  

called the key generation, encryption, and decryption algorithms, respectively. The 

spaces ℛ𝒦, 𝒫𝒦, 𝒮𝒦, ℳ, ℛℰ , 𝒞 are called the key-gen randomness, public key, secret 

key, message, encryption randomness, and ciphertext space, respectively 

If (𝑝𝑘𝑘 , 𝑠𝑘𝑘) ← 𝒦(𝑘), then the algorithms should satisfy: 

𝒟(𝑠𝑘𝑘, ℰ(𝑝𝑘𝑘, 𝑀, 𝑟)) = 𝑀 

for all 𝑘 ∈ ℛ𝒦 ,𝑀 ∈ ℳ and 𝑟 ∈ ℛℰ. NTRU key, encryption, and decryption 

procedures and respective spaces are defined in Section 2.3.1 according to (Howgrave-

Graham, Silverman, Singer, et al., 2003). Polynomials used in NAEP (Howgrave-

Graham et al., 2005; Howgrave-Graham, Silverman, Singer, et al., 2003) for keys are 

invertible. The NTRU one-way (NTRU-OW) problem is defined as follows: 
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Definition G.28: NTRU-OW problem: For a parameter set, 𝒫𝑁𝑇𝑅𝑈, we denote by 

𝑆𝑢𝑐𝑐𝑁𝑇𝑅𝑈
𝑂𝑊 (𝒜, 𝒫𝑁𝑇𝑅𝑈) the success probability of a probabilistic polynomial time 

(PPT) adversary, 𝒜, for finding a pre-image of 𝐹ℎ,𝑝
𝑁𝑇𝑅𝑈, 

𝑆𝑢𝑐𝑐𝑁𝑇𝑅𝑈
𝑂𝑊 (𝒜, 𝒫𝑁𝑇𝑅𝑈) = Pr(

(𝑀′, 𝑟′) ← 𝒜(𝑒, ℎ)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹ℎ,𝑝
𝑁𝑇𝑅𝑈(𝑀′, 𝑟′) = 𝑒 

) . 

Assumption G.1: NTRU-OW assumption: For every PPT adversary, 𝒜, solving the 

NTRU-OW problem, there exists a negligible function, 𝑣𝐴(𝑘), such that for 

sufficiently large 𝑘, it holds: 

𝑆𝑢𝑐𝑐𝑁𝑇𝑅𝑈
𝑂𝑊 (𝒜,𝒫𝑁𝑇𝑅𝑈) ≤ 𝑣𝐴(𝑘). 

Definition G.3: (Howgrave-Graham, Silverman, Singer, et al., 2003) A function 

𝜈: ℕ → ℝ is said to be negligible if for every constant 𝑐 ≥ 0, there exists an integer 

𝑘𝑐 such that 𝜈(𝑘) < 𝑘−𝑐 for all 𝑘 ≥ 𝑘𝑐. 

NTRU variants (Hoffstein et al., 1999; Howgrave-Graham, Silverman, Singer, et al., 

2003) can fail; hence, it was assumed in (Howgrave-Graham, Silverman, Singer, et al., 

2003) that the failure probability is negligible. Under these assumptions, the IND-

CCA2 security of NAEP was proven in (Howgrave-Graham, Silverman, Singer, et al., 

2003), Corollary 1. 

H  
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Appendix H: Formulas for CPU Power Consumption Calculation 

Power, 𝑃, and energy, 𝐸, are measured in watts (𝑊) and joules (𝐽) (Smith, 2002, p. 

1028), respectively, and calculated as follows: 

𝑃 =  𝑉 ·  𝐼, (H.1) 

𝐸 =  𝑃 ·  𝑇, (H.2) 

where 𝑉 is the potential difference measured in volts (𝑉), 𝐼 is the electric current 

measured in amperes (𝐴), and 𝑇 is the running time in seconds. There are three 

contributors to the CPU power consumption: dynamic, short-circuit, and power loss 

due to transistor leakage currents (Beloglazov et al., 2011): 

𝑃𝑐𝑝𝑢 = 𝑃𝑑𝑦𝑛 + 𝑃𝑠𝑐 + 𝑃𝑙𝑒𝑎𝑘. (H.3) 

Power consumption is mainly defined by the dynamic and leakage components 

(Nikolić, 2008). Leakage power, caused by leakage currents, is present in any active 

circuit independent of clock rates and is calculated as follows: 

