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ABSTRACT 

In this thesis, we first start our discussion with understanding the nature of the 

Schwarzschild like blackhole in bumblebee gravity model. While doing this 

discussion, we mention about Einstein’s field equations, Lorentz symmetry breaking, 

and after that we continue with the derivation process of the metric. In the sequel, we 

study the Hawking radiation of Schwarzschild like black hole by introducing several 

regular coordinate systems.By using the relativistic Hamilton-Jacobi (HJ) method 

involving the WKB approximation, we calculate the tunneling probabilities of bosons 

coming and going from the event horizon.We first make those calculations in its naive 

coordinate, then we continue with the Painleve-Gullstrand (PG) coordinates, Ingoing 

Eddington-Filkestien (IEF) coordinates, and Kruskal–Szekeres (KS) coordinates, 

respectively.Then, we derive the associated Hawking temperatures for each coordinate 

system. We also give the general knowledge about the those regular coordinates. 

Finally, we discuss the effects of quantum gravity on Hawking radiation and show how 

the Generalized Uncertainty Principle (GUP) affects the Hawking radiation.. 

 

Keywords: Hawking Radiation, Hawking Temperature, Relativistic Hamilton-Jacobi 

Method, PG Coordinates, IEF Coordinates,KS Coordinates, Generalized Uncertainity 

Principle 
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ÖZ 

Bu tezde, ilk olarak yaban arısı çekim modelinde Schwarzschild benzeri karadeliğin 

doğasını anlayarak tartışmamıza başlıyoruz. Bu tartışmayı yaparken Einstein'ın alan 

denklemlerinden, Lorentz Simetri kırılmasından ve ardından da metriğin türetme 

işlemine devam ediyoruz. Devamında birkaç düzenli koordinat sistemini tanıtarak 

Schwarzschild karadeliği benzeri Hawking ışımasını inceliyoruz. WKB yaklaşımını 

içeren göreli Hamilton-Jacobi (HJ) yöntemini kullanarak, olay ufkundan gelen ve 

giden bozonların tünelleme olasılıklarını hesaplıyoruz. Önce hesaplamalarımızı naif 

koordinatlarda, ardından sırasıyla Painleve-Gullstrand (PG) koordinatları, Incoming 

Eddington-Filkestien (IEF) koordinatları ve Kruskal–Szekeres (KS) koordinatlarında 

yapıyoruz. Daha sonra her bir koordinat sistemi için ilgili Hawking sıcaklıklarını 

türetiyoruz. Bu arada bu düzenli koordinatlar hakkında genel bilgiler de veriyoruz. Son 

olarak, kuantum yerçekiminin Hawking radyasyonu üzerindeki etkilerini tartışıp 

Genelleştirilmiş Belirsizlik İlkesinin (GUP) Hawking radyasyonunu nasıl etkilediğini 

gösteriyoruz. 

 

Anahtar Kelimeler: Hawking Radyasyonu, Hawking Sıcaklığı, Relativistik 

Hamilton-Jacobi Yöntemi, Painleve-Gullstrand Koordinatları, Gelen Eddington-

Filkestien Koordinatları, Kruskal-Szekeres Koordinatları, Genelleştirilmiş Belirsizlik 

İlkesi   
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Chapter 1 

INTRODUCTION 

Hawking radiation is nothing but a black body radiation emitted by black holes due to 

quantum fluctuations near the event horizon. S. Hawking developed a theoretical 

argument for the black hole radiation in 1974. Since then, many researchers suggested 

various methods for studying the Hawking radiation. Some of the notable studies 

among them are as follows: Damour-Ruffini-Sannan studied the Hawking radiation by 

using the tortoise coordinate transformation. Parikh and Wilczek (PW) considered the 

Hawking radiation as a quantum tunneling process with energy conservation. PW 

method is also known as the null geodesic method. HJ method considers the Hawking 

radiation as a semi-classical phenomenon with a quantum tunneling of emitted 

particles. While outgoing particles tunnel across the potential barrier, the imaginary 

part of the action is found by employing the Feynman prescription and WKB 

approximation [1]. In this thesis, we shall mainly concentrate on the HJ method. 

In the second chapter, we will introduce you the metric function. As a result of the 

solving the Einstein field equations in the bumblebee gravity field, will give us the 

spherically symmetric vacuum solution. The vacuum solution in the bumblebee 

gravity model caused by Lorentz symmetry breaking was derived by R. Casana. [2]. 

In a brief explanation, the symmetry is equality and fairness of physical laws and the 

symmetry is necessary of the laws of physics to be the same for all inertial observers 

is known as Lorentz symmetry.  
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Lorentz symmetry is one of the pillars of both general relativity and the standard model 

of particle physics. Motivated by ideas about quantum gravity, unification theories and 

violations of CPT symmetry. By combining gravity and quantum theory, string theory 

attempts to unify the four forces of nature simultaneously into one unified theory. [3] 

Spontaneous Lorentz symmetry breaking can occur when the dynamics of a tensor 

field cause it to take on a nonzero expectation value in vacuo, thereby providing one 

or more “preferred directions” in spacetime. Couplings between such fields and 

spacetime curvature will then affect the dynamics of the metric, leading to interesting 

gravitational effects. Bailey and Kostelecký developed a post-Newtonian formalism 

that, under certain conditions concerning the field’s couplings and stress-energy, 

allows for the analysis of gravitational effects in the presence of Lorentz symmetry 

breaking. [4] 

While we talking about Einstein field equations, we would like to mention about the 

Riemann curvature tensor, Ricci curvature tensor and Ricci scalar. The Riemann 

curvature tensor (𝑅𝛾𝜇𝜈
𝛼 ) explained that how much curvature exists in any stated region 

of space. The Ricci tensor (𝑅𝜇𝜈) comes from the need for a curvature tensor with only 

2 indexes in Einstein's theory. It is obtained by averaging certain parts of the Riemann 

curvature tensor. Lastly, the Ricci scalar (sometimes called curvature scalar) (𝑅) the 

simplest measure of the curvature. It creates a scalar value for every point in space and 

obtained by taking the average of the Ricci tensor. [4] 

In the third chapter, we will study Hawking radiation. To eliminate the singularities, 

we will examine three different regular coordinates (PG, IEF and KS coordinates) 

besides its naive coordinate. There are two singular 𝑟 values where the SBHBGM 
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metric deteriorates: 𝑟 = 0 and 𝑟 = 2𝑀√1 + 𝑙 . At those positions, one of the 

components of the metric function diverges but the explication of this divergence is 

quite different in these two cases. We know that the divergence at the point 𝑟 = 0 is 

because of the real singularity. As we approach the singularity, the general theory of 

relativity collapses, and to understand what happened there, we need to turn to 

quantum gravity theory. Conversely, there is no prominent difference at the surface     

𝑟 = 2𝑀√1 + 𝑙  and the divergence in the metric can be fixed by choosing appropriate 

coordinates: this surface is referred to as the event horizon. Many of the puzzling 

properties of black holes lie in the interpretation of the event horizon.  

During the chapter three, we get help some regular coordinates. Here, we want to give 

some specific informations about them and show you to relations between them. The 

metric in KS coordinates describes the entire extended black hole spacetime with a 

single coordinate system.. The main disadvantage of these coordinates is that there is 

a dependency of both time and space coordinates in the metric. In Eddington–

Finkelstein coordinates, as in Schwarzschild coordinates, the metric is independent of 

the time but it is not include whole the complete spacetime. The Eddington–Finkelstein 

coordinates and Gullstrand–Painlevé coordinates have some resemblance like they are 

time-independent, pass through either the black hole or white hole horizons and are 

not diagonal. 

