
A Critical Evaluation of Web Service Modeling
Language

Şengül Çobanoğlu

Submitted to the

Institute of Graduate Studies and Research
in partial fulfillment of the requirements for the Degree of

Master of Science
in

Computer Engineering

Eastern Mediterranean University
February 2013

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Elvan Yılmaz
Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

Assoc. Prof. Dr. Muhammed Salamah
Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

 Assoc. Prof. Dr. Zeki Bayram
Supervisor

 Examining Committee

1. Prof. Dr. Erden Başar

2. Assoc. Prof. Dr. Zeki Bayram

3. Assist. Prof. Dr. Ahmet Ünveren

iii

ABSTRACT

The aim of this thesis is to analyze and evaluate the Web service Modeling Language

(WSML) as the formal language of Web service Modeling Ontology (WSMO) and

then provide a number of improvement recommendations for obtained deficiencies in

WSML. In order to facilitate understanding of our work, this thesis also briefly

provides background information about web services, semantic web, semantic web

ontology languages, Web Service Modeling Ontology and conceptual syntax of Web

Service Modeling Language as well as logical formalism used by WSML.

In this thesis, WSML has been critically analyzed and evaluated in detail by

developing semantic web service for “University Course Registration” using the

WSML rule variant and first order logic. At the end of the thesis the weak and

missing parts of WSML were defined and possible suggestions were made for

improvement.

Keywords: Web service modeling language, web service modeling ontology, web

services, semantic web, ontology.

iv

ÖZ

Bu tezin amacı, web servisi geliştirmek için, Web Servisleri Modelleme Ontolojisi

tarafandan, formal bir dil olarak kullanılan Web Servisi Modelleme dilini detaylı

olarak inceleyerek değerlendirmek ve WSML’in eksik yönlerinini ortaya çıkartıp,

geliştirici bazı tavsiyerde bulanmaktır. Ayrıca tezde, yaptığımız çalışmanın daha iyi

anlaşılması için web servisleri, anlamsal ağ, anlamsal ağ ontoloji dilleri, web servisi

modelleme ontolojisi ve web servisi modelleme dili hakkında kısa açıklamalar

verilmektedir.

Bu tez de , WSML rule ve first order logic kullanılarak tanımladığımız “ üniversite

ders kayıt” web servisi üzerinden Web Servisi Modelleme dilini eleştrisel olarak

inceleyip ve sonucunda Web Servisi Modelleme dilinin güçsüz ve eksik yönlerini

bularak, WSML’in geliştirilmesi için mümkün olan önerilerde bulunduk.

Anahtar Kelimeler: Web servisi modelleme dili, web servisleri modelleme

ontolojisi, web servisi, anlamsal ağ, ontoloji.

v

To my mother Yeter Çobanoğlu; always devoted, loving and caring,

&

To my sister Esma Kerçin ; always helped, encouraged,

&

To my fiance Mounir Debbouza; always supported, encouraged .

vi

ACKNOWLEDGMENT

Sincerely, I would like to thank my advisor Assoc. Prof. Dr. Zeki Bayram for

accepting to be my supervisor, for continuous support of my study and research, for

his patience, motivation, and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis. I could not have imagined having a better

advisor and mentor for my master’s study.

In addition, I would like to thank my family, especially my mother, sister and fiancé

for their continuous love and support in my decisions.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ.. iv

ACKNOWLEDGMENT .. vi

LIST OF FIGURES .. x

1 INTRODUCTION ... 1

1.1. Structure of the Thesis .. 2

2 THE WORLD WIDE WEB (WWW).. 3

2.1. Brief History of Web .. 3

2.2. Web Services .. 3

2.2.1.What is a Web Service? .. 3

2.2.2. Web Service Technologies .. 4

2.2.3. Discovery of Web Services ... 6

2.3. OWL-S ... 6

2.4. SWSF (Semantic Web Service Framework) .. 6

2.5. Semantic Web .. 7

2.5.1. Architecture of the Semantic Web .. 8

2.6. Ontology ... 10

2.7. Semantic Web Ontology Languages .. 11

viii

2.7.1. Extensible Markup Language (XML) .. 11

2.7.2. Resource Description Framework (RDF) ... 13

2.7.3. DAML+ OIL ... 15

2.7.4. Web Ontology Language (OWL) .. 15

3 WSMO, WSML WSMX, WSMT .. 17

3.1. Web Service Modeling Ontology (WSMO) ... 17

3.1.1. WSMO Core Elements ... 17

3.2. Web Service Modeling Language (WSML) .. 19

3.2.1. WSML Logical Expressions ... 19

3.2.2. WSML Conceptual Syntax ... 21

3.2.2.1. Ontologies .. 21

3.2.2.2. Goals ... 24

3.2.2.3. Mediators .. 24

3.2.2.4. Web Services .. 24

3.3. Web Service Execution Environment (WSMTX) .. 25

3.4. Web Service Modeling Toolkit (WSMT) .. 25

4 MODELING UNIVERSITY COURSE REGISTRATION ... 26

4.1. University Course Registration Scenario ... 26

4.2. Course Registration Ontology .. 27

4.2.1. Concept Definitions of CourseRegistration Ontology 29

4.2.2. Relations of Course Registration Ontology .. 37

4.2.3. Instances of Course Registration Ontology .. 39

4.2.4. Relation Instances of Course Registration Ontology..................................... 52

ix

4.2.5. Axiom of Course Registration Ontology .. 55

4.2.6. Web Service specification for Course Registration 62

4.2.7. Goal of Course Registration ... 66

4.2.8. Mediator of Course Registration Ontology .. 70

5 EVALUATION OF WSMO AND WSML .. 71

5.1. General Overview .. 71

5.2. Implementation Issue ... 71

5.3. Error Provider Issue ... 72

5.4. Variable Issue (Syntax) .. 73

5.5. Weak Error Detection Mechanism ... 73

5.6. Data Type Issue .. 74

5.7. Attribute Value Definition of Instance ... 74

5.8. Matching between Relation and Relation instances Issue.............................. 75

5.9. Aggregate Function Issue ... 76

5.10. Missing Semantics for WSML-Full .. 77

5.11. Capability Issue .. 77

5.12. Choreography Issue .. 78

5.13. Orchestration Issue ... 78

6 CONCLUSION and FUTURE WORK .. 79

REFERENCES .. 80

x

LIST OF FIGURES

Figure 2.1: Web services frameworks .. 5

Figure 2.2: The semantic web layer cake .. 8

Figure 2.3: Web ontology language layer cake ... 11

Figure 2.4: XML syntax ... 12

Figure 2.5: XML problems .. 13

Figure 2.6: RDF triples .. 14

Figure 2.7: XML definition for RDF ... 14

Figure 3.1: WSMO core elements ... 18

Figure 3.2: WSML variants .. 20

Figure 3.3: WSML variant layers .. 20

Figure 3.4: Language framework for semantic web services 20

Figure 3.5: Concept definition ... 22

Figure 3.6: Relation definition ... 22

Figure 3.7: Instance Definition .. 23

Figure 3.8: Relation instance definition ... 23

Figure 3.9: Axiom definition ... 23

Figure 3.10: Goal definition .. 24

Figure 3.11: Web service definition .. 25

Figure 4.1: Prologue of a WSML file .. 28

Figure 4.2: Importing ontologies ... 28

Figure 4.3: Course registration ontology concepts .. 29

Figure 4.4: Super concepts of course registration ontology 30

xi

Figure 4.5: Definition of University and Address concept .. 30

Figure 4.6: Definition of Faculty and Department concept 31

Figure 4.7: Definition of AcademicProgram concept .. 31

Figure 4.8: Definition of Course concept ... 32

Figure 4.9: Definition of Building and Classroom concept 33

Figure 4.10: Defining Semester, Day, Period concept ... 33

Figure 4.11: RoomDayPeriodDuration concept ... 33

Figure 4.12: Definition of LectureRoomDayPeriodDuration concept 34

Figure 4.13: Definition of LabRoom DayPeriodDuration concept 34

Figure 4.14: Definition of CourseOpening concept ... 34

Figure 4.15: Definition of Person concept ... 35

Figure 4.16: Definition of Student and Instructor concept .. 35

Figure 4.17: Definition of Curriculum concept.. 36

Figure 4.18 Definition of RegistrationRequest and RegistrationResult concept 37

Figure 4.19: Specification of relations through WSML visualizer graph 38

Figure 4.20: Specification of relation for course registration 38

Figure 4.21: Instances of CourseRegistration Ontology concepts 39

Figure 4.22: Definition of University and Address instances 40

Figure 4.23: Definition of Faculty instances .. 41

Figure 4.24: Definition of Department instances ... 41

Figure 4.25: Definition of Academic Programs instances ... 42

Figure 4.26: Definition of Course instances .. 43

Figure 4.27: Definition of Building instances .. 44

Figure 4.28: Definition of Classroom instances ... 45

Figure 4.29: Definition of Semester instances ... 46

xii

Figure 4.30: Definition of Day and Period instances ... 46

Figure 4.31: Definition of RoomDayPeriodDuration instances 46

Figure 4.32: Definition of CourseOpening instances ... 48

Figure 4.33: Definition of Person instances ... 50

Figure 4.34: Definition of Student and Instructor instances 51

Figure 4.35: Definition of Curriculumn instances ... 52

Figure 4.36: Definition of RegistrationRequest and RegistrationResult instances 52

Figure 4.37: Relation Instances of Course Registration Ontology Concepts............. 53

Figure 4.38: Definition of “teaches” relation instances ... 53

Figure 4.39: Definition of “takes” relation instances ... 54

Figure 4.40: Definition of “prerequisite” relation instances 54

Figure 4.41: Definition of “tookCourse” relation .. 55

Figure 4.42: Axioms of CourseResgistartion Ontology ... 56

Figure 4.43: The “Clashes” axiom ... 56

Figure 4.44: The “prerequisiteNotTaken” axiom... 57

Figure 4.45: The “classSizeExceeded” Axiom .. 58

Figure 4.46: Definition of “noClashRoom” axiom .. 59

Figure 4.47: Definition of “prerequisiteTaken” axiom ... 59

Figure 4.48: Definition of “ClassSizeViolation” axiom .. 59

Figure 4.49: Definition of “yearCheck” axiom .. 59

Figure 4.50: Definition of “TookRelation” axiom ... 60

Figure 4.51: Definition of “noClashTeacher” axiom ... 60

Figure 4.52: Definition of “noClashStudents” axiom ... 61

Figure 4.53: Definition of Web service through WSML visualizer........................... 62

Figure 4.54: Prelude of web service ... 63

xiii

Figure 4.55: Definition of nonfunctional properties of web service. 64

Figure 4.56: Definition of shared variables of web service. 64

Figure 4.57: Precondition definition for the web service capability 64

Figure 4.58: Assumption definition for the web service capability 65

Figure 4.59: Effect definition for the web service capability..................................... 65

Figure 4.60: Post condition defined for capability ... 66

Figure 4.61: Instances of CourseResgistration ontology concepts 67

Figure 4.62: Specification of goal for course registration ... 68

Figure 4.63: Requesting course registration for Jane ... 69

1

Chapter 1

 INTRODUCTION

Nowadays, World Wide Web (WWW) [1] has become very huge, full of text and a

lot of unrelated documents which is primarily designed for human interpretation and

use [2]. Therefore, finding reliable data on the web is very hard and time consuming

[3]. For example, when we search about something, usually we retrieve many

unrelated data or documents. In order to find useful document we have to scan all

retrieved documents and determine whether the retrieved documents are relevant or

not. This method takes too much time and provides an unreliable searching method

[3]. Because of that, current web technologies do not thoroughly satisfy our needs

[4]. There should be new web technologies which enable computer systems to

understand contents of web and find out the exact information that we are looking

for. This can be achieved through semantic web. Semantic web provides web

contents that machine can understand semantically and provide exact data that we are

searching about [5]. Thus, web will become more effective and efficient for both

human and machines.

In immediate future, with the semantic web, it can be thought that all web content

will become as one huge database and everything will be linked with each other in

this database [5] and WWW will enable computer systems to interact with each other

to share and use data without any human interaction. Also all of the detailed and

specific information that user desires will be provided by WWW [6].

2

Furthermore, semantic web enabled web services [7] which is fundamental part of

the semantic web will transform the web from a collection of information into a

distributed computational device. Web services can be developed and described

using the model of Web Service Modeling Framework (WSMF) [8] which will

provide the appropriate conceptual model for developing web services [8]. In

addition, a Web service modeling language such as Web service Modeling Language

(WSML) [9] will be used to model web services.

Today, there are many tools, languages and approaches that exist with the aim of

building semantic web services. In this thesis, a “university course registration” web

service specification is created using Web Service Modeling Language (WSML) [9]

with the aim of discovering possible areas of improvement. This exercise has

revealed some weakness and deficiencies, which we present as our contribution.

1.1. Structure of the Thesis

The thesis is structured in the following way: Chapter 1 is the introduction, Chapter 2

defines history of web, web services, semantic web, semantic web technologies and

semantic web ontology languages, Chapter 3 introduces the Web Service Modeling

Ontology (WSMO) [10], its formalism, the Web Service Modeling Language

(WSML) [9], its execution environment the Web Service Execution Environment

(WSMX) [11] and its modeling toolkit Web service Modeling Toolkit (WSMT) [12].

Chapter 4 provides specification of “university course registration” web service by

using web service modeling language, Chapter 5 defines the deficiencies discovered

in WSML through the university course registration specification, and it also

includes suggestions for improvement. Finally, Chapter 6 is related with further

research and conclusion.

3

Chapter 2

THE WORLD WIDE WEB (WWW)

2.1. Brief History of Web

World Wide Web (WWW) [1] was introduced by the development of HTML (Hyper

Text Markup Language) [13] by Tim Berners Lee who was a computer programmer

in CERN (European Organization for Nuclear Research) [14] in 1989 [15]. In 1990

web browsers were developed which were used for searching HTML documents

which changed the way information published and broadcast [16].

HTML (Hypertext Markup Language) Web Pages (Web 1.0) were in the first

decades of World Wide Web [17] which only provided publishing HTML web pages

containing static information [13]. Users were able to read the web contents only and

could not interact with other web site users. After Web 1.0, Dynamic Web Pages

(Web 2.0) has been released [17], which enables two way communications and

provides dynamic web pages which means web pages can be updated by users easily

[18].

2.2. Web Services

2.2.1. What is a Web Service?

The Web Services Architecture Working Group defines a Web Service as: “A

software application identified by an URI, whose interfaces and bindings are capable

of being defined, described and discovered as XML artifacts. Web Service supports

4

direct interactions with other software agents using XML-based messages exchanged

via Internet-based protocols. Web service is a specification that is available over the

World Wide Web” [19].