𝑃𝑙𝑒𝑎𝑘  =  𝑉 ·  𝐼𝑙𝑒𝑎𝑘, (H.4) 

where 𝑉 is the supply voltage and 𝐼𝑙𝑒𝑎𝑘 is the leakage current. Dynamic power 

consumption depends on circuit activity (i.e., transistor switches, changes of values in 

registers, etc.) and is defined as follows: 

𝑃𝑑𝑦𝑛 = 𝑎 ·  𝐶 ·  𝑉2 · 𝑓 , (H.5) 
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where 𝑎 is the switching activity factor, 𝐶 is the capacitance measured in farad (𝐹), 

and 𝑓 is the clock frequency measured in hertz (𝐻𝑧). Mostly, the activity factor is 𝑎 =

 0.5 (Romli et al., 2015). MSP430FR5969, a Texas Instruments microcontroller with 

capacitance 𝐶 =  20 𝑝𝐹 (Texas Instruments Incorporated, 2018) (Table 5–12), active 

supply voltage from 1.8, . . . , 3.6 𝑉 (Texas Instruments Incorporated, 2018, p. 1), clock 

frequency from 1, . . . , 16 𝑀𝐻𝑧 (Texas Instruments Incorporated, 2018, p. 19), 𝐼𝑙𝑒𝑎𝑘  =

20 𝑛𝐴 (Texas Instruments Incorporated, 2018) (Table 5–11), is used for RCPKC 

power consumption evaluation in Subsection 6.5.2 

 

 

I  
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Appendix I: Examples of RLWE-CSCM 

Example I.1: Example of correct encryption/ decryption when (7.1) holds: 

Let 𝑝 = 7, 𝑞 = 15 ⋅ 𝑝 = 105, and 𝑑 = 3, i.e., 𝑅 = ℤ[𝑥] (𝑥3 + 1)⁄ . Public and secret 

keys’ components, 𝐴, 𝑠, and 𝑒 are defined as follows 

𝐴 = 93𝑥2 + 110𝑥 + 17 = (𝑥 + 1)(93𝑥 + 17), (I.1) 

𝑠 = 78𝑥2 + 85𝑥 + 101, (I.2) 

𝑒 = 91𝑥2 + 58𝑥 + 62 , (I.3) 

where 𝐴 meets (7.2). From (I.1)-(I.3), and (7.3), the public key, 𝑝𝑘 ∈ 𝑅𝑞
2, is defined as 

follows: 

𝑝𝑘 = (
𝑝𝑘1

𝑝𝑘2
) = (

𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒
−𝐴

) = ( 21𝑥2 + 37𝑥 + 51
12𝑥2 + 100𝑥 + 88

). 
(I.4) 

From (I.2) and (7.4), it follows that secret key, 𝑠𝑘 ∈ 𝑅𝑞
2, is 

𝑠𝑘 = (
1
𝑠
) = (

1
78𝑥2 + 85𝑥 + 101

). (I.5) 

Encryption of the message, 

𝑚 = 4𝑥2 + 5𝑥 + 1 ∈ 𝑅𝑝, (I.6) 

is performed using random 𝑟 meeting (7.7), 
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𝑟 = 67𝑥2 + 49𝑥 + 14 ∈ 𝑅𝑞 . (I.7) 

Ciphertext is computed according to (7.5), 

𝑐 = (
𝑐1

𝑐2
) = (

𝑝𝑘1 ⋅ 𝑟 + 𝑚
𝑝𝑘2 ⋅ 𝑟

) = (68𝑥2 + 40𝑥 + 42
44𝑥2 + 48𝑥 + 34

) ∈ 𝑅𝑞
2, 

(I.8) 

meeting (7.6). Decryption is executed through two steps in (7.8). 

Step 1: 

[〈𝑐, 𝑠𝑘〉]𝑞 = 𝑐1 + 𝑐2 ⋅ 𝑠  𝑚𝑜𝑑 𝑞 = 39𝑥2  +  26𝑥 +  57, (I.9) 

with quotient 𝑘 = 551𝑥2 –  150𝑥 –  499 in (7.10), found as follows: 

〈𝑐, 𝑠𝑘〉 = 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 = 57894𝑥2 − 15724𝑥 − 52338 ∈ 𝑅 

𝑘 = ⌊
〈𝑐,𝑠𝑘〉

𝑞
⌋ = ⌊

57894

𝑞
⌋ 𝑥2 − ⌊

15724

𝑞
⌋ 𝑥 − ⌊

52338

𝑞
⌋ = 551𝑥2  −  150𝑥 –  499. 