In the last part of this thesis, we will discuss the effects GUP on the Hawking 

temperature. The GUP is applied indirectly to the gravitational source by correlating 

the GUP-modified Hawking temperature with a deformation of the background metric 

models developed to apply the minimum length scale or maximum momentum in 

https://en.wikipedia.org/wiki/Gullstrand%E2%80%93Painlev%C3%A9_coordinates
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various physical systems. One of the higher order GUP approaches gives estimates for 

minimum length uncertainty. Second, GUP simultaneously estimates the maximum 

momentum and minimum length uncertainty. One of the higher-order GUP approaches 

gives predictions for the minimal length uncertainty. A second one predicts a 

maximum momentum and a minimal length uncertainty, simultaneously. In this 

chapter , we will additionally apply the GUP correction via the PG coordinates to the 

metric and we will study the modified Hawking temperature. 

At the end of the chapter 4, we will derive the quantum corrected entropy. The 

thermodynamics of black holes has been successfully established since the discovery 

of  Hawking radiation using quantum field theory in curved geometry. 
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Chapter 2 

SCHWARZSCHILD LIKE BLACK HOLES IN 

BUMBLEBEE GRAVITY (SBHBGM) 

According to extended Einstein field equations; 

 
𝐺𝜇𝜈 = 𝑅𝜇𝜈 −

1

2
𝑅𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈 

(2.1) 

where Gμν is Einstein tensor, Tμν is total energy momentum tensor, gμν is the metric 

tensor, 𝜅(= 8𝜋𝐺𝑁) is a Einstein gravitational constant, Rμν is Ricci curvature tensor, 

and 𝑅 is Ricci scalar (curvature scalar). In addition, Tμν is the total source of combining 

of matter and Bumblebee field. We can easily express as,  

Tμν = Tμν
M + Tμν

B  (2.2) 

and Tμν
B  is; 

Tμν
B = −BμαBν

α −
1

4
BαβBβαgμν − Vgμν + 2V′BμBν

+
ξ

k
[
1

2
BαBβRαβgμν − BμBαRαν − BνBαRαμ

+
1

2
∇α∇μ(BαBν) +

1

2
∇α∇ν(BαBμ) −

1

2
∇2(BμBν)

−
1

2
gμν∇α∇β(BαBβ)] 

(2.3) 

where ξ is coupling constant controling the non-minimal gravity-bumblebee 

interaction. Here, we choose a potential term (𝑉) that satisfies a non-vanishing  vacuum 

expectation value (VEV) for bumblebee field. 
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The vacuum solutions of bumblebee field are fixed when 𝑉 = 𝑉′ = 0. Vacuum means, 

there is no matter or pressure close to any particles. In other words, there is no source 

and no time dependency. In order to get extended Einstein field equations, the 

bumblebee vector should be simple as indicated below; 

 bµ =  (0, br(r), 0, 0) (2.4) 

 when the bumblebee field 𝐵𝜇 vanishes, Eq. (1.1) reduces to the Einstein field 

equations. The vacuum solution in the bumblebee gravity model caused by Lorentz 

symmetry breaking [2]. 

There are some discussions about the existence of Lorentz symmetry breaking in the 

standard model extension, the Lorentz violation occurring in the vector 𝐵𝜇 giving a 

non-zero vacuum expectation value. These are bumblebee models and are among the 

only examples of field hypotheses with unrestricted Lorentz and diffeomorphism 

violation. 

Furthermore, the metric signature is (-,+,+,+) and we adopt to the geometrical units. In 

a bumblebee gravity model, a spherically symmetric vacuum solution is obtained as 

follows, 

 
𝑑𝑠2 = − (1 −

2𝑀

𝑟
) 𝑑𝑡2 + (1 + 𝑙) (1 −

2𝑀

𝑟
)

−1

𝑑𝑟2 + 𝑟2𝑑𝜃2

+ 𝑟2 sin2 𝜃 𝑑𝜙2, 

(2.5)  

or simply, 

 
𝑑𝑠2 = −𝑓𝑑𝑡2 +

(1 + 𝑙)

𝑓
𝑑𝑟2 + 𝑟2𝑑𝛺2, 

(2.6) 

where 𝑑Ω2 is the angular part, 

 𝑑𝛺2 = 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑∅2. (2.7) 
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Here, 𝑙 is the non-zero Lorentz symmetry breaking parameter. In the case of 𝑙 → 0 

limit, one recovers the well-known Schwarzschild metric. Namely, when 𝑙 takes zero 

value in the metric tensor, then SBHBGM reduces to the Schwarzschild black hole. In 

fact, metric (1) represents a purely radial Lorentz-violating solution outside a spherical 

body characterizing a modified black hole solution. The metric function and the 

Hawking temperature [4] are given by. 

𝑓 = 1 −
2𝑀

𝑟
,       𝑟𝐻 = 2𝑀,       𝑟𝐻: 𝐸𝑣𝑒𝑛𝑡 𝐻𝑜𝑟𝑖𝑧𝑜𝑛 

𝑇𝐻 =  
𝜅

2𝜋
=

1

8𝜋𝑀√1 + 𝑙
, (2.8) 

in which κ denotes the surface gravity. As can be seen from above, the non-zero 

Lorentz symmetry breaking parameter (𝑙)  has the effect of reducing the Hawking 

temperature of a Schwarzschild black hole solution.  

Also, the Kretschmann scalar is given by 

 
𝑅𝜇𝜈𝛼𝛽𝑅𝜇𝜈𝛼𝛽 = 𝐾 =

4(12𝑀2 + 4𝑙𝑀𝑟 + 𝑙2𝑟2)

𝑟6(1 + 𝑙)2
. 

(2.9) 

As can be seen from above, there is a real singularity at 𝑟 = 0.  
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Chapter 3 

DERIVATION OF HAWKING RADIATION OF 

SCHWARZSCHILD LIKE BLACK HOLES IN 

BUMBLEBEE GRAVITY 

In this chapter, we are going to analyze the Hawking radiation of four dimensional 

generic spherically symmetric static metric: 

𝑑𝑠2 = −𝑓𝑑𝑡2 +
1

𝑓
𝑑𝑟2 + 𝑟2𝑑θ2 + 𝑟2 sin2 𝜃 𝑑𝜙2. (3.1) 

We shall start with the derivation of Hawking Radiation of SBHBGM with Hamilton-

Jacobi (HJ) equation without GUP effect in its naive coordinates. The relativistic 

massive HJ formula reads 

𝑔𝜇𝜈𝜕𝜇𝑃𝜕𝜈𝑃 + 𝑚2 = 0. (3.2) 

Setting 𝐿2 = 𝑔𝜃𝜃(𝜕𝜃𝑃)2 + 𝑔𝜙𝜙(𝜕𝜙𝑃)
2

 , we get; 

−
1

𝑓
(

𝜕𝑃

𝜕𝑡
)

2

+
𝑓

𝜌
(

𝜕𝑃

𝜕𝑟
)

2

+ 𝐿2 + 𝑚2 = 0, (3.3) 

where 𝑓 is a function of 𝑟, 𝜌 = 1 + 𝑙 , and 𝑃(𝑡, 𝑟) = −𝜔𝑡 + 𝑊(𝑟). If we insert the 

𝑃(𝑡, 𝑟) into the main metric (3.1), we get 

−
𝜔2

𝑓
+

𝑓

𝜌
(

𝜕𝑊

𝜕𝑟
)

2

+ 𝐿2 + 𝑚2 = 0. (3.4) 

After some manipulations, we obtain 
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[
𝜕𝑊

𝜕𝑟
]

1
=

√𝜔2𝜌 − 𝜌𝑓(𝐿2 + 𝑚2)

𝑓
 ,        and        [

𝜕𝑊

𝜕𝑟
]

2

= −
√𝜔2𝜌 − 𝜌𝑓(𝐿2 + 𝑚2)

𝑓
. 

