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ABSTRACT 

This PhD thesis examines the bosonic and fermionic greybody factors of four-

dimensional black holes (BHs) in various theories. 

A high-energy collision creates a BH that evaporates through Hawking radiation (HR). 

One of the most important quantum quantities of a BH is the BH gravitational factor 

(GF), is the HR fraction that can reach the known spatial infinity. GFs have the 

potential to carry a significant amount of information that could drive the theory of 

quantum gravity. When HR is scattered from the gravitational potential, part of it 

returns to BH, while the other part is transmitted to spatial infinity. In this context, the 

GF is also known as the transmission probability. A very high GF value indicates a 

high probability of HR to reach spatial infinity. 

By calculating the GF radiation in various ways, we shall first derive the Schrödinger 

equation because it represents a kind of wave equation that applies to matter waves. 

For this purpose, we use the Klein-Gordon equation for scalar perturbation (bosonic 

particles) and the Dirac equation for fermionic perturbation (fermionic particles), 

which are discussed in Chapters 4 and 5, respectively. In fact, the GFs will be 

determined by the associated effective potential of the wave equation. In short, the 

detailed analysis of the GF via different methods are given in this thesis. 

In the framework of general relativity (GR), the radiation of gravitational waves has 

an important phase defined by the appropriate oscillation frequencies of BH. These 

frequencies are called quasinormal modes (QNMs), which depend on the BH 

parameters. The propagation of QNMs is different from the classical normal modes. 
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That is, while the real parts of the characteristic complex frequencies obtained 

represent the frequency of oscillation, the imaginary parts represent the damping ratio. 

We shall employ a semi-analytical technique, the sixth order WKB approach, to 

calculate the QNMs of the BHs that we consider in this thesis. 

Keywords: Greybody Factors, Klein-Gordon Equation, Dirac Equation, Scalar 

Perturbation, Fermionic Perturbation, Effective Potential, Black Holes, Bumblebee 

Gravity Model, Kerr Spacetime.  
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ÖZ 

Bu doktora tezi, çeşitli teorilerdeki dört boyutlu kara deliklerin (BHs) bozonik ve 

fermiyonik gricisim faktörlerini incelemektedir. 

Yüksek enerjili bir çarpışma, Hawking radyasyonu (HR) yoluyla buharlaşan bir BH 

oluşturur. Bir karadeliğin en önemli kuantum niceliklerinden birisi olan BH gricisim 

faktörü (GF) bilinen uzaysal sonsuzluğa ulaşabilen HR kesridir. GF'ler, kuantum 

yerçekimi teorisini sürdürebilecek önemli miktarda bilgi taşıma potansiyeline sahiptir. 

HR yerçekimi potansiyelinden saçıldığında, bunun bir bölümü BH'ye geri dönerken, 

diğer bölümü uzaysal sonsuzluğa iletilir. Bu bağlamda, gricisim faktörü (GF) aktarım 

olasılığı olarak da bilinir. Çok yüksek bir GF değeri, HR'nin sonsuzluğa ulaşma 

olasılığının yüksek olduğunu gösterir. 

GF radyasyonunu çeşitli şekillerde hesaplayarak, ilk olarak Schrödinger denklemini 

türeteceğiz çünkü madde dalgalarına uygulanan bir tür dalga denklemini temsil ediyor. 

Bu amaçla, sırasıyla Bölüm 4 ve 5'te tartışılan skaler pertürbasyon (bosonik 

parçacıklar) için Klein-Gordon denklemini ve fermiyonik pertürbasyon için 

(fermiyonik parçacıklar) Dirac denklemini kullanıyoruz. Aslında, GF'ler, dalga 

denkleminin ilişkili etkin potansiyeli tarafından belirlenecektir. Kısacası, bu tezde 

GF'nin farklı yöntemlerle detaylı analizi verilmektedir. 

Genel görelilik (GR) çerçevesinde, yerçekimi dalgalarının radyasyonu, BH'nin uygun 

salınım frekansları tarafından tanımlanan önemli bir faza sahiptir. Bu frekanslar BH 

parametrelerine bağlı olan kuazinormal modlar (QNM'ler) olarak adlandırılır. 

QNM'lerin yayılması klasik normal modlardan farklıdır. Yani, elde edilen karakteristik 
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kompleks frekansların gerçek kısımları salınımın frekansını temsil ederken, sanal 

kısımları ise sönüm oranını göstermektedir. Bu tezde dikkate aldığımız BH'lerin 

QNM'lerini hesaplamak için yarı analitik bir teknik olan altıncı dereceden WKB 

yaklaşımı kullanacağız. 

Anahtar Kelimeler: Gricisim Faktörleri, Klein-Gordon Denklemi, Dirac Denklemi, 

Skaler Pertürbasyon, Fermiyonik Pertürbasyon, Efektif Potansiyel, Karadelikler, 

Yaban Arıs Yerçekimi Modeli, Kerr Uzay-zamanı.  
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Chapter 1 

INTRODUCTION 

For almost a century, the theory of GR has been known to describe the force of gravity 

in perfect harmony with observations. However, the unanswered questions like the 

interface between cosmology/gravity and particle physics such as the hierarchy 

problem, the cosmological constant problem, and the source of the late-time 

acceleration of Universe have boosted the researchers to seek for alternatives to GR 

theory. Moreover, it has been understood that GR cannot define Universe neither in 

ultraviolet nor in infrared region. In other words, according to the observations of large 

scale phenomena, the gravity necessitates a vast effort and understanding. 

In spite of their overwhelming successes in describing nature, GR (i.e., detection of 

the gravitational waves [1,2] and observation of the shadow of the M87 supermassive 

(BH) [3]) and Standard Model (SM) (i.e., detection of the Higgs boson [4]) of particle 

physics are incomplete theories. While Einstein’s theory of GR successfully describes 

gravity at a classical level, SM explains particles and the other three fundamental 

forces (electromagnetic, and the strong and weak nuclear forces) at a quantum level. 

The unification of GR and SM is a fundamental quest, and this success will necessarily 

lead us to a deeper understanding of nature. In the search for this unification, some 

quantum gravity theories (QGTs) have been proposed, but direct tests of their features 

are beyond the energy scale of the currently available experiments. 
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Because, they will be observed on the Planck scale which is around 1019(GeV). 

However, it is possible that some signals of the QGT appear at sufficiently low energy 

scales and their effects can be observed in experiments on existing energy scales. In a 

simple way, the modern theoretical physics can be represented by two major theories: 

GR which deals with the world at very large (in fact at any) scales and quantum field 

theory with the world at very small scales. 

In preparation of QGT, physicists have to seek out systems under extreme conditions, 

in which quantum and gravitational effects are on the same base. As we just elucidated 

above, BHs satisfy this condition perfectly. This extraordinary attribute makes BHs a 

unique testing focus for ideas and proposals coming from any theory of quantum 

gravity. 

The BHs in the framework of quantum field theory behave as a thermal system which 

obey the laws of thermodynamics, furthermore, it emits radiation with a characteristic 

black body spectrum, known as Hawking radiation (HR) [5]. Therefore, HR, as one of 

the most conspicuous effects which leap up from the combination of GR and quantum 

theory, has gained widespread interest [6-15]. However, as the radiations that generate 

from the BHs travel away, they will get modified by the non-trivial space-time 

geometry. Therefore, a spectrum measured by an observer located at infinity will 

differs from the original one, and is frequency and geometry dependent which filter 

the initial HR is known as GF [16,17]. In a general method, GF can be studied in a 

semi-classical approximation [18], by making use of Schrödinger-form equations to 

evaluate the scattering of a field by the BH background. Within this method, we are 

also able to compute the transmission and reflection properties of the BH, which enable 

us to find the corresponding GF. 
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To compute the transmission probability and thus the GF, such as the WKB 

approximation, matching method [19-25], and rigorous bound method [26,56]. Studies 

about GFs have been increasingly gaining attention in the literature due to its 

observational evidence potential (see for example [27–37] and references therein). 

In the substructure of QG, there are various theories derived from gravity and quantum 

physics, which are modified due to incorporate the effects of gravity in quantum 

physics. One of the promising theories is Generalized Uncertainty Principle (GUP) 

[38] Combining with the theory of Heisenberg’s uncertainty principle (HUP) [39], 

represents that for certain pairs of variables, like the position and momentum, one 

cannot have an exact measurement of both the variables simultaneously. GUP which 

is a modification of the HUP, which should be properly modified at the QG scale, in 

order to accommodate the existence of Planck length [38]. 

Among the approaches in the QG, the most successful one is the Lorentz invariance, 

which is regarded to combination of gravity and the standard model (SM) [95], and is 

also known as a fundamental principle in the construction of the SM is Lorentz 

invariance. Therefore, the theory of Lorentz symmetry breaking (LSB) has been under 

intense research since the proposed SM Extension (SME) [96-98]. This effective field 

theory that includes the SM, GR, and every possible operator that breaks the Lorentz 

symmetry, which the coupling constants related to LSB terms are dominant at the 

scales of Planckian energy. With the SME, further investigations of the LSB can be 

made in the context of high energy particle physics, nuclear physics, gravitational 

physics, and astrophysics. 
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The outline of the thesis is as follows: In chapter 2, we study HR extensively and laws 

of BHs thermodynamics. Chapter 3, is allocated to elucidation of the BGM properties. 

In chapter 4, we address the quantum gravity correction with the GUP modification 

for non-rotating BGM and polytropic BHs in Kerr spacetime. For both BHs we study 

the GUP modified HR. In the chapters 5 and 6, we construct the one-dimensional wave 

function of Schrödinger equation with the effective potentials. To this end, we consider 

the scalar and fermionic perturbations for spin zero and spin-1/2 particles, respectively. 

Namely, we use Klein-Gordon equation for bosons and Dirac equation for fermions. 

Chapter 7 is devoted to the greybody radiation: we explain the methods to be used with 

the considered line-elements in rotating and non-rotating spacetime and interpret their 

behavior under the specific parameters based on their graphs. We also study the QNMs 

of the Kerr like BH in the BGM in chapter 8 to this end purpose, we use the 6th order 

of WKB method and the results for both bosonic and fermionic particles are tabulated 

in tables 8.1 and 8.2, respectively. Chapter 9 is devoted to summary and conclusions. 

Throughout the manuscript, we work in geometrized units where 𝐺 = 𝑐 = ℏ = 1. 
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Chapter 2 

HAWKING RADIATION 

The HR is a fundamental theory which describes the radiation and thus the evaporation 

for the BHs [46-54,61]. Hence, the temperature of this radiation is called as Hawking 

temperature which is inversely proportional to the mass of the Schwarzschild family 

(in general for type-D [55]) of BHs. Such radiation would be significant only for very 

small BHs. Moreover, the flux is also inversely proportional to the mass squared for 

the type-D BHs. Ultimately, the heavier BHs live longer by a factor of their mass cubed 

and the lowest-mass BHs are the brightest sources of the HR. Additionally, the most 

powerful HR appears in regions where are near to the geometry of event horizon area. 

Therefore, they will be visible only if they pass through such regions [62]. Hawking’s 

ground-breaking studies [117,118] can be considered as the onset of QGT [119,120]. 

Since then there have been numerous research papers on the subject of HR in the 

literature (see, for instance, [121-127]). Several methods have been developed to 

calculate the HR of BHs [128-132]. 

For a BH as a thermal system the laws of thermodynamics can be determined as [40-

45, 63]: 

Zeroth law represents that the surface gravity Ƙ is a constant on the horizon of a 

stationary BH. 

First law is given by 
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𝛿𝑀 =
𝑇𝐻

8𝜋
𝛿𝐴 + Ω𝛿𝐽 + Φ𝛿𝑄, 

     (2.1) 

Where 𝑇𝐻 =
Ƙ

2𝜋
  appears for Hawking temperature, 𝑀 is the mass, 𝐴 is the area, 𝐽 is 

the angular momentum and 𝑄 denotes the charge of the BH, Ω is the angular velocity 

and Φ represents the electrostatic potential. 

Second law states that the horizon area of the BH must be increasing in time 

𝛿𝐴 ≥ 0.   (2.2) 

and based on the Third law, it is not possible to achieve  Ƙ = 0 along a physical 

process. 

These theorems are perfectly match with the laws of classical thermodynamics. 

Meanwhile, based on the Bekenstein theory, there exist a number of resemblances 

between the physics of BHs and thermodynamics [64]. One of this similarity 

represents that the radiation from BHs is as if the radiation in black bodies. Thus, it 

should be stationary which was proven by Hawking in (1974) [65]. Today, there are 

many notable theoretical studies on the HR and BHs thermodynamics, and this subject 

keeps its importance without losing its currency. 

 In order to have a wider perspective, we should contemplate the regarded observations 

and simulations. However, some gravitational phenomena are difficult or even 

impossible to observe in real spacetime. HR in astrophysics is excessively small to be 

detected or recorded directly by any possible experiment, telescope or satellite 

hitherto. So a quantum effect attributed to gravity would be difficult to measure. In 

1981, William Unruh [71] figured out some interesting coincidences between the 

equations for the dispersion of sonic waves in a moving fluid and those for light waves 



7 
 

around the Hawking BH geometry [66]. Lots of new researches are motivated by this 

investigation, in order to study phenomena regarded to gravity in other physical 

systems, creating a new branch called analogue gravity. Moreover, the conspicuous 

improvements to the experimental apparatus, allow us to study the Hawking spectrum 

experimentally. Henceforth, one possible way, due to Unruh theory, is to create an 

analogue BH, where light can be replaced by sound and the metric of the analogue 

spacetime can be defined by speed of sound and local flow velocity [67]. 

Subsequently, the Hawking temperature characterized [66,68], which imply a great 

agreement assignable to predictions [69]. In the classical framework, stimulated HR 

in water waves was observed, by employing the analogy between the dispersions of 

the fields around BHs and surface waves on moving water (Mathematically, the 

moving fluid sets a spacetime such as the geometry of event horizons [71]) [72]. 

 HR in the analogue BH has recently been confirmed by an experiment [70]. In this 

remarkable research, the spontaneous HR, at different times, was measured after the 

horizon formation and it has been confirmed that the emission of HR from an acoustic 

(analogue) BH is stationary. For an analogue BH, the Hawking temperature is given 

by [70] 

𝑇𝐻 =
ℏ

2𝜋𝑘𝐵
(
𝑑𝑣

𝑑𝑥
+

𝑑𝑐

𝑑𝑥
)
ℎ𝑜𝑟𝑖𝑧𝑜𝑛

,   (2.3) 

where 𝑣 is the flow velocity, 𝑐 indicates the speed of sound, and 𝑘𝐵 is Boltzmann’s 

constant. Here, 𝑣(𝑥) and 𝑐(𝑥) are the functions having metric features and their 

derivatives at the horizon are the surface gravity analogue which is in excellent 

complement with theory (𝑇 =
ℏƘ

2𝜋𝑘𝐵𝑐
, where Ƙ is the surface gravity). 
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These particular studies are a selection of a large amount phenomena that one can study 

from the analogue gravity perspective [73, 74], with the purpose of providing a 

physical and real laboratory model for the theory of curved spacetime. 

Certainly, analogy is not an absolutely perfect model, and there is no claim that the 

considered analogue models are completely match with the GR but it accurately 

reflects a sufficient number of important features of GR. 

In summary, one of the most important problems in physics waiting to be solved is the 

combination of quantum field theory (QFT) and GR, which are the two theories that 

do not work great with each other. We have in fact not yet been able to deduce/induce 

a theory that combines these two and is falsifiable, so we just do not know what 

happens when someone can fully combine the effects of QFT and GR. HR however, 

although unproven, gives us a glimpse into how such a unified theory could look like. 

Therefore, studies on HR will advance both theoretical and experimental physics. 

Namely, HR has always been up to date. 
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Chapter 3 

BUMBLEBEE GRAVITY MODEL (BGM) 

The simplest models that contain a vector field which dynamically breaks the Lorentz 

symmetry are called bumblebee models [99–102]. These models, although owning a 

simpler form, have interesting features such as rotations, boosts, and CPT violations. 

In a bumblebee gravity model (BGM), potential V is included in the action 𝑆𝐵𝑀, which 

evokes a vacuum expectation value (VEV) for the vector field. The potential V is 

formed as a function of a scalar combination ℵ of the vector 𝐵𝜇 and the metric 𝑔𝜇𝜐 

(plus the other matter fields, if there are any). The potential has a minimum at 
𝑑𝑉

𝑑ℵ
= 0. 

At the 𝑉𝑚𝑖𝑛, the bumblebee field 𝐵𝜇 incorporates a vacuum value shown by < 𝐵𝜇 >=

𝑏𝜇 , which is the so-called vacuum vector. In fact, the vacuum vector is nothing but a 

background vector that gives rise to local (spontaneous) LSB [103] The scalar of the 

BGM, in general, reads as ℵ = (𝐵𝜇𝐵𝜇 ± 𝑏2) in which 𝑏 is a constant having 

dimensions of mass (𝑀). Thus, the 𝑉𝑚𝑖𝑛 satisfies the condition of  
𝑑𝑉

𝑑ℵ
= 0 for ℵ =  0. 

Here, 𝑏𝜇 is spontaneously induced as a time like vector abiding by 𝑏𝜇𝑏𝜇 = −𝑏2. For 

instance, the aether models [104,105] are based on a vector field, which is in the 

Lagrangian density of the system with a non-vanishing VEV.  The vector field 

dynamically selects a preferred frame at each point in the considered space-time and 

spontaneously breaks the Lorentz invariance. This is a mechanism reminiscent of the 

breaking of local gauge symmetry described by the Higgs mechanism. In general, the 

subclass of aether models obeys the following action [106]: 
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𝑆𝐵𝑀 = ∫ 𝑑4𝑥 [
1

16𝜋𝐺
(𝑅 + ȼ𝐵𝜇𝐵𝜐𝑅𝜇𝜐) −

1

4
𝐵𝜇𝜐𝐵𝜇𝜐 − 𝑉ℵ],      (3.1) 

where parameter ȼ, having dimension 𝑀−2 denotes the coupling between the Ricci 

tensor (𝑅𝜇𝜐) and 𝐵𝜇. 𝐵𝜇𝜐 is the bumblebee field strength: 

𝐵𝜇𝜈 = ∇𝜇𝐵𝜐 − ∇𝜐𝐵𝜇. 

 

     (3.2) 

As mentioned above, 𝑉 is the potential of the bumblebee field that drives the breaking 

of the Lorentz symmetry of the Lagrangian by collapsing onto a non-zero minimum at 

ℵ = 0 or 𝐵𝜇𝐵𝜇 = ∓𝑏2. In fact, 𝐵𝜇 is one of the Lorentz breaking coefficients and it 

shows a preferred direction in which the equivalence-principle is locally broken for a 

certain Lorentz frame. Observations of Lorentz violation can emerge if the particles or 

fields interact with the bumblebee field [106]. It is worth noting that when a smooth 

quadratic potential is chosen as 

𝑉 = 𝐴ℵ2,      (3.3) 

where 𝐴 is a dimensionless constant, one gets the Nambu-Goldstone excitations 

(massless bosons) besides the massive excitations. Besides, the linear Lagrange-

multiplier potential is given by 𝑉 = 𝜆ℵ. These potentials present also the breaking of 

the 𝑈(1) gauge invariance and other implications to the behavior of the matter sector, 

the photon, and the graviton. For a topical review (from experimental proposals to the 

test results of the BGMs, the reader is referred to [101] and references therein.) 

Furthermore, the studies using the bumblebee models have gained momentum for the 

last two decades. The vacuum solutions for the bumblebee field for purely radial, 

temporal-radial, and temporal-axial Lorentz symmetry breaking were obtained in 

[107]. New spherically static BH [108] and traversable wormhole [109] solutions in 

the BGM have been recently discovered. Bluhm [110] discussed the Higgs mechanism 

in the BGM. The electrodynamics of the bumblebee fields was studied by [111] in 
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which the bumblebee field was considered as a photon field. Propagation velocity of 

the photon field, along with its possible effects on the accelerator physics and cosmic 

ray observations, was also investigated. BGMs are also used to limit the likelihood of 

Lorentz violation in astrophysical objects such as the Sun [112].  

For other studies demonstrating the physical effects (QNMs, thermodynamics, etc.) of 

the bumblebee field, the reader may refer to [111, 113-116] and references therein. 