Step2: Modulo 𝑝 operation is applied to (I.9), 

𝑚′ = [[〈𝑐, 𝑠𝑘〉]𝑞]𝑝 = 39𝑥2  +  26𝑥 +  57 𝑚𝑜𝑑 7 = 4𝑥2 + 5𝑥 + 1 = 𝑚, (I.10) 

Figure I.1 shows a screenshot of Maple code of Example I.1. 

Example I.2: Example of correct encryption/ decryption when (7.1) does not hold: 

Let 𝑝 = 7, 𝑞 = 15 ∗  𝑝 + 𝑡 = 106, 𝑡 = 1, and 𝑑 = 3, i.e., 𝑅 = ℤ[𝑥] (𝑥3 + 1)⁄ . Public 

and secret keys’ components, 𝐴, 𝑠, and 𝑒, are defined in (I.1)-(I.3). From (I.1)-(I.3) and 

(7.3), the public key 𝑝𝑘 ∈ 𝑅𝑞
2 is defined as follows: 
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Figure I.1: Screenshot of Maple code of RLWE-CSCM encryption and success 

decryption when (7.1) holds using parameter settings of Example I.1 
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𝑝𝑘 = (
𝑝𝑘1

𝑝𝑘2
) = (

𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒
−𝐴

) = ( 36𝑥2  +  89𝑥 +  82
 13𝑥2  +  102𝑥 + 89

). 
(I.11) 

From (I.2) and (7.4) it follows that secret key, 𝑠𝑘 ∈ 𝑅𝑞
2, is  

𝑠𝑘 = (
1
𝑠
) = (

1
78𝑥2 + 85𝑥 + 101

). (I.12) 

Encryption of the message in (I.6), using the random, 𝑟, in (I.7) is performed according 

to (I.5), 

𝑐 = (
𝑐1

𝑐2
) = (

𝑝𝑘1 ⋅ 𝑟 + 𝑚
𝑝𝑘2 ⋅ 𝑟

) = (81𝑥2 + 101𝑥 + 100
13𝑥2 + 42𝑥 + 29

) ∈ 𝑅𝑞
2. 

(I.13) 

Decryption is executed through two steps in (7.8).  

Step 1: 

[〈𝑐, 𝑠𝑘〉]𝑞 = 𝑐1 + 𝑐2 ⋅ 𝑠  𝑚𝑜𝑑 𝑞 = 18𝑥2  +  70𝑥 +  26. (I.14) 

Step2: Modulo 𝑝 operation is applied to (I.14) , and, recalling (I.6), 

𝑚′ = [[〈𝑐, 𝑠𝑘〉]𝑞]𝑝 = 18𝑥2  +  70𝑥 +  26 𝑚𝑜𝑑 7 = 4𝑥2 + 5 ≠ 𝑚 = 4𝑥2 + 5𝑥 + 1, 

where quotient  𝑘 = 546𝑥2 –  148𝑥 –  493 in (7.13), found as follows: 

〈𝑐, 𝑠𝑘〉 = 𝑝 ⋅ 𝑒 ⋅ 𝑟 + 𝑚 = 57894𝑥2 − 15724𝑥 − 52338 ∈ 𝑅 

𝑘 = ⌊〈𝑐, 𝑠𝑘〉 𝑞⁄ ⌋ = ⌊57894 𝑞⁄ ⌋𝑥2 − ⌊15724 𝑞⁄ ⌋𝑥 − ⌊52338 𝑞⁄ ⌋

= 546𝑥2  −  149𝑥 –  494. 

Thus, decryption failed as by (7.14) 𝑚′ = 4𝑥2 + 5 = 𝑚 − 𝑘𝑡 𝑚𝑜𝑑 𝑝 = 4𝑥2 + 5𝑥 +

1 − 5𝑥 − 3 𝑚𝑜𝑑 7 = 4𝑥2 + 5 ≠ 𝑚. Figure I.2 shows a screenshot of Maple code of 

Example I.2. 
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Figure I.2: Screenshot of Maple code of RLWE-CSCM encryption and success 

decryption when (7.1) does not hold using parameter settings of Example I.2 

 



211 

Example I.3: Example of homomorphic addition of two terms 

Let 𝑝 = 7, 𝑞 = 15 ⋅ 𝑝 = 105, and 𝑑 = 3, i.e., 𝑅 = ℤ[𝑥]/(𝑥3 + 1). Public and secret 

keys, 𝐴, 𝑠, and 𝑒 are defined in (I.1)-(I.3). From (I.1)-(I.3), and (7.3), the public 

key 𝑝𝑘 ∈ 𝑅𝑞
2, and secret key, 𝑠𝑘 ∈ 𝑅𝑞

2 are defined in (I.4) and (I.5). respectively. 