(3.5) 

Thus, one finds 𝑊 expressions by integration seen in Eq. (3.5): 

𝑊 = ± ∫
√𝜔2𝜌 − 𝜌𝑓(𝐿2 + 𝑚2)

𝑓
 𝑑𝑟 . (3.6) 

Near the horizon; 𝑟 → 𝑟ℎ 

𝑊 ≅ ± ∫
𝜔√𝜌

𝑓
 𝑑𝑟. (3.7) 

And using the residue theory, we get 

𝑊± = ±
𝑖𝜋√𝜌𝜔

𝑓′
|𝑟ℎ

 (3.8) 

where 

𝑓 = 1 −
𝑟

𝑟ℎ
, (3.9) 

and 

𝑓′ =
𝑟ℎ

𝑟2
|𝑟=𝑟ℎ=2𝑀 =

1

𝑟ℎ
=

1

2𝑀
. (3.10) 

Thus, the solution yields 

𝑊± = ±2𝑖𝜋𝜔𝑀√𝜌. (3.11) 

The out/in tunneling rates are found as 

Γout = exp[−2𝐼𝑚(𝑊+)] = exp[−2𝜋𝑀𝜔√𝜌], (3.12) 

Γ𝑖𝑛 = exp[−2𝐼𝑚(𝑊−)] = exp[2𝜋𝑀𝜔√𝜌]. (3.13) 

Using the tunneling probability with the Boltzmann formula 

𝑃 =
Γ𝑜𝑢𝑡

Γ𝑖𝑛
= exp[−8𝜋𝑀𝜔√𝜌] = exp [−

𝜔

𝑇
], (3.14) 

which corresponds to 
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exp [−
𝜔

𝑇
] = exp[−8𝜋𝑀𝜔√1 + 𝑙]. (3.15) 

Finally, we obtain the surface temperature of the SBHBGM as the following 

𝑇 =
1

8𝜋𝑀√1 + 𝑙
, (3.16) 

which is equal to the Hawking temperature (2.8). In addition to its naive coordinate, 

we take account of  three regular coordinate systems, which are PG, IEF, and KS 

coordinates. Quantum tunneling computations are shown in detail in all these 

coordinates in the framework of the HJ method. 

3.1 PG Coordinates 

In general relativity, PG coordinates are a specific set of coordinates for a solution of 

the Einstein field equations describing a black hole. The ingoing coordinates are such 

that the time coordinate follows the proper time of an observer who freely falls radially 

from rest. There is no coordinate singularity at the event horizon. The outgoing ones 

are simply the time reverse of ingoing coordinates (the time is the proper time for the 

observer who reaches infinity without velocity). This provides us to deal with the 

geometry of black hole both inside and outside of the horizon. 

In the literature, PG coordinates are known as the first non-singular coordinate system 

on the event horizon and allow us to describe time-like or empty world lines crossing 

the horizon inward. In other words, we use PG coordinates to describe the spacetime 

on either side of the event horizon of a static BH. In this coordinate system, the general 

spherically symmetric metric (3) loses its diagonal or static form. Instead, it allows for 

a cross time-space multiplication that renders the metric form stationary and is no 

longer symmetrical. Therefore, an observer does not consider the surface of the 

horizon to be special in any way. In this section, we shall use the PG coordinates as a 

https://en.wikipedia.org/wiki/Einstein_field_equations
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regular coordinate system in the HJ equation and show how it gives the true Hawking 

temperature [4]. 

Let us start with a simple transformation,  

𝑑𝑠2 = −𝑓𝑑𝑡2 +
1 + 𝑙

𝑓
𝑑 �̃�2 + �̃�2𝑑Ω2 

𝑑𝑟 → √1 + 𝑙 𝑑�̃� 

where 𝑑𝑟 is the new coordinate, and 𝑑�̃� represents the old radial coordinate.  

Then, we have 

𝑟 = √1 + 𝑙 �̃�, 

𝑓 = 1 −
2𝑀√1 + 𝑙

𝑟
, 

and 

𝑓 = 1 −
2𝑀

�̃�
, 

𝑑𝑠2 = −𝑓𝑑�̃�2 +
1

𝑓
𝑑𝑟2 + 𝑟2𝑑Ω2, 

𝑑𝑡 = 𝑑�̃� +
√1 − 𝑓

𝑓
𝑑𝑟. 

According to the PG coordinates, the new metric becomes 

𝑑𝑠2 = −𝑓𝑑𝑡2 + 2√1 − 𝑓𝑑𝑡𝑑𝑟 + 𝑑𝑟2 + 𝑟2𝑑Ω2 (3.17) 

By the help of the HJ equations, we get 

− [
𝜕

𝜕𝑡
𝑃(𝑟, 𝑡, 𝜃, 𝜙)]

2

+ 2√1 − 𝑓 [
𝜕

𝜕𝑟
𝑃(𝑟, 𝑡, 𝜃, 𝜙)] [

𝜕

𝜕𝑡
𝑃(𝑟, 𝑡, 𝜃, 𝜙)]

+ 𝑓 [
𝜕

𝜕𝑟
𝑃(𝑟, 𝑡, 𝜃, 𝜙)]

2

+ 𝐿2 + 𝑚2 = 0 

(3.18) 

where  



12 

 

𝑃(𝑡, 𝑟, 𝜃, 𝜙) = −𝜔𝑡 + 𝑊0 (3.19) 

in which 𝑊0 is the function of 𝑟. 

 The solution of equation (3.18) can be found to be 

−𝜔2 − 2√1 − 𝑓𝜔 (
𝜕

𝜕𝑟
𝑊0) + 𝑓 (

𝜕

𝜕𝑟
𝑊0)

2

+ 𝐿2 + 𝑚2 = 0 
(3.20) 

From there, we can easily find the roots as 

[
𝜕𝑊0

𝜕𝑟
]

1
=

𝜔√1 − 𝑓 + √𝜔2 − 𝑓𝑚2 − 𝑓𝐿2

𝑓
  and  [

𝜕𝑊0

𝜕𝑟
]

2

=
𝜔√1 − 𝑓 − √𝜔2 − 𝑓𝑚2 − 𝑓𝐿2

𝑓
 

Now, to have W0 we simply apply the integration:  

𝑊0 = ∫
√1 − 𝑓𝜔 ± √𝜔2 − 𝑓(𝑚2 + 𝐿2)

𝑓
𝑑𝑟|𝑟→𝑟ℎ=2𝑀√1+𝑙 ≅ ∫

(𝜔 ± 𝜔)√1 − 𝑓

𝑓
𝑑𝑟, 

which yields 

𝑊0
− = 0, (3.21) 

and 

𝑊0
+ = 2𝜔 ∫

√1 − 𝑓 

𝑓
𝑑𝑟 = 2𝑖𝜋𝜔𝑟ℎ = 4𝑖𝜋𝜔𝑀√1 + 𝑙. 