The Lagrangian density of the BGM yields the following extended vacuum Einstein 

equations 

𝐺𝜇𝜐 = 𝑅𝜇𝜐 −
1

2
𝑅𝑔𝜇𝜐 = 𝔎𝑇𝜇𝜐

𝐵 ,      (3.4) 

where 𝐺𝜇𝜐 and 𝑇𝜇𝜐
𝐵  are the Einstein and bumblebee energy-momentum tensors, 

respectively. 𝔎 = 8𝜋𝐺𝑁 is the gravitational coupling and 𝑇𝜇𝜐
𝐵  is given by  

𝑇𝜇𝜐
𝐵 = −𝐵𝜇𝛼𝐵𝜐

𝛼 −
1

4
𝐵𝛼𝛽𝐵𝛼𝛽𝑔𝜇𝜈 − 𝑉𝑔𝜇𝜐 + 2𝑉´𝐵𝜇𝐵𝜐 +

𝜉

𝔎
[
1

2
𝐵𝛼𝐵𝛽𝑅𝛼𝛽𝑔𝜇𝜐 −

𝐵𝜇𝐵𝛼𝑅𝛼𝜐 − 𝐵𝜐𝐵
𝛼𝑅𝛼𝜇 +

1

2
∇𝛼∇𝜇(𝐵𝛼𝐵𝜐) +

1

2
∇𝛼∇𝜐(𝐵

𝛼𝐵𝜇) −
1

2
∇2(𝐵𝜇𝐵𝜐) −

                           
1

2
𝑔𝜇𝜐∇𝛼∇𝛽(𝐵𝛼𝐵𝛽)],                                                                     (3.5) 

where 𝜉 is the real coupling constant (having dimension 𝑀−1) that controls the non-

minimal gravity-bumblebee interaction. From now on, the prime symbol shall denote 

the differentiation with respect to its argument. Meanwhile, there are other generic 

bumblebee models having nonzero torsion in the literature. In Eq. (3.5), the potential 

𝑉 ≡ 𝑉(ℵ) provides a non-vanishing VEV for 𝐵𝜇. As it was stated above (see also 

[133,134]), the VEV of the bumblebee field is determined when 𝑉 = 𝑉´ = 0. Taking 

the covariant divergence of the bumblebee Einstein equations (3.4) and using the 

contracted Bianchi identities, one gets 
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∇𝜇𝑇𝜇𝜐
𝛽

= 0,        (3.6) 

which gives the covariant conservation law for the bumblebee total energy-momentum 

tensor 𝑇𝜇𝜐. Thus, Eq. (3.4) reduces to 

𝑅𝜇𝜐 = 𝔎𝑇𝜇𝜐
𝐵 +

𝜉

4
𝑔𝜇𝜐∇

2(𝐵𝛼𝐵𝛼) +
𝜉

2
𝑔𝜇𝜐∇𝛼∇𝛽(𝐵𝛼𝐵𝛽).        (3.7) 

One can immediately see that when the bumblebee field 𝐵𝜇 vanishes, we recover the 

ordinary Einstein equations. Recently, the vacuum solution in the BGM induced by 

the LSB has been derived by Casana et al. [108]. The solution is obtained when the 

bumblebee field 𝐵𝜇 remains frozen in its VEV 𝑏𝜇 [107,109]. Namely, we have 

𝐵𝜇 = 𝑏𝜇   ⟹   𝑏𝜇𝜐 = 𝜕𝜇𝑏𝜐 − 𝜕υ𝑏𝜇.        (3.8) 

Thus, the extended Einstein equations are found to be 

       𝑅𝜇𝜐 + 𝜅𝑏𝜇𝛼𝑏𝛼
𝜈 +

𝜅

4
𝑏𝛼𝛽𝑏𝛼𝛽𝑔𝜇𝜐 + 𝜉𝑏𝜇𝑏𝛼𝑅𝛼𝜐 + 𝜉𝑏𝜐𝑏

𝛼𝑅𝛼𝜇 −
𝜉

2
𝑏𝛼𝑏𝛽𝑅𝛼𝛽𝑔𝜇𝜐  −

                     
𝜉

2
∇𝛼∇𝜇(𝑏𝛼𝑏𝜐) −

𝜉

2
∇𝛼∇𝜐(𝑏

𝛼𝑏𝜇) +
𝜉

2
∇2(𝑏𝜇𝑏𝜐) = 0.                           (3.9) 

Assuming a space like background for 𝑏𝜇 as 

𝑏𝜇 = [0, 𝑏𝑟 , 0,0], (3.10) 

and using the condition 𝑏𝜇𝑏𝜇 = 𝑏2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, LSB parameter (𝐿) is defined as 𝐿 =

𝜉𝑏2 ≥ 0. A spherically symmetric static vacuum solution to Eq. (3.9) is obtained as 

follows 

𝑑𝑠2 = −(1 −
2𝑀

𝑟
) 𝑑𝑡2 + (1 + 𝐿) (1 −

2𝑀

𝑟
)
−1

𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2),    (3.11) 

which we call it SBHBGM solution. This BH solution represents a purely radial 

Lorentz violation outside a spherical body characterizing a modified BH solution. In 

the limit → 0 (𝑏2 → 0), one can immediately see that the usual Schwarzschild metric 

is recovered. For the metric (3.11), the Kretschmann scalar becomes 
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𝒦 =
4(12𝑀2 + 4𝐿𝑀𝑟 + 𝐿2𝑟2)

𝑟6(1 + 𝐿)2
,    (3.12) 

which is different than the Kretschmann scalar of the Schwarzschild BH. It means that 

none of the coordinate transformations link the metric (3.11) to the usual 

Schwarzschild BH. When 𝑟 = 2𝑀, Eq. (3.11) becomes finite: the coordinate 

singularity can be removed by applying a proper coordinate transformation. However, 

in the case of 𝑟 =  0, physical singularity cannot be removed. So, we see that the 

behaviors of the physical (𝑟 =  0) and coordinate (𝑟 = 𝑟ℎ = 2𝑀: event horizon ) 

singularities do not change in the BGM. The Hawking temperature of the metric (3.11) 

can be computed from Eq. (3.3), in which the surface gravity is given by [119] 

𝜅 = ∇𝜇𝜒𝜇∇𝜐𝜒
𝜐,      (3.13) 

where 𝜒𝜇 is the time-like Killing vector field. Thus, the Hawking temperature of the 

SBHBGM (3.11) reads  

𝑇𝐻 =
1

4𝜋√−𝑔𝑡𝑡𝑔𝑟𝑟

(
𝑑𝑔𝑡𝑡

𝑑𝑟
)

𝑟=𝑟ℎ

=
1

2𝜋√1 + 𝐿
(
𝑀

𝑟2
)
𝑟=𝑟ℎ

=
1

8𝜋𝑀√1 + 𝐿
.       (3.14) 

One can easily see from Eq. (3.14) that the non-zero LSB parameter has the effect of 

reducing the Hawking temperature of a Schwarzschild BH. 

Moreover, the Kerr-like rotating black hole metric in the BGM was recently found by 

[60] as follows 

𝑑𝑠2 = −(1 −
2𝑀𝑟

𝜌2
) 𝑑𝑡2 −

4𝑀𝑟𝑎√1 + 𝐿𝑠𝑖𝑛2𝜃

𝜌2
𝑑𝑡𝑑𝜑 +

𝜌2

∆
𝑑𝑟2 + 𝜌2𝑑𝜃2 

+
𝐴𝑠𝑖𝑛2𝜃

𝜌2
𝑑𝜑2,    (3.15) 

where 

∆=
𝑟2 − 2𝑀𝑟

1 + 𝐿
+ 𝑎2, 𝜌2 = 𝑟2 + (1 + 𝐿)𝑎2𝑐𝑜𝑠2𝜃, (3.16) 



14 
 

𝐴 = [𝑟2 + (1 + 𝐿)𝑎2]2 − ∆(1 + 𝐿)2𝑎2𝑠𝑖𝑛2𝜃. (3.17) 

One can immediately see that as 𝐿 → 0 in the metric (3.15), the spacetime reduces to 

the metric of well-known Kerr BH. Besides, when the rotation parameter 𝑎 ⟶ 0 it 

represents the Schwarzschild-like solution having the LSB Eq. (3.11). In short, metric 

(3.15) is nothing but a solution of LIV BH with a rotation parameter, which is equal to 

the angular momentum per unit mass: 𝑎 =
𝐽

𝑀
. Its singularities appear at 𝜌2 = 0 and 

∆= 0. For 𝜌2 = 0, we have a ring-shape physical singularity at the equatorial plane of 

the center of rotating BH having radius a. The roots of Eq. (3.16) reveal the locations 

of the event horizon and ergosphere: 

     𝑟± = 𝑀 ± √𝑀2 − 𝑎2(1 + 𝐿), 𝑟±
𝑒𝑟𝑔𝑜

= 𝑀 ± √𝑀2 − 𝑎2(1 + 𝐿)𝑐𝑜𝑠2𝜃,       (3.18) 

in which ± signs indicate the outer and inner horizon/ergosphere, respectively. For 

having a BH solution, it is conditional on 

𝑎 ≤
𝑀

√1 + 𝐿
.    (3.19) 

Now, we can write the metric tensor of the Kerr-like space-time as 

                 𝑔𝜇𝜐 =

(

 
 
 
 

−(1 −
2𝑀𝑟

𝜌2 ) 0 0     
−2𝑀𝑟𝑎√1+𝐿𝑠𝑖𝑛2𝜃

𝜌2

0
𝜌2

∆
 0                     0                      

0
−2𝑀𝑟𝑎√1+𝐿𝑠𝑖𝑛2𝜃

𝜌2

0
0

 𝜌2                   0                      

0                  
𝐴𝑠𝑖𝑛2𝜃

𝜌2
             )

 
 
 
 

,             (3.20) 

from which one can compute the determinant of the metric tensor as follows 

𝑔 ≡ 𝑑𝑒𝑡(𝑔𝜇𝜐) = −𝜌4(1 + 𝐿)𝑠𝑖𝑛2𝜃.    (3.21) 

Thus, the contravariant form of 𝑔𝜇𝜐 can be easily obtained as 
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                      𝑔𝜇𝜐 =

(

 
 
 
 

−
𝐴

𝜌2Δ(1+𝐿)
0    0              

−2𝑀𝑟𝑎

𝜌2Δ√1+𝐿

0
Δ

𝜌2
   0                     0            

0
−2𝑀𝑟𝑎

𝜌2𝛥√1+𝐿

0
0

    𝜌−2                 0             

     0     
𝜌2−2𝑀𝑟

𝜌2Δ(1+𝐿)𝑠𝑖𝑛2𝜃 )

 
 
 
 

.                       (3.22) 

One can also get the Hawking temperature of this Kerr-like BH which is derived from 

its surface gravity (Ƙ) as follows 

𝑇𝐻 =
Ƙ

2𝜋
, 𝜅 = −

1

2
lim
𝑟→𝑟+

√
−1

𝑌

𝑑𝑌

𝑑𝑟
,   𝑌 ≡ 𝑔𝑡𝑡 −

𝑔𝑡𝜑
2

𝑔𝜑𝜑
.      (3.23) 

By using the relevant metric components given in Eq. (3.20) and substituting them into 

Eq. (3.24), the Hawking temperature is found to be 

𝑇𝐻
𝐾𝐵𝐺𝑀 =

√𝑀2 − 𝑎2(1 + 𝐿)

4𝜋𝑀√1 + 𝐿 (𝑀 + √𝑀2 − 𝑎2(1 + 𝐿))
.      (3.24) 

If we eliminate the rotation parameter Eq. (3.24) the temperature of SBHBGM in Eq. 

(3.14) recovered. 
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Chapter 4  

GUP MODIFIED HAWKING RADIATION 

 In the all approaches for the quantum gravity such as string theory [75,76], BH physics 

[77,78], there exist a common measurable parameter like minimum length which is at 

the order of the Planck length 𝑙𝑝 = √
𝐺ħ

𝐶3
≅ 10−23𝑐𝑚, in which 𝐺 is the gravitational 

constant [79-81]. The manifestations of this minimal length appear in several theories 

of quantum gravity phenomenology, such as the deformed special relativity (DSR) 

[82], modified dispersion relation (MDR) [83], and GUP [84]. Moreover, it employs 

in the further fields like, cosmology [85], superconductivity, and quantum Hall effect 

[86].  

In this thesis, we shall work on the gravity correction of the Heisenberg uncertainty 

principle (∆𝑥~
ħ

∆𝑃
) at energies close to the Planck scale which called GUP which 

represented as 

                    ∆𝑥𝑖∆𝑝𝑖 ≥
ħ

2
[1 + 𝛽((∆𝑝)2 +< 𝑝 >2) + 2𝛽(∆𝑝𝑖

2 +< 𝑝𝑖 >2)],             (4.1) 

where 𝑖 = 1,2,3 and 

𝑝2 = ∑𝑃𝑗𝑃𝑗

3

𝑗=1

,   𝛽 =
𝛽0

(𝑀𝑃𝑙𝑐)2
=

𝑙𝑃𝑙
2

2ℏ2
,             (4.2) 

 

and 𝑀𝑃𝑙 is the Plank mass also Plank energy is 𝑀𝑃𝑙𝑐
2 ≈ 1.2 × 1019 𝐺𝑒𝑉. 

Involving of the different fields into Cosmology, High Energy Physics, and BHs, with 

GUP have attracted lots of attention among them, study thermodynamics of the BHs 
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under GUP modification is an interesting active research area [87-90]. As the effect of 

GUP on the BHs, one can mention to the self-complete characteristic of gravity, which 

likely cover any curvature singularity behind of the event horizon as a matter 

compression at the Plank scale [91]. Moreover, the effects of the GUP on HR have 

also been considered [92] in our earlier findings [93,94]. In particular, we have studied 

the modification of the Hawking temperature of BHs in the BGM due to the GUP. 

4.1 GUP Modified Hawking Radiation in Bumblebee Gravity Model 

In this subsection, we aim to defined the Hawking temperature of bumblebee BH under 

the modification of GUP. Thus, we shall attempt to reveal the effects of both LSB and 

GUP on the HR. 

Here, we mainly focus on the quantum gravity effects on the HR of SBHBGM in the 

tunneling paradigm. Although a number of QGTs have been proposed, however, 

physics literature does not as yet have a complete and consistent QGT. In the absence 

of a complete quantum description of the HR, we use effective models to describe the 

quantum gravitational behavior of the BH evaporation. In particular, string theory, 

loop quantum gravity, and quantum geometry predict the minimal observable length 

on the Planck scale [57,58], which leads to the GUP theory: 

Δ𝑥Δ𝑝 ≥
ℏ

2
[1 + 𝛽(∆𝑝)2],   (4.3) 

where 𝛽 =
𝛼0

𝑀𝑝
2 in which 𝑀𝑝 = √

ℏ𝑐

𝐺
 denotes the Planck mass and 𝛼0 is the dimensionless 

parameter, which encodes the quantum gravity effects on the particle dynamics. The 

upper bound for 𝛼0 was obtained as 𝛼0 < 1021 [135]. 
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Since the GUP and LSB effects are high energy modifications of the QGT, it is 

interesting to investigate their combined effects. To this end, we study the GUP-

assisted HR of bosons (spin-0) and fermions’ (spin− 1/2 ) quantum tunneling 

[136,137] from the SBHBGM. 

4.1.1 GUP-assisted HR of SBHBGM: bosons’ tunneling 

The generic Klein-Gordon equation within the framework of GUP is given by 

               −(𝑖ℏ)2𝜕𝑡𝜕𝑡𝜓 = [(𝑖ℏ)2𝜕𝜇𝜕𝜇 + 𝑚2]{1 − 2𝛽[(𝑖ℏ)2𝜕𝜇𝜕𝜇 + 𝑚2]}𝜓,         (4.4) 

where 𝛽 and 𝑚 are the GUP parameter mass of the scalar particle, respectively. 

Introducing the following ansatz for the wave function 𝜓 

𝜓 = 𝑒𝑥𝑝 [
𝑖

ℏ
𝐼(𝑡, 𝑟, 𝜃, 𝜑)],        (4.5) 

where 𝐼(𝑡, 𝑟, 𝜃, 𝜑) is the classically forbidden action for quantum tunneling. 

Substituting Eq. (4.5), together with the metric functions of line-element (3.11), into 

Eq. (4.4), we get 

(𝑓)−1(𝜕𝑡𝐼)
2 = [

𝑓

1 + 𝐿
(𝜕𝑟𝐼)

2 +
1

𝑟ℎ
2
(𝜕𝜃𝐼)2 +

1

𝑟ℎ
2𝑠𝑖𝑛2𝜃

(𝜕𝜑𝐼)
2
+ 𝑚2]

× {1 − 2𝛽 [
𝑓

1 + 𝐿
(𝜕𝑟𝐼)

2 +
1

𝑟2
(𝜕𝜃𝐼)2 +

1

𝑟2𝑠𝑖𝑛2𝜃
(𝜕𝜑𝐼)

2
+ 𝑚2]}, 

                                                                                                                            (4.6) 

where 𝑓 = 1 −
2𝑀

𝑟
. 

It is easy to see that SBHBGM (3.11) admits two Killing vectors < 𝜕𝑡 , 𝜕𝜑 >. The 

existence of these symmetries implies that we can assume a following separable 

solution for the action 
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𝐼 = −𝜔𝑡 + 𝑅(𝑟) + 𝑆(𝜃) + 𝐽𝜑,          (4.7) 

where 𝜔 and 𝐽 denote the energy and angular momentum of the radiated particle, 

respectively. Substituting Eq. (4.7) in Eq. (4.6), we obtain 

𝜔2

𝑓
= [

𝑓

1 + 𝐿
(𝜕𝑟𝑅)2 +

1

𝑟2
((𝜕𝜃𝑆)2 +

𝐽2

𝑠𝑖𝑛2𝜃
) + 𝑚2]

× {1 − 2𝛽 [
𝑓

1 + 𝐿
(𝜕𝑟𝑅)2 +

1

𝑟2
((𝜕𝜃𝑆)2 +

𝐽2

𝑠𝑖𝑛2𝜃
) + 𝑚2]}. 

                                                                                                                            (4.8) 

We focus only on the radial trajectories in which only the (𝑟 − 𝑡) sector is considered. 