Encryption of the messages, 

𝑚(1) = 4𝑥2 + 5𝑥 + 1 ∈ 𝑅𝑝, (I.15) 

𝑚(2) = 5𝑥2 + 2𝑥 + 4 ∈ 𝑅𝑝, (I.16) 

with 𝑚(1) + 𝑚(2) = 2𝑥2  +  5. Using the random polynomials,  

𝑟(1) = 62𝑥2 + 71𝑥 + 58 ∈ 𝑅𝑞 , (I.17) 

𝑟(2) = 67𝑥2 + 49𝑥 + 14 ∈ 𝑅𝑞 , (I.18) 

is performed according to (7.5), 

𝑐(1) = (
𝑐1

(1)

𝑐2
(1)

) = (
𝑝𝑘1 ⋅ 𝑟(1) + 𝑚(1)

𝑝𝑘2 ⋅ 𝑟(1)
) = ( 2𝑥2 + 93𝑥 + 56

27𝑥2 + 23𝑥 + 101
) ∈ 𝑅𝑞

2, 
(I.19) 

𝑐(2) = (
𝑐1

(2)

𝑐2
(2)

) = (
𝑝𝑘1 ⋅ 𝑟(2) + 𝑚(2)

𝑝𝑘2 ⋅ 𝑟(2)
) = (69𝑥2 + 37𝑥 + 45

44𝑥2 + 78𝑥 + 34
) ∈ 𝑅𝑞

2. 
(I.20) 

Let  
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𝐶 = 𝑐(1) + 𝑐(2) = (71𝑥2 + 25𝑥 + 101
71𝑥2 + 101𝑥 + 30

) ∈ 𝑅𝑞
2. 

Decryption is executed through two steps in (7.8).  

Step 1: 

[〈𝐶, 𝑠𝑘〉]𝑞 = 𝐶1 + 𝐶2 ⋅ 𝑠𝑚𝑜𝑑 𝑞 = 2𝑥2  +  98𝑥 + 33. (I.21) 

Step 2: modulo 𝑝 operation is applied to (7.21), 

𝑚′ = [[〈𝐶, 𝑠𝑘〉]𝑞]𝑝 = 2𝑥2  +  98𝑥 +  33 𝑚𝑜𝑑 7 = 2𝑥2  + 5 = 𝑚(1) + 𝑚(2) ∈ 𝑅𝑝. 

Figure I.3 shows a screenshot of Maple code of Example I.3. 

Example I.4: Example of homomorphism for 1000 ∙ 𝑐(1) + 2000 ∙ 𝑐(2) 

Let 𝑝 = 7, 𝑞 = 15 ⋅ 𝑝 = 105, and 𝑑 = 3, i.e., 𝑅 = ℤ[𝑥]/(𝑥3 + 1). Public and secret 

keys, 𝐴, 𝑠, and 𝑒 are defined in (I.1)-(I.3). From (I.1)-(I.3), and (7.3), the public 

key 𝑝𝑘 ∈ 𝑅𝑞
2, and secret key, 𝑠𝑘 ∈ 𝑅𝑞

2 are defined in (I.4) and (I.5). respectively. 

Encryption of the messages 𝑚(1) and 𝑚(2) in (I.15) and (I.16), using the random, 𝑟(1) 

and 𝑟(2) in (I.17) and (I.18) is 𝑐(1) and 𝑐(2) in (I.19) and (I.20). Let us calculate 

1000 ⋅ 𝑚(1) + 2000 ⋅ 𝑚(2) = 5𝑥 + 5 ∈ 𝑅𝑝, (I.22) 

Let 
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𝐶 = 1000 ⋅ 𝑐(1) + 2000 ⋅ 𝑐(2) = (35𝑥2 + 50𝑥 + 50
25𝑥2 + 80𝑥 + 55

) ∈ 𝑅𝑞
2, 

(I.23) 
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Figure I.3: Screenshot of Maple code of RLWE-CSCM homomorphic additions of 

two ciphertexts in Example I.3 

 

Decryption is executed through two steps in (7.8). 