(3.22) 

Let us insert the equations  (3.21) and (3.22) into the following equations: 

Γout = exp[−2𝐼𝑚(𝑊0
+)] = exp[−8𝜋𝑀𝜔√1 + 𝑙], (3.23) 

and 

Γ𝑖𝑛 = exp[−2𝐼𝑚(𝑊0
−)] = exp[0] = 1. (3.24) 

The ratio of above the Eqs. (3.23) and (3.24), gives the probability of the radiating 

particles: 

𝑃 =
Γ𝑜𝑢𝑡

Γ𝑖𝑛
= Γ𝑜𝑢𝑡 = 𝑒−(

𝜔
𝑇

). 

After that, we write the equality here: 
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exp [−
𝜔

𝑇
] = exp[−8𝜋𝑀𝜔√1 + 𝑙]. 

Then, we re-derive the Hawking temperature: 

𝑇 =
1

8𝜋𝑀√1 + 𝑙
. 

(3.25) 

As you noticed, the solutions of the HJ equations in naive coordinates and PG 

coordinates give the same results [see Eqs. (3.16) and (3.25)]. 

3.2 IEF Coordinates 

IEF coordinates are a pair of coordinate systems for a curved geometry that adapted 

for radial null geodesics. Null geodesics are the dour dimensional spacetime path of 

photons. Namely, these coordinates are aligned with radially moving photons. In these 

coordinate systems, outwardly moving radial light rays (which each follow a null 

geodesic) define the fixed ‘time’ surfaces. One of the important advantage of this 

coordinate system is, it verifies that the singularity at the Schwarzschild radius is just 

a coordinate singularity, so it is not a real (physical) singularity. [5] 

𝑑𝑠2 = −𝑓𝑑𝑡2 +
1

𝑓
𝑑𝑟2 + 𝑟2𝑑Ω2, 

(3.26) 

𝜈 = 𝑡 + 𝑟∗ (3.27) 

𝑑𝜈 = 𝑑𝑡 + 𝑑𝑟∗, (3.28) 

𝑟∗ is the tortoise coordinate. The tortoise coordinate goes to the minus infinity as 𝑟 

goes to the the Schwarzschild radius. Remember; 𝑟∗ defined as; 

𝑟∗ = ∫
𝑑𝑟

𝑓
, 

We can easily say that 

𝑑𝑟∗ =
𝑑𝑟

𝑓
. 

(3.29) 

If we insert Eq. (3.29) into Eq. (3.28), then we get 
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𝑑𝜈 = 𝑑𝑡 +
𝑑𝑟

𝑓
. 

(3.30) 

According to Eq. (3.30): 

𝑑𝑡 = 𝑑𝜈 −
𝑑𝑟

𝑓
. 

(3.31) 

Let us put this new definition of time component into the main metric (3.26): 

𝑑𝑠2 = −𝑓 (𝑑𝜈2 −
2𝑑𝜈𝑑𝑟

𝑓
+

𝑑𝑟2

𝑓2
) +

1

𝑓
𝑑𝑟2 + 𝑟2𝑑Ω2. 

After some simplifications, we obtain 

𝑑𝑠2 = −𝑓𝑑𝜈2 −
1

𝑓
𝑑𝑟2 + 2𝑑𝜈𝑑𝑟 +

1

𝑓
𝑑𝑟2 + 𝑟2𝑑Ω2, 

⟹ 𝑑𝑠2 = −𝑓𝑑𝜈2 + 2𝑑𝜈𝑑𝑟 + 𝑟2𝑑Ω2. (3.32) 

Using the HJ equation with metric (3.32), we find out that 

2 [
𝜕

𝜕𝑟
𝑃(𝑟, 𝑡, 𝜃, 𝜙)] [

𝜕

𝜕𝑡
𝑃(𝑟, 𝑡, 𝜃, 𝜙)] + 𝑓 [

𝜕

𝜕𝑟
𝑃(𝑟, 𝑡, 𝜃, 𝜙)]

2

+ 𝐿2 + 𝑚2

= 0. 

(3.33) 

The ansatz for the action can be written as 

𝑃(𝑡, 𝑟, 𝜃, 𝜙) = −𝜔𝑡 + 𝑊(𝑟). (3.34) 

Thus, we get 

−2 (
𝑑

𝑑𝑟
𝑊) 𝜔 + 𝑓 (

𝑑

𝑑𝑟
𝑊)

2

+ 𝑚2 + 𝐿2 = 0. 
(3.35) 

The solution of this second order equation is given by 

[
𝑑𝑊

𝑑𝑟
]

1
=

𝜔 + √𝜔2 − 𝑓𝑚2 − 𝑓𝐿2

𝑓
  and  [

𝑑𝑊

𝑑𝑟
]

2
=

−𝜔 + √𝜔2 − 𝑓𝑚2 − 𝑓𝐿2

𝑓
, 

Now we are looking for the solution for 𝑊. By integrating the above expressions, we 

get 

𝑊 = ± ∫
𝜔 + √𝜔2 − 𝑓(𝑚2 + 𝐿2)

𝑓
𝑑𝑟|𝑟→𝑟ℎ=2𝑀√1+𝑙 ≅ ± ∫

𝜔 + 𝜔

𝑓
𝑑𝑟 

(3.36) 
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where  𝑟ℎ = 2𝑀√1 + 𝑙  is the horizon. 

𝑊− = 0, (3.37) 

and 

𝑊+ = 2𝜔 ∫
𝑑𝑟

𝑓
=

2𝑖𝜋𝜔

𝑓′(𝑟ℎ)
= 4𝑖𝜋𝜔𝑀√1 + 𝑙. 

(3.38) 

Thus, the tunnelling rates read 

Γout = exp[−2𝐼𝑚(𝑊+)] = exp[−8𝜋𝑀𝜔√1 + 𝑙], (3.39) 

and 

Γ𝑖𝑛 = exp[−2𝐼𝑚(𝑊−)] = exp[0] = 1. (3.40) 

The tunnelling probability thus becomes 

𝑃 =
Γ𝑜𝑢𝑡

Γ𝑖𝑛
= Γ𝑜𝑢𝑡 = 𝑒−(

𝜔
𝑇

)
 

(3.41) 

As a result of the calculations: 

exp [−
𝜔

𝑇
] = exp[−8𝜋𝑀𝜔√1 + 𝑙], (3.42) 

we get 

𝑇 =
1

8𝜋𝑀√1 + 𝑙
. 

(3.43) 

3.3 KS Coordinates 

KS coordinates are the one of the convenient coordinates for defining a black hole 

because they are completed geodesically and they do not contain a metric singularity. 

[6] 

In other words, these coordinates envelop the entire spacetime manifold of the 

extended Schwarzschild solution and they work everywhere except the physical 

singularity. These coordinates can squeeze infinity into a finite distance so that all 

spacetime can be visualized on a stamp-like diagram [7]. Let us write the HJ solutions 

for the KS coordinate form of the SBHBG 

https://en.wikipedia.org/wiki/Manifold
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𝑑𝑠2 = −𝑓𝑑𝑡2 +
𝜌

𝑓
𝑑𝑟2 + �̃�2𝑑Ω2, (3.44) 

where   𝜌 = 1 + 𝑙 

𝑟 = √𝜌�̃� (3.45) 

and 

𝑑𝑟

√𝜌
= 𝑑�̃�.  