Thus, one can set 

1

𝑟2
((𝜕𝜃𝑆)2 +

𝐽2

𝑠𝑖𝑛2𝜃
) = 𝑒,          (4.9) 

where 𝑒 is a constant. So, Eq. (4.8) becomes 

[
𝑓

1 + 𝐿
(𝜕𝑟𝑅)2 + 𝑒 + 𝑚2] {1 − 2𝛽 [

𝑓

1 + 𝐿
(𝜕𝑟𝑅)2 + 𝑒 + 𝑚2]} =

𝜔2

𝑓
,        (4.10) 

which can be rewritten as a bi-quadratic equation as follows 

𝑎(𝜕𝑟𝑅)4 + 𝑏(𝜕𝑟𝑅)2 + 𝑐 = 0,    (4.11) 

where 

𝑎 = −2𝛽
𝑓2

(1 + 𝐿)2
,    (4.12) 

𝑏 =
𝑓

1 + 𝐿
[1 − 4𝛽(𝑚2 + 𝑒)],    (4.13) 

and 

𝑐 = 𝑒 − 2𝛽𝑒2 − 4𝛽𝑒𝑚2 + 𝑚2 −
𝜔2

𝑓
− 2𝛽𝑚4. (4.14) 
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Eq. (4.11) has four roots if 𝑏2 − 4𝑎𝑐 > 0. We deduced from our analytical 

computations that only two roots (𝑅±) have physical meaning at the event horizon of 

the SBHBGM. These roots are 

  𝑅± = ±∫𝑑𝑟√(1 + 𝐿)
𝜔2 − 𝑚2𝑓 + 2𝛽𝑚4𝑓

𝑓2
(1 + 2𝛽𝑚2) 

 

= 𝑖𝜋𝜔𝑀√1 + 𝐿(1 + 2𝛽𝑚2).      (4.15) 

It is worth noting that a +/− sign represents an outgoing/ingoing wave. On the other 

hand, the integrand of the integral (4.15) has a pole at 𝑟 = 𝑟ℎ. Evaluating the integral 

by using the Cauchy’s integral formula, we obtain the imaginary part of the action as 

                                   𝐼𝑚𝑅± ≡ 𝐼𝑚𝐼± = ±𝜋𝜔𝑀√1 + 𝐿(1 + 2𝛽𝑚2).                        (4.16) 

Thus, the tunneling rate of the scalar particles becomes 

              Γ =
𝑃(𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛)

𝑃(𝑎𝑏𝑠𝑜𝑟𝑏𝑡𝑖𝑜𝑛)
=

𝑒𝑥𝑝(−2𝐼𝑚𝐼+)

𝑒𝑥𝑝(−2𝐼𝑚𝐼−)
= 𝑒𝑥𝑝(−4𝐼𝑚𝐼+),      (4.17) 

which for SBHBGM reads 

Γ = 𝑒𝑥𝑝[−4𝜔𝑀𝜋√1 + 𝐿(1 + 2𝛽𝑚2)]. (4.18) 

Recalling the expression of the Boltzmann factor 

Γ = 𝑒𝑥𝑝 (−
𝜔

𝑇
), 

     (4.19) 

one can read the modified Hawking temperature (�̃�𝐻) as follows 

�̃�𝐻 =
1

8𝜋𝑀√1 + 𝐿[1 + 2𝛽𝑚2]
=

𝑇𝐻

(1 + 2𝛽𝑚2)
.      (4.20) 

As can be seen above, after terminating the GUP parameter i.e. 𝛽 = 0, one can recover 

the standard Hawking temperature (3.16). 
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4.1.2 GUP-assisted HR of SBHBGM: fermions’ tunneling 

In this subsection, we aim to derive the modified Hawking temperature in the case of 

radiating fermions. To this end, we consider the Dirac equation, which is given by 

[134] 

     {𝑖ℏ𝛾0𝜕0 + [𝑚 + 𝑖ℏ𝛾𝜇(Ω𝜇 + ℏ𝛽𝜕𝜇)](1 − 𝛽𝑚2 + 𝛽ℏ2𝑔𝑗𝑘𝜕
𝑗𝜕𝑘)}𝜓 = 0,      (4.21) 

where 𝜓 denotes the test spinor field. The 𝛾𝜇 matrices for the metric (3.11) are given 

by 

𝛾𝑡 =
1

√𝑓(𝑟)
(
𝑖 0
0 −𝑖

),           𝛾𝑟 = √
𝑓(𝑟)

1 + 𝐿
( 0 𝜎3

𝜎3 0
), 

                  𝛾𝑡 =
1

𝑟
( 0 𝜎1

𝜎1 0
),                 𝛾𝜑 =

1

𝑟𝑠𝑖𝑛𝜃
( 0 𝜎2

𝜎2 0
),      (4.22) 

in which 𝜎𝑖’s represent the well-known Pauli matrices [135]. One can easily ignore 

the terms having 𝛽2 since 𝛽 is the effect of quantum gravity and it is a relatively very 

small quantity. For spin-up particles, the wave function can be expressed as [134] 

𝜓 = (

0
𝑋
0
𝑌

)𝑒𝑥𝑝 (
𝑖

ℏ
𝐼), 

     (4.23) 

where 𝑋, 𝑌, and 𝐼 are functions of coordinates (𝑡, 𝑟, 𝜃, 𝜑). 𝐼 is the action of the emitted 

fermion. It is worth noting that here we only consider the spin-up case since it is 

physically same with the spin-down case; the only difference is the sign. Substitution 

of the wave function in the generalized Dirac equation (4.21) results in the following 

coupled equations 

𝑖𝑋
1

√𝑓
𝜕𝑡𝐼 − 𝑌(1 − 𝛽𝑚2)√

𝑓

1+𝐿
𝜕𝑟𝐼 − 𝑋𝑚𝛽 [

𝑓

1+𝐿
(𝜕𝑟𝐼)

2 + 𝑔𝜃𝜃(𝜕𝜃𝐼)2 + 𝑔𝜑𝜑(𝜕𝜑𝐼)
2
] +

𝑌𝛽√
𝑓

1+𝐿
𝜕𝑟𝐼 [

𝑓

1+𝐿
(𝜕𝑟𝐼)

2 + 𝑔𝜃𝜃(𝜕𝜃𝐼)2 + 𝑔𝜑𝜑(𝜕𝜑𝐼)
2
] + 𝑋𝑚(1 − 𝛽𝑚2) = 0,    (4.24)  
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and 

𝑖𝑌
1

√𝑓
𝜕𝑡𝐼 − 𝑋(1 − 𝛽𝑚2)√

𝑓

1+𝐿
𝜕𝑟𝐼 − 𝑌𝑚𝛽 [

𝑓

1+𝐿
(𝜕𝑟𝐼)

2 + 𝑔𝜃𝜃(𝜕𝜃𝐼)2 + 𝑔𝜑𝜑(𝜕𝜑𝐼)
2
] +

𝑋𝛽√
𝑓

1+𝐿
𝜕𝑟𝐼 [

𝑓

1+𝐿
(𝜕𝑟𝐼)

2 + 𝑔𝜃𝜃(𝜕𝜃𝐼)2 + 𝑔𝜑𝜑(𝜕𝜑𝐼)
2
] + 𝑌𝑚(1 − 𝛽𝑚2) = 0.    (4.25)  

Then, one can get the following decoupled equations 

𝑋 {−(1 − 𝛽𝑚2)√𝑔𝜃𝜃𝜕𝜃𝐼 + 𝛽√𝑔𝜃𝜃𝜕𝜃𝐼 [
𝑓

1+𝐿
(𝜕𝑟𝐼)

2 + 𝑔𝜃𝜃(𝜕𝜃𝐼)2 + 𝑔𝜑𝜑(𝜕𝜑𝐼)
2
] −

𝑖(1 − 𝛽𝑚2)√𝑔𝜑𝜑𝜕𝜑𝐼 + 𝑖𝛽√𝑔𝜑𝜑𝜕𝜑𝐼 [
𝑓

1+𝐿
(𝜕𝑟𝐼)

2 + 𝑔𝜃𝜃(𝜕𝜃𝐼)2 + 𝑔𝜑𝜑(𝜕𝜑𝐼)
2
]} = 0,  

    (4.26) 

and 

𝑌 {−(1 − 𝛽𝑚2)√𝑔𝜃𝜃𝜕𝜃𝐼 + 𝛽√𝑔𝜃𝜃𝜕𝜃𝐼 [
𝑓

1+𝐿
(𝜕𝑟𝐼)

2 + 𝑔𝜃𝜃(𝜕𝜃𝐼)2 + 𝑔𝜑𝜑(𝜕𝜑𝐼)
2
] −

𝑖(1 − 𝛽𝑚2)√𝑔𝜑𝜑𝜕𝜑𝐼 + 𝑖𝛽√𝑔𝜑𝜑𝜕𝜑𝐼 [
𝑓

1+𝐿
(𝜕𝑟𝐼)

2 + 𝑔𝜃𝜃(𝜕𝜃𝐼)2 + 𝑔𝜑𝜑(𝜕𝜑𝐼)
2
]} = 0.  

 (4.27) 

By using the fact that SBHBGM spacetime has a time-like Killing vector 
𝜕

𝜕𝑟
, one can 

obtain the radial action by performing the separation of variables technique:  

𝐼 = −𝜔𝑡 + 𝑊(𝑟) + Θ(𝜃, 𝜑), (4.28) 

where 𝜔 is the fermion energy. Substituting Eq. (4.28) into Eqs. (4.24) -(4.27), we find 

out the identical equations for 𝑋 and 𝑌 equations. Thus, we have 

     𝛽 [
𝑓

1+𝐿
(𝜕𝑟𝑊)2 + 𝑔𝜃𝜃(𝜕𝜃Θ)2 + 𝑔𝜑𝜑(𝜕𝜑Θ)

2
(√𝑔𝜃𝜃𝜕𝜃Θ + 𝑖√𝑔𝜑𝜑𝜕𝜑Θ)] + (1 −

                                             𝛽𝑚2) (√𝑔𝜃𝜃𝜕𝜃Θ + i√𝑔𝜑𝜑𝜕𝜑𝛩) = 0,                          (4.29) 

Or 
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(√𝑔𝜃𝜃𝜕𝜃Θ + i√𝑔𝜑𝜑𝜕𝜑Θ)

× [𝛽 (
𝑓

1 + 𝐿
(𝜕𝑟𝑊)2 + 𝑔𝜃𝜃(𝜕𝜃Θ)2 + 𝑔𝜑𝜑(𝜕𝜑Θ)

2
+ 𝑚2) − 1] = 0. 

    (4.30) 

It is obvious that the expression inside the square brackets cannot vanish; thus, one 

should have 

(√𝑔𝜃𝜃𝜕𝜃𝛩 + 𝑖√𝑔𝜑𝜑𝜕𝜑𝛩) = 0,      (4.31) 

and the solution of Θ, therefore, does not contribute to the tunneling rate. The above 

result helps us to simplify Eqs. (4.29) and (4.30) [with ansatz (4.28)] as follows 

𝑋 {
𝑖𝜔

√𝑓
− 𝑚𝛽 [

𝑓

1 + 𝐿
(𝜕𝑟𝑊)2] + 𝑚(1 − 𝛽𝑚2)}

= 𝑌 {(1 − 𝛽𝑚2)√
𝑓

1 + 𝐿
𝜕𝑟𝑊 − 𝛽√

𝑓

1 + 𝐿
𝜕𝑟𝑊 [

𝑓

1 + 𝐿
(𝜕𝑟𝑊)2]}, 

 (4.32) 

and 

𝑌 {
𝑖𝜔

√𝑓
− 𝑚𝛽 [

𝑓

1 + 𝐿
(𝜕𝑟𝑊)2] + 𝑚(1 − 𝛽𝑚2)}

= 𝑋 {(1 − 𝛽𝑚2)√
𝑓

1 + 𝐿
𝜕𝑟𝑊 − 𝛽√

𝑓

1 + 𝐿
𝜕𝑟𝑊 [

𝑓

1 + 𝐿
(𝜕𝑟𝑊)2]}. 

 (4.33) 

In the simple way, one can set 

𝑋𝐴 + 𝑌𝐵 = 0, 

                 𝑌𝐴 + 𝑋𝐵 = 0,    (4.34) 

where 

𝐴 =
𝑖𝜔

√𝑓
− 𝑚 [

𝑓𝛽

1 + 𝐿
(𝜕𝑟𝑊)2 + 1 − 𝛽𝑚2], (4.35) 

and 
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𝐵 = −(1 − 𝛽𝑚2)√
𝑓

1 + 𝐿
𝜕𝑟𝑊 + 𝛽√

𝑓

1 + 𝐿
𝜕𝑟𝑊 [

𝑓

1 + 𝐿
(𝜕𝑟𝑊)2]. (4.36) 

After making some manipulations, we see that 𝐴2 − 𝐵2 = 0 

(
𝑖𝜔

√𝑓
− 𝑚𝛽 [

𝑓

1 + 𝐿
(𝜕𝑟𝑊)2] + 𝑚(1 − 𝛽𝑚2))

2

= ((1 − 𝛽𝑚2)√
𝑓

1 + 𝐿
𝜕𝑟𝑊 − 𝛽√

𝑓

1 + 𝐿
𝜕𝑟𝑊 [

𝑓

1 + 𝐿
(𝜕𝑟𝑊)2])

2

, 

 (4.37) 

which yields 

𝐿6(𝜕𝑟𝑊)6 + 𝐿4(𝜕𝑟𝑊)4 + 𝐿2(𝜕𝑟𝑊)2 + 𝐿0 = 0, (4.38) 

where 

𝐿6 = 𝛽2𝑓 (
𝑓

1 + 𝐿
)
3

,  (4.39) 

𝐿4 = 𝛽 (
𝑓

1 + 𝐿
)
2

𝑓(𝑚2𝛽 − 2),  (4.40) 

𝐿2 =
𝑓2

1 + 𝐿
(
2𝑖𝜔𝑚

√𝑓
+ (1 − 𝛽𝑚2)(1 + 2𝑚2𝛽)),  (4.41) 

𝐿0 = 𝜔2 − 𝑚2𝑓(1 − 𝛽𝑚2)2 − 2𝑖𝜔𝑚√𝑓(1 − 𝛽𝑚2),  (4.42) 

ignoring O(𝛽2) terms, Eq. (4.38) reduces to 

𝐿4(𝜕𝑟𝑊)4 + 𝐿2(𝜕𝑟𝑊)2 + 𝐿0 = 0. (4.43) 

Therefore, we have 

𝑊± = ±∫𝑑𝑟
√(1 + 𝐿)(𝜔2 + 𝑚2𝑓)

𝑓
[1 + 𝛽 (𝑚2 +

𝜔2

𝑓
)] ≅ ±𝑖𝜋𝜔𝑟+(1 + 2𝛽𝑚2) 

= ±𝑖2𝜋𝑀𝜔√1 + 𝐿(1 + 2𝛽𝑚2), (4.44) 

in another form 

𝐼𝑚𝑊± = 2𝜋𝑀𝜔√1 + 𝐿(1 + 2𝛽𝑚2). (4.45) 

Recalling Eq. (4.18), we find the tunneling rate of fermions as follows 
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                     Γ ≅ 𝑒𝑥𝑝(−4𝐼𝑚𝑊+) = 𝑒𝑥𝑝 (8𝜋𝑀𝜔√1 + 𝐿(1 + 2𝛽𝑚2)).                (4.46) 

Thus, with the help of the Boltzmann factor (4.19), we get the GUP-consolidated 

temperature of the SBHBGM via the emission of the fermions: 

                           𝑇 =
1

8𝜋𝑀√1 + 𝐿(1 + 2𝛽𝑚2)
=

𝑇0

(1 + 2𝛽𝑚2)
, (4.47) 

in which 𝑇0 represents the original Hawking temperature  

𝑇0 =
1

8𝜋𝑀√1 + 𝐿
. (4.48) 

The above result shows that GUP corrected temperature deviates from the standard 

Hawking temperature. 

4.2 GUP Modified Hawking Radiation in Rotating Polytropic Black 

Hole 

BHs are surrounded by different matter, such as accretion disks (accretion flew around 

a BH), galactic nuclei, strong magnetic fields, other stars and planets. Therefore, 

interactions happen with their surroundings and affect to the properties and stability of 

the BHs [138]. However, it is interesting to know that, a BH even interacts with the 

vacuum around it and creating pairs of particles and evaporating due to HR. Thus, a 

real BH can never be fully described by its basic parameters and is always in the 

perturbed state. Study about the coalescence of two identical neutron stars represented 

by polytropes was considered first time by Nakamura and Oohara in 1989 [139], and 

it is evaluated in many situations in the context of GR as well as in astrophysical 

problems [140-143]. Recently, BH solutions by considering the polytropic equations 

of state have been obtained [144] this equation of state which has been used in various 

astrophysical situation [145,146], defined as 

𝑃 = 𝐾𝜌1+
1
𝑛, (4.49) 
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where 𝑛 is polytropic index and 𝐾 is a positive constant. The rotating polytropic BH 

solution is obtained by applying the Newman-Janis algorithm without 

complexification [147] to its static version.  

In this subsection, we consider the physical properties of rotating polytropic BH. As a 

starting point, the metric in the rotating coordinates is given by 

𝑑𝑠2 = (1 −
2𝑓

𝜌2
) 𝑑𝑡2 −

𝜌2

∆
𝑑𝑟2 +

4𝑎𝑓𝑠𝑖𝑛2𝜃

𝜌2
𝑑𝑡𝑑𝜑 − 𝜌2𝑑𝜃2

−
Σ𝑠𝑖𝑛2𝜃

𝜌2
𝑑𝜑2, 

 

 

(4.50) 

where 

2𝑓 = 𝑟2(1 − 𝐹),  

𝜌2 = 𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃,  

Σ = (𝑟2 + 𝑎2)2 − 𝑎2Δ𝑠𝑖𝑛2𝜃, (4.51) 

in which 

Δ = 𝑎2 + 𝑟2𝐹,    (4.52) 

and 

𝐹 =
𝑟2

𝐿2
−

2𝑀

𝑟
.    (4.53) 

In Eq. (4.53), 𝐿2 = −
3

Λ
, where  Λ represents the cosmological constant. Throughout 

our study, we shall consider the negative cosmological constant, where empty space 

itself has negative energy density but positive pressure, like the anti-de Sitter space. 

The solution of Δ(𝑟±) = 0 yields the horizons of the BH. Namely, we have 

𝑎2 + 𝑟±
2𝐹(𝑟±) = 0,  (4.54) 

which yields 
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𝑟+ =
[
 
 
 
 
 

−
2√6

3
𝑎2𝐿2

𝑑(𝑎,𝑀, 𝐿)
+

6𝐿2𝑀

√ √6
3

𝑎2𝐿2

𝑑(𝑎,𝑀, 𝐿)
+

1
2

𝑑(𝑎,𝑀, 𝐿)

− 𝑑(𝑎,𝑀, 𝐿)

]
 
 
 
 
 

1
2

+ [
2√6

3
𝑎2𝐿2

𝑑(𝑎,𝑀, 𝐿)
+ 𝑑(𝑎,𝑀, 𝐿)]

1
2

25/6 √3
3 , 

 
(4.55) 

where 

𝑑(𝑎,𝑀, 𝐿) = √√3√27𝐿8𝑀4 − 16𝑎2𝐿2 + 9𝐿4𝑀2
3

.  (4.56) 

One can easily observe from the above horizon condition that there exists a bound on 

the spin/mass-parameter, (
𝑎

𝑀
) [147]. The allowed values for the spin/mass-parameter 

are constrained as follows [148]: 

𝑎

𝑀
< 31/2 (

𝐿

4𝑀
)
1/3

. (4.57) 

It is worth noting that above result differs from the Kerr case in which the constraint 

corresponds to  
𝑎

𝑀
< 1. The Hawking temperature for the rotating polytropic black hole 

is given by [148] 

𝑇𝐻 =
1

4𝜋
lim

𝑟⟶𝑟+

𝜕𝑟𝑔𝑡𝑡

√𝑔𝑡𝑡𝑔𝑟𝑟

=
−𝑎2(𝐿2(𝑀 + 𝑟+) − 2𝑟+

3) + 𝐿2𝑀𝑟+
2 + 𝑟+

5

2𝜋𝐿2(𝑎2 + 𝑟+
2)2

. (4.58) 

Now, let discuss the line element in the dragging coordinate system, in this system, an 

inertial frame around a rotating black hole considered and a nonrotating observer is 

one who moves with coordinate angular velocity Ω = −
𝑔03

𝑔33 [149,150]. Performing the 

dragging coordinate transformation to the metric (4.50), we get 

         𝑑𝑠2 = −
∆𝜌2

Σ
𝑑𝑡2 +

𝜌2

Δ
𝑑𝑟2 + 𝜌2𝑑𝜃2 = −𝐹𝑑𝑡2 +

1

𝐺
𝑑𝑟2 + 𝐾𝑑𝜃2.               (4.59) 
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The generalized Klein-Gordon equation under GUP modification (4.4) can be used 

with a standard ansatz for 𝜓  

𝜓 = 𝑒𝑥𝑝 [
𝑖

ℏ
𝐼(𝑡, 𝑟, 𝜃)].    (4.60) 

Then we get 

(
1

𝐹
) (𝜕𝑡𝐼)

2 = [𝐺(𝜕𝑟𝐼)
2 +

1

𝐾
(𝜕𝜃𝐼)2 + 𝑚2] − 2𝛽 [𝐺(𝜕𝑟𝐼)

2 +
1

𝐾
(𝜕𝜃𝐼)2 + 𝑚2]

2

. 

    (4.61) 

To solve the above equation, we carry out the separation of variables as follows 

𝐼 = −(𝜔 − 𝑗Ω)𝑡 + 𝑅(𝑟) + 𝑊(𝜃) + 𝐾,    (4.62) 

where 𝜔 and 𝑗 are the energy of the particles and the angular momentum, respectively. 

𝐾 is a constant, which maybe can be complex. Substituting Eq. (4.62) into the Eq. 