Web services can be discovered by finder mechanism of any requester (human or

machine). Therefore, web service enables any software to communicate with each

other without interoperability problem [20]. For example, while Java based

applications can communicate with php based applications, Windows applications

can also communicate with Unix applications [21].

2.2.2. Web Service Technologies

Web services describe the web based applications using web service technologies

which are communicated through XML based messaging system [22]. Therefore,

XML is the basis of web services which allows different systems to exchange data

over the web regardless of their hardware, programming language, operating system,

platforms and frameworks [23].

The Web services framework is composed of the following parts: communication

protocols, service invocation, service descriptions, and service discovery [22]. In

figure 2.1, web services frameworks can be seen in which service consumers connect

service provider via SOAP, service registrar publish web services via UDDI and

service provider sends description of web services to service consumers via WSDL,

then service consumers find web services via UDDI.

5

Figure 2.1: Web services frameworks

At the lowest level, Simple Object Access Protocol (SOAP) [24] appears which is a

protocol for messaging format to access web services and communicate regardless of

platforms. [25] In other words, “SOAP is the envelope syntax for sending and

receiving XML messages with web services sent over HTTP” [21]. According to

SOAP protocol, messages have to be enveloped as XML document that contains

header and body [24]. Header specifies data about body which is optional. The body

part contains the name of web service and information request from web service or

information responded by web service. SOAP envelops travel over Hypertext

Transfer Protocol (HTTP) [26] which is a protocol for exchanging and transferring

hypertext documents over the internet [26].

After SOAP messages are defined, WSDL (Web Service Description Language) [27]

is needed to describe a set of SOAP messages and it defines the information

necessary for a client station in order to interact with the Web Service [28]. For

example, where is the web service located, what is the functionality of web service

and how is it possible to communicate with it?

After getting the location and functionality of web service with the help of WSDL,

there is a need for a discovery mechanism to find web service. Therefore, the

6

function of Universal Description is needed. Discovery and Integration (UDDI) [29]

provides a standard discovery mechanism for Web services [23]. Moreover, UDDI is

a directory of web service interfaces that is described by WSDL. Web service

consumers can be registered on UDDI to access and locate their web services [22].

2.2.3. Discovery of Web Services

Nowadays, web search engine is used in order to retrieve relevant information over

the web. However, when searching web services based on their provided

functionality, the information retrieval method does not work for retrieving the web

services properly [30]. Since web services are described using WSDL web services

can be discovered through UDDI.

2.3. OWL-S

The Web Ontology Language for Services (OWL-S)[31] is used to describe

functionality of web services, such as providing information about what the

properties of service are, how it can be interacted with and how it can be used.

OWL-S has three sub concepts, ServiceProfile, ServiceModel and Servicegrounding

[32]. ServiceProfile specifies the purpose of the service, what it provides and what

kind of information is needed to discover the web service [33]. ServiceModel defines

how the service works and how it can be interacted with the web service. Service

grounding concept describes how web service works and which kind of information

is needed to access web service [32].

2.4. SWSF (Semantic Web Service Framework)

Semantic Web Services Framework (SWSF) [34] is composed of the Semantic Web

Services Language (SWSL) [35] and the Semantic Web Services Ontology (SWSO)

[36].

7

Semantic Web Services Language (SWSL) [35] is developed for the purpose of

describing semantic web service ontology such as descriptions of individual services

and formal characterizations of concepts [35].

The Semantic Web Services Ontology (SWSO) [36] is a theoretical model, which

Web Services can be illustrated, and an axiomatization or formal characterization for

that model [34].

2.5. Semantic Web

Nowadays web is huge and growing. There are plenty of web pages that are

published every day. It is very hard to find real data and that is due to the volume of

information the web contains. In addition to that, in today’s web everything is not

machine readable, all useful contents of web pages are hidden in the media (text,

pictures, videos) which are readable by humans only. New mechanism is needed that

allows machine to understand content of web and save our time.

With the aim of the retrieving, extracting and integrating of web services

automatically through World Wide Web, Tim Berners Lee initialized the Semantic

web. According to Berners Lee, Hendler and Lissila [6],

“The majority of the content of the web is designed for humans to read and not for

computer programs to manipulate in meaningful way. The Semantic Web will

bring structure to the meaningful content of Web pages, creating an environment

where software agents roaming from page to page can readily carry out

sophisticated tasks for users. The Semantic Web is an extension of the current web

in which information is given well defined meaning, better enabling computers

and people to work in cooperation”.

8

2.5.1. Architecture of the Semantic Web

The semantic web architecture proposed by Berne’s-Lee in 2001 is as a layered

pyramid [37]. It includes several layers which provide core functionalities and play a

main role for semantic web [38]. In this part, the features of the Semantic Web of

technologies will be briefly explained and highlighted. Furthermore, XML, RDF and

OWL will be defined in detail under semantic web ontology language topic. Figure

2.2 depicts the “Semantic Web Layer cake” which includes core elements of overall

semantic web architecture [38].

Figure 2.2: The semantic web layer cake [38]

At the lowest layer of the semantic web architecture URI, UNICODE and XML are

found. Uniform Resource Identifier (URI) [39] is a structured string that is used to

identify source of web services on the internet, each web service source has unique

URI which is linking them to each other [39].

Unicode [40] is a standard for encoding characters which provides unique numbers

for one million characters, regardless of the platform, program, language [40]. It is

9

primarily designed to facilitate the job of developers who would like to create a

Multilanguage software applications.

Extensible Markup Language (XML) [41] separates web contents from its

presentation and enables web content to be structured and meaningful by proving us

to define data between our own tags [6]. Moreover, XML is designed to store web

content with its meaning. Thus, machines can read xml files and process them.

Resource Description Framework is a standard model and language used to

describe web sources and relations between them to exchange data on the web [42].

It uses XML and triples, such as subject, object and predicate for representing web

sources, in which triples can be URI or string literal [6]. In addition, RDF is designed

to be read and understood by machines only rather than by humans.

SPARQL Query Language [43] is a standard language used to query RDF data.

SPARQL is like SQL but it is designed for matching graph patterns providing

functionality like optional parts, nesting, union of patterns, filtering values of

possible matching, and the option of choosing the data source to be matched by a

pattern [44].

SPARQL Update is a language that is used to update RDF graphs [16]. SPARQL

Update serves the following facilities: Inserting new triples to an RDF graph,

deleting triples from an RDF graph, performing a group of update operations as a

single action, creating a new RDF Graph to a Graph Store and deleting an RDF

graph from a Graph Store [45].

10

The Rule Interchange Format (RIF) is a standard for exchanging rules among rule

systems, mainly among Web rule engines [46]. RIF specifies three rule based

languages in order to cover aspects of Rule layer such as first-order, logic-

programming and action rules [46].

Finally, the top layers, Logic, Proof and Trust, are under research and some simple

application demos are created. The Logic layer provides the writing of rules while

the Proof layer work to execute and evaluate the rules with the help of the Trust layer

mechanism for applications in order to check whether to trust the given proof or not

[47].

2.6. Ontology

Today’s web has vast amount of text content and interlinks between them.

Furthermore, web contains repetition of web contents of which Machine must

understand the meaning of web and discover the common meaning of web contents

in order to provide exact information to user. This problem can be solved providing

semantic web in the form of collections of information called ontologies [48].

Therefore, web content will be kept on ontologies in a meaningful way by using set

of taxonomies and rules. The taxonomy defines concept of attributes and their

relationships whereas rules define logical constraints [6].

Ontologies can be reused. For example, ontology about something can be pointed by

many web pages which reduce the heterogeneity [2].

Ontologies include concepts in a hierarchal way; hierarchy means that if a class A is

a subclass of class B, then every attribute in A is also included in B. For instance,

11

Student and Teacher concepts are sub concepts of Person concept; they inherit all

attributes of Person concept. Apart from including classes and subclass, ontologies

include instances (real world objects). In addition, ontologies may permit

relationships between instances.

2.7. Semantic Web Ontology Languages

There are many semantic web languages used to represent ontologies such as

Extensible markup language (XML) [41], Resource Description Framework (RDF)

[49], Defense Advanced Research Projects Agency Markup Language (DAML) +

Ontology Interface Layer (OIL), usually abbreviated as DAML+OIL and the Web

Ontology Language (OWL) [4]. The important point that each web ontology

language takes advantage of other languages beneath them this so called layer cake

[21] can be seen in figure 2.3.

Figure 2.3: Web ontology language layer cake [21]

2.7.1. Extensible Markup Language (XML)

Extensible Markup Language (XML) [41] is a standard for describing data and

relationships by using hierarchy or tree structure [41]. It defines data and

12

relationships using tag (metadata) which enables separate web content from its

presentation and provides any XML enabled system to read web page and understand

its content easily [21]. Figure 2.4 shows XML tags which define information about

the book.

Figure 2.4: XML syntax

Additionally, XML uses Unicode encoder system which makes xml documents

platform independent. [50]. Also, XML has parser for converting xml documents

into xml DOM object which is a standard way for accessing and manipulating

documents [51].

XML describes the purpose or meaning of raw data values via a text format which

enables exchange, interoperability and application independence [21]. Therefore,

XML is very powerful and essential for web services. However, XML is not enough

to describe web content using metadata [41]. Since XML is based on metadata

approach, there is a question of how sentences and paragraphs can be described. For

instance, how following information can be encoded, “The book programming the

semantic web is published by O’Reilly Media”. As can be seen in figure 2.5, there

can be various ways to define this information with xml tags. Also, there can be

multiple tags with the same name including different values. These problems cause

obscurity and even make it harder to set up relation between different web service.

13

Because of this reason directed graph is used as data model which is called resource

description framework (RDF).

Figure 2.5: XML problems

2.7.2. Resource Description Framework (RDF)

Resource Description Framework RDF is a standard model for data interchange on

the Web [42]. It defines metadata about web pages and provides a model to represent

web sources and relationship between them by using XML syntax. Thus, RDF

documents can be easily read and understood by machines [52].

RDF model uses triples in order to indicate information in a more clear way. For

instance, it uses subject, predicate and object. Subject is resource, whatever thing

that may contain URI [53] such as http://semantic-web-book.org/uri, predicate is

property that describes the resource [53] such as http://example.org/publishedBy.

Object is property value [53] such as http://oreilly.com. Property value can be literal

or refers to another source. RDF triple language can be seen in figure 2.6.

14

Subject, Predicate, Object

Figure 2.6: RDF triples

A statement is formed by combining a subject, a predicate and an object. [53] For

example, the book is about programming the semantic web published by O’Reilly

Media. Xml definition for RDF can be seen in figure 2.7.

Figure 2.7: XML definition for RDF

Since RDF defines the web sources by using subject, predicate and object in the form

of sentence, RDF schema defines them in application specific classes and properties

similar to classes in object oriented programming languages. This permits resources

to be defined as instances of classes, and subclasses of classes [11]. For example,

teaches is a relationship between instructor and course. It also allows you to describe

in human readable text the meaning of a relationship or a class which is called a

15

schema that provides information about legal uses of various classes and

relationships. It is also used to specify that a class or property is a subtype of a more

general type. For example, ”Person” is a superclass of ”Student” and ”Instructor” and

”CourseOpening” is a subclass of ”Course”. However, RDF has a number of

limitations. For instance, classes cannot be disjoint, intersection or union cannot be

used to create another class, cardinality restriction cannot be defined to say student

can take 6 courses at most, property cannot be defined to say year must be greater

than 2012 and it cannot be said that property is inverse of another property. Due to

these problems, RDF schema is extended and OWL language has been built up.

2.7.3. DAML+ OIL

DAML+OIL is a semantic markup language for Web resources [54] which is

designed using RDF and XML web standards in order to describe structure of a

domain such as classes and properties [54] .

2.7.4. Web Ontology Language (OWL)

Web Ontology Language (OWL) is the most powerful ontology language currently

defined for semantic web which provides semantic markup language in order to

publish and share on semantic web [12]. In addition, OWL builds upon XML, RDF

and DAML+OIL and it has greater machine interpretability of Web content than the

other ontology languages by providing supplementary vocabulary along with a

formal semantics [13] such as classes, subclasses, relations between classes,

properties, sub properties, characteristics and restriction of properties [13]. For

example, OWL can indicate that “Ali teaches cmpe318” which implies “cmpe318” is

taught by “Ali”. Or if “cmpe211” is prerequisite of “cmpe318” and ”cit318” is

prerequisite of “cit418” then “cit211” is “prerequisite of “cit418”. Another useful

thing OWL adds is the ability to say two things are the same which is very helpful

16

for joining up data expressed in different schemas. It can be pointed out that

relationship “teaches” in one schema is owl which is the same as ”taught” in some

other schema. It can also be used to say two things are the same, such as the book

entitled “Programming the semantic web” published in “oreilly.com” is the same

book published in “elibrary.com” which is very exciting as it means joining up data

can be started from multiple sites called ”Linked Data”.

There are three sub languages of OWL:

OWL Lite provides primary needs for classification hierarchy and simple constraints

[55] such as properties, concepts, instances and cardinality constraints,

maxCardinality and minCardinality which can take value 0 or 1. OWL lite is the

simplest OWL language and corresponds to description logic [56].

OWL DL uses some constructs of OWL and RDFs under restriction and

conceptually is based on description logics. OWL DL provides more cardinality

restriction, not limited with 1 and 0 like OWL lite. In addition, OWL DL enables

union, intersection and complement of classes. Therefore, OWL DL supports

maximum expressiveness while maintaining computational completeness and

decidability [56].

OWL Full contains full OWL vocabulary and full syntactic of RDF [56].

17

Chapter 3

WSMO, WSML WSMX, WSMT

This chapter presents Web Service Modeling Ontology (WSMO) [57] that defines

conceptualization model for web services. Web Service Modeling Language

(WSML) [58] that is a formal language for the specification of WSMO elements

such as ontologies, mediators, goals and web services. Web Service Execution

Environment(WSMX) [11] which enables running and discovering of web services,

and briefly outlines the Web Service Modeling Toolkit (WSMT) [12] which provides

tools to create and edit WSMO elements visually.

3.1. Web Service Modeling Ontology (WSMO)

The Web Service Modeling Ontology (WSMO) [57] is a conceptual model for

creating semantic descriptions for web services that can be used to resolve

interoperability issues among web services [12]. In addition, WSMO is based on the

Web Service Modeling Framework (WSMF) [12] which defines conceptual model

with the aim of developing and describing web services [8] which provides

conceptualization of ontologies, goals, mediators and web services. WSMO uses

Web Service Modeling Language (WSML) which provides formal syntax and

semantics for web services.

3.1.1. WSMO Core Elements

WSMO defines four core elements as the main concepts which have to be described

in order to define Semantic Web Services[59]. They are defined briefly as follows;

18

Figure 3.1: WSMO core elements [57]

Ontologies: an ontology is a formal explicit specification of a shared

conceptualization [60]. It provides data model that represents the knowledge as a set

of concept and allows relationship between these concepts within a domain.