(3.46) 

Then substituting Eq. (3.46) to our general metric, we get 

𝑑𝑠2 = −𝑓𝑑𝑡2 +
1

𝑓
𝑑𝑟2 +

𝑟2

𝜌
𝑑Ω2, 

(3.47) 

where  𝑅2 =
𝑟2

𝜌
  therefore 𝑅 = 𝑅(𝑟). Meanwhile, 

𝑓 = 1 −
2𝑀

�̃�
 and 𝑓 = 1 −

2𝑀√𝜌

𝑟
,    

Rewrite the general metric in the new form: 

𝑑𝑠2 = −𝑓 (𝑑𝑡2 +
1

𝑓2
𝑑𝑟2) + 𝑅2𝑑Ω2 

(3.48) 

Let us set 

𝑢 = 𝑡 − 𝑟∗, (3.49) 

and 

𝑣 = 𝑡 + 𝑟∗, (3.50) 

where 𝑢, 𝑣 are light-cone coordinates and 𝑟∗ is known as the tortoise coordinate. For 

the outer region of the black hole, it is found to be; 

𝑟∗ = ∫
𝑑𝑟

𝑓
. 

(3.51) 

Differential forms of Eqs. (3.49) and (3.50),  

𝑑𝑢 = 𝑑𝑡 − 𝑑𝑟∗, (3.52) 
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𝑑𝑣 = 𝑑𝑡 + 𝑑𝑟∗. (3.53) 

From there, 

𝑑𝑢𝑑𝑣 = 𝑑𝑡2 − 𝑑(𝑟∗)2 = 𝑑𝑡2 −
𝑑𝑟2

𝑓2
. 

(3.54) 

Therefore, we get 

𝑑𝑠2 = −𝑓𝑑𝑢𝑑𝑣 + 𝑅2𝑑Ω2. (3.55) 

Defining 

𝑈 = −𝑒−Κ𝑢 (3.56) 

 

𝑉 = 𝑒Κ𝑣, (3.57) 

and differentiating them, we obtain 

𝑑𝑈 = −Κ𝑒𝜅𝑢𝑑𝑢 = −Κ𝑈𝑑𝑢, (3.58) 

and 

𝑑𝑉 = −Κ𝑒𝜅𝑣𝑑𝑣 = −ΚV𝑑𝑣. (3.59) 

Thus, we have 

𝑑𝑈𝑑𝑉 = −Κ2𝑈𝑉𝑑𝑢𝑑𝑣.  (3.60) 

By inserting Eq. (3.60) into the metric (3.55), we find 

𝑑𝑠2 = −𝑓 (
𝑑𝑈𝑑𝑉

−Κ2𝑈𝑉
) + 𝑅2𝑑Ω2, 

(3.61) 

or 

𝑑𝑠2 =
𝑓

Κ2𝑈𝑉
𝑑𝑈𝑑𝑉 + 𝑅2𝑑Ω2 

(3.62) 

On the other hand, 

𝑈𝑉 = −𝑒−Κ(𝑉−𝑈) = −𝑒2Κ𝑟∗
, (3.63) 

in which 
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𝑟∗ = ∫
𝑑𝑟

𝑓
= 𝑟 + 𝑟ℎ ln(𝑟 − 𝑟ℎ) + 𝑐 = 𝑟 + 𝑟ℎ ln (

𝑟

𝑟ℎ
− 1) + 𝑟ℎ𝑙𝑛𝑟ℎ + 𝑐, 

(3.64) 

where  𝑟ℎ𝑙𝑛𝑟ℎ and 𝑐 are ignorable terms. Thus, we have 

𝑟∗ = 𝑟 + ln (
𝑟

𝑟ℎ
− 1)

𝑟ℎ

 
(3.65) 

Meanwhile, 

Κ =
𝑓′(𝑟ℎ)

2
. 

(3.66) 

Let us recall 𝑓 and 𝑓’ one more time:  

𝑓 = 1 −
𝑟ℎ

𝑟
 (3.67) 

and 

𝑓′ =
1

𝑟ℎ
. 

(3.68) 

Thus, Eq. (3.66) recasts in 

Κ =
𝑓′(𝑟ℎ)

2
=

1

2𝑟ℎ
. 

(3.69) 

Inverse of Eq. (3.69) gives 𝑟ℎ: 

𝑟ℎ =
1

2Κ
. 

(3.70) 

Thus Eq. (3.63) yields 

𝑈𝑉 = − exp [2𝛫𝑟 + 2𝛫𝑟ℎ 𝑙𝑛 (
𝑟

𝑟ℎ
− 1)], (3.71) 

𝑈𝑉 = −𝑒2Κ𝑟 (
𝑟

𝑟ℎ
− 1) = −

𝑟

𝑟ℎ
𝑒2Κ𝑟 (1 −

𝑟ℎ

𝑟
) = −

𝑓𝑟

𝑟ℎ
𝑒2Κ𝑟 . 

(3.72) 

From there we can write the first component of Eq. (3.62) as follows 

𝑓

Κ2𝑈𝑉
=

𝑓

Κ2 (−
𝑓𝑟
𝑟ℎ

) 𝑒2Κ𝑟
 

(3.73) 

After some simplifications and substitutions, I want to introduce, 
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−£ = −
4𝑟ℎ

3𝑒−2Κ𝑟

𝑟
= −

4𝑟ℎ
3𝑒

−
𝑟

𝑟ℎ

𝑟
 

(3.74) 

Now our metric become, 

𝑑𝑠2 = −£𝑑𝑈𝑑𝑉 + 𝑅2𝑑Ω2 (3.75) 

 Setting, 

Τ =
1

2
(𝑉 + 𝑈) 

(3.76) 

𝑑Τ =
1

2
(𝑑𝑉 + 𝑑𝑈) 

(3.77) 

ℜ =
1

2
(𝑉 − 𝑈) 

(3.78) 

𝑑ℜ =
1

2
(𝑑𝑉 − 𝑑𝑈) 

(3.79) 

𝑑Τ2 − 𝑑ℜ2 = 𝑑𝑈𝑑𝑉 (3.80) 

Therefore; 

𝑑𝑠2 = −£(𝑑Τ2 − 𝑑ℜ2) + 𝑅2𝑑Ω2 (3.81) 

Τ =
1

2
(𝑈 + 𝑉) =

1

2
[𝑒Κ(𝑡+𝑟∗) − 𝑒−Κ(𝑡−𝑟∗)] =

1

2
𝑒Κ𝑟∗

(𝑒Κ𝑡 − 𝑒−Κ𝑡)

= 𝑒Κ𝑟∗
sinh(𝛫𝑡) 

(3.82) 

where;  

Κ𝑟∗ =
𝑟

2𝑟ℎ
+

1

2
ln (

𝑟

𝑟ℎ
− 1) 

(3.83) 

 

𝑒Κ𝑟∗
= 𝑒

𝑟
2𝑟ℎ

⁄
√

𝑟

𝑟ℎ
− 1  

(3.84) 

Then; 

Τ = 𝑒
𝑟

2𝑟ℎ
⁄

√
𝑟

𝑟ℎ
− 1 sinh(𝛫𝑡) 

(3.85) 
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And similarly; 

ℜ =
1

2
(𝑉 − 𝑈) 

(3.86) 

ℜ =
1

2
(𝑈 − 𝑉) =

1

2
[𝑒Κ(𝑡+𝑟∗) + 𝑒−Κ(𝑡−𝑟∗)] =

1

2
𝑒Κ𝑟∗

(𝑒Κ𝑡 + 𝑒−Κ𝑡)

= 𝑒Κ𝑟∗
cosh(𝛫𝑡) 

(3.87) 

ℜ = 𝑒
𝑟

2𝑟ℎ
⁄

√
𝑟

𝑟ℎ
− 1 cosh(𝛫𝑡) 

(3.88) 

One can set the Killing vector in the KS coordinates as follows, 

𝜕𝜏 = 𝒩(ℜ𝜕Τ + Τ𝜕ℜ)  (3.89) 

Therefore; 

𝜉𝜇 = [𝒩ℜ, +ℵΤ, 0,0] 

Meanwhile, it worth noting that in naïve coordinates, the normalization condition 

reads: 

𝜉𝜇 = [1,0,0,0]     ⟶      𝑔𝜇𝜈𝜉𝜇𝜉𝜈 = −1, 

whence 

−𝑓(𝑟) = −1, 

which means that 

1 −
𝑟ℎ

𝑟
= 1 (3.90) 

 

And we find the location of observer who will measure the Hawking temperature: 

𝑟 → ∞. 