Step 1: 

[〈𝐶, 𝑠𝑘〉]𝑞 = 𝐶1 + 𝐶2 ⋅ 𝑠 𝑚𝑜𝑑 𝑞 = 40 𝑥 +  75. (I.24) 

Step2: modulo 𝑝 operation is applied to (I.24), 

𝑚′ = [[〈𝐶, 𝑠𝑘〉]𝑞]𝑝 = 40 𝑥 +  75 𝑚𝑜𝑑 7 = 5𝑥 + 5, (I.25) 

We see that result (I.25) of decryption of (I.23) matches (I.22). Figure I.4 shows a 

screenshot of Maple code of Example I.4 

Example I.5: Example of a single homomorphic multiplication 

Let 𝑝 = 7, 𝑞 = 15 ⋅ 𝑝 = 105, and 𝑑 = 3, i.e., 𝑅 = ℤ[𝑥]/(𝑥3 + 1). Public and secret 

keys, 𝐴, 𝑠, and 𝑒 are defined in (I.1)-(I.3). From (I.1)-(I.3), and (7.3), the public 

key 𝑝𝑘 ∈ 𝑅𝑞
2, and secret key, 𝑠𝑘 ∈ 𝑅𝑞

2 are defined in (I.4) and (I.5). respectively. 

Encryption of the messages 𝑚(1) and 𝑚(2) in (I.15) and (I.16), using the random, 𝑟(1) 

and 𝑟(2) in (I.17) and (I.18) respectively, yielding  𝑐(1) and 𝑐(2) in (I.19) and (I.20). 

Let us calculate 
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𝑚(1) ∙ 𝑚(2) = 3𝑥2 + 2𝑥 + 6 ∈ 𝑅𝑝 , (I.26) 

 
Figure I.4: Screenshot of Maple code of Example I.4 

 

Let 𝑀(𝑐1, 𝑐2) be computed according to (7.23). 
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𝑀(𝑐1, 𝑐2) = (
45𝑥2  +  29𝑥 +  19
26𝑥2  +  61𝑥 +  35
16𝑥2  +  17𝑥 +  1

) ∈ 𝑅𝑞
2 , 

(I.27) 

and the secret key, 𝑠𝑘𝑀(𝑐1,𝑐2), be found according to (7.25), 

𝑠𝑘3 = (
1
𝑠
𝑠2

) = (
1

78𝑥2 + 85𝑥 + 101
91𝑥2 + 61𝑥 + 91

). 
(I.28) 

Decryption is executed as follows 

Step 1: Calculate 〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉 by (7.26). According to (7.8) and (7.23),  

[〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞 = 𝑐1
(1)

𝑐1
(2)

+ (𝑐1
(1)

𝑐2
(2)

+ 𝑐2
(1)

𝑐1
(2)

)𝑠 + 𝑐2
(1)

𝑐2
(2)

𝑠2

= 45𝑥2 + 44𝑥 + 34. (I.29) 

Step 2. By (I.29), (2.27), 

[[〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞]𝑝 = 45𝑥2 + 44𝑥 + 34 𝑚𝑜𝑑 𝑝 = 3𝑥2  +  2𝑥 +  6

= 𝑚(1) ∙ 𝑚(2). (I.30) 

We see that result (I.30) of decryption of (I.27) matches (I.26). Figure 5 shows a 

screenshot of Maple code of Example 5. 
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Figure I.5: Screenshot of Maple code of Example I.5 
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Example I.6: Example of recrypting the product of ciphertexts encrypting 𝑚(1) and 

𝑚(2) in (I.15) and (I.16). 

Let 𝑝 = 7, 𝑞 = 15 ⋅ 𝑝 = 105, and 𝑑 = 3, i.e., 𝑅 = ℤ[𝑥]/(𝑥3 + 1). Public and secret 

keys, 𝐴 and 𝑒 are defined in (I.1) and (I.3). Let 𝛽, 𝛾, and 𝑠 defined as follows, 

𝛽 = 10, 𝛾 = 3, 𝑠 = 30𝑥2 + 30𝑥 + 90, (I.31) 

From (I.1), (I.3), (I.31), and (7.3) the public key 𝑝𝑘 ∈ 𝑅𝑞
2, is defined as follows, 

𝑝𝑘 = ( 7𝑥2 + 46𝑥 + 74
12𝑥2 + 100𝑥 + 88

), 
(I.32) 

Secret key 𝑠𝑘, is defined according (7.40), 

𝑠𝑘 = (
10

90𝑥2 + 90𝑥 + 60
) ∈ 𝑅𝑞 . 