Moreover, ontologies allow machines to understand the semantic of information and

relationship that is published on the website. Ontologies can include concepts, sub

concepts, relationships, instances, relation instances, functions and axioms to define

the web content semantically.

Goals can be described as web services that would potentially satisfy the user’s

desires [57, 59]. In other words, a goal is specification of needs that have to satisfy in

order to communicate with web service.

Mediators handle possible semantic mismatches between different WSMO elements

[59]. WSMO defines different kinds of mediators in order to provide connection and

communication between different WSMO elements. For instance,

OOMediators solve interoperability problems between two or more ontologies, GG

Mediators enable to connect Goals with each other, WG Mediators link Web

Services to Goals, expressing whether web service fulfills the goal or not, and WW

19

Mediators connect web services together and express interrelations between them

such as two web services which have the same functionality [61].

Web Services describe the functionality of service through their capabilities. A web

service tries to meet with user goal. If web service provides required functionality

then desire of user is returned.

3.2. Web Service Modeling Language (WSML)

Web Service Modeling Language (WSML) [58] is a language specifically designed

to express semantic descriptions according to the WSMO Meta model which is

specified in terms of a normative human readable syntax [57]. Furthermore, WSML

separates between conceptual syntax and logical expression syntax [62]. Conceptual

syntax is used to model ontologies [63] by using concepts, instances, relations and

relation instances. Logical expressions are used to refine ontology definitions by

arbitrary rules [63] such as axioms.

This part discusses motivation about introduction of WSML. In Chapter 4, the

WSML is analyzed in detail by providing examples on each of its constructs.

3.2.1. WSML Logical Expressions

WSML defines five language variants through composition of several rule based

languages such as Description Logic, Logic Programming and First Oder Logic [12].

Figure 3.2 and Figure 3.3 depicts WSML variants and their interrelation.

In WSML layer, every valid specification of an extended variant is also a valid

specification of the new variant [62]. WSML-Core is defined by the intersection of

Description Logics and Logic Programming [9]. This variant has the least expressive

20

power within all languages of the WSML [9]. WSML DL is the extension of WSML

core and belongs to Description Logic. WSML Flight is the extension of WSML core

and is based on logic programming [9]. WSML Rule extends WSML-Flight and uses

Logic Programming [9]. Finally, WSML Full unifies WSML-DL and WSML-Rule

under First Order logic [9].

 Figure 3.2: WSML variants [62] Figure 3.3: WSML variant layers

Definition of different WSML variants through the different rule based language

causes complexity. Figure 3.4 compares WSML variants with their most distinct

features, as can be seen in the figure, WSML Full is not mentioned because its

semantic is not completed, it is still in process. However, when the definition of

WSML full is completed, there are expectations about providing all features listed in

the figure.

Figure 3.4: Language Framework for Semantic Web Services [58]

21

In the thesis, university course registration specification have been built up based on

WSML Rule which seems the best variants to evaluate WSML. Since it is powerful

enough to model our application and has reasoner.

3.2.2. WSML Conceptual Syntax

3.2.2.1. Ontologies

Ontology in WSML consists of the elements such as concepts, relations, instance,

relation instances and axioms [58].

• Concepts: The notion of concepts (sometimes also called ‘classes’) plays a central

role in ontologies [58]. Concept definition in WSML starts with concept keyword

and is followed by concept name. A concept may inherit all attributes from its super

concept. Definition of inherited concept starts with keyword SubConceptOf then is

followed by the name of the inherited concepts in curly brackets. The definition of

concept and subconcept can be seen in the following figure 3.5.

Additionally, Concept can include attribute and attribute types by using ofType

keyword. Also, concept can include nonfunctional property defined by

nonFunctionalProperties… endNonFunctionalProperties which is optionally

used to describe the concept or attribute. Besides, nonfunctional property

nfp…endnfp keyword is used to define logical constraint for particular attribute.

Furthermore, in the concept, attributes can be defined with cardinality constraints

like maxcardinality and mincardinality within the open brackets.

22

concept Student subConceptOf Person
nonFunctionalProperties
 Creator hasValue"Sengul"
endNonFunctionalProperties
 yearEnrolled ofType (0 1) _integer
 overallCGPA ofType (0 1) _float
 enrolledIn ofType (0 2) AcademicProgram
 semesterEnrolled ofType (0 1) Semester
 tookCourse_ ofType (0 *) Course
nfp
 dc#relation hasValue {TookRelation}
endnfp

Figure 3.5: Concept definition

• Relations: Relations are used to model interdependencies between several concepts

[57]. A relation is defined with the relation keyword and followed by the identifier

of the relation. It should be noted here that relation of parameters must be strictly

ordered.

relation teaches(ofType Instructor, ofType CourseOpening)

Figure 3.6: Relation definition

• Instances: A concept represents a set of objects in a real or abstract world with a

specific shared property. The objects themselves are called instances [59]. Instances

are defined with the keyword instance and followed by instance identifier and

specification of concept name by memberOf keyword. Furthermore, Instance values

must be the same type with the corresponding attribute type declaration in the

concept definition [59].

23

instance eastern_mediterranean_university memberOf University

uname hasValue"Eastern Mediterranean University"

locatedAt hasValue EMUAddress

Figure 3.7: Instance Definition

In addition, WSML defines relation instance with starting keyword relationInstance

followed by identifier. Relation instances can have unlimited parameters within open

brackets. Parameters must be in same order with the definition of corresponding

relation.

relationInstance prerequisite(cmpe211,cmpe354)

Figure 3.8: Relation instance definition

• Axioms: axiom defines logical expressions. WSML defines axiom with the starting

keyword axiom followed by axiom name. The “definedBy” keyword enables to

define logical constraints.

axiom registrationRules
definedBy
clashes(?co1,?co2):-
?co1memberOf CourseOpening
and?co2memberOf CourseOpening
and?co1 != ?co2
and?co1[teaching_times hasValue?tt1, year hasValue?y1, semester
hasValue?s1]
and?co2[teaching_times hasValue?tt1, year hasValue?y1, semester
hasValue?s1].

Figure 3.9: Axiom definition

24

3.2.2.2. Goals

Goals are the desired functionality of web service [58]. Goal in WSML is defined

with the keyword goal followed by goal identifier.

goal goalCourseRegistration

Figure 3.10: Goal definition

Goals must include one capability which defines the functionality of web service

through the five core elements which are preconditions describing conditions to

invoke web services, postconditions describing what the web service outputs are

after invoking, assumptions specifying what must hold of the state of the world for

the Web service to be able to execute successfully, and the effects describing real

world effects of the execution of the Web service which are not reflected in the

output [64]. Goals have also let to define shared variables which specify the variables

that are going to be shared between capability elements.

3.2.2.3. Mediators

Mediators enable different WSMO elements to communicate with each other without

any interoperability problem. There are four types of mediators that mediate

mismatches between ontology- ontology, web service-web service, web service-goal,

and goal-goal. In this thesis, there is no need to use mediator since within only one

domain is being worked on.

3.2.2.4. Web Services

Web services are symmetric to Goals defining the actual functionality provided

through the definition of capabilities just like goals. Web services are defined in

WSML with keyword webservice followed by identifier as shown below.

25

webService web_service_courseRegistration

Figure 3.11: Web service definition

3.3. Web Service Execution Environment (WSMTX)

Web Service Execution Environment (WSMX) [25] is a middleware platform used

for discovery, composition, execution and mediation of Semantic Web services [65].

WSMX environment also enables requester goals for matching with capabilities of

most appropriate Web service that exists in WSMX. Moreover, WSMX enables web

service requester to interact with web service provider and launches the selected Web

service.

The completed WSMX system will allow service providers to describe their web

services in WSML and publish these descriptions on the WSMX system. When end

users send goals, described in WSML, to WSMX, these goals are matched against

the capabilities of the web services registered with the WSMX system. These

services can then be invoked to realize the user’s goals [12].

3.4. Web Service Modeling Toolkit (WSMT)

The Web Services Modeling Toolkit is an Integrated Development Environment

(IDE) that helps developing Ontologies, Goals, Web Services and Mediators through

the Web Service Modeling Ontology (WSMO) [27] formalism. The Web Service

Modeling Toolkit provides a number of tools and visualizer graph to create and edit

ontologies visually by using WSML syntax. Visualizer graph enables us to edit

ontology directly using a graphical interface and see the changes instantly. WSMT

also provides the text editor to manually create or edit semantic descriptions [12].

26

Chapter 4

MODELING UNIVERSITY COURSE REGISTRATION

This chapter provides a critical analysis of Web Service Modeling Language

(WSML) [9] by implementing a specification of “university course registration” web

service. Therefore, in this chapter, detailed explanations of WSMO framework can

be seen through examples, such as ontology, goal and web service.

4.1. University Course Registration Scenario

In the scenario, a student wants to make a course registration request to the web

service of the university. However, in order to make a successful registration, the

student has to satisfy some steps and logical rules that the web service requires.

The steps can be given as follows:

Step 1: Students have to submit student name, course, year, and semester

information to the web service through the goal. Goal is a specification of user

desires, it specifies the student’s expectations from the web service, then goal

interacts with the web service which describes the functionality of “course

registration” web service. At this point the student’s goal and functionality of web

service should meet with each other to go through the registration steps. Therefore in

the scenario goal and web service satisfy each other. Web service takes name,

course, year and semester coming from goal and checks if the information satisfies

the information needed to register for the course. If the student has submitted all

27

information required by “course registration” web service, web service takes action

to complete the registration.

Step 2: In order to complete course registration successfully, web service takes the

following processes; web service makes validation of student name, course, semester

and year into ontology. Ontology like database has all attributes, attribute values and

relations as well as logical constraints needed for “course registration” web service.

For example, the following validations have to be done.

• If the requested course is opened in the submitted year and semester.

• If the requested course has prerequisite and student has taken the prerequisite

course.

• Student should not have clashed courses after registration, so it tries to

validate there is not a clash.

During all the processes, if any problem does not raised, web service creates instance

and relation that shows the student who is taking the requested course. Finally, web

service responds to students with student name, course, year, semester, groupno and

increases the current size of course by one.

4.2. Course Registration Ontology

Course registration ontology is the main ontology. It consists of concepts, instances,

relations, relation instances and axioms which are needed for the specification of

“course registration” web service. Before starting to define concepts, at the beginning

of the WSML document, definition of WSML language variant and namespaces with

their prefix are required.

28

Figure 4.1 shows the Prologue of a WSML File. WSML variant is defined with the

keyword wsmlVariant, while namespace is defined with the keyword namespace,

also it can be seen that the WSML document variant has adopted WSML-rule and

name space is named by courseRegistartion.

wsmlVariant_"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"
namespace { _"http://cmpe.emu.edu.tr/courseRegistration#",
discovery_"http://wiki.wsmx.org/index.php?title=DiscoveryOntology#",
dc _"http://purl.org/dc/elements/1.1#" }

Figure 4.1: Prologue of a WSML file

After the definition of WSML variant and namespace, we can import other

ontologies as necessary. In the domain, there are five ontologies, ontology for

“concepts”, ontology for “axioms”, ontology for “relations”, ontology for “instances”

and ontology for “relation instances”. Although, we might define concepts, axioms,

instances, relations and relations instances in one ontology, we preferred to separate

them into different ontologies to reduce complexity of specification. Therefore, there

are four ontologies imported into course registration ontology. Figure 4.2 below

shows how to import, courseRegistrationAxioms, courseRegistrationInstances,

courseRegistrationRelations and courseRegistrationRelationInstances ontologies

into courseRegistration ontology.

ontology courseRegistration

importsOntology {courseRegistrationAxioms,
courseRegistrationRelations,courseRegistrationInstances,
courseRegistrationRelationInstances}

Figure 4.2: Importing ontologies

29

4.2.1. Concept Definitions of CourseRegistration Ontology

CourseRegistration ontology includes several super concepts and sub concepts

together with necessary restrictions on attributes. In addition, CourseRegistration

ontology contains some utility concepts, for example; period, day and building.

Figure 4.3 depicts all super concepts, sub concepts and utility concepts of course

registration ontology through the WSML visualizer. However, reading concept

names might be very difficult because of the graph resolution. But from figure 4.4

you can see the whole super concepts of course registration ontology clearly. Also,

later in the thesis, the definition of each concept of course registration ontology will

be seen with its functionality.

Figure 4.3: Course registration ontology concepts

30

Figure 4.4: Super concepts of course registration ontology

concept University

 uname ofType (1 1) _string

 locatedAt ofType (1 *) Address

concept Address

 street ofType (0 1) _string

 city ofType (1 1) _string

Figure 4.5: Definition of University and Address concept

Figure 4.5 shows the definition of University and Address concepts. University

concept has two attributes uname and locatedAt which defines university name and

address of university respectively. In addition, Address concept defines street and

city attributes. As we can see, under the University concept LocatedAt attribute has

type Address. This means that LocatedAt attribute is multivalued attribute which

keeps all attribute values defined in Address concept such as street and city. In figure

4.22 you can see example instances for University and Address concept respectively.