In fact, this is the true location in naïve coordinates that one can measure the Hawking 

temperature as 
Κ

2𝜋
. In the KS coordinate system, if we repeat the same procedure:  

𝑔𝜇𝜈𝜉𝜇𝜉𝜈 = −1, 
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−£𝒩2ℜ2 + £𝒩2Τ2 = −1 (3.91) 

and knowing that 

ℜ2 − Τ2 = 𝑒
𝑟

𝑟ℎ (
𝑟

𝑟ℎ
− 1) 

(3.92) 

we get  

𝒩 = ±
1

√£√ℜ2 − Τ2
. 

(3.93) 

We must select (-) sign to get normalization constant: 

𝒩 =
√𝑟

2𝑟ℎ√𝑟 − 𝑟ℎ

, 

lim
𝑟→∞

𝒩 =
1

2𝑟ℎ
= Κ 

(3.93) 

Since the mass and angular parts do not alter the quantum tunnelling, without loss of 

generality, one consider (1+1)-dimensional form of the KS metric: 

𝑑𝑠2 = −£(𝑑Τ2 − 𝑑ℜ2) 

HJ equation now becomes 

𝑔𝜇𝜈𝜕𝜇𝑃𝜕𝜈𝑃 = 0 (3.94) 

−
1

£
(𝜕Τ𝑃 − 𝜕ℜ𝑃) = 0 

Therefore; 

𝜕Τ𝑃 − 𝜕ℜ𝑃 = 0 

Setting ansatz 𝑃 = 𝜌(𝑦) where 𝑦 = ℜ − Τ 

Energy 𝐸 = −𝜕Τ̃𝑃 = −𝒩(ℜ𝜕Τ𝑃 + Τ𝜕ℜ𝑃) = −𝒩 (ℜ
𝜕𝜌

𝜕𝑦

𝜕𝑦

𝜕Τ
+ Τ

𝜕𝜌

𝜕𝑦

𝜕𝑦

𝜕ℜ
) 

𝐸 = −𝒩 (−ℜ
𝜕𝜌

𝜕𝑦
+ Τ

𝜕𝜌

𝜕𝑦
 ) = +𝒩

𝜕𝜌

𝜕𝑦
(ℜ − τ) = 𝒩𝑦

𝜕𝜌

𝜕𝑦
  

(3.95) 

Then; 
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𝜌 = ∫
𝐸

𝒩𝑦
 𝑑𝑦 

(3.96) 

When 𝑦 = 0  (ℜ = Τ) there is a pole at horizon (develops a divergence at horizon: 

singularity) 

𝜌 = 𝑖𝜋
𝐸

𝒩
= 𝑖𝜋

𝐸

Κ
 

Γ = exp[−2𝐼𝑚𝑃] = exp[−2𝐼𝑚𝜌] = exp [
2𝜋𝐸

𝛫
] = exp[𝛽𝐸] 

(3.97) 

where 𝑒𝛽𝐸 is the Boltzmann formula. Thus, we get  

𝛽 =
2𝜋

Κ
=

1

𝑇
,  

And 

𝑇 =
Κ

2𝜋
=

1

8𝜋𝑀√1 + 𝑙
. 

(3.98) 

  



23 

 

Chapter 4 

GUP MODIFIED HAWKING RADIATION OF SBHBGM 

In this chapter, we are going to discuss about how GUP affects the Hawking 

temperatures. Most approaches to quantum gravity theories predict the existence of the 

minimal length.In the theoretical framework, the minimal length can be achieved in 

different ways [8]. One way to realize the minimal length is utilizing the GUP [9]. 

Let us start with the general formula of the modified HJ equation, which is stated 

below, 

𝑔0𝑗(𝜕0𝑆)(𝜕𝑗𝑆) + [𝑔𝑘𝑘(𝜕𝑘𝑆)2 + 𝑚2] × {1 − 2𝛽 [𝑔𝑗𝑗(𝜕𝑗𝑆)
2

+ 𝑚2]} = 0  (4.1) 

where 𝑗 = 0,1,2,3 and 𝑘 = 1,2,3 ≡ 𝑟, 𝜃, 𝜙. 

For the scalar particles the HJ equation becomes: 

𝑔00(𝜕0𝑆)2 + [𝑔𝑘𝑘(𝜕𝑘𝑆)2 + 𝑚2] × {1 − 2𝛽 [𝑔𝑗𝑗(𝜕𝑗𝑆)
2

+ 𝑚2]} = 0 (4.2) 

Let us use this form in our general metric, 

𝑑𝑠2 = −𝑓𝑑𝑡2 +
1 + 𝑙

𝑓
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃  𝑑𝜙2 

(4.3) 

Thus metric (4.3) turns into 



24 

 

2 [(
𝜕

𝜕𝑟
𝑃(𝑡, 𝑟, 𝜃, 𝜙))

2

𝑓 + (𝐿2 + 𝑚2)(1 + 𝑙)]

2

𝛽

(1 + 𝑙)2

+ (
𝑓𝑙

(1 + 𝑙)2
+

𝑓

(1 + 𝑙)2
) (

𝜕

𝜕𝑟
𝑃(𝑡, 𝑟, 𝜃, 𝜙))

2

+ (−
2𝑙

𝑓(1 + 𝑙)2
−

1

𝑓(1 + 𝑙)2

−
𝑙2

𝑓(1 + 𝑙)2
) (

𝜕

𝜕𝑟
𝑃(𝑡, 𝑟, 𝜃, 𝜙))

2

+ 𝐿2 + 𝑚2 = 0 

(4.4) 

 

where  

𝑃(𝑡, 𝑟, 𝜃, 𝜙) = −𝜔𝑡 + 𝑊 = −𝜔𝑡 + 𝑊0 + 𝛽𝑊1 (4.5) 

by which 𝑊 is the function of 𝑟. Let us write Eq. (4.4) in a more simple way; 

−
2𝛽 (

𝑑
𝑑𝑟

𝑊)
4

𝑓2

(1 + 𝑙)2
−

𝑓(4𝛽𝐿2 + 4𝛽𝑚2 − 1) (
𝑑

𝑑𝑟
𝑊)

2

1 + 𝑙
− 2(𝐿2 + 𝑚2)2𝛽

+ 𝑚2 +
−𝜔2 + 𝑓𝐿2

𝑓
= 0 

(4.6) 

where 𝑊 includes 𝑊0 and 𝑊1 .  