(I.33) 

In order to encrypt messages encrypting 𝑚(1) and 𝑚(2) in (I.15) and (I.16), 𝐾 = 5 is 

used to pad the messages according to (7.37) 

𝑚𝐾(1) ← 𝐾 ⋅ 𝑚(1) = 6𝑥2 + 4𝑥 + 5 ∈ 𝑅𝑝, (I.34) 

𝑚𝐾(2) ← 𝐾 ⋅ 𝑚(2) = 4𝑥2 + 3𝑥 + 6 ∈ 𝑅𝑝. (I.35) 

Let’s find the product of 𝑀(1), 𝑀(2), 

𝑚𝐾(1) ⋅ 𝑚𝐾(2) = 5𝑥2 + 𝑥 + 3 ∈ 𝑅𝑝. (I.36) 

Encryption of 𝑀(1),𝑀(2) is performed according to (7.5), 
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𝑐(1) ← 𝐸𝑛𝑐𝑝𝑘,𝑟(1)(𝑚𝐾(1)) = ( 9𝑥2 + 89𝑥 + 52
27 𝑥2 + 23 𝑥 + 101

) , 
(I.37) 

𝑐(2) ← 𝐸𝑛𝑐𝑝𝑘,𝑟(2)(𝑚𝐾(2)) = ( 69𝑥2 + 24𝑥 + 32
44 𝑥2 + 78 𝑥 + 34

). 
(I.38) 

where  𝑟(1) and 𝑟(2)in (I.17) and (I.18). The product 𝑀(𝑐(1), 𝑐(2)) is computed 

according to (7.23), 

𝑀(𝑐(1), 𝑐(2)) = (
27 𝑥2 + 10 𝑥 + 32
71 𝑥2 + 3 𝑥 + 37
16 𝑥2 + 17 𝑥 + 1

). 
(I.39) 

Recryption key, 𝑘𝑟𝑒𝑐is defined according to (7.42), 

𝑘𝑟𝑒𝑐 = (
80

90 𝑥2 + 90 𝑥 + 60
60 𝑥

) ∈ 𝑅𝑞
3. 

(I.40) 

Recryption process of 𝑀(𝑐(1), 𝑐(2)) is performed by Algorithm 7.1, 

1- 𝑀𝑐12 ← 𝑀(𝑐(1), 𝑐(2)) 

2- 𝑚𝐾′ ← 𝐷𝑒𝑐𝑘𝑟𝑒𝑐
(𝑀𝑐12) = [[〈𝑀(𝑐1, 𝑐2), 𝑠𝑘3〉]𝑞(𝐾𝛽2) −1]

𝑝
 

=[(15𝑥2 + 80𝑥 + 100) (5)]𝑝 = 5𝑥2 + 𝑥 + 3 = 𝑀(1)𝑀(2). 

3- 𝐶_𝐾_𝑚1_2 ← 𝐸𝑛𝑐𝑝𝑘,𝑟3(𝑚𝐾′) = ( 90 𝑥2 + 8 𝑥 + 30
43 𝑥2 + 11 𝑥 + 73

), where 𝑟(3) =

103𝑥2 + 39𝑥 + 17. 

Retrieving the product of 𝑚(1) and 𝑚(2)is done by executing Algorithm 7.2, 
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1- 𝑡𝑚𝑝 ← 𝐷𝑒𝑐𝑠𝑘3(𝐶_𝐾_𝑚1_2) = [[〈𝐶𝐾𝑚12
, 𝑠𝑘〉]

𝑞
𝛾−1]

𝑝

 

=[(15𝑥2 + 80𝑥 + 30)(5)]𝑝 = 5𝑥2 + 𝑥 + 3 

2- 𝑚′ ← 𝑡𝑚𝑝 ⋅ (𝐾−1)2 𝑚𝑜𝑑 𝑝 = (5𝑥2 + 𝑥 + 3)(3)2 𝑚𝑜𝑑 7 

 = 3𝑥2 + 2𝑥 + 6 = 𝑚(1) ⋅ 𝑚(2) in (I.26) 

Figure I.6 shows a screenshot of Maple code of Example I.6. 

Example I.7: Example of calculating 512 multiplications homomorphically of 𝑚(1) in 

Example I.6 using Power2Exponent. 

Let the message 𝑚 from (I.15) be encrypted by conditions of Example I.6. Thus, the 

encryption of the padded message is (I.37).  

Let’s calculate 𝑚𝑝𝑤𝑟, 𝑝𝑤𝑟 = 512. 