31

concept Faculty

facultyName ofType (1 1) _string

atUniversity ofType (0 1) University

concept Department

deptID ofType (1 1) _string

deptName ofType (0 1) _string

inFaculty ofType (0 1) Faculty

Figure 4.6: Definition of Faculty and Department Concept

Figure 4.6 depicts the definition of Faculty and Department concepts. Faculty

concept has two attributes; facultyName (specifies the name of faculty) and

atUniversity (specifies the university information). Department concept has deptID,

deptName (specifies the name of department) and inFaculty (specifies the name of

faculty) attributes. In addition, under Department concept, there is the inFaculty

attribute. The value of inFaculty must be instance of Faculty concept. In figure 4.23

and 4.24 you can see example instances created for faculty and department concept

respectively.

concept AcademicProgram

programName ofType (0 1) _string

programID ofType (0 1) _string

belongsTo ofType (0 1) Department

concept UndergraduateProgram subConceptOf AcademicProgram

concept GraduateProgram subConceptOf AcademicProgram

concept TurkishProgram subConceptOf AcademicProgram

concept EnglishProgram subConceptOf AcademicProgram

concept EnglishGraduateProgram subConceptOf {EnglishProgram,

GraduateProgram}

concept EnglishUndergraduateProgram subConceptOf { EnglishProgram,

UndergraduateProgram}

concept TurkishGraduateProgram subConceptOf {TurkishProgram,

GraduateProgram}

concept TurkishUndergraduateProgram subConceptOf { TurkishProgram,

UndergraduateProgram}

Figure 4.7: Definition of AcademicProgram concept

32

Figure 4.7 shows the AcademicProgram concept which defines the academic

program of departments. It includes the programName, ProgramID and belongsTo

attributes. Its values are instance of the Department concept defined in figure 4.6. As

shown in figure, AcademicProgram concept has four sub concepts;

UndergraduateProgram, GraduateProgram, TurkishProgram and EnglishProgram

which also have sub concepts named EnglishGraduateProgram,

EnglishUndergraduateProgram, TurkishGraduateProgram and

TurkishUndergraduateProgram. These sub concepts are defined as utility concepts

to specify the type of academic program

concept Course

courseCode ofType (0 1) _string

courseName ofType _string

hasPrerequisite ofType (0 *) Course

lecture_hour ofType (0 1) _integer

tutorial_hour ofType (0 1) _integer

credits ofType (0 1) _integer

ects ofType (0 1) _integer

belongsToProgram ofType (0 1) UndergraduateProgram

Figure 4.8: Definition of Course concept

Figure 4.8 shows the definition of Course concept which has eight attributes;

courseCode (specifies course code of course), courseName (specifies course name),

hasPrerequisite (specifies the pre perquisite of course if exist, course can have zero

or more perquisite course), lecture_hour (specifies lecture hours), tutorial_hour

(specifies tutorial hour if exists), credits (specifies the credit of course), ects,

belongsToProgram (specifies the program that course belongs). In addition

hasPrerequisite and belongsToProgram attributes are multivalued attributes.

hasPrerequisite attribute takes all attributes of course concept. belongsToProgram

33

attribute takes all attributes value of UndergraduateProgram concept defined in

figure 4.7.

concept Building

concept Classroom

classID ofType (0 1) _string

location ofType (0 1) Building

capacity ofType (0 1) _integer

inDepartment ofType (0 1) Department

roomNumber ofType (0 1) _string

Figure 4.9: Definition of Building and Classroom concept

Figure 4.9 describes the Classroom concept which includes the following attributes;

classID, location (specifies the building information of classroom, it has type as

Building therefore location value must be instance of building concept), capacity

(specifies capacity of classroom), inDepartment (specifies the department that

classroom belongs, it takes all attributes value of Department instance), roomNumber

(specifies room number of classroom). In figure 4.28, we can see the instances of

Classroom concept.

concept Semester

 syear ofType (0 1) _integer
concept Day
concept Period

Figure 4.10: Defining Semester, Day, Period concept

concept RoomDayPeriodDuration

room ofType (1 1) Classroom

day ofType (1 1) Day

period ofType (1 1) Period

duration ofType (1 1) _integer

Figure 4.11: RoomDayPeriodDuration concept

34

In figure 4.10 the definition of utility concepts can be seen which are Semester, Day,

Period. Also from figure 4.11 we can see the definition of RoomDayPeriodDuration

concept which includes attributes, room (inherits all attributes value of Classroom

instance), day (specifies the teaching day of course), period (specifies time period of

course), duration (specify the teaching time duration of course) can be

seen. These concepts will be used to define information of opening course in the

following figures.

concept LectureRoomDayPeriodDuration subConceptOf

RoomDayPeriodDuration

Figure 4.12: Definition of LectureRoomDayPeriodDuration concept

concept LabRoomDayPeriodDuration subConceptOf RoomDayPeriodDuration

Figure 4.13: Definition of LabRoom DayPeriodDuration concept

From figure 4.12 and figure 4.13 you can see the LectureRoomDayPeriodDuration

and LabRoomDayPeriodDuration concepts which are utility concepts that show us

which courses can have lecture and lab session.

concept CourseOpening

groupNo ofType (0 1) _integer

ofCourse ofType (0 1) Course

semester ofType (0 1) Semester

id_courseOpening ofType (0 1) _string

teaching_times ofType (1 4) RoomDayPeriodDuration

current_size ofType (0 1) _integer

year ofType (0 1) _integer

Figure 4.14: Definition of CourseOpening concept

35

 The figure 4.14 shows the definition of CourseOpening concept which is one of the

most important concepts in the domain. It includes the following attributes; groupNo

(defines group number of course), ofCourse (takes attributes value of Course

instance), semester (specifies the semester of opening course), id_courseOpening,

teaching_times (specifies the information about teaching times, takes all attributes

value of RoomDayPeriodDuration instance), current_size (specifies the number of

students that enrolled in the opening course currently), year (specifies year of

opening course).

concept Person

ID ofType (0 1) _string

gender ofType (0 1) _string

Date_of_Birth ofType (0 1) _date

name ofType (0 1) _string

lastName ofType (0 1) _string

address ofType Address

Figure 4.15: Definition of Person concept

Figure 4.15 shows the definition of Person concept. Person concept has six

attributes; ID, gender, Date_of_Birth, name, lastName and address. Person concept

is a super concept of Student and Instructor concept as defined in figure 4.16.

concept Student subConceptOf Person

yearEnrolled ofType (0 1) _integer

overallCGPA ofType (0 1) _float

enrolledIn ofType (0 2) AcademicProgram

semesterEnrolled ofType (0 1) Semester

tookCourse_ ofType (0 *) Course

nfp

dc#relation hasValue {TookRelation}

endnfp

concept Instructor subConceptOf Person

works_in ofType (1 *) Department

Figure 4.16: Definition of Student and Instructor concept

36

Figure 4.16 shows the definition of Student and Instructor concepts. Student concept

is a subconcept of Person concept. It inherits all attributes of Person concept.

Additionally it includes yearEnrolled (the year that student enrolled in university),

overallCGPA (student cgpa), enrolledIn (specifies academic program in which

student is enrolled, takes all attributes value of AcademicProgram instance),

semesterEnrolled (specifies the current semester that student registered), tookCourse

(specifies the course that student has taken, it accepts instances of Course concept as

value and keeps all attributes value of Course instance). In addition, tookCourse_

attribute has nonfunctional property which includes relation, named as TookRelation

TookRelation is a logical expression that checks if course has perquisite or not.

Instructor concept is also sub concept of Person concept. It includes all attributes

value of Person concept as well as including its own attributes such as works_in

attribute which specifies the department that the instructor works in.

concept Curriculum

academicProgram ofType (0 1) AcademicProgram

refCode ofType (0 1) _string

courseName ofType (0 1) Course

Figure 4.17: Definition of Curriculum concept

Figure 4.17 depicts the definition of Curriculum concept which includes the

following attributes; academicProgram (data value must be instance of

AcademicProgram), refCode, courseName (data value must be instance of Course).

37

concept RegistrationRequest

student ofType Student

course ofType Course

year ofType _integer

semester ofType Semester

concept RegistrationResult

student ofType Student

courseOpening ofType CourseOpening

Figure 4.18 Definition of RegistrationRequest and RegistrationResult concept

Figure 4.18 describes RegistrationRequest and RegistrationResult concepts.

RegistrationRequest concept defines attributes like student, course, year and

semester. Remember that when students make course registration request to “course

registration” web service, the name of student, course, year and semester information

must be submitted to the web service. The web service takes the information and

makes validation in ontology. This validation is done through the reqistartionRequest

concept. Therefore, RegistrationRequest concept is required to define which

attributes have to be submitted by the student in order to make course registration

request. In addition we have to define RegistrationResult concept which defines the

information that will be sent to the student after registration is completed.

4.2.2. Relations of Course Registration Ontology

In WSML relations are machine readable and understandable and used to model

dependencies between several concepts [58] therefore we can define many relations

between many concepts.

In the “course registration” web service domain there are four relations defined as

following; teaches specifies the relationship between teacher and opening course

concepts. takes describes the relationships among the student and course concepts,

38

tookCourse defines the relationships between the student and course concepts, and

finally prerequisite specifies the interrelation of courses. In figure 4.19, all relations

defined through WSML visualizer graph can be seen.

Figure 4.19: Specification of relations through WSML visualizer graph

relation teaches(ofType Instructor, ofType CourseOpening)

relation takes(ofType Student, ofType CourseOpening)

relation tookCourse(ofType Student, ofType Course)

relation prerequisite(ofType Course, ofType Course)

Figure 4.20: Specification of relation for course registration

Figure 4.20 depicts the relations through WSML text editor. As can be seen teaches

relation includes two parameters; Instructor and CourseOpening. It defines who is

teaching which course. takes relation includes two parameters as well, Student and

CourseOpening. It defines the relation between student and taken course by student

currently. tookCourse relation allows two parameters, Student and Course. It defines

39

which course has been taken by the student. Prerequisite relation has two

parameters; Course and Course. It defines which course is prerequisite of the other

course.

4.2.3. Instances of Course Registration Ontology

A concept represents real world objects with a specific shared property. The objects

themselves are called instances [9]. In the domain, in order to exemplify WSML in

detail, many instances and relation instances have been defined for each concept and

relation. However , for some concepts we defined only one instance which is enough

to demonstrate the specification of “course registration” web service. Figure 4.21

shows the definition of instances for each concept through the WSMO visualizer.

However, difficulties may rise in order to read the name of instances because “course

registartion” ontology has a very large number of instances and the resolution is very

low. Therefore, you can see all instance definitions in detail through the WSML text

editor in further reading of the thesis.

Figure 4.21: Instances of CourseRegistration Ontology Concepts

40

instance eastern_mediterranean_university memberOf University

uname hasValue "Eastern Mediterranean University"

locatedAt hasValue EMUAddress

instance EMUAddress memberOf Address

City hasValue "Famagusta"

Street hasValue "Salamis Road"

instance AyseAddress memberOf Address

street hasValue "Duplupınar"

city hasValue "Famagusta"

instance zainabAddress memberOf Address

street hasValue "Karakol"

city hasValue "Famagusta"

instance sengulAddress memberOf Address

street hasValue "Sakarya"

city hasValue "Famagusta"

instance aliAddress memberOf Address

street hasValue "Canakkale"

city hasValue "Famagusta"

instance mehmetAddress memberOf Address

street hasValue "Ortakoy"

city hasValue "Nicosia"

Figure 4.22: Definition of University and Address instances

Figure 4.22 shows University and Address instances. As can be seen, there is only

one instance for University concept has been defined which is named as

eastern_mediterranean_university. It contains locatedAt attribute with EMUAddress

as value. EMUAddress is instance defined for Address concept which contains city

and street attributes. When we are defining instance, we have to be sure that attribute

types of instances must be compatible with the corresponding attribute type in the

concept definition. For example, type of locatedAt attribute defined as Address in the

University concept. So when we are creating instance for University concept,

locatedAt atrribute value must be instance of Address concept.

41

instance faculty_of_engineering memberOf Faculty

facultyName hasValue "Engineering"

atUniversity hasValue eastern_mediterranean_university

instance faculty_of_artAndScience memberOf Faculty

facultyName hasValue "Art and Science"

atUniversity hasValue eastern_mediterranean_university

Figure 4.23: Definition of Faculty instances

The figure 4.23 specifies the instances for Faculty concept. As can be seen, there are

two Faculty instances defined which are faculty of “engineering” and faculty of “art

and science”. Later, Faculty instances will be used in order to describe inFaculty

attribute of Department concept.

instance dept_applied_computer_and_math memberOf Department

deptName hasValue "Applied Computer and Mathemetics"

inFaculty hasValue faculty_of_artAndScience

deptID hasValue "applied computer and mathematics"

instance dept_computer_engineering memberOf Department

deptName hasValue "Computer Engineering"

inFaculty hasValue faculty_of_engineering

deptID hasValue "computer_engineering"

instance dept_software_engineering memberOf Department

deptName hasValue "Software Engineering"

inFaculty hasValue faculty_of_engineering

deptID hasValue "sotware_engineering"

Figure 4.24: Definition of Department instances

In figure 4.24, the example instances for Department concept can be seen. There are

three different departments in the domain which are

dept_applied_computer_and_math, dept_computer_engineering and dept_software

engineering. In figure 4.6, the definition of Department concept can be seen. As

42

seen, inFaculty attribute is a multivalued attribute, it takes Faculty of instance as

value.

instance cmpe_undergrad_eng memberOf EnglishUndergraduateProgram
 programID hasValue"cmpe_undergrad_eng"
 programName hasValue"Computer Engineering Undergraduate
English"
 belongsTo hasValue dept_computer_engineering

instance math_undergrad_eng memberOf EnglishUndergraduateProgram
 programID hasValue"math_undergrad_eng"
 programName hasValue"Applied Computer and Mathemetic"
 belongsTo hasValue dept_applied_computer_and_math

instance se_undergrad_tr memberOf EnglishUndergraduateProgram
 programID hasValue"se_undergrad_eng"
 programName hasValue"Software Engineering Undergraduate
Turkish"
 belongsTo hasValue dept_software_engineering

instance cmpe_undergrad_tr memberOf TurkishUndergraduateProgram
 programID hasValue"cmpe_undergrad_tr"
 programName hasValue"Computer Engineering Undergraduate
Turkish"
 belongsTo hasValue dept_computer_engineering

instance cmpe_grad_eng memberOf EnglishGraduateProgram
 programID hasValue"cmpe_grad_eng"
 programName hasValue"Computer Engineering Graduate English"
 belongsTo hasValue dept_computer_engineering

instance turkish_teaching memberOf TurkishGraduateProgram
 programID hasValue"turkish_grad_tr"
 programName hasValue"Instructional Turkish Teaching Graduate
English"
 belongsTo hasValue dept_computer_engineering

instance computer_teaching memberOf TurkishGraduateProgram
 programID hasValue"computer_grad_tr"
 programName hasValue"Instructional Computer Teaching Graduate
English"
 belongsTo hasValue dept_computer_engineering

Figure 4.25: Definition of Academic Programs instances

Figure 4.25 defines the instances of AcademicPrograms concept. In the figure, four

different academic program can be seen; English Under graduate Program, Turkish

Under graduate Program, English Graduate Program and Turkish Graduate

43

Program. In addition, belongsTo attribute accept instance of Department as value

and it includes all attributes value of Department concept.

instance cmpe354 memberOf Course

credits hasValue 3

belongsToProgram hasValue cmpe_undergrad_eng

courseName hasValue"Introduction to Databases"

courseCode hasValue"cmpe354"

hasPrerequisite hasValue cmpe211

lecture_hour hasValue 6

ects hasValue 4

instance cmpe318 memberOf Course

credits hasValue 3

belongsToProgram hasValue cmpe_undergrad_eng

courseName hasValue"Introduction to Programming Languages"

courseCode hasValue"cmpe318"

hasPrerequisite hasValue cmpe112

lecture_hour hasValue 6

ects hasValue 4

instance cmpe112 memberOf Course

credits hasValue 3

belongsToProgram hasValue cmpe_undergrad_eng

courseName hasValue"Programming Fundamentals"

courseCode hasValue"cmpe112"

lecture_hour hasValue 6

ects hasValue 4

instance cmpe211 memberOf Course

credits hasValue 3

belongsToProgram hasValue cmpe_undergrad_eng

courseName hasValue"Object Oriented Programming"

courseCode hasValue"cmpe211"

lecture_hour hasValue 6

ects hasValue 4

instance cmpe418 memberOf Course

courseName hasValue"Internet Programming"

belongsToProgram hasValue cmpe_undergrad_eng

tutorial_hour hasValue 1

credits hasValue 4

lecture_hour hasValue 4

courseCode hasValue"cmpe418"

ects hasValue 4

Figure 4.26: Definition of Course instances

44

Figure 4.26 depicts example instances defined for Course concept. As we can see,

there are many course instances defined for Course concept which are quite enough

to demonstrate “course registration” web service. For example, in figure, there is a

cmpe354 instance which has a course name “introduction to database”, that belongs

to cmpe_undergrad_eng_program. course code is cmpe354, credits is 3 and has a pre

requisite which is cmpe211. hasPrerequisite attribute is a multivalued attribute, it

accepts instance of Course as value, in the example, cmpe112 is prerequisite of

cmpe354 which is named with “Programming Fundamentals”, belongs to the

cmpe_undergrand_eng_program, course code is cmpe112, credits is 3 and it does

not have prerequisite course. Additionaly belongsToProgram is multivalued

attribute, it accepts instance of UndergraduateProgram concepts as value.

instance cmpe_building memberOf Building

instance cl_building memberOf Building

instance as_building memberOf Building

Figure 4.27: Definition of Building instances

Figure 4.27 shows the instances about Building concept. In the following example,

these instances will be used to define the location of classes.