(4.61) to obtain 

𝑎(𝜕𝑟𝑅)4 + 𝑏(𝜕𝑟𝑅)2 + 𝑐 = 0, (4.63) 

where 

𝑎 = −2𝛽𝐺2,    (4.64) 

𝑏 = 𝐺(1 − 4𝛽𝑚2),    (4.65) 

𝑐 =
1

𝐾
(𝜕𝜃𝑊)2 + 𝑚2 − 2𝛽𝑚4 −

1

𝐹
(𝜔 − 𝑗Ω)2.    (4.66) 

The solution of this quartic equation at the horizon is 

𝑅± = ±∫
𝑑𝑟

√𝐹𝐺
√(𝜔 − 𝑗Ω)2 − 𝐹 (

1

𝜌2(𝑟ℎ)
(𝜕𝜃𝑊)2 + 𝑚2) × [1 + 𝛽 (𝑚2 +

                                                                      
1

𝜌2(𝑟ℎ)
(𝜕𝜃𝑊)2) + 𝛽

(𝜔−𝑗Ω)2

𝐹
] ,                  (4.67) 

where +/− represent the outgoing and ingoing solutions. Here we have taken the near 

solution approximation, near the event horizon(𝑟 = 𝑟+), 

         Δ(𝑟) = Δ(𝑟+) + (𝑟 − 𝑟+)Δ,𝑟(𝑟+) + 𝑂((𝑟 − 𝑟+)2) ≅ (𝑟 − 𝑟+)∆,𝑟(𝑟+).         (4.68) 
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Integrating Eq. (4.67) near the event horizon by using the residue theorem for 

semicircle, we acquire 

𝑅± =
𝑖𝜋(𝜔 − 𝑗Ωℎ)(𝑟ℎ

2 + 𝑎2)2𝐿2

2(𝑟ℎ
5 + 𝑀𝑟ℎ

2𝐿2 + 2𝑟3𝑎2 − 𝑀𝐿2𝑎2 − 𝑟ℎ𝑎2𝐿2)
[1 + 𝛽Ξ],    (4.69) 

where 

     Ξ =
1

2
(𝑚2 +

(
𝑑𝜔

𝑑𝜃
)
2

𝑟ℎ
2+𝑎2𝑐𝑜𝑠2𝜃

−
(𝜔−𝑗𝛺ℎ)2(𝑟ℎ

2+𝑎2)
4

3(𝑟ℎ
2+𝑎2𝑐𝑜𝑠2𝜃)(𝑟ℎ

5+𝑀𝑟ℎ
2𝐿2+2𝑟ℎ

3𝑎2−𝑀𝐿2𝑎2−𝑟ℎ𝑎2𝐿2)
2).    (4.70)  

Based on the WKB approximation, the emission and absorption tunneling probabilities 

of the scalar particles passing the event horizon 𝑟 = 𝑟+ are defined as 

Γ(𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛) = 𝑒𝑥𝑝[−2(𝐼𝑚𝑅+ + 𝐼𝑚𝜉)],    (4.71) 

and 

𝛤(𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛) = 𝑒𝑥𝑝[−2(𝐼𝑚𝑅− + 𝐼𝑚𝜉)],    (4.72) 

Thus, the tunneling rate for the scalar particles yields 

Γ = 𝑒𝑥𝑝[−4𝐼𝑚𝑅+], (4.73) 

where for the rotating polytropic BH is obtained 

Γ = 𝑒𝑥𝑝 [
−2𝜋(𝜔 − 𝑗Ωℎ)(𝑟ℎ

2 + 𝑎2)2𝐿2

(𝑟ℎ
5 + 𝑀𝑟ℎ

2𝐿2 + 2𝑟3𝑎2 − 𝑀𝐿2𝑎2 − 𝑟ℎ𝑎2𝐿2)
(1 + 𝛽Ξ)]. (4.74) 

Hence, one can read the modified Hawking temperature 𝑇𝐻 as follows 

𝑇𝐻 =
𝑇0

1 + 𝛽Ξ
, (4.75) 

in which 𝑇0 is the standard form of rotating polytropic BH’s hawking temperature. 
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Chapter 5 

SCALAR PERTURBATION 

5.1 Scalar Perturbation and Effective Potential of SBHBGM 

In this section, we shall first derive the effective potentials of the scalar perturbations 

in the geometry of the SBHBGM. Then, the effective potentials will be used for 

computing the GFs of the SBHBGM. The obtained results will be depicted with some 

plots and discussed. The massless Klein- Gordon equation is given by 

⎕󠅶Ψ = 0,      (5.1) 

where the D’Alembert operator is denoted by the box symbol: ⎕󠅶 =

1

√−𝑔
𝜕𝜇(√−𝑔𝑔𝜇𝜐𝜕𝜐). For the SBHBGM metric, 

   𝑑𝑠2 = −(1 −
2𝑀

𝑟
) 𝑑𝑡2 + (1 + 𝐿) (1 −

2𝑀

𝑟
)
−1

𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2).   (5.2) 

 We have 

√−𝑔 = 𝑟2𝑠𝑖𝑛𝜃√1 + 𝐿,      (5.3) 

and therefore Eq. (5.1) reads 

⎕󠅶Ψ =
1

𝑓
𝜕𝑡

2 −
1

𝑟2(1+𝐿)
(2𝑟𝑓𝜕𝑟Ψ + 𝑟2𝜕𝑟𝑓𝜕𝑟Ψ + 𝑟2𝑓𝜕𝑟

2Ψ) +
1

𝑟2𝑠𝑖𝑛𝜃
(−𝑐𝑜𝑠𝜃𝜕𝜃Ψ −

                                                                                   𝑠𝑖𝑛𝜃𝜕𝜃
2Ψ) −

1

𝑟2𝑠𝑖𝑛2𝜃
𝜕𝜑

2Ψ.              (5.4) 

We invoke the following ansatz for the scalar field in the above equation: 

Ψ = 𝑃(𝑟)𝐴(𝜃)𝑒−𝑖𝜔𝑡𝑒𝑖𝑚𝜑, (5.5) 

so that we have 
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⎕󠅶Ψ = −
𝜔2

𝑓
−

1

𝑃(1 + 𝐿)
[
2𝑓

𝑟
𝑃´ + 𝑓´𝑃´ + 𝑓𝑃´´] 

 

−
1

𝑟2𝐴𝑠𝑖𝑛𝜃
[𝑐𝑜𝑠𝜃𝐴´ + 𝑠𝑖𝑛𝜃𝐴´´ −

𝑚2

𝑠𝑖𝑛𝜃
𝐴] = 0,   (5.6) 

 when one changes the independent variable 𝜃 to 𝑐𝑜𝑠−1𝑧, the angular equation is found 

to be 

                     (1 − 𝑧2)𝐴′′ + 2𝑧𝐴′ − [𝑚2 +
𝜆𝑠

1 + 𝐿
(1 − 𝑧2)] 𝐴 = 0,                (5.7) 

where 𝜆𝑠 denotes the eigenvalue. The above equation is nothing but the Legendre 

differential equation when one sets 

𝜆𝑠 = −𝑙(𝑙 + 1)(1 + 𝐿). (5.8) 

The radial equation then becomes 

𝑃′′ + 𝑃′ (
𝑓′

𝑓
+

2

𝑟
) + [

1 + 𝐿

𝑓2
𝜔2 +

𝜆𝑠

𝑟2𝑓
]𝑃 = 0. (5.9) 

Introducing a new variable 𝑃 =
𝑢

𝑟
, we get a Schrödinger-like wave equation 

𝑑𝑢2

𝑑𝑟∗2
+ (𝜔2 − 𝑉𝑒𝑓𝑓)𝑢 = 0, (5.10) 

Where 𝑟∗ is the tortoise coordinate defined by 

𝑟∗ = √1 + 𝐿 ∫
𝑑𝑟

𝑓
. (5.11) 

The effective potential felt by the scalar field then becomes 

𝑉𝑒𝑓𝑓 = 𝑓 [
𝑓′

(1 + 𝐿)𝑟
+

𝑙(𝑙 + 1)

𝑟2
]. (5.12) 

It is obvious from Fig. (5.1) that the effective potential vanishes both at the event 

horizon of the SBHBGT and at spatial infinity. This behavior will help us to 

analytically derive the GF of the scalar field emission from the SBHBGT. 
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Figure 5.1: 𝑉𝑒𝑓𝑓 versus 

𝑟∗

𝑚
 graph. The plots are governed by Eq. (5.12). 

5.2 Scalar Perturbations for Charged de Rham-Gabadadz-Tolly 

Massive Gravity Black Holes in Nonlinear Electrodynamics 

The purpose of this subsection is to study the scalar perturbation and defining the 

effective potential of the charged dRGT massive gravity BHs coupled with nonlinear 

electrodynamics. 

Today, one of the best modification theories is the massive gravity, which consists of 

a massive graviton. Obviously, the perception of massive gravity theories is feasible 

with the help of gravitational wave astronomy. In 2010, a ghost-free non-linear 

extension of the FP action was proposed by de Rham–Gabadadze–Tolly (dRGT) [57-

59]. According to this theory, the sixth Boulware and Deser (BD) [58] ghost mode is 

omitted by using a special type of potential to recover the Hamiltonian constraint, 

which is valid in any dimensions. In this new massive gravity, adding mass to the 

graviton does not change significantly the physics on a small scale from the GR, as it 

was expected. Here, we first introduce the 3 + 1-dimensional BH solutions in the dRGT 

massive gravity coupled with nonlinear electrodynamics [56]. The action of the dRGT 
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massive gravity without matter source and cosmological constant in 3 + 1-dimensions, 

which is given by 

                            𝑆 =
1

2
∫𝑑4𝜒√−𝑔[𝑅(𝑔) + 𝑚𝑔

2(𝒰2 + 𝛼3𝒰3 + 𝛼4𝒰4) + ℒ],         (5.13) 

in which 

𝒰2 = 𝑇𝑟(𝒦)2 − 𝑇𝑟(𝒦2), (5.14) 

𝒰3 = 𝑇𝑟(𝒦)3 − 3𝑇𝑟(𝒦)𝑇𝑟(𝒦2) + 2𝑇𝑟(𝒦3), (5.15) 

and 

𝒰4 = 𝑇𝑟(𝒦)4 − 6𝑇𝑟(𝒦2)𝑇𝑟(𝒦)2 + 8𝑇𝑟(𝒦3)𝑇𝑟(𝒦) + 3𝑇𝑟(19𝒦2)2 − 6𝑇𝑟(𝒦4). 

 (5.16) 

Herein, 𝑚𝑔 is the mass of the graviton, 𝛼3 and 𝛼4 are constants of the theory, and 𝒦 

represents a 4 ×  4 matrix defined by 

𝒦𝜇
𝜐 = 𝛿𝜇

𝜐 − √𝑔𝛼𝛾𝑓𝛾𝛽 .    (5.17) 

In latter equation, 𝑔𝛼𝛾 is the inverse of the metric tensor and 𝑓𝛾𝛽 is a symmetric tensor, 

which is called reference (or fiducial) metric. The nonlinear electrodynamics 

Lagrangian ℒ is defined by [151], 

ℒ =
−ℱ

1 −
𝑏

√8
√−ℱ

, (5.18) 

where 𝑏 is a positive parameter and ℱ = 𝐹𝛼𝛽𝐹𝛼𝛽 is nothing but the Maxwell invariant 

with a pure electric field 

𝑭 = 𝐸(𝑟)𝑑𝑡 ∧ 𝑑𝑟. (5.19) 

Variation of the action with respect to electric potential admits the following Maxwell 

nonlinear equation 

𝑑 (�̃�
𝑑ℒ

𝑑ℱ
) = 0, (5.20) 
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where �̃� is the dual of 𝑭. The variation of the metric with respect to the metric tensor 

yields the following field equations 𝐺𝜇
𝜐 + 𝑚𝑔

2𝜒𝜇
𝜐 = 𝑇𝜇

𝜐, in which 

𝜒𝜇𝜐 = 𝒦𝜇𝜐 − 𝒦𝑔𝜇𝜐 − 𝛼 (𝒦𝜇𝜐
2 − 𝒦𝒦𝜇𝜐 +

𝒰2

2
𝑔𝜇𝜐) 

+3𝛽 (𝒦𝜇𝜐
3 − 𝒦𝒦𝜇𝜐

2 +
𝒰2

2
𝒦𝜇𝜐 −

𝒰3

6
𝑔𝜇𝜐), (5.21) 

with 𝛼 = 1 + 3𝛼3 and 𝛽 = 𝛼3 + 4𝛼4. Furthermore, 𝑇𝜇
𝜐 denotes the nonlinear 

electrodynamics energy momentum tensor, which is given by   

𝑇𝜇
𝜐 =

1

2
(ℒ𝛿𝜇

𝜐 − 4ℒ𝐹𝐹𝜇𝜆𝐹
𝜐𝜆). (5.22) 

In spherically symmetric spacetime, we consider a line-element of the form 

                      𝑑𝑠2 = −𝑛(𝑟)𝑑𝑡2 +
𝑑𝑟2

𝑓(𝑟)
+ 𝐿(𝑟)2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2), (5.23) 

where 𝑛(𝑟), 𝑓 (𝑟), and 𝐿(𝑟) are to be obtained. The reference metric tensor can be 

chosen as 

𝑓𝛾𝛽 = 𝑑𝑖𝑎𝑔[0,0, ℎ(𝑟)2, ℎ(𝑟)2𝑠𝑖𝑛2𝜃],    (5.24) 

in which ℎ(𝑟)2 is a coupling function. Having considered the actual metric (5.17) and 

the reference metric (5.18), one finds 

𝒦𝛽
𝛼 = 𝑑𝑖𝑎𝑔 [0,0,1 −

ℎ(𝑟)

𝐿(𝑟)
, 1 −

ℎ(𝑟)

𝐿(𝑟)
], (5.25) 

and consequently 

𝑋𝑡
𝑡 = 𝑋𝑟

𝑟 = −
3𝐿 − 2ℎ

𝐿
− 𝛼

(3𝐿 − ℎ)(𝐿 − ℎ)

𝐿2
− 𝛽

3(𝐿 − ℎ)2

𝐿2
,           (5.26) 

and 

                  𝑋𝜃
𝜃 = 𝑋𝜑

𝜑
= −

3𝐿 − ℎ

𝐿
− 𝛼

(3𝐿 − 2ℎ)

𝐿
− 𝛽

3(𝐿 − ℎ)2

𝐿
.                  (5.27) 
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Also, the nonlinear Maxwell equation admits an electric field of the form [152,153] 

𝐸(𝑟) =
2

𝑏

(

 1 −
1

√1 +
𝑞𝑏
𝑟2)

 , 

 

(5.28) 

and thus the energy momentum tensor components are explicitly found to be 

𝑇𝑡
𝑡 = 𝑇𝑟

𝑟 =
−𝐸

(1 −
𝑏𝐸
2 )

2, (5.29) 

and 

𝑇𝜃
𝜃 = 𝑇𝜑

𝜑
=

𝐸2

1 −
𝑏𝐸
2

. (5.30) 

As 𝑋𝑡
𝑡 = 𝑋𝑟

𝑟 , one should impose 𝐺𝑡
𝑡 = 𝐺𝑟

𝑟 which implies that 

𝑑

𝑑𝑟
(
𝑛

𝑓
𝐿´2) = 0,    (5.31) 

where a prime denotes the derivative of a function with respect to its argument. One 

can easily check that for the case of 𝑛(𝑟)  =  𝑓 (𝑟) and 𝐿(𝑟)  =  𝑟, Eq. (5.31) is 

satisfied. A substitution into the 𝑡𝑡 or 𝑟𝑟 components of the Einstein’s equations yield 

𝑓(𝑟) = 1 −
2𝑀

𝑟
+

8𝑟2

3𝑏2
(1 +

𝑞𝑏

𝑟2
)

3
2
−

4𝑞

𝑏
(1 +

2𝑟2

3𝑞𝑏
)

+
𝑚𝑔

2

𝑟
∫𝑑𝑟(3(1 + 𝛼 + 𝛽)𝑟2 − 2(1 + 2𝛼 + 3𝛽)ℎ𝑟 + ℎ2(𝛼 + 3𝛽)), 

 (5.32) 

in which 𝑀 is an integration constant. Finally, 𝜃𝜃 or 𝜑𝜑 components of the Einstein’s 

equation admit a trivial solution for the function ℎ (𝑟)  =  ℎ0 where ℎ0 is a constant 

parameter. Setting 𝐿 (𝑟)  =  𝑟 and using the 𝑟𝑟 component of the Einstein’s equation, 

after some algebra, we obtain the following analytical metric function for the charged 

dGRT black hole in the nonlinear electrodynamics 
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𝑓(𝑟) = 1 −
2𝑀

𝑟
+

8𝑟2

3𝑏2 (1 +
𝑞𝑏

𝑟2)

3

2
−

4𝑞

𝑏
(1 +

2𝑟2

3𝑞𝑏
) + 𝑚𝑔

2((1 + 𝛼 + 𝛽)𝑟2 − 2(1 + 2𝛼 +

                                                                                       3𝛽)ℎ0𝑟 + ℎ0
2(𝛼 + 3𝛽)),           (5.33) 

in which M is an integration constant. On the other hand, it is also possible to obtain a 

second set of solutions by considering ℎ(𝑟) =
3𝛽+2𝛼+1

𝛼+3𝛽
. After making straightforward 

calculations, one gets the following BH solution 

𝑓(𝑟) = 1 −
2𝑀

𝑟
− (𝑚𝑔

2
(1 + 𝛼2 + 𝛼 − 3𝛽)

3(𝛼 + 3𝛽)
+

8

3𝑏2
) 𝑟2 −

4𝑞

𝑏
+

8𝑟2

3𝑏2
(1 +

𝑞𝑏

𝑟2
)

3
2
. 

 (5.34) 

It is worth noting that the class of solutions obtained in this study is a special case of 

more general solution [154], which has an energy momentum tensor of cosmological 

constant type. The derivation of this generic solution [154] does not lean on the ansatz 

for the physical and reference metric or the Stückelberg field [155–157], apart from 

their isotropy. Namely, the solution is compatible with arbitrary matter component, 

including the nonlinear electrodynamics. Therefore, the massive gravity-induced fluid, 

which behaves like a cosmological constant, can coexist with the isotropically 

distributed matter, which could be an alternative to the dark energy. In the literature, 

there exist other remarkable studies which are based on the generic solution (see for 

example [158,159]). 

Now, we shall study the thermal radiation of the charged dRGT massive gravity 

(coupled with nonlinear electrodynamics) BHs. To this end, we first consider the 

massless charged Klein–Gordon equation 

1

√−𝑔
𝐷𝜇[√−𝑔𝑔𝜇𝜐𝐷𝜐]𝜓 = 0,    (5.35) 

where 
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𝐷𝜇 = 𝜕𝜇 − 𝑖𝑞𝐴𝜇 , (5.36) 

in which the electromagnetic potential is defined as 

𝐴𝑡 = −
2

𝑏
(𝑟 − √𝑟2 + 𝑞𝑏) , 𝐴𝑟 = 𝐴𝜃 = 𝐴𝜑 = 0. (5.37) 

Plugging the line-element (5.23) of the charged dRGT massive gravity black hole in 

the Klein–Gordon equation (5.35), we get 

[−
1

𝑓(𝑟)
𝜕𝑡

2𝜓 +
1

𝑓(𝑟)
𝑞2𝐴𝑡

2𝜓 +
2𝑖𝑞𝐴𝑡

𝑓(𝑟)
𝜕𝑡𝜓 +

2𝑓

𝑟
𝜕𝑟𝜓 + 𝑓´(𝑟)𝜕𝑟𝜓

+ 𝑓(𝑟)𝜕𝑟
2𝜓 +

𝑐𝑜𝑠𝜃

𝑟2𝑠𝑖𝑛𝜃
𝜕𝜃𝜓 +

1

𝑟2
𝜕𝜃

2𝜓 +
1

𝑟2𝑠𝑖𝑛2𝜃
𝜕𝜑

2𝜓] = 0. 