𝑚𝑝𝑤𝑟 = 5 𝑥2 + 𝑥 + 3 ∈ 𝑅𝑝. (I.41) 

In order to compute 𝑚𝑝𝑤𝑟, first, Algorithm 3 is executed and return 𝐶 = 𝑚𝐾𝑝𝑤𝑟. Our 

Maple implementation computed the result (I.39) in less than 5 milliseconds. 

𝐶 = 𝑚𝐾𝑝𝑤𝑟 = (68 𝑥2 + 78 𝑥 + 87
39 𝑥2 + 89 𝑥 + 50

). 
(I.42) 

Extracting 𝑚𝑝𝑤𝑟 out of 𝐶 (I.42) is done by executing Algorithm 4, 

1- 𝑡𝑚𝑝 ← 𝐷𝑒𝑐𝑠𝑘(𝐶) = 6𝑥2 + 4𝑥 + 5 

2- 𝑚′ ← 𝑡𝑚𝑝 ⋅ (𝐾−1)𝑝𝑤𝑟 𝑚𝑜𝑑 𝑝 = 5𝑥2 + 𝑥 + 3 = 𝑚𝑝𝑤𝑟 

Figure 9 shows Maple code of Example 7. 
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Figure I.6: Screenshot of Maple code of Example I.6 
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Figure I.7: Screenshot of Maple code of Example I.7 
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Example I.8: Example of Successful Modulo 𝑐2 Attack. 

Let 𝑝 = 7, 𝑞 = 15 ∙ 𝑝 = 105, and 𝑑 = 7, i.e., 𝑅 = ℤ[𝑥]/(𝑥7 + 1). Public and secret 

keys, 𝐴, 𝑠, and 𝑒 are defined in (I.1)-(I.3). 

From (I.1)-(I.3) and (7.3), the public key 𝑝𝑘 ∈ 𝑅𝑞
2, is defined as follows: 

𝑝𝑘 = (
𝐴 ⋅ 𝑠 + 𝑝 ⋅ 𝑒

−𝐴
) = (9𝑥4 + 21𝑥2 + 46𝑥 + 51

12𝑥2 + 100𝑥 + 88
). 

(I.43) 

Encryption of the message, 

𝑚 = 5𝑥3 + 𝑥2 + 1 ∈ 𝑅𝑝, (I.44) 

using random, 

𝑟 = 67𝑥2 + 49𝑥 + 14 ∈ 𝑅𝑞 , (I.45) 

is performed according to (7.5), 

𝑐 = (78𝑥6 + 21𝑥5 + 63𝑥4 + 21𝑥3 + 86𝑥2 + 98 + 85
69𝑥4 + 43𝑥3 + 44𝑥2 + 42𝑥 + 77

) ∈ 𝑅𝑞
2.  

(I.46) 

From (I.46), deg(𝑝𝑘1 ⋅ 𝑟 + 𝑚) = 6 < 7 = 𝑑 meeting (7.57), and deg(𝑝𝑘2 ⋅ 𝑟) = 4 >

3 = deg (𝑚) meeting (7.58). Thus, message can be revealed by the COA attack steps: 

Step 1: Applying 𝑚𝑜𝑑 𝑐2 operation to 𝑐1, from (I.46) 
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𝑐1𝑚𝑜𝑑 𝑐2 = −
3050639

109503
𝑥3 −

401434

109503
𝑥2 +

4024783

36501
𝑥 +

5584805

109503
  

(I.47) 

Step 2: Applying 𝑚𝑜𝑑 𝑝 operation to (I.47), 

𝑚′ = (𝑐1𝑚𝑜𝑑 𝑐2)𝑚𝑜𝑑 𝑝 = 3𝑥3 + 𝑥2 + 1 = 𝑚 (I.48) 

Figure I.10 shows a screenshot of Maple code of Example I.8 

 
Figure I.8: Maple code implementation of Power2Exponent 

 

 
Figure I.9: Maple code implementation of DecPower2Exponent 
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Figure I.10: A screenshot of Maple code of Example I.8. 
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Example I.9: Example of Failing Modulo 𝑐2 Attack. 

Let 𝑝, 𝑞, and 𝑑 from Example I.8. And let, 𝐴, 𝑠, and 𝑒 are defined in (I.1)-(I.3). Public 

key 𝑝𝑘 ∈ 𝑅𝑞
2, is defined in (I.43). 