 Figure 4.28 shows the instances for Classroom concept. There are five classrooms

defined such as; cmpe128, cmpe126, room cmpelab5, room as208, room as205. Let’s

take cmpe128 classroom as an example, it has deptId as ComputerEngineering,

roomNumber as 128, inDepartment dept_computer_engineering, ClassID as

“room_cmpe128”, Capacity as 60, and location as cmpe_building. inDepartment is

45

a multivalued attribute refers to Department concept and Department instance.

Likewise, location attribute refers to instance of Building department.

instance room_cmpe128 memberOf Classroom

deptID hasValue ComputerEngineering

roomNumber hasValue"128"

inDepartment hasValue dept_computer_engineering

classID hasValue"room_cmpe128"

capacity hasValue 60

location hasValue cmpe_building

instance room_cmpe126 memberOf Classroom

roomNumber hasValue"126"

inDepartment hasValue dept_computer_engineering

classID hasValue"cmpe126"

location hasValue cmpe_building

capacity hasValue 50

instance room_cmpelab5 memberOf Classroom

roomNumber hasValue"lab5"

inDepartment hasValue dept_computer_engineering

classID hasValue"cmpelab5"

location hasValue cmpe_building

capacity hasValue 50

instance room_as205 memberOf Classroom

deptID hasValue"ArtandScience"

roomNumber hasValue"205"

inDepartment hasValue dept_applied_computer_and_math

classID hasValue"room_as205"

capacity hasValue 70

location hasValue as_building

instance room_as208 memberOf Classroom

deptID hasValue"ArtandScience"

roomNumber hasValue"208"

inDepartment hasValue dept_applied_computer_and_math

classID hasValue"room_as208"

capacity hasValue 70

location hasValue as_building

Figure 4.28: Definition of Classroom instances

46

instance spring memberOf Semester

syear hasValue 2012

instance fall memberOf Semester

syear hasValue 2011

instance summer memberOf Semester

syear hasValue 2012

Figure 4.29: Definition of Semester instances

instance monday memberOf Day

instance tuesday memberOf Day

instance wednesday memberOf Day

instance thursday memberOf Day

instance friday memberOf Day

instance saturday memberOf Day

instance per1 memberOf Period

instance per2 memberOf Period

instance per3 memberOf Period

instance per4 memberOf Period

instance per5 memberOf Period

instance per6 memberOf Period

instance per7 memberOf Period

instance per8 memberOf Period

Figure 4.30: Definition of Day and Period instances

Figure 4.29 shows Semester instances and figure 4.30 shows the instances for Day,

Period which will enable us to define lecture or lab section of the course in the

following figure 4.31.

instance lecture_cmpe128_monday_per2_2 memberOf

LectureRoomDayPeriodDuration

room hasValue room_cmpe128

day hasValue monday

period hasValue per2

duration hasValue 2

instance lecture_cmpe128_tuesday_per2_2 memberOf

LectureRoomDayPeriodDuration

room hasValue room_cmpe128

day hasValue tuesday

Figure 4.31: Definition of RoomDayPeriodDuration instances

47

period hasValue per2

duration hasValue 2

instance lecture_cmpe128_wednesday_per2_2 memberOf

LectureRoomDayPeriodDuration

room hasValue room_cmpe128

day hasValue wednesday

period hasValue per2

duration hasValue 2

instance lecture_cmpe126_thursday_per1_2 memberOf

LectureRoomDayPeriodDuration

room hasValue room_cmpe126

day hasValue thursday

period hasValue per6

duration hasValue 2

instance lecture_cmpe126_thursday_per6_2 memberOf

LectureRoomDayPeriodDuration

room hasValue room_cmpe126

day hasValue thursday

period hasValue per6

duration hasValue 2

instance lab_cmpelab5_wednesday_per6_2 memberOf

LabRoomDayPeriodDuration

room hasValue room_cmpelab5

day hasValue friday

period hasValue per4

duration hasValue 2

instance lab_cmpelab5_friday_per4_2 memberOf

LabRoomDayPeriodDuration

room hasValue room_cmpelab5

day hasValue friday

period hasValue per4

duration hasValue 2

instance lecture_as205_friday_per4_2 memberOf

LabRoomDayPeriodDuration

room hasValue room_as205

day hasValue friday

period hasValue per4

duration hasValue 2

instance lecture_as208_friday_per4_2 memberOf

LabRoomDayPeriodDuration

room hasValue room_as208

day hasValue friday

period hasValue per4

duration hasValue 2

Figure 4.31: Definition of RoomDayPeriodDuration instances (Continued)

48

Figure 4.31 specifies the example instances for RoomDayPeriodDuration concept.

There are four instances defined for LectureRoomDayPeriodDuration such as;

lecture_cmpe128_monday_per2_2, lecture_cmpe128_Tuesday_per2_2,

lecture_cmpe128_Wednesday_per2_2, lecture_cmpe126_Thursday_per1_2 and four

instances defined for LectureRoomDayPeriodDuration such as;

lab_cmpelab5_wednesday_per6_2, lab_cmpelab5_friday_per4_2,

lecture_as205_friday_per4_2, lecture_as205_friday_per4_2. As can be seen in the

figure, room, day, period and duration attributes accepts instance of room, day,

period and duration concept as values. In this figure we have created instances for

lecture and lab teaching times. These instances will be used in the following figure to

define teaching times of CourseOpening instances.

instance cmpe354_spring_2012_gr1 memberOf CourseOpening

id_courseOpening hasValue"cmpe354_spring_2012_gr1"

year hasValue 2012

semester hasValue spring

ofCourse hasValue cmpe354

groupNo hasValue 1

current_size hasValue 4

teaching_times hasValue {

 lecture_cmpe128_monday_per2_2,

 lecture_cmpe128_wednesday_per2_2,

 lab_cmpelab5_friday_per4_2 }

instance cmpe318_spring_2012_gr1 memberOf CourseOpening

id_courseOpening hasValue"cmpe318_spring_2012_gr1"

year hasValue 2012

semester hasValue spring

ofCourse hasValue cmpe318

groupNo hasValue 1

current_size hasValue 4

teaching_times hasValue {

 lecture_cmpe128_tuesday_per2_2,

 lab_cmpelab5_wednesday_per6_2,

 lecture_cmpe126_thursday_per6_2}

Figure 4.32: Definition of CourseOpening instances

49

instance cmpe318_fall_2012_gr1 memberOf CourseOpening

id_courseOpening hasValue"cmpe318_fall_2012_gr1"

year hasValue 2011

semester hasValue fall

ofCourse hasValue cmpe318

groupNo hasValue 1

current_size hasValue 4

teaching_times hasValue lecture_cmpe126_thursday_per1_2

instance math303_spring_2012_gr1 memberOf CourseOpening

id_courseOpening hasValue"math303_spring_2012_gr1"

year hasValue 2012

semester hasValue spring

ofCourse hasValue math303

groupNo hasValue 1

current_size hasValue 6

teaching_times hasValue lecture_as205_friday_per4_2

instance cmpe418_spring_2012_gr1 memberOf CourseOpening

id_courseOpening hasValue "cmpe418_spring_2012_gr1"

year hasValue 2012

semester hasValue spring

ofCourse hasValue cmpe418

groupNo hasValue 1

current_size hasValue 4

teaching_times hasValue lecture_as208_friday_per4_2

Figure 4.32: Definition of CourseOpening instances (Continued)

Figure 4.32 describes instances of CourseOpening concept. There are five Course

instances defined in the domain, for example, course cmpe354, id is

cmpe354_spring_2012, year is 2012 of spring semester, group no is 1,

teaching_times are “monday at period 1”, “wednesday at period 2”, and “Friday at

period 3”, at classroom cmpe128 and has 2 sessions. As we can see, ofCourse takes a

course instance as value and includes all corresponding course information.

teaching_times attribute is a multivalued attribute which refers to instance of

RoomDayPeriodDuration concept.

.

50

instance ayse memberOf Person

ID hasValue"044059"

gender hasValue"female"

name hasValue "Ayse"

lastName hasValue "Akçam"

address hasValue AyseAddress

instance zainab memberOf Person

ID hasValue"080045"

gender hasValue"female"

name hasValue "Zainab"

lastName hasValue "Murtadha"

address hasValue zainabAddress

instance sengul memberOf Person

ID hasValue"105066"

gender hasValue"female"

name hasValue "sengul"

lastName hasValue "Cobanoglu"

address hasValue sengulAddress

instance ali memberOf Person

ID hasValue"255"

gender hasValue"male"

name hasValue "Ali"

lastName hasValue "Deniz"

address hasValue aliAddress

instance mehmet memberOf Person

ID hasValue"105"

gender hasValue"male"

name hasValue "Mehmet"

lastName hasValue "Can"

address hasValue mehmetAddress

Figure 4.33: Definition of Person instances

Figure 4.33 shows instances of Person. Additionally address attribute refers to

instance of Address concept

In figure 4.34, we can see instances of Student and Instructor concept. We have

defined three student instances named ayse, zainab and sengul. For example Ayse

has ID 104059, enrolled in spring semester, cgpa is 3.20, enrolled in cmpe

51

undregraduate program (enrolledIn attribute takes the instance of AcademicProgram

as value) and year is 2010.

Also we have defined two instructors, ali and mehmet, both of them working in

computer engineering department (works_in attribute has type Department, which

takes Department instances as value).

instance Ayse memberOf Student

ID hasValue"044059"

semesterEnrolled hasValue spring

overallCGPA hasValue _float("3.20")

enrolledIn hasValue cmpe_undergrad_eng

yearEnrolled hasValue 2010

instance zainab memberOf Student

ID hasValue"080045"

semesterEnrolled hasValue spring

overallCGPA hasValue _float("3.50")

enrolledIn hasValue cmpe_undergrad_eng

yearEnrolled hasValue 2008

instance sengul memberOf Student

ID hasValue"105066"

semesterEnrolled hasValue spring

overallCGPA hasValue _float("3.56")

enrolledIn hasValue cmpe_grad_eng

yearEnrolled hasValue 2009

instance ali memberOf Instructor

works_in hasValue dept_computer_engineering

instance mehmet memberOf Instructor

works_in hasValue dept_computer_engineering

Figure 4.34: Definition of Student and Instructor instances

 At the figure 4.35, we can see curriculum_cmpe_undergrad_eng instance for

Curriculum concept. In addition, academicProgram attribute has value

cmpe_undergrad_eng which is instance of EnglishUndergraduateProgram.

52

instance curriculum_cmpe_undergrad_eng memberOf Curriculum

academicProgram hasValue cmpe_undergrad_eng

refCode hasValue "cmpecurriculum"

courseName hasValue cmpe318

Figure 4.35: Definition of Curriculumn instances

Figure 4.36 shows instances of RegistrationRequest and RegistrationResult concept.

student, course, semester and CourseOpening attributes accept instance of Student,

Course, Semester and couseOpening concept as value. ReqistrationRequest instance

is created when student has made request for course registration. For example,

when, Jane made request to “course registration” web service,

reg_req_jane_cmpe354_spring_2012 is created. After validation of attributes

submitted by Jane, reg_res_jane_cmpe354_spring_2012 instance becomes created.

instance reg_req_jane_cmpe354_spring_2012 memberOf

RegistrationRequest

student hasValue Jane

course hasValue cmpe354

year hasValue 2012

semester hasValue spring

courseOpening hasValue cmpe354_spring_2012_gr1

instance reg_res_jane_cmpe354_spring_2012 memberOf

RegistrationResult

student hasValue ayse

courseOpening hasValue cmpe354_spring_2012_gr1

Figure 4.36: Definition of RegistrationRequest and RegistrationResult instances

4.2.4. Relation Instances of Course Registration Ontology

Relation instance shows facts about relation [58]. In figure 4.37 we can see relation

instances with the corresponding relation definition through WSML visualizer graph.

As can be seen there are two ontologies, courseRegistrationRelations and

courseRegistrationRelationInstances which are connected with each other by

53

prerequisite, takes, tookCourse and teaches relations. prerequisite relation has two

instances which are identified by cmpe211PrerequisiteOfcmpe354 and

cmpe112Prerequisiteofcmpe318. takes has two instances identified by

sengulTakescmpe354 and ayseTakescmpe354. tookCourse relation has four instances

identified by sengulTookCoursecmpe354, zainabTookcoursecmpe211,

sengulTookcoursecmpe211, ayseTookCoursecmpe211. Finally, teaches relation has

two instances, identified by aliTeachescmpe354 and mehmetTeachescmpe354.

Figure 4.37: Relation Instances of Course Registration Ontology Concepts

relationInstance aliTeachescmpe354

teaches(ali, cmpe354_spring_2012_gr1)

relationInstance mehmetTeachescmpe318

teaches(mehmet, cmpe418_spring_2012_gr1)

Figure 4.38: Definition of “teaches” relation instances

54

Figure 4.38 shows the definition of teaches relation instance which specifies relation

between instructor and opening course. As can be seen, it takes two parameters;

student name and course opening. For example, ali teaches

cmpe354_spring_2012_gr1 and mehmet teaches cmpe318_spring_2012_gr1.

relationInstance ayseTakescmpe354

takes(ayse, cmpe354_spring_2012_gr1

relationInstance sengulTakescmpe354

takes(sengul, cmpe354_spring_2012_gr1)

Figure 4.39: Definition of “takes” relation instances

Figure 4.39 shows instance of takes relation, which defines the relation between

student and opening course. It states that sengul and ayse take the opening course

cmpe354_spring_2012_gr1.

relationInstance cmpe211PrerequisiteOfcmpe354

prerequisite(cmpe211,cmpe354)

relationInstance cmpe112prerequisiteOfcmpe318

prerequisite(cmpe112,cmpe318)

Figure 4.40: Definition of “prerequisite” relation instances

The above figure 4.40 depicts the instances of prerequisite relation which defines the

relation between two courses. For example, it says that cmpe211 is prerequisite of

cmpe354 and cmpe112 prerequisite of cmpe318.