 

 

(5.38) 

We use the following ansatz for the wave function 

𝜓(𝑡, 𝑟, Ω) = 𝑒𝑖𝜔𝑡
𝜑(𝑟)

𝑟
𝑌𝑙𝑚(Ω), (5.39) 

in which 𝑒𝑖𝜔𝑡 is the oscillating function and 𝑌𝑙𝑚 (Ω) are spherical harmonics, which 

satisfy the following angular equation 

1

𝑠𝑖𝑛2𝜃

𝜕2𝑌

𝜕𝜑2
+

1

𝑠𝑖𝑛𝜃
[
𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝑌

𝜕𝜃
)] = −𝜆𝑌,      (5.40) 

where 𝜆 =  𝑙 (𝑙 +  1) is the eigenvalue having orbital quantum number 𝑙. Thus, the 

radial equation reads 

𝑓

𝜑𝑟

𝑑

𝑑𝑟
[𝑟2𝑓

𝑑

𝑑𝑟
(
𝜑

𝑟
)] + (𝜔 − 𝑞𝐴𝑡)

2 −
𝜆𝑓

𝑟2
= 0. (5.41) 

The tortoise coordinate is defined by 
𝑑𝑟∗

𝑑𝑟
=

1

𝑓(𝑟)
, which helps us to permute the radial 

equation to the form of one-dimensional Schrödinger equation 

𝑑2𝜑(𝑟)

𝑑𝑟∗2
+ [𝜔2 − 𝑉𝑒𝑓𝑓]𝜑(𝑟) = 0, (5.42) 

where the effective potential in general form for dRGT massive gravity BHs with 

nonlinear electrodynamics is defined as 
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𝑉𝑒𝑓𝑓 = 2𝜔𝑞𝐴𝑡 − 𝑞2𝐴𝑡
2 +

𝜆𝑓

𝑟2
+

𝑓

𝑟
𝑓´,    (5.43) 

in which 𝑓´ =
𝑑𝑓

𝑑𝑟
. Hereafter we split our calculations into the first and second solutions 

and clarify them by indexes 1 and 2. Let us rearrange Eq. (5.33) as 

𝑓1(𝑟) = 1 −
2𝑀

𝑟
+

8𝑟2

3𝑏2
(1 +

𝑞𝑏

𝑟
)

3
2
−

4𝑞

𝑏
(1 +

2𝑟2

3𝑞𝑏
) + (𝐴𝑟2 − 𝐵𝑟 + 𝐶),     (5.44) 

where 

           𝐴 = 𝑚𝑔
2(1 + 𝛼 + 𝛽), 𝐵 = 𝑚𝑔

2(1 + 2𝛼 + 3𝛽)ℎ0, 𝐶 = 𝑚𝑔
2(𝛼 + 3𝛽)ℎ0

2.     (5.45) 

By substituting Eqs. (5.37) and (5.44) into the general formula (5.43), then the 

effective potential for the first solution can be obtained as 

𝑉𝑒𝑓𝑓(1) = 2𝜔𝑞 (−
2

𝑏
(𝑟 − √𝑟2 + 𝑞𝑏)) − (−

2𝑞

𝑏
(𝑟 − √𝑟2 + 𝑞𝑏))

2

+
𝜆

𝑟2 (1 −
2𝑀

𝑟
+

8𝑟2

3𝑏2 (1 +
𝑞𝑏

𝑟
)

3

2
−

4𝑞

𝑏
(1 +

2𝑟2

3𝑞𝑏
) + (𝐴𝑟2 − 𝐵𝑟 + 𝐶)) +

1

𝑟
(1 −

2𝑀

𝑟
+

8𝑟2

3𝑏2 (1 +
𝑞𝑏

𝑟
)

3

2
−

4𝑞

𝑏
(1 +

2𝑟2

3𝑞𝑏
) + (𝐴𝑟2 − 𝐵𝑟 + 𝐶)) × (

2𝑀

𝑟2 + √1 +
𝑞𝑏

𝑟
(
16𝑟

3𝑏2 +
4𝑞

3𝑏
) −

16𝑞𝑟

3𝑞𝑏2 + 2𝐴𝑟 − 𝐵).  

 (5.46) 

Following the approach of above to derive the effective potential of dRGT massive 

gravity with nonlinear electrodynamics for second solution. The metric function has 

been introduced by Eq. (5.34), which we can rewrite as 

𝑓2(𝑟) = 1 −
2𝑀

𝑟
− (𝐷 +

8

3𝑏2
) 𝑟2 −

4𝑞

𝑏
+

8𝑟2

3𝑏2
(1 +

𝑞𝑏

𝑟2
)

3
2
, (5.47) 

where 𝐷 = 𝑚𝑔
2 (1+𝛼2+𝛼−3𝛽)

3(𝛼+3𝛽)
. The effective potential for the second solution is given by 

 



39 
 

𝑉𝑒𝑓𝑓(2) = 2𝜔𝑞 (−
2

𝑏
(𝑟 − √𝑟2 + 𝑞𝑏)) − (−

2𝑞

𝑏
(𝑟 − √𝑟2 + 𝑞𝑏))

2

+
𝜆

𝑟2
(1 −

2𝑀

𝑟
−

(𝐷 +
8

3𝑏2) 𝑟2 −
4𝑞

𝑏
+

8𝑟2

3𝑏2 (1 +
𝑞𝑏

𝑟2)

3

2
) × (

2𝑀

𝑟2 − 2𝑟 (𝐷 +
8

3𝑏2) + √1 +
𝑞𝑏

𝑟2 (
16𝑟

3𝑏2 −
8𝑞

3𝑏𝑟
)).  

 (5.48) 

The behaviors of dRGT effective potentials for both solutions, Eqs. (5.46) and (4.48), 

are depicted in Figs. 5.2.a and 5.2.b by varying the controlling parameter of 𝜔 which 

appeared in the effective potential by coupling of nonlinear electrodynamics. The 

parameters B and C are chosen to be zero and 𝐴 =  −1. 

 
(a)                                                                     (b) 

Figure 5.2: Plots of 𝑉𝑒𝑓𝑓 versus 𝑟 for a) the metric function (5.33). The plot is 

governed by Eq. (5.46). The physical parameters are chosen as; 𝑀 =  1, 𝑏 =
 50, 𝑞 =  8, and 𝜆 =  0. b) for the metric function (5.34). The plot is governed by 

Eq. (5.48). The physical parameters are chosen as; 𝑀 =  1, 𝑏 =  10, 𝑞 =  3, and 

𝜆 =  0. 

It can be seen from both figures that 𝑉𝑒𝑓𝑓 which vanishes at the horizon, peaks right 

after the horizon and then quickly dampens toward the asymptotic region, this 

procedure happened for the second solution in a smaller amount rather than the first. 

Moreover, for both, by increasing the frequency the potential peak increases as well. 
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On the other hand, when the energy of the scalar waves increases, the peak value of 

the potential barrier near the event horizon also increases, which may lead to the caged 

of the waves. As being stated in Refs. [160-163], since the main contribution to the 

transmission amplitude comes from the 𝑙 =  0 mode (i.e., s-wave case [164]), it is 

adequate to qualitatively analyze the potential (5.46) for s-waves. In a general 

comparison, we can see the behavior of the potential for second solution (5.48) is 

smoother in the same period than the first solution, in this case the role of constant 

parameter b is significant. 

5.3 Scalar Perturbation of Kerr Like Spacetime in Bumblebee 

Gravity Model 

In this subsection, we shall examine the scalar perturbations of the Kerr-like BH in 

BGM and derive the effective potential for scalar waves, which will be exposed in this 

geometry. To this end, we employ the massive Klein-Gordon equation: 

1

√−𝑔
𝜕𝜇(√−𝑔𝑔𝜇𝜐𝜕𝜐)𝜓 = 𝜇0

2𝜓,    (5.49) 

where 𝜇0 is the mass of the scalar particle. Using the information in chapter 3, Eqs. 

(3.21) - (3.23) regarding to the metric (3.16) in Eq. (5.49), we get 

−
𝐴

𝜌2Δ(1 + 𝐿)
𝜕𝑡

2Ψ −
2𝑀𝑟𝑎

Δ𝜌2√1 + 𝐿
𝜕𝑡𝜕𝜑Ψ +

1

𝜌2𝑠𝑖𝑛𝜃
𝜕𝜃(𝑠𝑖𝑛𝜃𝜕𝜃)Ψ +

1

𝜌2
𝜕𝑟(Δ𝜕𝑟)Ψ 

−
2𝑀𝑟𝑎

𝜌2Δ√1 + 𝐿
𝜕𝜑𝜕𝑡Ψ +

𝜌2 − 2𝑀𝑟

∆𝜌2(1 + 𝐿)𝑠𝑖𝑛2𝜃
𝜕𝜑

2Ψ = 𝜇0
2Ψ.    (5.50) 

To apply the technique of separation of variables in Eq. (5.50), one can use the 

following ansatz: 

Ψ(𝑟, 𝑡) = 𝑅(𝑟)𝑆(𝜃)𝑒𝑖𝑚𝜑𝑒−𝑖𝜔𝑡, (5.51) 
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where 𝑚 is azimuthal quantum number and 𝜔 represents the energy of the particles. 

Therefore, the radial equation becomes 

1

𝑅(𝑟)

𝑑

𝑑𝑟
(∆

𝑑𝑅(𝑟)

𝑑𝑟
) +

𝜔2(𝑟2 + (1 + 𝐿)𝑎2)2

∆(1 + 𝐿)
+

𝑚2𝑎2

∆
−

4𝑀𝑟𝑎𝑚𝜔

∆√1 + 𝐿
− 𝜔2𝑎2(1 + 𝐿) 

−𝜇0
2𝑟2, (5.52) 

and the angular part reads 

1

𝑆(𝜃)𝑠𝑖𝑛𝜃

𝑑

𝑑𝜃
(𝑠𝑖𝑛𝜃

𝑑𝑆(𝜃)

𝑑𝜃
) −

𝑚2

𝑠𝑖𝑛2𝜃
+ 𝑐2𝑐𝑜𝑠2𝜃.    (5.53) 

As is known, angular and radial equations admit two same (in absolute) eigenvalues 

with opposite signs. Angular differential equation (5.53) has solutions in terms of the 

oblate spherical harmonic functions 𝑆𝑙𝑚(𝑖𝑐, 𝑐𝑜𝑠𝜃) having eigenvalue 𝜆𝑙𝑚 [164] in 

which 𝑙, 𝑚 are integers such that |𝑚| ≤ 𝑙 and 𝑐2 = 𝑎2(1 + 𝐿)(𝜔2 − 𝜇0
2) [165]. For 

simplicity, we consider the separation constant as 𝜆 = 𝜆𝑙𝑚. Thus, the radial differential 

equation becomes 

Δ
𝑑

𝑑𝑟
(Δ

𝑑𝑅(𝑟)

𝑑𝑟
) + {𝑚2𝑎2 +

𝜔2

(1+𝐿)
(𝑟2 + (1 + 𝐿)𝑎2)2 −

4𝑀𝑟𝑎𝑚𝜔

√1+𝐿
− (𝜇0

2𝑟2 +

                                                                                𝜔2𝑎2(1 + 𝐿) + 𝜆)Δ}𝑅(𝑟) = 0.    (5.54) 

The radial solution is in general associated with a free oscillation mode of the 

propagating field. Stable modes have particular frequencies 𝜔 with complex negative 

imaginary values, so we have an exponentially subsidence in amplitude. Conversely, 

if the imaginary values of the frequencies are positive, then the amplitude of the 

oscillations exponentially increase and the modes consequently become unstable. 

If we consider 𝑀𝜔 ≪ 1 and 𝜇𝑀 ≪ 1, which was first noticed by Starobinskii [165, 

166], then Eq. (5.53) is amenable to analytic methods. If we assume the inequalities to 

hold then the angular part can be thought as spherical harmonics with 𝜆 ≅ 𝑙(𝑙 + 1). 

For having one dimensional wave equation, we first use the following transformation 
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𝑅(𝑟) =
𝑈(𝑟)

√𝑟2 + (1 + 𝐿)𝑎2
, (5.55) 

together with the tortoise coordinate: 

𝑑𝑟∗
𝑑𝑟

=
𝑟2 + (1 + 𝐿)𝑎2

√1 + 𝐿∆
.    (5.56) 

Thus, Eq. (5.54) can be expressed as a one-dimensional Schrödinger equation 

𝑑2𝑈

𝑑𝑟∗2
+ (𝜔2 − 𝑉𝑒𝑓𝑓)𝑈 = 0,    (5.57) 

where the effective potential reads 

𝑉𝑒𝑓𝑓 =
(1 + 𝐿)∆

(𝑟2 + (1 + 𝐿)𝑎2)2
[

∆´𝑟 + ∆

(𝑟2 + (1 + 𝐿)𝑎2)
−

3𝑟2∆

(𝑟2 + (1 + 𝐿)𝑎2)2

+
4𝑀𝑟𝑎𝑚𝜔

∆√1 + 𝐿
−

𝑚2𝑎2

∆
(𝜇0

2𝑟2 + 𝜔2𝑎2(1 + 𝐿) + 𝜆)]. 

    

   (5.58) 

The prime symbol denotes the derivation with respect to r. The behavior of the 

effective potential under the effect of LSB parameter for scalar particles is illustrated 

in Fig. 5.3, which shows a significant deduction on the potential peak when the LSB 

parameter is increased. 
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Figure 5.3: Plots of 𝑉𝑒𝑓𝑓 versus r for the spin-0 particles. The physical parameters are 

chosen as;  𝑀 =  𝑚 =  1, 𝜔 = 15, 𝑎 = 0.3, and 𝜆 =  2. 

5.4 Scalar Perturbation of Kerr Polytropic Black Hole 

In this section, we derive the effective potential of scalar particles for polytropic black 

hole in Kerr space time. To this aim, we shall consider the massive Klein-Gordon 

equation (5.49) for a propagating scalar field with mass 𝜇0 in the geometry of rotating 

polytropic BH (4.50). The determinant of the metric (4.50) tensor is given by the 

general Klein-Gordon  

𝑔 ≡ 𝑑𝑒𝑡𝑔𝜇𝜐 = −𝜌4𝑠𝑖𝑛2𝜃. (5.59) 

After substituting Eq. (5.59) in Eq. (5.49), we get 

Σ

𝜌2Δ
𝜕𝑡

2Ψ +
2𝑎𝑓

𝜌2𝛥
𝜕𝑡𝜕𝜑Ψ −

1

𝜌2𝑠𝑖𝑛𝜃
{𝑐𝑜𝑠𝜃𝜕𝜃 + 𝑠𝑖𝑛𝜃𝜕𝜃

2}Ψ −
1

𝜌2
𝜕𝑟(∆𝜕𝑟)Ψ 

+
2𝑎𝑓

𝜌2𝛥
𝜕𝜑𝜕𝑡Ψ −

Δ − 𝑎2𝑠𝑖𝑛2𝜃

Δ𝜌2𝑠𝑖𝑛2𝜃
𝜕𝜑

2Ψ = 𝜇0
2Ψ. (5.60) 

We consider an ansatz of the scalar field 
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Ψ(𝑡, 𝑟) = 𝑅(𝑟)𝑆(𝜃)𝑒𝑖𝑚𝜑𝑒−𝑖𝜔𝑡,    (5.61) 

where 𝑒−𝑖𝜔𝑡 implies the time evolution of the field and 𝑚 is azimuthal quantum 

number. Therefore, by substituting Eq. (5.61) in Eq. (5.60), we obtain 

Δ
𝑑

𝑑𝑟
(Δ

𝑑𝑅(𝑟)

𝑑𝑟
) + [𝑚2𝑎2 − 4𝑎𝑓𝑚𝜔 + 𝜔2(𝑟2 + 𝑎2)2 − (𝜔2𝑎2 + 𝜇0

2𝑟2 + 𝜆)Δ]𝑅(𝑟)  

= 0, (5.62) 

where 𝜆 is the eigenvalue of the angular solution: 

1

𝑆(𝜃)

1

𝑠𝑖𝑛𝜃

𝑑

𝑑𝜃
(𝑠𝑖𝑛𝜃

𝑑𝑆(𝜃)

𝑑𝜃
) −

𝑚2

𝑠𝑖𝑛2𝜃
+ 𝑐2𝑐𝑜𝑠2𝜃 = −𝜆𝑙𝑚,    (5.63) 

in which 𝑐2 = (𝜔2 − 𝜇0
2)2𝑎2. Using the tortoise coordinate, 

𝑑𝑟∗
𝑑𝑟

=
𝑟2 + 𝑎2

Δ
, (5.64) 

which maps the semi-infinity region from the horizon to infinity (+∞,−∞) region. 

Using the following transformation 

𝑅 =
𝑈

√𝑟2 + 𝑎2
, (5.65) 

we acquire the Schrödinger-like wave equation for this stationary background, 

𝑑𝑈

𝑑𝑟∗2
+ (𝜔2 − 𝑉𝑒𝑓𝑓)𝑈 = 0,    (5.66) 

where 

𝑉𝑒𝑓𝑓 =
∆

(𝑟2 + 𝑎2)2
[
∆′𝑟 + ∆

𝑟2 + 𝑎2
−

3𝑟2∆

(𝑟2 + 𝑎2)2
+

4𝑎𝑓𝑚𝜔 − 𝑚2𝑎2

∆
+ 𝜔2𝑎2 + 𝜇0

2𝑟2 + 𝜆]. 

 (5.67) 

To see this, we plot the expressions of the massless scalar effective potential function 

(Eq. (5.67)) versus radius 𝑟. One can see the typical behaviors of these effective 

potentials by varying the rotating parameter 𝑎 in Fig. 5.4. The figure shows an increase 

for the potential barrier when rising the rotating parameter. 
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Figure 5.4: Plots of 𝑉𝑒𝑓𝑓 versus r for the spin-0 particles. The physical parameters are 

chosen as;𝑚 =  1;𝑀 =  𝜔 =  3;  𝐿 =  1; and 𝜆 = 6. 
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Chapter 6 

DIRAC PERTURBATION 

6.1 Fermionic Perturbation and Effective Potential in BGM 

In this subsection, we shall employ the Newman-Penrose (NP) formalism [167] to find 

the effective potential of the fermion fields propagating in the geometry of the BGM. 

In a four-dimensional pseudo-Riemannian manifold, we make the choice of the 

following null tetrad basis 1-form (𝑙, 𝑛,𝑚, �̅�) of the NP formalism. One can introduce 

a tetrad of two real vectors denoted by 𝑙𝛼 and 𝑛𝛼 and two complex conjugate vectors 

𝑚𝛼 and �̅�𝛼, where the null condition is satisfied as follows 

𝑙. 𝑙 = 𝑛. 𝑛 = 𝑚.𝑚 = �̅�. �̅� = 0, (6.1) 

𝑙. 𝑚 = 𝑙. �̅� = 𝑛.𝑚 = 𝑛. �̅� = 0, (6.2) 

𝑙. 𝑛 = −𝑚. �̅� = 1, (6.3) 

where the co-vector is defined by 𝑙𝛼 = ∇𝛼𝑢 so 𝑙𝛼 = 𝑔𝛼𝛽∇𝛼𝑢 is a null vector tangent 

to the generators of 𝑢 =  𝑐𝑜𝑛𝑠𝑡. Therefore, the global metric can be represented in 

terms of null tetrad by 

𝑔𝛼𝛽 = 𝑙𝛼𝑛𝛽 + 𝑛𝛼𝑙𝛽 − 𝑚𝛼�̅�𝛽 − �̅�𝛼𝑚𝛽 ,   (6.4) 

or in condensed notation  

𝑔𝛼𝛽 = 𝜂𝜇𝜐𝜆𝛼
𝜇𝜆𝛽

𝜐, (6.5) 

where 𝜇 = 1,2,3,4 is the tetrad index, 𝜆𝛼
𝜇 = (𝑙𝛼, 𝑛𝛼, 𝑚𝛼, �̅�𝛼) and  
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𝜂𝜇𝜐 = (

0 1 0 0
1 0 0 0
0
0

0
0

0
−1

−1
0

). 

 

  (6.6) 

Chandrasekar Dirac equations (CDEs) are given by [164,168] 

(𝐷 + 𝜀 − 𝜌)𝐹1 + (𝛿̅ + 𝜋 − 𝛼)𝐹2 = 𝑖𝜇∗𝐺1,   (6.7) 

(𝛿 + 𝛽 − 𝜏)𝐹1 + (Δ + 𝜇 − 𝛾)𝐹2 = 𝑖𝜇∗𝐺1,   (6.8) 

(𝐷 + 𝜀̅ − �̅�)𝐺2 − (𝛿 + �̅� − �̅�)𝐺1 = 𝑖𝜇∗𝐹2,   (6.9) 

(Δ + �̅� − �̅�)𝐺1 − (𝛿̅ + �̅� − 𝜏̅)𝐺2 = 𝑖𝜇∗𝐹1, (6.10) 

where 𝐹1, 𝐹2, 𝐺1, and 𝐺2 represent the components of the wave functions or the so-

called Dirac spinors.  𝐷, Δ, 𝛿, and 𝛿̅ are the directional covariant derivative operators, 

which are given by 

𝐷 = 𝑙𝜇𝜕𝜇,   ∆= 𝑛𝜇𝜕𝜇,   𝛿 = 𝑚𝜇𝜕𝜇,   𝛿̅ = �̅�𝜇𝜕𝜇. (6.11) 

𝜀, 𝜌, 𝜋, 𝛼, 𝛽, 𝜏, 𝜇, and 𝛾 are the spin coefficients, and a bar over a quantity denotes 

complex conjugation. 

6.1.1 Bumblebee Black Hole in Non-Rotating Spacetime 

In this part, we consider the NP formalism in non-rotating form of bumblebee BH Eq. 