Encryption of the message, 𝑚, in (I.44) is performed using random, 𝑟 with degree= 1, 

satisfying (I.6), 

𝑟 = 49𝑥 + 14 ∈ 𝑅𝑞 .  (I.49) 

Encryption is performed according to (7.5), 

𝑐 = (73𝑥8 + 10𝑥6 + 47𝑥5 + 81𝑥4 + 30𝑥3 + 60𝑥2 + 35𝑥 + 102
11𝑥5 + 3𝑥 + 5

) ∈ 𝑅𝑞
2.  

(I.50) 

From (7.5) and (7.6), deg(𝑐2) = deg(𝑝𝑘2 ⋅ 𝑟) = 3 ≤ 3 = deg (𝑚) meeting (7.6). 

Thus, message can’t be revealed by the COA attack steps: 

Step 1: Applying 𝑚𝑜𝑑 𝑐2 operation to 𝑐1, from (I.50) 

𝑐1𝑚𝑜𝑑 𝑐2 = −
8620

243
𝑥2 +

3013

81
𝑥 −

80

243
 

(I.51) 

Step2: Applying 𝑚𝑜𝑑 𝑝 operation to (I.51) 

𝑚′ = (𝑐1𝑚𝑜𝑑 𝑐2)𝑚𝑜𝑑 𝑝 = 5𝑥2 + 6𝑥 + 5 ≠ 𝑚 (I.52) 

Figure I.11 shows a screenshot of Maple code of Example I.9. 
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Figure I.11: A screenshot of Maple code of Example I.8. 

 

J  
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Appendix J: Source Code of RCPKC Performance Tests 

#define 

_CRT_SECUR

E_NO_DEPRE

CATE  

#include <stdio.h>  

#include <NTL/ZZ.h>  

#include <fstream>  

#include <iostream>  

#include <iomanip>  

#include <Windows.h>  

   

using namespace std;  

using namespace NTL;  

   

   

   

int main()  

{  

 double        pcFreq;        // Counter 

frequency (timer resolution)  

 __int64       counterStart;  // Timer 

value  

 LARGE_INTEGER li;            // Large 

interger for timer value  

 char 

   str[255];      // String for name  

 double        elapsed;       // Elapsed 

time in seconds  

 int           retcode;       // Return 

code  

 retcode = QueryPerformanceFrequency(&li);  

 if (retcode == 0)  

  printf("*** 

ERROR - QueryPerformanceFrequency() failed \n");  

 pcFreq = li.QuadPart / 1000000000.0;  

 double st, ft;  

 /* Fix qLen = 473, mgLen = 225 */  

 long mgLen = 225, qLen = 473;  

 ZZ two = conv<ZZ>("2"), f, g, m, r, e, a, 

q, h, Fg, ans;  

 // Fix RCPKC parameters   

 q = power(two, qLen);  

 g = power(two, mgLen) - 1;  

 f = power(two, qLen - mgLen - 1) - 1; 
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 r = 

conv<ZZ>("74129131083665807358974056958218535166040292950373780021

72858339760148934");  

 h = 

conv<ZZ>("12194330274671844653834364178879555881830461494785043558

043581873536834511135081193454831097582526575739060606284520411066

902075628778099310593");  

 Fg = 

conv<ZZ>("36526378940800627493944514404790998968012833465800336156

784404945621");  

 FILE *fptr = fopen("ResultsFile.csv", 

"w");  

 ifstream 

in("Message_samples3.csv");//Select Message_samples3.csv, 

Message_samples4.csv, Message_samples5.csv for 10^3, 10^4, 10^5 

plaintext messages respectively    

   

 while (!in.eof()) {  

  in.getline(str, 

255);  

  m = 

conv<ZZ>(str);  

 

 QueryPerformanceCounter(&li);  

  counterStart = 

li.QuadPart;  

  rem(e, h*r + m, 

q); //RCPKC encryption  

 

 QueryPerformanceCounter(&li);  

  elapsed = 

((li.QuadPart - counterStart) / pcFreq);  

  fprintf(fptr, 

"%f%s", elapsed, ",");  

 

 QueryPerformanceCounter(&li);  

  counterStart = 

li.QuadPart;  

  rem(a, f*e, q);    

//Step 1 of RCPKC Decryption  

  rem(ans, Fg*a, 

g); //Step 2 of RCPKC Decryption  

 

 QueryPerformanceCounter(&li);  

  elapsed = 

((li.QuadPart - counterStart) / pcFreq); 
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  fprintf(fptr, 

"%f\n", elapsed);  

 }  

 return 0;  

} 

 