Figure 4.41 describes the relation instances of tookCourse between student and

course. Remember, ayse is taking opening course cmpe354_spring_2012_gr1 which

has prerequisite course cmpe211, in order to let ayse take

55

cmpe354_spring_2012_gr1, there must be tookCourse relation showing that ayse has

taken cmpe211.

relationInstance ayseTookCoursecmpe112
tookCourse(ayse,cmpe112)

relationInstance ayseTookCoursecmpe211
tookCourse(ayse,cmpe211)

relationInstance sengulTookCoursecmpe318
tookCourse(sengul,cmpe318)

relationInstance zainabTookCoursecmpe211
tookCourse(zainab,cmpe211)

relationInstance sengulTookCoursecmpe211
tookCourse(sengul,cmpe211)

Figure 4.41: Definition of “tookCourse” relation

4.2.5. Axiom of Course Registration Ontology

Axioms are logical constraints which are directly related with the relations instances

that are defined in figures 4.38, 4.39, 4.40 and 4.41. In the domain, we have defined

eight axioms; Clashes checks if there is clash in teaching times of courses,

noClashStudent checks if the student has a clash with other courses.

prerequisisteTaken checks if the course has prerequisite and prerequisite of course

has been taken, prerequisiteNotTaken checks if student has not taken the prerequisite

of course, teachCourse specifies constraints about only which teachers can teach

courses, noClashTeacher checks if the teaching times of teacher clashes,

noClashRoom enables classroom to not clash, classSizeExceeded checks if the

capacity of the class has exceeded the number of students that are registered to the

course, registrationRules combines all rules needed for registration such as

prerequisiteNotTaken, classSizeExceeded. In the figure below you can see all the

definitions of axioms through WSML visualizer.

56

 Figure 4.42: Axioms of CourseResgistartion Ontology

axiom registrationRules definedBy

clashes(?co1,?co2):- ?co1 memberOf CourseOpening and

?co2 memberOf CourseOpening and ?co1 != ?co2 and

?co1[teaching_times hasValue ?tt1,

year hasValue ?y1,

semester hasValue ?s1] and

?co2[teaching_times hasValue ?tt1,

year hasValue ?y1,

semester hasValue? s1].

Figure 4.43: The “Clashes” axiom

Figure 4.43 shows the Clashes axiom. According to Clashes rule, teaching times of

courses must not be clashed, in the given example in figure axiom depicts that there

are two courses ?co1 and ?co2, the teaching_times, year, semester of ?co1 should not

be same as teaching_times, year and semester of ?co2. For example, in figure 4.32, I

have defined some instances for CourseOpening , if we look at “cmpe354 spring

2012 gr1” and “cmpe318 spring 2012 gr1” instances, we can see that “cmpe354

57

spring 2012 gr1” is open 2012 spring semester and teaching times are “lecture

cmpe128 monday per2 2”, “lecture cmpe128 wednesday per2 2”, “lab cmpelab5

friday per4 2”. In addition, “cmpe318 spring 2012 gr1” is open 2012 spring semester

and teaching times are “lecture cmpe128 tuesday per2 2”, “lab cmpelab5 wednesday

per6 2”, “lecture cmpe126 thursday per6 2”. There is not any clash in this case, but if

change “lecture cmpe128 monday per2 2” to “lecture cmpe128 tuesday per2 2”, the

clash will be automatically recognized and we should get a noClashRoom error

message.

prerequisiteNotTaken(?student,?course,?precourse):-

takes(?student, ?courseOpening) and

?courseOpening[ofCourse hasValue ?course] memberOf CourseOpening

 and prerequisite(?pre,?course) and

 naf tookCourse(?student,?precourse).

Figure 4.44: The “prerequisiteNotTaken” axiom

Figure 4.44 shows the prerequisiteNotTaken axiom. According to

prerequisiteNotTaken axiom if students did not take prerequisite of course, he cannot

take the course, prerequisiteNotTaken axiom is related with “takes” relation. The

expression of this axiom as following, it takes tree parameters, ?student, ?course and

?precourse, in order to make this expression satisfy able, there should be student

taking course and course must be instance of CourseOpening. If takes relation is

satisfied and course is a member of CourseOpening, then it checks if the course has

prerequisite, if there is prerequisite instance exist for course, then it checks if there is

not any relationship shows that student took the prerequisite course, it shows

prerequisite consistency violation. For example, remember ayse is taking course

“cmpe354 spring 2012 gr1” denoted by takes relation, also you can see from

prerequisite relation instance, cmpe211 prerequisite course of cmpe354, and

58

tookCourse relation says ayse has been taken cmpe211. In this example there is not

any prerequisite consistency violation. But if you remove the tookCourse relation

instance which is saying that ayse has taken cmpe211, there will be prerequisite

consistency violation.

classSizeExceeded:-

?co[teaching_times hasValue ?tt,

 current_size hasValue ?s] memberOf CourseOpening and

?tt[room hasValue ?room] memberOf RoomDayPeriodDuration and

 ?room[capacity hasValue?maxCap] and ?s>?maxCap.

Figure 4.45: The “classSizeExceeded” Axiom

Figure 4.45 describes the classSizeExceeded axiom which defines constraints

between classroom capacity and the total number of students taking the course; quota

of the course must not exceed the class capacity. For example in figure 4.32 we have

defined some instances for CourseOpening, let’s take “cmpe354 spring 2012 gr1” as

an example. Our aim is to compare current size of the course with the class capacity.

We can see that current size of “cmpe354 spring 2012 gr1” is 4. Now we have to find

out the class capacity of “cmpe354 spring 2012 gr1”. In order to find out the class

capacity of this course, we have to use teaching_times instances. There are four

teaching time instances as following, “lecture cmpe128 monday per2 2”, “lecture

cmpe128 wednesday per2 2”, “lab cmpelab5 friday per4 2”, after we reach the

teaching times, we will go to each instance and check the room for obtaining

classroom name, after we found room name we will go to instance of classroom. For

example, classroom of “lecture cmpe128 monday per2 2” is cmpe128, then we go to

cmpe128 classroom instance and compare the capacity with current size of course, if

the capacity is less than current size, the system gives error. This example is

59

satisfied but if we change current size of any course to more than the class capacity,

classSizeViolation error message will occur.

axiom noClashRoom definedBy

!-clashes(?x,?y).

Figure 4.46: Definition of “noClashRoom” axiom

axiom prerequisiteTaken definedBy

!- prerequisiteNotTaken(?student,?course,?pre).

Figure 4.47: Definition of “prerequisiteTaken” axiom

axiom classSizeViolation

definedBy

!- classSizeExceeded.

Figure 4.48: Definition of “ClassSizeViolation” axiom

Figure 4.46, figure 4.47 and figure 4.48 show the noClashRoom, prerequisiteTaken,

and classSizeViolation axioms which are used to invoke clashes,

prerequisiteNotTake and classSizeExceeded axioms with respectively in the negation

form, because we do not want these axioms to be satisfied by any circumstances.

axiom yearCheck definedBy

!- ?co[year hasValue ?ye,

 semester hasValue ?se] memberOf CourseOpening and

 ?se[syear hasValue ?maxyear] memberOf Semester and

 ?ye != ?maxyear.

Figure 4.49: Definition of “yearCheck” axiom

60

Figure 4.49 shows the yearCheck axiom which defines constraint about year of

opening course such as opening year of course must be same as semester year. In

order to make year check, first, we go to instance of CourseOpening concept, we see

that it has attribute values year and semester, we check the semester attribute value

then go to specified semester instance and find out year that is defined for Semester

instance. Finally, we can compare if the specified year of semester is equal to year of

courseOpening. For example “cmpe354 spring 2012 gr1” opened 2012 in spring

semester. Firstly, we go to Semester instance which is spring and check the attribute

value of semester year. For instance, spring semester year is 2012. If we change the

semester year to 2011, yearCheckedViolation error message will occur because year

of course opening and year of semester must be the same.

axiom TookRelation

definedBy

?x[tookCourse_ hasValue ?course] memberOf Student:-

tookCourse(?x,?course).

Figure 4.50: Definition of “TookRelation” axiom

axiom noClashTeacher definedBy

!- ?t1 memberOf Instructor and

?co1 memberOf CourseOpeningand

?co2 memberOf CourseOpening and

teaches(?t,?co1)and teaches(?t,?co2)and

?co1 != ?co2 and

?co1[teaching_times hasValue? tt1,

 year hasValue ?y1,

 semester hasValue ?s1] and

?co2[teaching_times hasValue ?tt2,

 year hasValue ?y1,

 semester hasValue ?s1] and

?tt1[day hasValue ?d1,

 period hasValue ?p1]and

?tt2[day hasValue ?d1,

 period hasValue ?p1].

Figure 4.51: Definition of “noClashTeacher” axiom

61

Figure 4.50 and figure 4.51 shows the TookRelation and noClashTeacher axioms

respectively. TookRelation axiom checks if the student has been taken prerequisite

course or not and noClashTeacher axiom defines constraint about teacher, teacher

can teach many courses but the year, semester ,day and period of taught courses

should not clash. For example, mehmet teaches course “cmpe318 spring 2012 gr1”,

teaching times are “cmpe128 monday per2 2”, “lecture cmpe128 wednesday per2 2”,

“lab cmpelab5 friday per4 2”. If mehmet teaches “cmpe418 spring 2012 gr1” which

has teaching times as “lecture as208 friday per4 2”. As we can see “friday period 2”

clashes and noClashTeacher error message will occur.

axiom noClashStudent definedBy

!- ?t1 memberOf Student and

?co1 memberOf CourseOpening and

?co2 memberOf CourseOpening and

takes(?t1,?co1)and

takes(?t1,?co2)and

?co1[teaching_times hasValue?tt1,

 year hasValue?y1,

 semester hasValue?s1] and

?co2[teaching_times hasValue?tt2,

 year hasValue?y1,

 semester hasValue?s1] and

?tt1[day hasValue?d1,

 period hasValue?p1]and

?tt2[day hasValue?d1,

 period hasValue?p1]and

?co1 != ?co2.

Figure 4.52: Definition of “noClashStudents” axiom

Figure 4.52 depicts noClashStudent axiom. noClashStudent axiom defines constraint

between courses that the student takes. The student cannot take the course if the day

and period of course clashes with his other day and period of course. There is a

student ?t1 and two courses ?c1 and ?c2 which are member of courseOpening

62

concept, ?t1 takes both ?c1 and ?c2. the teaching_times, year and semester of ?c1

must not be equal to the teaching_times, year and semester of ?c2

4.2.6. Web Service specification for Course Registration

We use WSML-Rule to describe the functionality provided by “course registration”

semantic web service. We can say it is a service which the user interacts in order to

invoke “course registration” semantic web service with the aim of registering for the

course.

Although we can create many web services within domain, we have created only one

web service which is named as web service courseRegistration. Figure 4.53 shows

the definition of web service through the WSML visualizer graph.

Figure 4.53: Definition of Web service through WSML visualizer

63

wsmlVariant_"http://www.wsmo.org/wsml/wsml-syntax/wsml-

rule"namespace { _"http://cmpe.emu.edu.tr/courseRegistration#",

discovery

_"http://wiki.wsmx.org/index.php?title=DiscoveryOntology#", dc

_"http://purl.org/dc/elements/1.1#" }

webService web_service_courseRegistration

importsOntology {courseRegistration, courseRegistrationAxioms,

courseRegistrationRelations,courseRegistrationInstances,

courseRegistrationRelationInstances}

Figure 4.54: Prelude of web service

Figure 4.54 shows the prelude of web service. In order to define functionality of web

service, firstly, at the beginning of the WSML file we have to define WSML variant

which is specified as “WSML-Rule” in the university course registration model.

After that at the second line we have to declare namespaces and continue definition

by importing ontologies, actually we have defined only one ontology in our domain

and it is divided parts according to concepts, instances, relation instances and axioms

in order to simplify ontology so that you might see as there are five ontologies

imported. As well as importing ontologies we might define some nonfunctional

properties under capability declaration which provide description about web service.

The core element of Web service definition is capability. Each web service must

include one capability which specifies the provided features of web service to the

user. In order to define web service capability in WSMO, the definition of the

preconditions, post conditions, effect and assumption are required. In addition,

capabilities also might include shared variables. From figure 4.58 to figure 4.63 we

can see definition of capability.

64

capability web_service_courseRegistrationCapability

nonFunctionalProperties

discovery#discoveryStrategy hasValue discovery#HeavyweightDiscovery

endNonFunctionalProperties

Figure 4.55: Definition of nonfunctional properties of web service.

sharedVariables {?student, ?course,?year, ?semester, ?oldsize, ?co}

Figure 4.56: Definition of shared variables of web service.

Figure 4.55 and figure 4.56 shows the definition of nonfunctional properties and

shared variables respectively. While nonfunctional properties define description

about web services, shared variables part defines the shared variables among

assumptions, pre-conditions, post-conditions and effects. In the given example, there

are six shared variables. Shared variables link various parts of the capability.

Precondition

definedBy

?rr[

student hasValue ?student,

course hasValue ?course,

year hasValue ?year,

semester hasValue ?semester] memberOf RegistrationRequest.

Figure 4.57: Precondition definition for the web service capability

Figure 4.57 shows the precondition definition of web service. Pre-Condition defines

the condition of the web service in order to service users. In the given example, the

precondition says that an instance of the RegistrationRequest concept is required for

successful provision of “course registration” web service. There is no other

information that can be accepted by web service.

65

Assumption

definedBy

?co[

 ofCourse hasValue ?course,

 year hasValue ?year,

 semester hasValue ?semester,

 groupNo hasValue ?groupno,

 current_size hasValue ?oldsize] memberOf CourseOpening.

Figure 4.58: Assumption definition for the web service capability

Figure 4.58 depicts the Assumption of web service. Assumption describes the

expectation before executing the web service. If the expectation is not meet,

successful execution of web service is not guaranteed. Within the given example,

assumption is saying that before the web service can be called, there must be a

course opening object for the course requested.

Figure 4.59 defines the Effect of Web service. Effect describes what the student will

reach after the execution of the Web service successfully. In the given example,

effect is saying that if student satisfies the precondition and assumption and execute

the web service, it is guaranteed that the student will be registered to the course and

the number of students registered to the course which is specified by ?current_size

will be increased one.

Effect

definedBy

takes(?student,?co) and

?co[current_size hasValue (?oldsize+1)].