(3.11). The non-zero spin coefficients are found to be  

𝜀 = 𝛾 =
√2𝑓´

8√𝑓√1 + 𝐿
, 𝜇 = 𝜌 =

√2𝑓

2𝑟√1 + 𝐿
, 𝛽 = −𝛼 =

√2𝑐𝑜𝑡𝜃

4𝑟
. (6.12) 

To have separable solutions for the CDEs (6.7) -(6.10), we introduce the following 

ansatzes 

𝐹1 = 𝑓1(𝑧)𝐴1(𝜃)𝑒𝑥𝑝[𝑖(𝜔𝑡 + 𝑚𝜑)], 

𝐺1 = 𝑔1(𝑧)𝐴2(𝜃)𝑒𝑥𝑝[(𝜔𝑡 + 𝑚𝜑)], 

     (6.13) 

     (6.14) 

𝐹2 = 𝑓2(𝑧)𝐴3(𝜃)𝑒𝑥𝑝[𝑖(𝜔𝑡 + 𝑚𝜑)],      (6.15) 

𝐺2 = 𝑔2(𝑧)𝐴4(𝜃)𝑒𝑥𝑝[(𝜔𝑡 + 𝑚𝜑)],      (6.16) 
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where 𝑚 denotes the azimuthal number and 𝜔 is the frequency of the spinor fields. 

Since the directional derivatives are defined by 𝐷 = 𝑙𝑎𝜕𝑎, ∆= 𝑛𝑎𝜕𝑎 and 𝛿 = 𝑚𝑎𝜕𝑎, 

we have  

𝐷 =
1

√2𝑓
𝜕𝑡 + √

𝑓

2(1 + 𝐿)
𝜕𝑟 , 

(6.17) 

∆=
1

√2𝑓
𝜕𝑡 − √

𝑓

2(1 + 𝐿)
𝜕𝑟 , 

(6.18) 

𝛿 =
1

𝑟√2
𝜕𝜃 +

𝑖

𝑟√2𝑠𝑖𝑛𝜃
𝜕𝜑, (6.19) 

𝛿̅ =
1

𝑟√2
𝜕𝜃 −

𝑖

𝑟√2𝑠𝑖𝑛𝜃
𝜕𝜑. (6.20) 

After substituting Eqs. (6.12) and (6.17) -(6.20) into the CDEs, one can obtain the 

following set of equations: 

    [
𝑖𝜔

√𝑓
+

𝑟√𝑓

√1 + 𝐿
𝜕𝑟 +

𝑟𝑓´

4√𝑓(1 + 𝐿)
+

√𝑓

√1 + 𝐿
]
𝑓1
𝑓2

+
�̃�𝐴3

𝐴1
− 𝑖𝜇𝑟

𝑔1𝐴2

𝑓2𝐴1
= 0, (6.21) 

    [
𝑖𝜔

√𝑓
−

𝑟√𝑓

√1 + 𝐿
𝜕𝑟 −

𝑟𝑓´

4√𝑓(1 + 𝐿)
−

√𝑓

√1 + 𝐿
]
𝑓2
𝑓1

+
�̃�†𝐴1

𝐴3
− 𝑖𝜇𝑟

𝑔2𝐴4

𝑓1𝐴3
= 0, (6.22) 

   [
𝑖𝜔

√𝑓
+

𝑟√𝑓

√1 + 𝐿
𝜕𝑟 +

𝑟𝑓´

4√𝑓(1 + 𝐿)
+

√𝑓

√1 + 𝐿
]
𝑔2

𝑔1
−

�̃�†𝐴2

𝐴4
− 𝑖𝜇𝑟

𝑓2𝐴3

𝑔1𝐴4
= 0, (6.23) 

[
𝑖𝜔

√𝑓
−

𝑟√𝑓

√1 + 𝐿
𝜕𝑟 −

𝑟𝑓´

4√𝑓(1 + 𝐿)
−

√𝑓

√1 + 𝐿
]
𝑔1

𝑔2
−

�̃�𝐴4

𝐴2
− 𝑖𝜇𝑟

𝑓1𝐴1

𝑔2𝐴2
= 0, (6.24) 

where 𝜇 = √2𝜇∗, �̃�, and �̃�† are the angular operators, which are known as the laddering 

operators: 

�̃� = 𝜕𝜃 +
𝑚

𝑠𝑖𝑛𝜃
+

𝑐𝑜𝑡𝜃

2
,   �̃�† = 𝜕𝜃 −

𝑚

𝑠𝑖𝑛𝜃
+

𝑐𝑜𝑡𝜃

2
, (6.25) 

which lead to the spin-weighted spheroidal harmonics [169,170] with the following 

eigenvalue [171,172]: 
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𝜆𝑓 = −(𝑙 +
1

2
). (6.26) 

By considering 𝑔1 = 𝑓2, 𝑔2 = 𝑓1, 𝐴2 = 𝐴1, and 𝐴4 = 𝐴3, then we reduce the CDEs 

(6.7) – (6.10) to two coupled differential equations: 

𝑟√𝑓

√1 + 𝐿
(

𝑑

𝑑𝑟
+

𝑖𝜔√1 + 𝐿

𝑓
+

𝑓´

4𝑓
+

1

𝑟
)𝑔2 = (−𝜆𝑓 + 𝑖𝜇𝑟)𝑔1, 

          
𝑟√𝑓

√1 + 𝐿
(

𝑑

𝑑𝑟
−

𝑖𝜔√1 + 𝐿

𝑓
+

𝑓´

4𝑓
+

1

𝑟
)𝑔2 = (−𝜆𝑓 − 𝑖𝜇𝑟)𝑔2.                

(6.27) 

 

(6.28) 

Moreover, if one sets 

𝑔1(𝑟) =
𝜓1

𝑟
, 𝑔2(𝑟) =

𝜓2

𝑟
, (6.29) 

and substitute them into Eqs. (6.27) and (6.28), after some manipulations, we get: 

         
𝑟√𝑓

√1 + 𝐿
(

𝑑

𝑑𝑟
+

𝑖𝜔√1 + 𝐿

𝑓
+

𝑓´

4𝑓
)𝜓2 = (−

𝜆𝑓

𝑟
+ 𝑖𝜇)𝜓1,     (6.30) 

 

                
𝑟√𝑓

√1 + 𝐿
(

𝑑

𝑑𝑟
−

𝑖𝜔√1 + 𝐿

𝑓
+

𝑓´

4𝑓
)𝜓1 = (−

𝜆𝑓

𝑟
− 𝑖𝜇)𝜓2.             (6.31) 

By defining 𝜓1 = 𝑓−1/4𝑅1(𝑟) and 𝜓2 = 𝑓−1/4𝑅2(𝑟) and introducing the tortoise 

coordinate (𝑟∗) as 
𝑓

√1+𝐿

𝑑

𝑑𝑟
=

𝑑

𝑑𝑟∗
, , we obtain 

(
𝑑

𝑑𝑟∗
+ 𝑖𝜔)𝑅2(𝑟) = √𝑓 (−

𝜆𝑓

𝑟
+ 𝑖𝜇)𝑅1,   (6.32) 

(
𝑑

𝑑𝑟∗
− 𝑖𝜔)𝑅1(𝑟) = √𝑓 (−

𝜆𝑓

𝑟
− 𝑖𝜇)𝑅2.   (6.33) 

One can combine the above equations by letting 

𝑍+ = 𝑅1 + 𝑅2,   (6.34) 

𝑍− = 𝑅2 − 𝑅1.   (6.35) 

Thus, we end up with the following pair of one dimensional Schrödinger-like wave 

equations: 
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(
𝑑2

𝑑𝑟∗2
+ 𝜔2)𝑍± = 𝑉±𝑍±,   (6.36) 

where the effective potentials for the Dirac field read 

𝑉± = 𝑓 [(−
𝜆𝑓

𝑟
± 𝑖𝜇)

2

± 𝜆𝑓

1

√1 + 𝐿

𝑑

𝑑𝑟
(−

√𝑓

𝑟
±

𝑖𝜇√𝑓

𝜆𝑓
)] 

= 𝑓 [(−
2𝑙 + 1

2𝑟
± 𝑖𝜇)

2

∓ (𝑙 +
1

2
)

1

√1 + 𝐿

𝑑

𝑑𝑟
(−

√𝑓

𝑟
±

2𝑖𝜇√𝑓

2𝑙 + 1
)], (6.37) 

Behaviors of 𝑉± (6.37) are depicted in Fig. 6.1 

    
                          (a)                                                                (b) 

Figure 6.1: Plots of  𝑉± versus 
𝑟∗

𝑀
. The plots are governed by Eq. (6.37). 

6.1.2 Bumblebee Black Hole in Rotating Spacetime 

To proceed our analysis with the Dirac fields in the geometry of the Kerr-like black 

hole, we shall use the four-dimensional Dirac equation formulated in the Newman-

Penrose (NP) formalism. By this way, we aim to derive the effective potentials for the 

fermionic fields propagating in this geometry. To achieve this goal, we use the 

orthogonal (dragging) coordinates [173, 174] for the metric (3.16) and get 
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𝑑𝑠2 = −
∆(1 + 𝐿)

Σ
𝑑�̃�2 +

Σ

∆
𝑑𝑟2 + Σ𝑑𝜃2 +

𝑠𝑖𝑛2𝜃

Σ
𝑑�̃�2, (6.38) 

where Σ = 𝜌2 and 

𝑑�̃�2 = (𝑑𝑡 − 𝑎√1 + 𝐿𝑠𝑖𝑛2𝜃𝑑𝜑)
2
, 𝑑�̃�2 = ((𝑟2 + (1 + 𝐿)𝑎2)𝑑𝜑 − 𝑎√1 + 𝐿𝑑𝑡)

2

. 

 (6.39) 

The NP tetrad of the Kerr-like BH geometry can be given by 

𝑙𝜇 =
1

∆
[
𝑟2 + 𝑎2(1 + 𝐿)

√1 + 𝐿
, ∆,0, 𝑎],      (6.40) 

𝑛𝜇 =
1

2Σ
[
𝑟2 + 𝑎2(1 + 𝐿)

√1 + 𝐿
,−Δ, 0, 𝑎],      (6.41) 

𝑚𝜇 =
1

(𝑟 + 𝑖𝑎√1 + 𝐿𝑐𝑜𝑠𝜃)√2
[𝑖𝑎√1 + 𝐿𝑠𝑖𝑛𝜃, 0,1,

𝑖

𝑠𝑖𝑛𝜃
],      (6.42) 

�̅�𝜇 =
1

(𝑟 − 𝑖𝑎√1 + 𝐿𝑐𝑜𝑠𝜃)√2
[−𝑖𝑎√1 + 𝐿𝑠𝑖𝑛𝜃, 0,1,

−𝑖

𝑠𝑖𝑛𝜃
].      (6.43) 

where, as mentioned before a bar over a quantity denotes complex conjugation. Thus, 

the dual co-tetrad of Eqs. (6.40) – (6.43) reads 

𝑙𝜇 = [√1 + 𝐿,−
Σ

Δ
, 0, −𝑎(1 + 𝐿)𝑠𝑖𝑛2𝜃],      (6.44) 

𝑛𝜇 =
∆

2Σ
[√1 + 𝐿,

Σ

∆
, 0, −𝑎(1 + 𝐿)𝑠𝑖𝑛2𝜃],      (6.45) 

𝑚𝜇 =
1

(𝑟 + 𝑖𝑎√1 + 𝐿𝑐𝑜𝑠𝜃)√2
[𝑖𝑎√1 + 𝐿𝑠𝑖𝑛𝜃, 0, −Σ,−𝑖(𝑟2 + 𝑎2(1 + 𝐿)𝑠𝑖𝑛𝜃)], 

 (6.46) 

�̅�𝜇 =
1

(𝑟 − 𝑖𝑎√1 + 𝐿𝑐𝑜𝑠𝜃)√2
[−𝑖𝑎√1 + 𝐿𝑠𝑖𝑛𝜃, 0, −𝛴, 𝑖(𝑟2 + 𝑎2(1 + 𝐿)𝑠𝑖𝑛𝜃)]. 

 (6.47) 

Before deriving the non-zero spin coefficients, one can re-normalize the NP tetrad by 

using the spin boost Lorentz transformations: 

       𝑙 ⟶ 𝒍 = 𝜁𝑙,   𝑛 ⟶ 𝒏 = 𝜁−1𝑛,   𝑚 ⟶ 𝒎 = 𝑒𝑖𝜑𝑚,   �̅� ⟶ �̅� = 𝑒−𝑖𝜑�̅�,      (6.48) 
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where 

𝜁 = √
Δ

2Σ
, 𝑒𝑖𝜑 =

√Σ

𝑟 − 𝑖𝑎√1 + 𝐿𝑐𝑜𝑠𝜃
.      (6.49) 

Thus, we have 

𝒍𝜇 =
1

√2ΔΣ
[
𝑟2 + 𝑎2(1 + 𝐿)

√1 + 𝐿
, Δ, 0, 𝑎],    (6.50) 

𝒏𝜇 =
1

√2𝛥𝛴
[
𝑟2 + 𝑎2(1 + 𝐿)

√1 + 𝐿
,−𝛥, 0, 𝑎],    (6.51) 

𝒎𝜇 =
1

√2Σ
[𝑖𝑎√1 + 𝐿𝑠𝑖𝑛𝜃, 0,1,

𝑖

𝑠𝑖𝑛𝜃
],    (6.52) 

�̅�𝜇 =
1

√2𝛴
[−𝑖𝑎√1 + 𝐿𝑠𝑖𝑛𝜃, 0,1,

−𝑖

𝑠𝑖𝑛𝜃
],    (6.53) 

and 

𝒍𝜇 = √
Δ

2Σ
[√1 + 𝐿,−

Σ

∆
, 0, −𝑎(1 + 𝐿)𝑠𝑖𝑛2𝜃], 

 

   (6.54) 

𝒏𝜇 = √
𝛥

2𝛴
[√1 + 𝐿,

𝛴

∆
, 0, −𝑎(1 + 𝐿)𝑠𝑖𝑛2𝜃], 

 

   (6.55) 

      𝒎𝜇 =
1

√2Σ
[𝑖𝑎√1 + 𝐿𝑠𝑖𝑛𝜃, 0, −Σ,−𝑖(𝑟2 + 𝑎2(1 + 𝐿))𝑠𝑖𝑛𝜃], 

   (6.56) 

�̅�𝜇 =
1

√2𝛴
[−𝑖𝑎√1 + 𝐿𝑠𝑖𝑛𝜃, 0, −𝛴, 𝑖(𝑟2 + 𝑎2(1 + 𝐿))𝑠𝑖𝑛𝜃].  

   

   (6.57) 

The non-zero spin coefficients [164] can then be computed as 

𝜋 = −𝜏 =
Σ𝜃

2Σ√2Σ(1 + 𝐿)
+ 𝑖

𝑎𝑠𝑖𝑛𝜃Σ𝑟

2Σ√2Σ
,  (6.58) 
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𝛽 = −𝛼 = −
Σ𝜃

4Σ√2Σ(1 + 𝐿)
+

𝑐𝑜𝑡𝜃

2√2Σ(1 + 𝐿)
−

𝑖𝑎𝑠𝑖𝑛𝜃Σ𝑟

4Σ√2Σ
,    (6.59) 

𝜌 = 𝜇 = −
Σ𝑟√Δ

2Σ√2Σ
− 𝑖

𝑎√Δ(1 + 𝐿)𝑐𝑜𝑠𝜃

Σ√2Σ
,    (6.60) 

𝜀 = 𝛾 =
Δ𝑟

4√2ΔΣ
−

ΔΣ𝑟

4Σ√2ΔΣ
− 𝑖

𝑎√𝛥(1 + 𝐿)𝑐𝑜𝑠𝜃

2𝛴√2𝛴
.    (6.61) 

 After this step, we employ the CDEs Eq. (6.7) -(6.10) to find the equations governing 

the fermion fields. The form of the CDEs suggests that 

         
       𝐹𝑖

(𝑡, 𝑟, 𝜃, 𝜑) =
1

√(𝑟 − 𝑖𝑎√1 + 𝐿𝑐𝑜𝑠𝜃)

𝑒−𝑖(𝜔𝑡+𝑚𝜑)Ψ𝑖(𝑟, 𝜃),    (6.62) 

    𝐺𝑖(𝑡, 𝑟, 𝜃, 𝜑) =
1

√(𝑟 + 𝑖𝑎√1 + 𝐿𝑐𝑜𝑠𝜃)

𝑒−𝑖(𝜔𝑡+𝑚𝜑)Φ𝑖(𝑟, 𝜃).    (6.63) 

Inserting Eqs. (6.60) – (6.63) into the CDEs, we obtain 

{√Δ𝜕𝑟 −
𝑖𝜔(𝑟2 + (1 + 𝐿)𝑎2)

√∆(1 + 𝐿)
+

∆𝑟

4√∆
−

𝑖𝑚𝑎

√∆
}Ψ1(𝑟, 𝜃)

+
1

√1 + 𝐿
{𝜕𝜃 −

𝑚

𝑠𝑖𝑛𝜃
− 𝑎𝜔√1 + 𝐿𝑠𝑖𝑛𝜃 +

𝑐𝑜𝑡𝜃

2
}Ψ2(𝑟, 𝜃) 

= 𝑖𝜇(𝑟 − 𝑖𝑎√1 + 𝐿𝑐𝑜𝑠𝜃)Φ1(𝑟, 𝜃),  (6.64) 

−{√𝛥𝜕𝑟 +
𝑖𝜔(𝑟2 + (1 + 𝐿)𝑎2)

√∆(1 + 𝐿)
+

∆𝑟

4√∆
+

𝑖𝑚𝑎

√∆
}𝛹2(𝑟, 𝜃)

+
1

√1 + 𝐿
{𝜕𝜃 −

𝑚

𝑠𝑖𝑛𝜃
− 𝑎𝜔√1 + 𝐿𝑠𝑖𝑛𝜃 +

𝑐𝑜𝑡𝜃

2
}𝛹1(𝑟, 𝜃) 

= 𝑖𝜇(𝑟 − 𝑖𝑎√1 + 𝐿𝑐𝑜𝑠𝜃)𝛷2(𝑟, 𝜃), (6.65) 

{√𝛥𝜕𝑟 −
𝑖𝜔(𝑟2 + (1 + 𝐿)𝑎2)

√∆(1 + 𝐿)
+

∆𝑟

4√∆
−

𝑖𝑚𝑎

√∆
}Φ2(𝑟, 𝜃)

−
1

√1 + 𝐿
{𝜕𝜃 +

𝑚

𝑠𝑖𝑛𝜃
+ 𝑎𝜔√1 + 𝐿𝑠𝑖𝑛𝜃 +

𝑐𝑜𝑡𝜃

2
}Φ1(𝑟, 𝜃) 
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= 𝑖𝜇(𝑟 + 𝑖𝑎√1 + 𝐿𝑐𝑜𝑠𝜃)𝛹2(𝑟, 𝜃), (6.66) 

−{√𝛥𝜕𝑟 +
𝑖𝜔(𝑟2 + (1 + 𝐿)𝑎2)

√∆(1 + 𝐿)
+

∆𝑟

4√∆
+

𝑖𝑚𝑎

√∆
}Φ1(𝑟, 𝜃)

−
1

√1 + 𝐿
{𝜕𝜃 −

𝑚

𝑠𝑖𝑛𝜃
− 𝑎𝜔√1 + 𝐿𝑠𝑖𝑛𝜃 +

𝑐𝑜𝑡𝜃

2
}Φ2(𝑟, 𝜃) 

= 𝑖𝜇(𝑟 + 𝑖𝑎√1 + 𝐿𝑐𝑜𝑠𝜃)𝛹1(𝑟, 𝜃). (6.67) 

Since the functions Ψ𝑖(𝑟, 𝜃) and Φ𝑖(𝑟, 𝜃) depend on the radial and angular variables, 

one can separate them by introducing the following ansatzes 

Ψ1(𝑟, 𝜃) = ℜ+(𝑟)ℵ+(𝜃),   (6.68) 

𝛹2(𝑟, 𝜃) = ℜ−(𝑟)ℵ−(𝜃),   (6.69) 

where ℜ±(𝑟) = ∆−1/4𝑝(𝑟)±1/2.  Using the tortoise coordinate (𝑟∗) as 
𝑑

𝑑𝑟∗
=

∆√1+𝐿

𝑟2+𝑎2(1+𝐿)

𝑑

𝑑𝑟
, Eqs. (6.64) – (6.67) yield the following two one-dimensional 

Schrödinger-like radial equations: 

{
𝑑

𝑑𝑟∗
− 𝑖𝜛} 𝑝+1/2 =

𝜆

√1 + 𝐿

√Δ

𝐾
𝑝−1/2, 

 

  (6.70) 

−{
𝑑

𝑑𝑟∗
+ 𝑖𝜛} 𝑝−1/2 =

𝜆

√1 + 𝐿

√𝛥

𝐾
𝑝+1/2, 

 

  (6.71) 

in which 

𝐾 =
𝑟2 + (1 + 𝐿)𝑎2

√1 + 𝐿
,𝜛 = 𝜔 +

𝑚𝑎

𝐾
. (6.72) 

Setting the eigenvalue 𝜆 = −(𝑙 +
1

2
) for the angular equations as 

ℒ†ℵ−(𝜃)

ℵ+(𝜃)
= −𝜆,    

ℒℵ+(𝜃)

ℵ−(𝜃)
= 𝜆, (6.73) 

where ℒ and ℒ† are the angular operators 
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ℒ = 𝜕𝜃 +
𝑚

𝑠𝑖𝑛𝜃
+

𝑐𝑜𝑡𝜃

2
+ 𝑎𝜔√1 + 𝐿𝑠𝑖𝑛𝜃, (6.74) 

ℒ† = 𝜕𝜃 −
𝑚

𝑠𝑖𝑛𝜃
+

𝑐𝑜𝑡𝜃

2
− 𝑎𝜔√1 + 𝐿𝑠𝑖𝑛𝜃, (6.75) 

one can have the spin-weighted spherical harmonics [175] for the angular equations. 