Both of them are the functions of 𝑟. After that, 
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−
2𝑓2𝛽5 (

𝑑
𝑑𝑟

𝑊1)
4

(1 + 𝑙)2
−

8𝑓2 (
𝑑

𝑑𝑟
𝑊0) 𝛽4 (

𝑑
𝑑𝑟

𝑊1)
3

(1 + 𝑙)2

+ [−
12𝑓2 (

𝑑
𝑑𝑟

𝑊0)
2

(
𝑑

𝑑𝑟
𝑊1)

2

(1 + 𝑙)2

+ (−
4𝑓𝐿2

1 + 𝑙
 −

4𝑓𝑚2

1 + 𝑙
) (

𝑑

𝑑𝑟
𝑊1)

2

] 𝛽3

+ [−
8𝑓2 (

𝑑
𝑑𝑟

𝑊0)
3

(
𝑑

𝑑𝑟
𝑊1)

(1 + 𝑙)2

+ (−
8𝑓𝐿2

1 + 𝑙
−

8𝑓𝑚2

1 + 𝑙
) (

𝑑

𝑑𝑟
𝑊1) (

𝑑

𝑑𝑟
𝑊0) +

𝑓 (
𝑑

𝑑𝑟
𝑊1)

2

1 + 𝑙
] 𝛽2

+ [−
2𝑓2 (

𝑑
𝑑𝑟

𝑊0)
4

(1 + 𝑙)2
+ (−

4𝑓𝐿2

1 + 𝑙
−

4𝑓𝑚2

1 + 𝑙
) (

𝑑

𝑑𝑟
𝑊0)

2

+
2𝑓 (

𝑑
𝑑𝑟

𝑊0) (
𝑑

𝑑𝑟
𝑊1)

1 + 𝑙
− 4𝑚2𝐿2 − 2𝐿4 − 2𝑚4] 𝛽 + 𝐿2

+
𝑓 (

𝑑
𝑑𝑟

𝑊0)
2

1 + 𝑙
+ 𝑚2 −

𝜔2

𝑓
= 0 

(4.7) 

All the β (β5, β4, β3, β2) terms except β approach to zero. That is why in this study, we 

ignore them.  

So, the leading terms that we are dealing with are as follows 
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[−
2𝑓2 (

𝑑
𝑑𝑟

𝑊0)
4

(1 + 𝑙)2
+ (−

4𝑓𝐿2

1 + 𝑙
−

4𝑓𝑚2

1 + 𝑙
) (

𝑑

𝑑𝑟
𝑊0)

2

+
2𝑓 (

𝑑
𝑑𝑟

𝑊0) (
𝑑

𝑑𝑟
𝑊1)

1 + 𝑙

− 4𝑚2𝐿2 − 2𝐿4 − 2𝑚4] 𝛽 + 𝐿2 +
𝑓 (

𝑑
𝑑𝑟

𝑊0)
2

1 + 𝑙
+ 𝑚2 −

𝜔2

𝑓

= 0 

(4.8) 

Let us find 𝑊0: 

𝐿2 +
𝑓 (

𝑑
𝑑𝑟

𝑊0)
2

1 + 𝑙
+ 𝑚2 −

𝜔2

𝑓
= 0 

(4.9) 

Solution of Eq. (4.9), we get two roots, 

[
𝑑

𝑑𝑟
𝑊0]

1
= √

−𝑓𝑚2𝑙 + 𝑓𝐿2𝑙 − 𝜔2𝑙 − 𝜔2 + 𝑓𝑚2 + 𝑓𝐿2

𝑓2
  

(4.10) 

and  

[
𝑑

𝑑𝑟
𝑊0]

2
= −√

−𝑓𝑚2𝑙 + 𝑓𝐿2𝑙 − 𝜔2𝑙 − 𝜔2 + 𝑓𝑚2 + 𝑓𝐿2

𝑓2
  

(4.11) 

When 𝑟 → 𝑟ℎ then 𝑓(𝑟ℎ) ≅ 0 

𝑊0 = ± ∫
𝜔√1 + 𝑙

𝑓
 𝑑𝑟 = ±

𝑖𝜋𝜔√1 + 𝑙

𝑓′
 

(4.12) 

While  𝑓 = 1 −
2𝑀

𝑟
  and  𝑓′(𝑟 = 𝑟ℎ) =

1

2𝑀
, 𝑊0 is, 

𝑊0 = ±
𝑖𝜋𝜔√1 + 𝑙

𝑓′
= ±2𝑖𝜋𝜔𝑀√1 + 𝑙 

(4.13) 

Now, lets find 𝑊1 by using the equation below, 

−
2𝑓2 (

𝑑
𝑑𝑟

𝑊0)
4

(1 + 𝑙)2
+ (−

4𝑓𝐿2

1 + 𝑙
−

4𝑓𝑚2

1 + 𝑙
) (

𝑑

𝑑𝑟
𝑊0)

2

+
2𝑓 (

𝑑
𝑑𝑟

𝑊0) (
𝑑

𝑑𝑟
𝑊1)

1 + 𝑙

− 4𝑚2𝐿2 − 2𝐿4 − 2𝑚4 = 0 

(4.14) 
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From there, 

𝑑

𝑑𝑟
𝑊 = 𝜔4𝑙 + 𝜔4/(√1 + 𝑙√−

−𝜔2 + 𝑓𝑚2 + 𝑓𝐿2

𝑓2
  𝑓3 

(4.15) 

When 𝑟 → 𝑟ℎ then 𝑓(𝑟ℎ) ≅ 0, integrate the equation 4.15, 

𝑊1 = ± ∫
𝜔4(1 + 𝑙)

√1 + 𝑙√𝜔2 − 𝑓(𝑚2 + 𝐿2)𝑓2
 𝑑𝑟

= ± ∫
𝜔3√1 + 𝑙

𝑓2
 𝑑𝑟 ≅ ±𝑖𝜋𝜔3(2𝑟ℎ)√1 + 𝑙  

𝑊1 = ±4𝑖𝜋𝜔3𝑀√1 + 𝑙 (4.16) 

Combining Eqs. (4.13) and (4.16), we can find W, 

𝑊 = 𝑊0 + 𝛽𝑊1 

𝑊 = ±2𝑖𝜋𝜔𝑀√1 + 𝑙 ± 4𝛽𝑖𝜋𝜔3𝑀√1 + 𝑙 = ±2𝑖𝜋𝜔𝑀√1 + 𝑙(1 + 2𝛽𝜔2) (4.17) 

 

Now we can calculate the tunnelling rate then the probabability as, 

Γout = exp[−2𝐼𝑚(𝑊+)] = exp[−4𝜋𝑀𝜔√1 + 𝑙(1 + 2𝛽𝜔2)] (4.18) 

 

Γ𝑖𝑛 = exp[−2𝐼𝑚(𝑊−)] = exp[4𝜋𝑀𝜔√1 + 𝑙(1 + 2𝛽𝜔2)] = 1 (4.19) 

 

𝑃 =
Γ𝑜𝑢𝑡

Γ𝑖𝑛
= 𝑒−(

𝜔
𝑇

)
 

(4.20) 

From there we find the GUP modified Hawking temperature of SBHBGM: 

exp [−
𝜔

𝑇
] = exp[−8𝜋𝑀𝜔√1 + 𝑙(1 + 2𝛽𝜔2)] 

𝑇 =
1

8𝜋𝜔𝑀√1 + 𝑙(1 + 2𝛽𝜔2)
 