Figure 4.59: Effect definition for the web service capability

Figure 4.60 shows the Post condition of web service. Post Conditions describe the

state of world that is reached after the execution of the Web service successfully; in

66

other words, post condition describes the relation between the information that is

provided to the Web service, and its results. In the given example, post condition is

specifying which information will be provided after invoking web service

successfully, as you can see student and CourseOpening will be an instance of the

Registration Result and provided to the student.

postconditiondefinedBy

?aResult[

student hasValue ?student,

courseOpening hasValue ?co] memberOf RegistrationResult.

Figure 4.60: Post condition defined for capability

4.2.7. Goal of Course Registration

Goals are similar to as web services, but they are used to describe expectation of

users when invoking the web service. Figure 4.61 depicts capability, precondition

and post condition through WSML visualizer. In the following examples we present

goals for user in order to register for a course. More precisely, through the goal, the

student attempts to invoke an appropriate web service for doing the registration.

67

Figure 4.61: Instances of CourseResgistartion Ontology Concepts

In figure 4.62 you can see goal definition of web service through WSML editor. At

the beginning of the specification of Goal, we have specified WSML variant,

namespaces, and imported ontologies as we specified in web services. Then we have

to define capability elements such as precondition and post condition.

Precondition has logical formalism what student provides before executing web

service in order to register for a course. In the given example, student requests

service with attribute values of student, course, year and semester. Postcondition

defines expectation of user after executing web service. In the given example user

desires that will be instance of registrationResult concept.

68

wsmlVariant_"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"

namespace { _"http://cmpe.emu.edu.tr/courseRegistration#"

,

discovery_"http://wiki.wsmx.org/index.php?title=DiscoveryOntology#",

dc_"http://purl.org/dc/elements/1.1#" }

goal goalCourseRegistration

importsOntology

{ _"http://cmpe.emu.edu.tr/courseRegistration#courseRegistration",

_"http://cmpe.emu.edu.tr/courseRegistration#courseRegistrationInstan

ces",

_"http://cmpe.emu.edu.tr/courseRegistration#courseRegistrationRelati

onInstances"}

capability goalCourseRegistrationAliCapability

nonFunctionalProperties

discovery#discoveryStrategy hasValue

{discovery#HeavyWeightRuleDiscovery, discovery#NoPreFilter}

endNonFunctionalProperties

sharedVariables {?student, ?co, ?groupno}

precondition reqcondition

definedBy

?rr[

student hasValue?student,

course hasValue ?course,

year hasValue ?year,

semester hasValue ?semester] memberOf RegistrationRequest.

Postcondition rescondition

definedBy

?aResult[

student hasValue ?student,

courseOpening hasValue ?co] memberOf RegistrationResult

and

 ?co [

ofCourse hasValue ?course,

 year hasValue ?year,

 semester hasValue ?semester,

 groupNo hasValue ?groupno] memberOf CourseOpening.

Figure 4.62: Specification of goal for course registration

69

_"http://cmpe.emu.edu.tr/courseRegistration#courseRegistration",

_"http://cmpe.emu.edu.tr/courseRegistration#courseRegistrationInstan

ces",

_"http://cmpe.emu.edu.tr/courseRegistration#courseRegistrationRelati

onInstances"}

capability goalCourseRegistration1Capability

nonFunctionalProperties

 discovery#discoveryStrategy hasValue

{discovery#HeavyWeightRuleDiscovery, discovery#NoPreFilter,

discovery#HeavyweightDiscovery}

endNonFunctionalProperties

sharedVariables {?student, ?co, ?groupno}

precondition reqcondition

definedBy

?rr[

year hasValue 2012,

 student hasValue Jane,

 semester hasValue spring,

course hasValue cmpe354] memberOf RegistrationRequest.

postcondition rescondition

definedBy

?aResult[

 student hasValue Jane,

 courseOpening hasValue ?co] memberOf RegistrationResultand

?co[

 year hasValue 2012,

 semester hasValue spring,

 groupNo hasValue ?groupno,

 ofCourse hasValue cmpe354] memberOf CourseOpening.

Figure 4.63: Requesting course registration for Jane

Figure 4.63 shows example goal which makes course registration request for Jane.

Jane submits name, year, student, semester and course, and web service returns to

Jane with student name, course name, year, semester and group no.

70

4.2.8. Mediator of Course Registration Ontology

Mediators enable to connect Ontologies, Goals and Web Services that are defined in

different platforms without interoperability problems between them. WSMO studio

provides extendible editor that enables us to create Mediators as well as the

Ontologies, Goal and Web service. In the domain, I have not defined any mediator

because requesters and providers would use the same domain ontologies for the

description of their goals and Web services, respectively. However, we have to

define mediators in the real world because in an open environment the same

ontologies and web services might not be used.

71

Chapter 5

EVALUATION OF WSMO AND WSML

This Chapter discusses some of the important deficiencies discovered in WSML as

we critically analyze and evaluate WSML language while creating university course

registration specification. In addition, we have also recommended possible

improvements which help WSML to achieve covering many aspects of semantic web

service. We have discovered eleven WSML issues with some recommendations.

5.1. General Overview

WSMO provides a framework by in which WSML is used to semantically describe

all relevant aspects of Web services (ontologies, mediators, goals and web services)

in order to automatically discover, combine and invoke web services over the Web

[10]. In general, the idea of WSMO is really exciting and in the future it may be a

very reliable framework in modeling ontologies, creating web services, interacting

with web services automatically and exchanging data between them. However,

currently formal language of WSMO is not issue-free and there are some deficiencies

that WSML has to overcome in order to allow WSMO to achieve its goals. For

example, complex syntax definition of WSML, unspecified WSML variants is one of

the most important issues to be resolved in WSML.

5.2. Implementation Issue

WSML supports some tools to develop WSML specification in an easy way such as

WSMT which is used in this thesis to investigate WSML language. WSMT provides

72

graphical user interface framework and tools (WSML visualizer) to specify

description of web services semantically through WSML [66]. Although WSMT

provides user-friendly tools to describe ontologies, axioms, mediators, goals and web

services semantically, it does not provide an effective reasoner. Currently, WSML

must be supported with an external reasoner in order to implement WSML files.

Deficiency of WSML reasoner leads us to an unreliable manner of developing

semantic web application.

Another issue that we faced with reasoning is testing the consistency of the ontology.

For example, if we want to test the whole ontology to see if there is any logical or

semantic problem in any part of the WSML file, we do not have any specific query to

perform over model. I have to write some irrelevant query expressions in order to see

if everything is well in ontology. In this thesis, to test the whole ontology, we used

3<5 as a query which is unrelated with the ontology and just gives results as true or

false. For an alternative solution we can add debug button to the WSML reasoner

which will test the whole ontology if there is any syntactic mistake.

Furthermore, when we want to test a goal, the WSML reasoner does not enable

testing of goal implementation; it does not even provide any related error on it, this

means that there is no reasoning mechanism for goals. Reasoning goals must be

provided by the WSML reasoner.

5.3. Error Provider Issue

WSML does not have proper error provider mechanism when they arise. For

instance, when any constraints are violated, a small window appears in an annoying

way and says “Reasoning has encountered a problem. It was not possible to execute

73

the given query”. However, it does not show or communicate a specific error and

does not guide us to the error line. We would suggest that it should provide the line

number or when we click over an error it links us to a place where the problem

occurred. Therefore, we can add new functionality for error provider. For example,

on the bottom side of window, errors can be shown to the user with red color and

with line number, when the user clicks on the line number it may guide them to the

point where the error occurred.

5.4. Variable Issue (Syntax)

WSML reasoner does not allow us to declare variables using underscore character.

For example, ?var1_1 is not allowed as variable, it should be defined as ?var1.

When I want to write huge expression having many variables, we have to use

meaningful variable names in order to remember functionality of variable, at this

point ” _” is very useful. Such as “?student_id, department_id, ?eng_undergrad”.

However, WSML does not support variable that contains underscore. Although

defining numbers as variable is allowed, using “_” character is not allowed in

WSML.

5.5. Weak Error Detection Mechanism

Even though WSML can catch the WSML syntactic mistakes, WSML has a very

weak detection mechanism for catching structural mistakes, for example when we

created instance for the wrong concept, it did not catch that instance that shows it has

a mismatch problem with concept. Let’s recall a previous example, we have

University concept in figure 4.3 which is structured with two attributes, university

name and address only. When we attempt to create instance for university and add

another attribute which does not have definition in concept, such as foundation year,

74

WSML would not catch the mistake. Furthermore, also consider that University

concept address has attribute value as Address which is multivalued , at the instance

definition if we set attribute value as “TRNC” (string), it does not match the mistake,

however, attribute value should be instance of Address concept not string. For the

structural errors, WSML does not provide any error catching mechanism.

5.6. Data Type Issue

WSML forces us to define attribute type when we are defining attribute for concept.

There may be such cases that we do not know about the type of attribute. Therefore,

there should be data type wrappers. Such as for the University concept, when we

leave Address type definition empty in concept, define in instance definition as

“TRNC”, during the implementing of ontology, WSML reasoner will arise error

about the undefined attribute value, however there may be some cases that we could

not decide about data type such as Address might be string or multivalued data type,

same as foundation year can be both integer and string. Which one will be used as

data type ? Therefore WSML should provide data type wrappers when we do not

define the type of attribute. According to attribute value defined in instance, WSML

should wrap the data type and should not arise error.

5.7. Attribute Value Definition of Instance

In WSML, defining super Concept and sub Concept does not have any meaning.

WSML assumes like there is an imaginary concept and every concept is sub concept

of it. Therefore, defining sub concept for some certain classes is meaningless. For

example, as shown in the example below, Instructor concept is sub concept of

Person; it includes all inherited attributes of Person concept as well as its own

specific attributes. However, when we define instance for instructor such as ali, it

75

must contain attribute definitions of Person and Instructor only. There should be

restriction. In the given example below we have defined nationality value for

instance of ali, although nationality attribute has never been defined in both Person

and Instructor concept, why WSML allows us to set value for attribute, that was

never defined. In my opinion, this means that there is an imaginary concept and

every concept is a sub concept of it. That makes it useless for super-Concept and

sub-Concept concepts. Even this makes it meaningless for attribute definition of

concept, because whenever we want, we can directly define any attribute value in

instance for certain concepts. This is useless of defining attribute type in concept.

Since it is useless, why should we define super concept, sub concept and their

attributes. We can shortly and straight forward create instances.

concept Person
 ID ofType (0 1) _string
 gender ofType (0 1) _string
 Date_of_Birth ofType (0 1) _date
 name ofType (0 1) _string
 lastName ofType (0 1) _string
 address ofType Address

concept Instructor subConceptOf Person
 works_in ofType (1 *) Department

instance ali memberOf Instructor
works_in hasValue dept_computer_engineering
name hasValue"ali"
lastName hasValue"Can"
gender hasValue"male"
nationality hasValue"turkish"
address hasValue Address

5.8. Matching between Relation and Relation instances Issue

In WSML in order to create relation instance, first of all we create definition of

Relation. However, definition of relations is meaningless since WSML allows

creating any relation instance. For example, teaches relation defined as follow

relation teaches(ofType Student, ofType CourseOpening) and relation instance

defines relationInstance teaches(ali, cmpe354_spring_2012_gr1). If we remove the

76

definition of relation, WSML does not give any error. Checking whether relation is

defined or not, is an important issue because we have to constrain the type of relation

parameters. Therefore, in axioms when we are using relations we have to define the

type of relations again as shown in the following example

?t1 memberOf Student
And ?co1 memberOf CourseOpening
And ?co2 memberOf CourseOpening
and takes(?t1,?co1)
and takes(?t1,?co2)

Although we defined the type of relation parameters in the definition of relation, we

have to define again in axioms because there is no matching between definition of

relation and relation instances. If WSML would match the data type of relation

parameters, we would not need to define them again in axiom and this would provide

simplicity and greater usability.

5.9. Aggregate Function Issue

None of the rule language of WSML allows us the use of the aggregate functions

which are very useful in adding and averaging data, finding the largest and smallest

values, and counting the records about specific criteria in the domain. For example; it

is not possible to define logic rules (axiom) or constraints to restrict the number of

students that can take a certain course. For this case, we need a counter to count how

many students have been registered in the course and use it to prevent registering

more students for the course. In addition, finding which class has the largest capacity

is not possible. Therefore, Building predicates in WSML for the aggregate functions

can be useful and efficient.

77

5.10. Missing Semantics for WSML-Full

From the language development point of view, the semantic of WSML-Full which is

extension of WSML DL and WSML rule, does not have a complete semantics yet.

5.11. Capability Issue

Capability defines the functionality of a web service. WSML web services and goals

may only have one capability. However, web service might have more

functionalities, linking many request to web service means web service can have

many functionalities.

In addition to that and in order to invoke the web services, preconditions under

capability of goal must be matched with preconditions of web service exactly. If the

user does not satisfy the conditions of the web service, it does not serve. In the

following example there are preconditions of goal and web service

Precondition of Goal
?rr[year hasValue ?year,

student hasValue ?student,
semester hasValue ?semester,
course hasValue ?course] memberOf RegistrationRequest.

Precondition of web service

?rr[student hasValue ?student,
course hasValue ?course,
year hasValue ?year,
semester hasValue ?semester] memberOf RegistrationRequest.

What will be happen if the user tries to invoke web service with the following pre

condition?

Precondition of Goal
?rr[student hasValue ?student,
course hasValue ?course] memberOf RegistrationRequest.

78

The service would not respond to the user’s desire because of missing attributes.

Therefore, definition of more than one capability in web service is really required in

order to make web service more accessible.

5.12. Choreography Issue

Choreography provides the necessary information in order to establish

communication with the Web service from the user’s point of view [10]. For

communications between web services and users, existence of choreography must be

defined. Specification of Choreography in WSML is too high level and abstract to be

of practical use.

5.13. Orchestration Issue

Orchestration is a sequence of rules and conditions, in which web service should

follow to invoke other web services in order to perform some functionality.

However, how web services discover and interact with each other, how to deal with

web services that provides similar functionality, how to compose web services are

questionable.

In this thesis, web service does not interact with other web services to provide

functionality, because of that we do not need to define orchestration. If web service

would use other web services, the sequence and activities between web service’s

requester and providers must be defined. However, this is not possible because

definition of the dynamic behavior of web services in the context of WSML is

currently under investigation and has not been integrated in WSML at this point.

79

Chapter 6

CONCLUSION and FUTURE WORK

In this thesis, we have deeply studied Web service modeling language WSML and all

elements relevant to the Web service modeling ontology (WSMO) framework

through the specification of university course registration web service in WSML

rule. Through our study we have identified some issues, namely the reasoning issue,

the error provider issue, the definition of variable issue, the weak detection

mechanism issue, the definition of data type issue, the definition of attribute value

issue, the aggregate function issue, the capability issue and finally the choreography

and orchestration issues. We proposed solutions to some of the discovered issues that

we believe will improve WSML.