Moreover, if we let 

𝑍+ = 𝑝+1/2 + 𝑝−1/2,    𝑍− = 𝑝−1/2 − 𝑝+1/2, (6.76) 

Eqs. (6.70) and (6.71) can be transformed to one-dimensional Schrödinger-like wave 

equations: 

(
𝑑2

𝑑𝑟∗2
+ 𝜛2)𝑍± = 𝑉𝑒𝑓𝑓

+ 𝑍±. (6.77) 

From now on, for the sake of simplicity, we consider the massless (µ =  0) fermions. 

In this case, the effective potentials for the propagating Dirac fields become 

𝑉𝑒𝑓𝑓
± =

∆

𝐾
{

𝜆2

𝐾(1 + 𝐿)
±

𝑑

𝑑𝑟
(
𝜆√Δ

𝐾
)}. (6.78) 

The behaviors of the effective potentials (6.78) are depicted in Figs. 6.2. a and 6.2.b, 

which stand for spin-up and spin-down particles, respectively. 
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(a)                                                                (b) 

Figure 6.2: a) Plots of 𝑉𝑒𝑓𝑓
+  versus r for the spin-(+1

2⁄ ) particles. b) Plots of 𝑉𝑒𝑓𝑓
−  

versus r for fermions spin-(−1
2⁄ ) particles. The physical parameters are chosen 

as;  𝑀 =  𝑎 =  1, and 𝜆 =  −1.5. 

As shown in the Figs. 6.2, the pick of effective potential decrease by increasing the 

LSB parameter, also there is a significant gap between the zero and non-zero LSB 

parameter behavior (Fig. (6.2.a)). In order to have wide reach, this effect for spin down 

particles is depicted only for non-zero LSB parameter. 
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Chapter 7 

GREYBODY FACTOR 

In general relativity, the GF is one of the most important physical quantities related to 

the quantum nature of a BH. A high value of the GF indicates a high probability that 

HR can reach to spatial infinity. Among the different methods, here we explain some 

of them with considering the regarded investigation as an example. 

7.1 Semi-analytic Method for Computing Greybody Factor 

Here we employ the method of, which formulates the general semi-analytic bounds for 

GFs [176], this method is applied for bosonic and fermionic particles SBHBGM and 

Bardeen BH, and for the Kerr like BH in the BGM , for both 0-spin (bosons) and 

±1
2⁄ -spin (fermions) particles. This method is not appropriate in all cases, there are 

some limitations imposed by the borders of the integral in major semi-analytic 

equation 

𝜎𝑙(𝜔) ≥ 𝑠𝑒𝑐ℎ2 (∫ ℘𝑑𝑟∗

+∞

−∞

),        (7.1) 

where 𝜎𝑙(𝜔) are the dimensionless GFs that depend on the angular momentum 

quantum number 𝑙 and frequency 𝜔 of the emitted particles, and 

℘ =
√(ℎ′)2 + (𝜔2 − 𝑉𝑒𝑓𝑓 − ℎ2)

2

2ℎ
, 

 

  (7.2) 

 We have two conditions for the certain positive function ℎ: 1) ℎ(𝑟∗) > 0 and 2) 

ℎ(−∞) = ℎ(+∞) = 𝜔 [176].  
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7.1.1 GFs of SBHBGM 

Without loss of generality, we simply set ℎ = 𝜔, which reduces the integration of 

Eq.(7.1) for SBHBGM (4.2) to 

𝜎𝑙(𝜔) ≥ 𝑠𝑒𝑐ℎ2 (∫ ℘𝑑𝑟∗

+∞

−∞

) = 𝑠𝑒𝑐ℎ2 (
√1 + 𝐿

2𝜔
∫

𝑉𝑒𝑓𝑓

𝑓(𝑟)
𝑑𝑟

+∞

𝑟ℎ

).      (7.3) 

For a massless scalar field φ, considering the scalar effective potential of non-rotating 

bumblebee BH which is exhausted in chapter 4, given in Eq. (4.12), then Eq. (7.3) 

becomes 

𝜎𝑙
𝑠(𝜔) ≥ 𝑠𝑒𝑐ℎ2 (

√1 + 𝐿

2𝜔
∫ [

𝑓′(𝑟)

(1 + 𝐿)𝑟
+

𝑙(𝑙 + 1)

𝑟2
] 𝑑𝑟

+∞

𝑟ℎ

).      (7.4) 

Taking cognizance of the integral part of Eq. (7.4): 

1

2𝜔
∫ [

𝑙(𝑙 + 1)

𝑟2
𝑓(𝑟)𝑑𝑟∗ +

𝑓′(𝑟)

𝑟(1 + 𝐿)
𝑓(𝑟)𝑑𝑟∗]

+∞

−∞

=
√1 + 𝐿

2𝜔
[𝑙(𝑙 + 1)∫

𝑑𝑟

𝑟2
+ ∫

𝑑𝑟

𝑟(1 + 𝐿)
(
2𝑀

𝑟2
)

+∞

𝑟ℎ

+∞

𝑟ℎ

] 

=
√1 + 𝐿

2𝜔𝑟ℎ
[𝑙(𝑙 + 1) +

1

2(1 + 𝐿)
],      (7.5) 

the GF of the SBHBGM due to scalar field radiation yields 

𝜎𝑙
𝑠(𝜔) ≥ 𝑠𝑒𝑐ℎ2 {

√1 + 𝐿

2𝜔𝑟ℎ
[𝑙(𝑙 + 1) +

1

2(1 + 𝐿)
]}.      (7.6) 
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Figure 7.1: 𝜎𝑙

𝑠(𝜔) versus 𝜔 graph. The plots are governed by Eq. (7.6) with 𝑀 =  1. 

The behavior of the SBHBGM due to scalar field radiation under influence of LSB 

parameter is depicted in Fig. (7.1), which shows deduction by increasing the LSB 

parameter. 

When one considers the effective potential (7.37) of the massless Dirac fields of the 

non-rotating bumblebee BH: 

𝑉±(𝜇=0) = 𝑓 [
𝜆𝑓

2

𝑟2
± 𝜆𝑓

1

√1 + 𝐿

𝑑

𝑑𝑟
(−

√𝑓

𝑟
)],      (7.7) 

the integral seen in Eq. (7.1) can be easily computed. Thus, we find the GF expression 

of the SBHBGM arising from the fermion radiation: 

𝜎𝑙
𝑓(𝜔) ≥ 𝑠𝑒𝑐ℎ2 (

1

2𝜔
∫ 𝑓 [

𝜆𝑓
2

𝑟2
± 𝜆𝑓

1

√1 + 𝐿

𝑑

𝑑𝑟
(−

√𝑓

𝑟
)] 𝑑𝑟∗

+∞

−∞

).   (7.8) 

From now on, without loss of generality, we consider only 𝑉+. After some 

manipulation, one can get 

𝜎𝑙
𝑓(𝜔) ≥ 𝑠𝑒𝑐ℎ2 [

√1 + 𝐿

2𝜔
(𝜆𝑓

2 ∫ (
1

𝑟2
)𝑑𝑟 ±

𝜆𝑓

√1 + 𝐿
∫ (1 +

𝑀

𝑟
) (

1

𝑟2
−

3𝑀

𝑟3
) 𝑑𝑟

∞

𝑟ℎ

+∞

𝑟ℎ

)], 

 (7.9) 
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which recasts in 

𝜎𝑙
𝑓(𝜔) ≥ 𝑠𝑒𝑐ℎ2 [

√1 + 𝐿

2𝜔
(𝜆𝑓

2 (
1

𝑟ℎ
) ±

𝜆𝑓

√1 + 𝐿
[
1

𝑟ℎ
−

𝑀

𝑟ℎ
2 −

𝑀2

𝑟ℎ
3 ])], (7.10) 

or in more compact form 

𝜎𝑙
𝑓(𝜔) ≥ 𝑠𝑒𝑐ℎ2 [

(𝑙 +
1
2)√1 + 𝐿

4𝑀𝜔
(𝑙 +

1

2
±

1

4√1 + 𝐿
)]. 

 

(7.11) 

We depict the greybody factors of the SBHBGM arising from the fermion (7.11) fields 

for 𝑉+(spin up particles) and 𝑉− (spin down particles) in Fig. 7.2.a and b, respectively. 

 
(a)                                                              (b) 

Figure 7.2: Plots of 𝜎𝑙
𝑓(𝜔) versus 𝜔. The plots are governed by Eq. (7.8). a) 𝜎𝑙

𝑓(𝜔) 

versus 𝜔 graph for 𝑉+. b) 𝜎𝑙
𝑓(𝜔) versus 𝜔 graph for 𝑉−. 

As is well-known, the GF of the HR must be < 1 since a BH does not perform a 

complete black body radiation with a 100% absorption coefficient. Our findings, as 

shown in Figs. 7.2. a and b, are in good agreement with the latter remark. Also, it can 

be seen from these figures that the peak values of the GFs decreases with increasing 

LSB parameter 𝐿. In summary, LSB has reducing effect on the GF. 
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7.1.2 Bardeen Black Hole Surrounded by Quintessence (BBHSQ) 

In another investigation, the GF of BBH with metric 

𝑑𝑠2 = −𝑓(𝑟)𝑑𝑡2 + 𝑓−1(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2),    (7.12) 

where 𝑓 (𝑟) has the following form 

𝑓(𝑟) = 1 −
2𝑀𝑟2

(𝑟2 + 𝛽2)
3
2

−
𝑐

𝑟3𝜔𝑞+1, (7.13) 

in which 𝑀 is the mass of the BH and 𝛽 can represent the monopole charge of a self-

gravitating magnetic field described by a nonlinear electrodynamics source or an 

electric source with a field that does not behave as the Coulomb field [58]. In fact, 𝑐 

term is related to the density of quintessence: 

𝜌𝑞 =
−3𝑐𝜔𝑞

2𝑟3(𝜔𝑞+1)
,    (7.14) 

where 𝜔𝑞 is the quintessence state parameter with range −1 ≤ 𝜔𝑞 ≤ −1/3 and 𝜌𝑞 is 

the density of the quintessence matter. To evaluate the GF of BBH, we use the semi-

analytic method as explained. Here, by plugging the general form of scalar effective 

potential 

𝑉𝑒𝑓𝑓 = 𝑓 [
𝑓ˊ

𝑟
+

𝜆

𝑟2
], (7.15) 

into the semi-analytic greybody formula (7.1), also applying the tortoise coordinate as 

𝑑𝑟∗ =
𝑑𝑟

𝑓(𝑟)
, we can obtain 

𝜎𝑙(𝜔) ≥ 𝑠𝑒𝑐ℎ2
1

2𝜔
∫ (

𝜆

𝑟2
+

1

𝑟

𝑑𝑓

𝑑𝑟
) 𝑑𝑟.

+∞

𝑟ℎ

    (7.16) 

After making a straightforward calculation, one finds 

𝜎𝑙(𝜔) ≥ 𝑠𝑒𝑐ℎ2

(

 
 1

2𝜔

[
 
 
 
 
𝑙(𝑙+1)

𝑟ℎ
+

𝑐(3𝜔𝑞+1)

(3𝜔𝑞+2)𝑟ℎ
(3𝜔𝑞+2)

−
2𝑀

𝛽2 +
2𝑀

𝛽2√1+
𝛽2

𝑟ℎ
2

+
2𝑀

𝑟ℎ
2(1+

𝛽2

𝑟ℎ
2)

3
2

]
 
 
 
 

)

 
 

,   (7.17)  
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where 𝑟ℎ represents the event horizon. 

 
Figure 7.3: 𝜎𝑙(𝜔) versus ω graph. The plots are governed by Eq. (7.13). For different 

𝜔𝑞 values, the corresponding event horizons (i.e, 𝑓(𝑟ℎ) = 0) are illustrated. The 

physical parameters for this plot are chosen as 𝑀 =  𝑙 =  𝑐 =  1, and 𝛽 =  2. 

We depict the GFs of the BBHSQ in Fig. 7.3. As seen from Fig. 7.3, the values of 

𝜔𝑞and event horizon (𝑟ℎ) are linearly proportional to each other. It is obvious that 

greybody radiation strictly depends also on the state parameter 𝜔𝑞. According to the 

information we obtained from the graph, a similar radiation emission occurs around 

critical 𝜔𝑞 values (−13 and −1). 

However, while 𝜔𝑞 value moves away from those critical values, then the radiation 

may decrease or increase depending on 𝜔𝑞. 

We shall derive the fermionic GFs of the neutrinos emitted from BBHSQ. To this end, 

we consider the case of 𝜔𝑞 = −
1

3
 in order to obtain analytical results from Eq. (7.1). 

In the case of 𝜔𝑞 = −
1

3
 the potentials can be rewritten as [38] 
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𝑉± =
𝜆

𝑟2
𝑓 ±

𝜆(𝑟 − 𝑀)

𝑟3 √𝑓 ∓
2𝜆

𝑟2
𝑓

3
2,    (7.18) 

in which 

𝑓 = 1 −
2𝑀𝑟2

(𝑟2 + 𝛽2)
3
2

− 𝑐,    (7.19) 

Following the procedure described in the previous section [see Eqs. (7.1) -(7.3)], one 

can get 

𝜎𝑙
±(𝜔) ≥ 𝑠𝑒𝑐ℎ2 (

1

2𝜔
∫ [

𝜆

𝑟2
± (

𝜆

𝑟2
−

𝜆𝑀

𝑟3
)

1

√𝑓
∓

2𝜆

𝑟2 √𝑓] 𝑑𝑟
+∞

𝑟ℎ

),    (7.20) 

in which 𝜎𝑙
+(𝜔) and 𝜎𝑙

−(𝜔) stand for the GFs of the spin-up and spin-down fermions, 

respectively. After performing some tedious computations, the GFs of the fermions 

can be obtained as follows 

𝜎𝑙
±(𝜔) ≥ 𝑠𝑒𝑐ℎ2 {

𝜆

2𝜔
[
1

𝑟
± (

1

𝑟ℎ√1−𝑐
+

𝑀𝜆

2(1−𝑐)
3
2𝑟ℎ

2
+

𝑀2

2(1−𝑐)
5
2𝑟ℎ

3
+

−3𝑀𝛽2(1−𝑐)2+5𝑀3

8𝑟ℎ
4(1−𝑐)

7
2

+

−9𝑀2𝛽2(1−𝑐)2+
35

4
𝑀4

10𝑟ℎ
5(1−𝑐)

9
2

−
𝑀

2√1−𝑐𝑟ℎ
2 −

𝑀2

3(1−𝑐)
3
2𝑟ℎ

3
−

3𝑀3

8𝑟ℎ
4(1−𝑐)

5
2

−
−3𝑀2𝛽2(1−𝑐)2+5𝑀4

10𝑟ℎ
5(1−𝑐)

7
2

−

−9𝑀3𝛽2(1−𝑐)2+
35

4
𝑀5

12𝑟ℎ
6(1−𝑐)

9
2

) ∓ (
2√1−𝑐

𝑟ℎ
−

𝑀

√1−𝑐𝑟ℎ
2 −

𝑀2

3(1−𝑐)
3
2𝑟ℎ

2
+

√1−𝑐(3𝑀𝛽2(1−𝑐)2−𝑀3)

4𝑟ℎ
4(1−𝑐)3

+

√1−𝑐(12𝑀2𝛽2(1−𝑐)2−5𝑀4)

20𝑟ℎ
5(1−𝑐)4

)]}  (𝑓𝑜𝑟 0 ≤ 𝑐 < 1).                                                          (7.21)  

In order to observe the impression of quintessence on greybody radiation Eq. (7.21) , 

the Figs. 7.4 and 7.5 are illustrated bases on variating the density parameter of 

quintessence 𝑐. The graphs are sketched for zero (and almost zero) and non-zero 

density parameter, which increasing in parameter 𝑐 and decreasing in 𝑟ℎ, reduce the 

GFs in both cases for spin up particles. 
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(a)                                                             (b) 

Figure 7.4: 𝜎𝑙
+(𝜔) versus 𝜔 graph for the case of 𝜔𝑞 = −1/3. The plots are 

governed by Eq. (7.18). For different c values, the corresponding event horizons (i.e, 

𝑓(𝑟ℎ) = 0) are illustrated. The physical parameters for these plots are chosen as 

𝑀 =  𝑙 =  1, and 𝛽 =  0.5. a) for 𝑐 ≈ 0 values, b) for 𝑐 > 0 values. 

As can be seen from Figs. 7.5. a and b, the GFs of spin-down fermions exhibit almost 

the same behaviors as spin-up particles as 𝑐 changes. 

 
(a)                                                      (b) 

Figure 7.5: 𝜎𝑙
−(𝜔) versus 𝜔 graph for the case of 𝜔𝑞 = −1/3. The plots are 

governed by Eq. (65). For different 𝑐 values, the corresponding event horizons (i.e, 

𝑓(𝑟ℎ) = 0) are illustrated. The physical parameters for these plots are chosen as 

𝑀 =  𝑙 =  1, and 𝛽 =  0.5. a) for 𝑐 ≈ 0 values, b) for 𝑐 > 0 values. 

7.1.3 For Kerr-like Bumblebee Black Hole 

We also applied the semi-analytic method for defining the GF of bumblebee gravity 

model in the Kerr spacetime. Derivation of the GF can be conducted as previous parts 

by using Eq. (7.1). 
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To have an immaculately integration, let us consider the massless form of the bosonic 

effective potential (5.58). Since the tortoise coordinate (5.56) varies from −∞ (the 

event horizon 𝑟ℎ: lower boundary of the integral) and to +∞ (spatial infinity: upper 

boundary of the integral) in Eq. (7.1) by considering the regarded conditions,  we get 

𝜎𝑙 ≥ 𝑠𝑒𝑐ℎ2 ,                                      

((
1

2𝜔
∫

√1 + 𝐿

(𝑟2 + (1 + 𝐿)𝑎2)
[

∆′𝑟 + ∆

(𝑟2 + (1 + 𝐿)𝑎2)
−

3𝑟2∆

(𝑟2 + (1 + 𝐿)𝑎2)2

+∞

𝑟ℎ

+
4𝑀𝑟𝑎𝑚𝜔

∆√1 + 𝐿
−

𝑚2𝑎2

∆
+ (𝜔2𝑎2(1 + 𝐿) + 𝜆)] 𝑑𝑟)), 

    

 

 

     (7.22) 

After using the series and evaluating the integral, the GF can be obtained as follows 

𝜎𝑙 ≥ 𝑠𝑒𝑐ℎ2 (
√1+𝐿

2𝜔
) {(−

8𝑎2

3𝑟ℎ
3 +

𝑀

𝑟ℎ
2(1+𝐿)

−
2𝑎4(1+𝐿)

5𝑟ℎ
5 +

2𝑀𝑎2

𝑟ℎ
4 ) − 𝑚2𝑎2(1 + 𝐿) (

1

3𝑟ℎ
3 +

𝑀

2𝑟ℎ
4 +

4𝑀2−2𝑎2(1+𝐿)

5𝑟ℎ
5 −

3𝑀𝑎2(1+𝐿)−4𝑀3

3𝑟ℎ
6 ) + (𝜔2𝑎2(1 + 𝐿) + 𝜆) [

1

𝑟ℎ
−

(1+𝐿)𝑎2

3𝑟ℎ
3 +

(1+𝐿)2𝑎4

5𝑟ℎ
5 ] + 4𝑀𝑎𝑚𝜔√1 + 𝐿 (

1

2𝑟ℎ
2 +

2𝑀

3𝑟ℎ
3 −

(1+𝐿)𝑎2−2𝑀2

2𝑟ℎ
4 −

6𝑀𝑎2(1+𝐿)−8𝑀3

5𝑟ℎ
5 )}.        (7.23)  

In Fig. 7.6, the behaviors of the obtained bosonic GF of the Kerr-like black hole are 

demonstrated. Thus, the effect of LSB on the bosonic GF is visualized. 