(4.21) 

So;  
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𝑇 = 𝑇𝐻(1 − 2𝛽𝜔2) (4.22) 

As you know 𝑇𝐻 is the ordinary Hawking temperature (2.8): 

𝑇 =
1

8𝜋𝑀√1 + 𝑙
 

If if we insert 
𝑑𝑊0

𝑑𝑟
 into Eq. (4.8) and then we get, 

8𝜔2𝐿2

𝑓
− 8𝜔2𝐿2 − 8𝜔2𝑚2 − 2𝜔4 −

16𝜔4

𝑓2
+

16𝜔4

𝑓

+ 2 [
𝑑

𝑑𝑟
𝑊1] √𝜔2 − 𝑓𝑚2 − 𝑓𝐿2 +

8𝜔2𝑚2

𝑓

−
16√1 − 𝑓𝜔3√𝜔2 − 𝑓𝑚2 − 𝑓𝐿2

𝑓2

+
8√1 − 𝑓𝜔3√𝜔2 − 𝑓𝑚2 − 𝑓𝐿2

𝑓
= 0 

(4.23) 

From there; 

𝑑𝑊1

𝑑𝑟
=

𝜔2[(4𝐿2 + 4𝑚2 + 𝜔2)𝑓2 + (−8𝜔2 − 4𝑚2 − 4𝐿2)𝑓 + 8𝜔2]

√𝜔2 − 𝑓𝑚2 − 𝑓𝐿2𝑓2

−
4𝜔3√1 − 𝑓(−2 + 𝑓)

𝑓2
 

When 𝑟 → 𝑟ℎ = 2𝑀√1 + 𝑙, 𝑓(𝑟ℎ) = 0 

𝑊1 = ∫
2𝜔3

𝑓2
 𝑑𝑟 = 4𝜔3𝑖𝜋𝑟ℎ = 8𝑖𝜋𝜔3𝑀√1 + 𝑙 

(4.24) 

Then; 

𝑊 = 𝑊0 + 𝛽𝑊1 = 4𝑖𝜋𝜔𝑀√1 + 𝑙[1 + 2𝛽𝜔2] (4.25) 

 

Γout = exp[−2𝐼𝑚(𝑊+)] = exp[−8𝜋𝑀𝜔√1 + 𝑙(1 + 2𝛽𝜔2)] (4.26) 

 

Γ𝑖𝑛 = exp[−2𝐼𝑚(𝑊−)] = exp[0] = 1 (4.27) 
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𝑃 =
Γ𝑜𝑢𝑡

Γ𝑖𝑛
= Γ𝑜𝑢𝑡 = 𝑒

−(
𝜔
𝑇

)
 

(4.28) 

From there; 

exp [−
𝜔

𝑇
] = exp[−8𝜋𝑀𝜔√1 + 𝑙(1 + 2𝛽𝜔2)] (4.29) 

The modified Hawking temperature is, 

𝑇 =
1

8𝜋𝑀√1 + 𝑙(1 + 2𝛽𝜔2)
 

(4.30) 

Here is the relation between regular Hawking temperature and modified one, 

𝑇 = 𝑇𝐻(1 − 2𝛽𝜔2) (4.31) 

 Finally, I would like to discuss entropy .The Bekenstein-Hawking entropy is given 

by; 

𝑆𝐵𝐻 =
𝐴𝐻

4
 (4.32) 

 

𝐴𝐻 = 4𝜋𝑅𝐻
2 =

4𝜋𝑟ℎ
2

1 + 𝑙
= 16𝜋𝑀2 (4.33) 

Lets look at the first law of the thermodynamics, 

𝑑𝐸 = 𝑇𝐻𝑑𝑆𝐵𝐻 (4.34) 

 

𝑇𝐻 =
𝜅

2𝜋
=

𝑓′

4𝜋
=

𝑟𝐻

4𝜋𝑟2
𝑟=𝑟𝐻

=
1

4𝜋𝑟𝐻
=

1

8𝜋𝑀√1 + 𝑙
 (4.35) 

 

where 𝑓 = 1 −
𝑟𝐻

𝑟
 and 𝑓′ =

𝑟𝐻

𝑟2 

𝑑𝐸 =
1

8𝜋𝑀√1 + 𝑙
8𝜋𝑀𝑑𝑀 =

𝑑𝑀

√1 + 𝑙
 (4.36) 

By integrating Eq. (4.36), E is found by; 
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𝐸 =
𝑀

√1 + 𝑙
 

where 𝐸 is energy and 𝑀 is mass.  
(4.37) 

After combining Eqs. (4.3) and (4.37), we get 

𝑆𝐵𝐻 = 4𝜋𝐸2(1 + 𝑙) = 4𝜋𝑀2 (4.38) 

In string theory and loop quantum gravity, the quantum corrected entropy (𝑆𝑄𝐺) is 

introduced as follows, 

𝑆𝑄𝐺 = 𝑆𝐵𝐻 + 𝛼 ln(4𝑆𝐵𝐻) (4.39) 

 

∆𝑆𝑄𝐺 = 𝑆𝑄𝐺(𝐸 − 𝜔) − 𝑆𝑄𝐺(𝐸)

= 4𝜋(𝐸 − 𝜔)2(1 + 𝑙) + 𝛼 ln[16π(E − ω)2(1 + 𝑙)]

− 4𝜋𝐸2(1 + 𝑙) − 𝛼ln (16𝜋𝐸2(1 + 𝑙)) 

(4.40) 

If we expand equation 4.40 to the Taylor series, we get,  

− [8𝜋𝐸(1 + 𝑙) +
2𝛼

𝐸
] 𝜔 = − [

1

𝑇𝐻
+

2𝛼

𝐸
] 𝜔 

(4.41) 

The modified tunneling rate is given by, 

Γ𝑄𝐺~𝑒∆𝑆𝑄𝐺 = 𝑒−𝜔/𝑇𝑄𝐺 (4.42) 

We can write the 𝑇𝑄𝐺,  

𝑇𝑄𝐺 = 𝑇𝐻 (1 +
2𝛼𝑇𝐻

𝐸
)

−1

 
(4.43) 

As you see when 𝛼 → 0, 𝑇𝑄𝐺 → 𝑇𝐻 

𝑇𝑄𝐺 =
𝑇𝐻

1 +
𝛼(1 + 𝑙)

𝜋𝑟𝐻
2

 
(4.44) 
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Chapter 5 

CONCLUSION 

In this thesis by using the relativistic HJ equation we have studied the Hawking 

radiation in the SBHBGM. In addition to its naive coordinates, we work with three 

different regular coordinate systems which are PG coordinates, IEF coordinates and 

KS coordinates. It has been shown in detail that the computed horizon temperatures 

via the HJ method exactly matches with the standard Hawking temperature. I have to 

remind that during this discussion, without loss of generality, we neglected the angular 

dependency of the HJ equation. We have introduced the Lorentz symmetry breaking 

and we observed that the non-zero Lorentz symmetry breaking parameter (𝑙) has the 

effect of reducing the Hawking temperature of the Schwarzschild black hole radiation. 

In the final chapter, we have been discussed how Hawking temperature is affected by 

the GUP. In the continuation the tunnelling rate and modified Hawking temperature 

are calculated. The results indicate that the corrected Hawking temperature depends 

on the black hole’s mass. 

In the light of the information that I have learned in this thesis, I plan to apply and 

develop this methodology for various black holes and for different particles having 

non-zero spin. 
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