For future research, we wish to work on improving the weak points of WSML that

we obtained in this thesis. We believe that WSMO is a promising framework for

specifying semantic web services, and with the solution to the issues introduced in

this thesis, it will be a viable approach also.

80

REFERENCES

[1] The World Wide Web (2001, January 24). Retrived January 23, 2013 from

http://www.w3.org/WWW/.

[2] Cao, S. T., Honglei, Z., & Mcilraith, S. (2001, April-March). Semantic Web

services, Intelligent Systems, IEEE, 16(2) , pp. 46-53..

[3] Accessing Health Information Through the Internet (2005). Retrieved January 18,

2012 from http://www.prb.org/pdf04/AccessHealthInfoInternet.pdf.

[4] Kanellopous, D., Kotsiantis S. (2007, September). Semantic Web: A state of the

Art Survey, International Review on Computers and Software, 2(5), 428-442.

[5] Amin, A., Joa, A., Shayeganfar, F. & Wagner R., (2005, August 26-26). Semantic

Web …..Challenges and new Requirements.1160-1163.

[6] Hendler, J., Lassila, O., & Berners Lee, T., (2011, May). The Semantic Web,

.Scientific American. Retrieved June 29, 2012 from

https://courses.ischool.berkeley.edu/i202/f12/sites/default/files/SemanticWeb.p

df.

[7] Jeckle M., Zhang L., (2003). Web Services - ICWS-Europe 2003, Berlin: Springer

Heidelberg, 183-197.

81

[8] Bussler, C., Dieter, F. (2002).The Web Service Modeling Framework WSMF.

Electronic Commerce Research and Applications, 1(2), 113-137.

[9] Dieter, F., Jos, D. B., Kifer, M., Krummenacher, R., Lausen, H., Polleres, A.,

Predoiu, .L. & Uwe, K. (2005, June 3). Web Service Modeling Language

(WSML). Retrieved November 1, 2012 from

http://www.w3.org/Submission/WSML/.

[10] Web Service Modeling Ontology (WSMO) (2005, June 3). Retrieved November

20, 2012 from http://www.w3.org/Submission/WSMO/.

[11] Web Service Execution Environment (WSMX) (2005, June 3).

Retrived.Sepetember 18, 2012 from http://www.w3.org/Submission/WSMX/.

[12] Kerrigan, M. (2006, july). WSMOViz: An Ontology Visualization Approach for

WSMO, Intelligent Systems, IEEE,411-418.

[13] HTML tutorial (2012). Retrieved January 20, 2013 from

http://www.w3schools.com/html/default.asp.

[14] Anonymous author (2008). European Organization for Nuclear Research.

Retrieved January 21, 2013 from

http://public.web.cern.ch/public/en/about/name-en.html.

[15] Berners Lee T. (2009, October 16). Retrived September 26, 2012 from

.http://tr.wikipedia.org/wiki/Tim_Berners-Lee.

82

[16] Matthews B., Wilson W., (2006).The Semantic Web:Prospects and Challenges,

CCLRC Rutherford Appleton Laboratory, 1(4), 26-29.

[17] Web 1.0, 2.0, and 3.0 (2009, May 7). Retrived 25 January,2013 from ……

http://benramsey.com/blog/2009/05/web-10-20-and-30-defined/.

[18] Agarwal, P. R. (2009, May 9). Semantic Web in Comparison to Web 2.0:

Intelligent Systems, Modelling and Simulation (ISMS), 2012 Third

International Conference on Intelligent Systems Modelling and Simulation.

558-563.

[19] Austin, D., Barbi,r A., Ferris, C., & Garg, S. (2001, October 11). Web Services

Architecture ……..Requirements. Retrieved January 19, 2013 from

http://www.w3.org/TR/2002/WD-wsa-reqs-20021011.

[20] Mathew S., McGovern J., Stevens M., & Tyagi S. (2003, May 12). Java Web

Services Architecture. (2nd ed.). San Francisco: Morgan Kaufmann publishers.

[21] Daconta, M. C., Obrst, L. J., Smith, K. T. (2003, May 19). The Semantic

….…Web.(2nd ed.). Indianapolis, Indiana: Wiley Publishing.

[22] Curbera, F., Duftler, M., Khalaf, R., Nagy, W, Mukhi, N. & Weerawarana, S.

(2002, March). Unraveling the Web services web: an introduction to SOAP,

WSDL, and UDDI. Internet Computing, IEEE, 6, 86-93.

83

[23] Box, D., Ehnebuske D., Kakivaya G., Layman, A., Mendelsohn, N., Nielsen, H.

F., Thatte S. & Winer D. (2000, May 8). Simple Object Access Protocol

(SOAP) 1.1. Retrived 24 December 2012 from

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[24] Eric, N. (2001). Understanding Web Services: XML, Wsdl, Soap, and UDDI.

(3rd ed.). pp 81-110.

[25] HTTP - Hypertext Transfer Protocol (2012 ,April 11). Retrieved December 15,

2012 from: http://www.w3.org/Protocols/.

[26] Christensen, E., Curbera, F., Meredith, G. & Weerawarana, S. (2001,March 15).

Web Service Description Language (WSDL). Retrieved July 22, 2012 from

http://www.w3.org/TR/wsdl.

[27] Jakhar, J., Parashar, A.(2001, August). A test Based Web Service Selection

Approach. International Journal of Research and Reviews in Computer

Science. 2(4), 1014-1017.

[28] Rouse, M. (2005, September). UDDI (Universal Description, Discovery, and

Integration). Retrived July 22, 2012 from

http://searchsoa.techtarget.com/definition/UDDI.

[29] Bai, J., Hao, Y. & Miao, G. (2011, November). Integrating Building Automation

Systems based on Web Services. Journal Of Software. 6(11), 2209-2215.

84

[30] Berners-Lee, T., Hall, W., Hendler, J. A., O’Hara, K., Shadbolt, N. & Weitzner,

D. J. (2006). A Framework for Web Science. Foundations and Trends in Web

Science, 1(1), 1-30.

[31] Hendler, J., Skall, M., Martin, D., Marcatte, V., McGuinness, D. L., Pollock, J.,

Roure, D. D., & Yoshida H. (2004, November). OWL Web Ontology

Language for Services (OWL-S). Retrived July 22, 2012 from

http://www.w3.org/Submission/2004/07/.

[32] Miller, J., Sheth, A., Sivashanmugam, K. & Verma, K.(2001). Adding

Semantics to Web Services Standards. Retrieved July 24, 2012 from

http://knoesis.wright.edu/library/download/SemanticWSOld.pdf.

[33] Grigoris, A., Frank, V. H. (2004). A Semantic Web Primer. (2nd ed.). England:

The MIT Press. 213.

[34] Battle, S., Bernstein, A., Boley, H., Groso, B., Gruninger, M., Hull, R., Kifer,

M., Martin, D., Mcilraith, S., McGuinness, D., Su, J. & Tabet, S. (2005,

September 9). Semantic Web Services Framework (SWSF) Overview.

Retrieved July 22,2012 from http://www.w3.org/Submission/SWSF/.

[35] Abraham, B., Benjamin, G., Deborah, M., Harold, B., Jianwen, S., Michael, G.,

Michael, K., Richard, H., Said, T., Sheila, M., & Steve, B. (2005, September

85

9). Semantic Web Services Language (SWSL). Retrieved July 25, 2012 from

http://www.w3.org/Submission/2005/SUBM-SWSF-SWSL-20050909/.

[36] Abraham, B., Benjamin, G., Deborah, M., David, M., Steve, B., Harold, B.,

Jianwen, S., Michael, G., Michael, K., Richard, M., Said, T. & Sheila, M.

(2005, September 9). Semantic Web Services Ontology (SWSO). Retrieved

July 25, 2012 from http://www.w3.org/Submission/2005/SUBM-SWSF-

SWSO-20050909/.

[37] Hendler, J., Horrocks, I., Parsia, B. & Patel, S. P. (2005). Principles and

Practice of Semantic Web Reasoning. Semantic Web Architecture: Stack or

Two Towers?. Germany: Springer Berlin Heidelberg, 3703, 37-41.

[38] Renato, I. (2010, September 8). Semantic Web Architectures. White Paper.

Semantic Identity. 32. Retrieved January 26, 2013 from

http://semanticidentity.com/Resources/Entries/2010/9/8_Semantic_Web_Archi

tectures_(Whitepaper).html

[39] Anonymous author, (2013, February 2). Uniform resource identifier. Retrieved

February 4, 2013 from

http://en.wikipedia.org/wiki/Uniform_resource_identifier.

[40] GEIST Research Group (2011). Semantic Web Unicode and URI. AGH

University of Science and Technology, POLAND. Retrieved September 18,

2012 from http://home.agh.edu.pl/~wta/semweb/geist-semweb-uri.pdf.

86

[41] Bray, T., Paoli, J., Maler, E. & Yergeau, F. (2008, November 26). Extensible

Markup Language (XML) 1.0 (Fifth Edition). Retrieved July 23, 2012 from

http://www.w3.org/TR/xml/.

[42] Rdf Working Group. (2004, February 10). Resource Description Framework

(RDF). Retrieved August 3, 2012 from http://www.w3.org/RDF/.

[43] Prud'hommeaux, E., Seaborne, A.(2008,January 28). SPARQL Query Language

for RDF. Retrieved July 12, 2013 from http://www.w3.org/TR/rdf-sparql-

query/.

[44] Pérez, J. and Arenas, M. & Gutierrez, C. (2006). The Semantic Web - ISWC

2006. Semantics and Complexity of SPARQL. Springer Berlin Heidelberg. 30-

43.

[45] Bizer, C., Breslin, J., Manjunath, G., Packard, H. & Seaborne, A. (2008, July

15). SPARQL Update. Retrieved July 23, 2012 from

http://www.w3.org/Submission/SPARQL-Update/.

[46] Kifer, M., Boley, H. (2012, December 12). RIF Owerview. Retrieved January

21, 2013 from http://www.w3.org/TR/2012/NOTE-rif-overview-20121211/.

[47] Miller, E., Koivunen, M. R. (2001, November 2).W3C Semantic Web Activity.

Retrieved Sptember 23, 2012 from http://www.w3.org/2001/12/semweb-

fin/w3csw.

87

[48] Alesso, P., Smith, C. F. (2005, April). Developing Semantic Web Services, 178.

[49] RDF Schema (RDFS) (2012). Retrieved 18 August, 2012 from

http://www.w3schools.com/rdf/rdf_schema.asp.

[50] Haytham, T. F., Koutb, M. & Suoror, H. (2008). Semantic Web on Scope: A

New Architectural Model for the Semantic Web, Journal of Computer Science,

vol. 4, pp. 623-624.

[51] XML DOM Tutorial (2013). Retrieved December 2, 2012 from

http://www.w3schools.com/dom/default.asp

[52] Harmelen, F., Hendler, J. Horrocks, I., Lassila, O. & McGuinness, D.L. (2000,

November-December). The semantic Web and its languages. Intelligent

Systems and their Applications, IEEE, 15(6), 67-73.

[53] Resource Description Framework (2013, January 25). Retrived January 28, 2013

from http://en.wikipedia.org/wiki/Resource_Description_Framework.

[54] Connolly, D., Harmelen, F., Horrocks, I., McGuinness, D. L., Patel-

Schneider P. F. & Stein L. A. (2001, December 18). DAML+OIL (March

2001) Reference Description. Retrieved December 18, 2012 from

http://www.w3.org/TR/daml+oil-reference.

[55] Deborah, L., Harmelen, F. (2004, February 10).OWL Web Ontology Language.

Retrieved July 15, 2012 from http://www.w3.org/TR/owl-features/.

88

[56] Obitko, M.(2007). Web Ontology Language OWL. Retrieved January 26, 2013

from http://www.obitko.com/tutorials/ontologies-semantic-web/web-ontology-

language-owl.html.

[57] Bruijn, J. D., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U.,

Kifer, M., Knig-Ries, B., Kopecky, J., Rubn, L., Lausen, H., Oren, E., Polleres,

A., Roman, D., Scicluna, J. & Stollberg, M. (2005, June 3). Web Service

Modeling Ontology (WSMO). Retrieved June 27,2012 from

http://www.w3.org/Submission/WSMO/.

[58] Bruijn, J., Fensel D., Lausen, H. & Polleres, A. (2006). The Web Service

Modeling Language WSML: An Overview, in The Semantic Web: Research

and Applications, Sure, York, Domingue and John, Eds., Springer Berlin

Heidelberg, pp. 590-604.

[59] Busslerb, C. F., Bruijna, J. D., Feiera, C., Kellera, U., Laraa, R., Lausena, H.,

Polleresa, A., Romana, D. & Stollberga, M. (2005, January 1). Web Service

Modeling Ontology, Applied Ontology, pp. 77-106.

[60] Gruber, T. R. (1993, June). A translation approach to portable ontology

specifications," Knowl. Acquis., 5(2), pp. 199-220.

[61] Domingue, J., Roman, D., & Stollberg, M. (2005, June 9-10). Web Service

Modeling Ontology (WSMO) - An Ontology for Semantic Web Services.

Retrieved 8 July, 2012 from

http://www.w3.org/2005/04/FSWS/Submissions/1/wsmo_position_paper.html.

89

[62] Axel, P., Bruijn, J. D., Fensel, D. & Lausen, H. (2005, April). WSML - a

Language Framework for Semantic Web Services. Retrieved August 22, 2012

from http://www.w3.org/2004/12/rules-ws/paper/44/

[63] Angele, J., Axel, P., Boley, H., Bruijn, J. D., Fensel, D., Hitzler, P., Kifer, M.,

Krummenacher, R., Lausen, H., & Rudi, S. (2005). Web Rule Language

(WRL). Retrieved 7 August, 2012 from

http://www.wsmo.org/wsml/wrl/wrl.html.

[64] Steinmetz, N., Toma, I. (2008, August 8). D16.1v1.0 WSML Language

Reference. Retrieved October 16, 2012 from

http://www.wsmo.org/TR/d16/d16.1/v1.0/.

[65] Moran, M., Vitvar, T. & Zaremba, M. (2009). Instance-based Service Discovery

with WSMO/WSML and WSMX, Semantic Web Services Challenge, (8 ed.),

Springer US, pp. 168-183. Retrieved October 12, 2012 from

http://dx.doi.org/10.1007/978-0-387-72496-6_10.

[66] Axel, P., Bruijn, J. D., Fensel, D., Lausen, H., Keller, U., Kifer, M.,

Krummenacher, R., Polleres, A. & Predoiu, L. (2005, June 3). Web Service

Modeling Language (WSML). Retrived June 26, 2012 from

http://www.w3.org/Submission/WSML/#cha:related-efforts.