 



66 
 

 
Figure 7.6: Plots of 𝜎𝑙(𝜔) versus 𝜔 for the spin-0 particles. The physical parameters 

are chosen as; 𝑀 =  𝑟 =  1, 𝑎 =  0.03 and 𝜆 =  2. 

As can be seen from the plots, 𝜎𝑙 clearly decreases with the increasing LSB parameter. 

Namely, LSB plays a kind of dimmer role for the GF of spin-0 particles. 

Now, we shall concentrate on the GF of the fermions to elicit the effect of the LSB on 

their emission from the Kerr-like BH in the BGM. For this purpose, we use the 

effective potentials (6.78) in Eq. (7.1): 

𝜎𝑙
(±)(𝜔) ≥ 𝑠𝑒𝑐ℎ2 (∫

𝑑𝑟

2𝜔
{

𝜆2𝑑𝑟

(𝑟2 + 𝑎2(1 + 𝐿))√1 + 𝐿
± 𝜆

𝑑

𝑑𝑟
(

√Δ(1 + 𝐿)

𝑟2 + 𝑎2(1 + 𝐿)
)}

+∞

𝑟ℎ

). 

      (7.24) 

We then employ the classical term-by-term integration technique used for obtaining 

asymptotic expansions of integral, which requires the integrand to have an uniform 

asymptotic expansion in the integration variable. Thus, the evaluation of the integral 

(7.21) yields 
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𝜎𝑙
(±)

(𝜔) ≥ 𝑠𝑒𝑐ℎ2 

(
𝜆

2𝜔
{

𝜆

√1 + 𝐿𝑟ℎ
(1 −

𝑎2(1 + 𝐿)

3𝑟ℎ
2 ) ± (

𝑀2 − 𝑎2(1 + 𝐿)

2𝑟ℎ
3 )

∓ [𝑀 (
𝑀

3𝑟ℎ
3 +

3

8

𝑀2 − 𝑎2(1 + 𝐿)

𝑟ℎ
4 ) +

1

𝑟ℎ
−

𝑀

𝑟ℎ
2]}). 

      

     (7.25) 

The behaviors of both spin-(+1/2) and spin-(−1/2) under the influence of LSB effect 

are depicted in Figs. 7.7.a and b, respectively. As it shown, the GF grows by rising the 

LSB parameter which is contrary to the effect of LSB parameter for SBHBGM in the 

almost same level 

 
(a)                                                            (b) 

Figure 7.7: Plots of 𝜎𝑙+(𝜔) versus 𝜔 for fermions with spin-(+1
2⁄ ) (a) and plots of 

𝜎𝑙−(𝜔)versus 𝜔 for the spin-(−1
2⁄ ) particles (b). The physical parameters are 

chosen as;  𝑀 =  𝑟 =  1, 𝑎 =  0: 03 and 𝜆 =  −1.5. 

7.2 Miller-Good Transformation for Bardeen Black Hole 

In this section, we shall focus on the Miller–Good transformation method [177] to 

derive the GF of the Schwarzschild BH surrounded by quintessence (SBHSQ). The 

Miller–Good transformation generates a general bound on quantum transmission 
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probabilities. In this method, a particular transformation is applied to the Schrödinger 

equation 

𝑑2𝑆(𝑟)

𝑑𝑟∗2
+ (𝜔2 − 𝑉𝑒𝑓𝑓)𝑆(𝑟) = 0,  (7.26) 

 in such a way that the effective potential (7.12) is modified in order to yield a better 

transmission probability for the Hawking quanta [178]. 

Defining the new radial function 𝑆(𝑟) =
𝜓(𝑟)

√𝑓
 in one-dimensional Schrödinger equation 

where the effective radial potential in the Schrödinger-like wave equation (7.23) reads 

𝑉𝑒𝑓𝑓 =
𝑓

𝑟
(𝑓´ +

𝜆

𝑟
). (7.27) 

Eq. (7.23) can be rewritten in the following compact form: 

𝑑2𝜓(𝑟)

𝑑𝑟2
+ 𝑘2(𝑟)𝜓(𝑟) = 0, (7.28) 

where 

𝑘2(𝑟) = {
𝜔2

𝑓2
−

𝑓´

𝑟𝑓
−

𝜆

𝑟2𝑓
−

𝑓´´

2𝑓
+

𝑓´2

4𝑓2
}. (7.29) 

Considering the Miller–Good transformation method, we first apply the following 

special transformation: 

𝜓(𝑟) =
1

√𝑅´(𝑅)
Ψ[𝑅(𝑟)]. (7.30) 

in which 𝑅 is the new position variable such that 𝑅 (𝑟) is an invertible function, which 

implies that 
𝑑𝑅(𝑟)

𝑑𝑟
≠ 0. Without loss of generality, one can assert 

𝑑𝑅(𝑟)

𝑑𝑟
> 0, whence 

also 
𝑑𝑟

𝑑𝑅(𝑟)
> 0. Thus, the derivatives of the new function (7.27) yield 

𝜓´(𝑟) = √𝑅´(𝑟)Ψ𝑅(𝑅(𝑟)) −
1

2

𝑅´´(𝑟)

𝑅´(𝑟)√𝑅´(𝑟)
Ψ(𝑅(𝑟)),    (7.31) 
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𝜓´´(𝑟) = 𝑅´(𝑟)√𝑅´(𝑟)Ψ𝑅𝑅(𝑅(𝑟)) −
1

2

𝑅´´´(𝑟)

𝑅´(𝑟)√𝑅´(𝑟)
Ψ(𝑅(𝑟)) 

+
3

4

𝑅´´2(𝑟)

𝑅´2(𝑟)√𝑅´2(𝑟)
Ψ(𝑅(𝑟)). 

 

   (7.32) 

where Ψ𝑅 indicates 
𝑑Ψ

𝑑𝑅
 . Thus, Eq. (7.27) recasts in 

Ψ𝑅𝑅(𝑅(𝑟)) + {
𝑘2

𝑅´2(𝑟)
+

3

4

𝑅ˊˊ2(𝑟)

𝑅´4(𝑟)
−

1

2

𝑅ˊˊˊ(𝑟)

𝑅´3(𝑟)
}Ψ(𝑅(𝑟)) = 0.    (7.33) 

Letting 

𝐾2 =
1

𝑅´2(𝑟)
{
𝜔2

𝑓2
−

𝑓´

𝑟𝑓
−

𝜆

𝑟2𝑓
−

𝑓ˊˊ

2𝑓
+

𝑓´2

4𝑓2
−

1

2

𝑅ˊˊˊ(𝑟)

𝑅ˊ(𝑟)
+

3

4

𝑅´´2(𝑟)

𝑅´2(𝑟)
},    (7.34) 

one can rewrite Eq. (7.30) as a new Schrödinger-like wave equation: 

Ψ𝑅𝑅 + 𝐾2Ψ = 0.    (7.35) 

Namely, Schrödinger equation (7.27) expressed in terms of 𝜓(𝑟) and 𝐾(𝑟) has been 

transformed into a new Schrödinger equation in terms of Ψ(𝑅(𝑟)) and 𝐾 (𝑅 (𝑟)). 

Meanwhile, the following combination 

√𝑅´(
1

√𝑅´(𝑟)
)

ˊˊ

= −
1

2

𝑅ˊˊˊ(𝑟)

𝑅ˊ(𝑟)
+

3

4

𝑅ˊˊ2(𝑟)

𝑅´4(𝑟)
,    (7.36) 

is named as the “Schwarzian derivative” [180]. Thus, 𝐾 can be simplified as 

𝐾2 =
1

𝑅´2(𝑟)
{
𝜔2

𝑓2
−

𝑓´

𝑟𝑓
−

𝜆

𝑟2𝑓
−

𝑓ˊˊ

2𝑓
+

𝑓´2

4𝑓2
+ √𝑅´(

1

√𝑅´(𝑟)
)

ˊˊ

}.    (7.37) 

As we have mentioned above, the parameter 𝑅ˊ(𝑟) must be positive. To this end, we 

choose another parameter as 

𝑗(𝑟) ≡ 𝑅ˊ(𝑟),    (7.38) 

with 𝑗 (𝑟)  >  0, we can then write 
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𝐾2 =
1

𝑗2(𝑟)
{
𝜔2

𝑓2
−

𝑓´

𝑟𝑓
−

𝜆

𝑟2𝑓
−

𝑓ˊˊ

2𝑓
+

𝑓´2

4𝑓2
−

1

2

𝑗ˊˊ(𝑟)

𝑗(𝑟)
+

3

4

𝑗´2(𝑟)

𝑗2(𝑟)
}.    (7.39) 

Furthermore, setting 

𝑗(𝑟) =
1

𝐽2(𝑟)
,    (7.40) 

with 𝐽 (𝑟)  >  0, we get 

𝑗ˊ(𝑟) = −
2𝐽ˊ(𝑟)

𝐽3(𝑟)
,   𝑗ˊˊ(𝑟) =

6𝐽ˊ2(𝑟)

𝐽4(𝑟)
−

2𝐽ˊˊ(𝑟)

𝐽3(𝑟)
,    (7.41) 

and 

𝐾2 = 𝐽4(𝑟) {
𝜔2

𝑓2
−

𝑓´

𝑟𝑓
−

𝜆

𝑟2𝑓
−

𝑓ˊˊ

2𝑓
+

𝑓´2

4𝑓2
+

𝐽ˊˊ(𝑟)

𝐽(𝑟)
}.    (7.42) 

In the case of 𝐽 =  1, one can immediately observe that 𝐾2(𝑅) = 𝑘2(𝑟); therefore, 

both potentials [𝐾2(𝑅) and 𝑘2(𝑟)] have the same transmission amplitudes and 

consequently the same transmission probability. The second probability is to find the 

relation between two parameters 𝐽 and 𝑓 such that we will have different potentials 

and whence different transmission probabilities. For the latter case, one can get the 

transmission probability from the following definition [177]: 

𝒯 ≥ 𝑠𝑒𝑐ℎ2 {∫ ℘
+∞

−∞

𝑑𝑟}, (7.43) 

in which ℘ is given by 

℘ =
√(ℎˊ)2 + [𝑘2 − ℎ2]2

2ℎ
, (7.44) 

with ℎ (𝑟)  >  0. Let us redefine function ℘ as ℘̃ in order to show the difference 

between 𝑘 (𝑟) and 𝐾 (𝑅). Then, we have 

𝒯 ≥ 𝑠𝑒𝑐ℎ2 {∫ ℘̃
+∞

−∞

𝑑𝑅}, (7.45) 

where ℘̃ is the function with respect to new transformation parameters and 
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𝑑𝑅 = 𝑅ˊ𝑑𝑟 = 𝑗𝑑𝑟, (7.46) 

so that Eq. (7.45) is given by 

𝒯 ≥ 𝑠𝑒𝑐ℎ2 {∫
√(ℎ𝑅)2 + [𝐾2 − ℎ2]2

2ℎ

+∞

−∞

𝑑𝑅}. (7.47) 

After substituting Eqs. (7.39) and (7.46) into Eq. (7.47) and further using ℎ𝑅 =
𝑑ℎ

𝑑𝑟

𝑑𝑟

𝑑𝑅
, 

one can obtain  

𝒯 ≥

𝑠𝑒𝑐ℎ2 {∫
1

2ℎ
√(

ℎˊ

𝑅ˊ
)
2

+ [
1

𝑗2 {
𝜔2

𝑓2 −
𝑓ˊ

𝑟𝑓
−

𝜆

𝑟2𝑓
−

𝑓ˊˊ

2𝑓
+

𝑓´2

4𝑓2 −
1

2

𝑗ˊˊ(𝑟)

𝑗(𝑟)
+

3

4

𝑗´2(𝑟)

𝑗2(𝑟)
} − ℎ2]

2+∞

−∞
𝑗𝑑𝑟}.  

 (7.48) 

As we have mentioned before 𝑅ˊ =  𝑗, Eq. (7.48) recasts in 

𝒯 ≥

𝑠𝑒𝑐ℎ2 {∫
1

2ℎ
√(ℎˊ)2 + [

1

𝑗
{
𝜔2

𝑓2 −
𝑓ˊ

𝑟𝑓
−

𝜆

𝑟2𝑓
−

𝑓ˊˊ

2𝑓
+

𝑓´2

4𝑓2 −
1

2

𝑗ˊˊ(𝑟)

𝑗(𝑟)
+

3

4

𝑗´2(𝑟)

𝑗2(𝑟)
} − 𝑗ℎ2]

2+∞

−∞
𝑑𝑟}.  

 (7.49) 

which gives us the first form of the improved bound with the condition of ℎ (𝑟)  >

 0; then, 𝑗 (𝑟)  >  0, too. One can further improve the bound by transforming j to 𝐽 as 

follows 

𝑑𝑅 = 𝑅ˊ𝑑𝑟 = 𝐽−2𝑑𝑟. (7.50) 

Therefore, the second form of the improved bound for the transmission probability is 

given by 

𝒯 ≥ 𝑠𝑒𝑐ℎ2 {∫
1

2ℎ
√(ℎˊ)2 + [𝐽2 {

𝜔2

𝑓2
−

𝑓ˊ

𝑟𝑓
−

𝜆

𝑟2𝑓
−

𝑓ˊˊ

2𝑓
+

𝑓´2

4𝑓2
+

𝐽ˊˊ

𝐽
} −

ℎ2

𝐽2
]

2+∞

−∞

𝑑𝑟}. 

 (7.51) 

Here, we consider 𝐽±∞ ≠ 1 with the help of ℎ (+∞)  =  ℎ (−∞)  =  𝜔 and then ℎˊ =

 0. So, one can write Eq. (7.48) as 
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𝒯 ≥ 𝑠𝑒𝑐ℎ2 {
1

2𝜔
∫ [𝐽2 {

𝜔2

𝑓2
−

𝑓ˊ

𝑟𝑓
−

𝜆

𝑟2𝑓
−

𝑓ˊ

2𝑓
+

𝑓´2

4𝑓2
+

𝐽ˊˊ

𝐽
} −

𝜔2

𝐽2
]

+∞

−∞

𝑑𝑟}. (7.52) 

Moreover, we assume that the first and second terms of the integral are equal to make 

Eq. (7.52) more expressive. To this end, we set 𝐽2 = 𝑓 so then 

𝑓ˊ = 2𝐽𝐽ˊ,    𝑓ˊˊ = 2𝐽ˊ2 + 2𝐽𝐽ˊˊ.  (7.53) 

We finally compute the transmission probability of the SBHSQ as follows: 

𝒯 ≥ 𝑠𝑒𝑐ℎ2 {−
1

2𝜔
∫ (

2𝐽𝐽ˊ

𝑟
+

𝜆

𝑟2
)𝑑𝑟

+∞

−∞

}. (7.54) 

Now, we shall focus on the GF of Schwarzschild BH surrounded by quintessence, 

namely the SBHSQ. Within a semi-classical approximation, GFs can be investigated 

by using the Schrödinger-like one-dimensional wave equation to study the field 

scattering by the BH background. Actually, with the help of this method, we will be 

able to define the transmission and reflection coefficients of the BH. Here, we 

concentrate on Eqs. (7.27) and (7.39) to define two kinds of GFs and compare the 

obtained results over their graphs. The formula of the general semi-analytic bounds for 

the GFs is Eq. (7.45). After substituting the general form of the effective potential 

(7.27) and the derivative of the metric function into 

𝜎𝑙(𝜔) ≥ 𝑠𝑒𝑐ℎ2 (
1

2𝜔
∫ 𝑉𝑒𝑓𝑓

𝑑𝑟

𝑓(𝑟)

+∞

𝑟ℎ

), 

 

(7.55) 

we obtain 

𝜎𝑙(𝜔) ≥ 𝑠𝑒𝑐ℎ2 (
1

2𝜔
∫ (

2𝑀

𝑟3
−

𝑐

𝑟
+

𝜆

𝑟2
) 𝑑𝑟

+∞

𝑟ℎ

). (7.56) 

But the result of Eq. (7.56) has a natural logarithm (𝑙𝑛) term, which means that the GF 

of SBHSQ is measureless. Namely, the method that we have followed is failed. To 

overcome this difficulty, we shall consider the Miller– Good transformation. To this 

end, let us rewrite Eq. (7.54) in the form of 
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𝒯 ≥ 𝑠𝑒𝑐ℎ2 {−
1

2𝜔
∫ (

2𝑀 − 𝑐𝑟2 + 𝜆𝑟

𝑟3
)

𝑟𝑑𝑟

𝑟 − 2𝑀 − 𝑐𝑟2

+∞

𝑟ℎ

}, (7.57) 

which can be rewritten as 

𝒯 ≥ 𝑠𝑒𝑐ℎ2 {
1

2𝜔
∫ (2𝑀 − 𝑐𝑟2 + 𝜆𝑟) (

1

𝑟4
)

𝑑𝑟

𝑐 +
2𝑀
𝑟2 −

1
𝑟

+∞

𝑟ℎ

}. 

 

(7.58) 

By considering the following asymptotic expansion 

1

𝑑𝑟

𝑐 +
2𝑀
𝑟2 −

1
𝑟

≅
1

𝑐
+

1

𝑐2𝑟
+

−
2𝑀
𝑐 +

1
𝑐2

𝑐𝑟2
… 

 

   (7.59) 

we find (for the similar procedure, the reader is refereed to [180]) 

𝜎𝑙(𝜔) ≡ 𝒯 ≥ 𝑠𝑒𝑐ℎ2 

{
1

2𝜔
[
2𝑀

3𝑐𝑟ℎ
3 +

2𝑀

4𝑐2𝑟ℎ
4 +

2𝑀 (
1
𝑐2 −

2𝑀
𝑐 )

5𝑐𝑟ℎ
5 −

1

𝑟ℎ
−

1

2𝑐𝑟ℎ
2  −

−
2𝑀
𝑐 +

1
𝑐2

3𝑟ℎ
3

+
𝜆

2𝑐𝑟ℎ
2 +

𝜆

3𝑐2𝑟ℎ
3 +

𝜆 (−
2𝑀
𝑐 +

1
𝑐2)

4𝑐𝑟ℎ
4 ]}.                

 

   (7.60) 

 

 The above result represents the GF of SBHSQ, which is obtained by the Miller–Good 

transformation. It is obvious that the specific form of the GF depends on some 

parameters which are related to the potential barrier. This is indeed the case that gives 

the greybody factor in terms of the transmission coefficient corresponding to the 

potential barrier. The result obtained in Eq. (7.60) is depicted in Fig. 7.8. 
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Figure 7.8: 𝜎𝑙(𝜔) versus ω graph. The plots are governed by Eq. (7.60). For different 

c values, the corresponding GFs are illustrated. The physical parameters for this plot 

are chosen as 𝑀 =  𝑙 =  1 

7.3 Rigorous Bound on Greybody Factor in dRGT Massive Gravity 

In this section, we shall apply the rigorous bounds [181] on the GF to the 3 +  1-

dimensional black hole in dRGT massive gravity coupled with nonlinear 

electrodynamics. To this end, we first recall the formulation of the GF (T) (7.1) and 

(7.2) with the same condition to simplifies Eq. (7.2) to: [182,183] 

𝑇 ≥ 𝑠𝑒𝑐ℎ2 (
1

2𝜔
∫ 𝑉

+∞

−∞

𝑑𝑟∗).    (7.61) 

In the part 5.2, the scalar perturbations for charged dRGT massive gravity coupled 

with nonlinear electrodynamics were obtained for first and second solution. Here, the 

greybody radiation is considered for two different effective potentials came by part 5.2 

regarded to first and second solution. 
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First solution 

By using the tortoise coordinate and the effective potential of first solution (Eq. (5.46)), 

then the GF equation (7.61) can be written as 

𝑇 ≥ 𝑠𝑒𝑐ℎ2
1

2𝜔
 

{∫ (
𝜆

𝑟2
+

2𝑀

𝑟3
−

2𝑞2

𝑟4
+ 2𝐴 −

𝐵

𝑟
)

𝑅ℎ

𝑟ℎ

𝑑𝑟

+ ∫
2𝜔𝑞2𝑟 − 𝑞4

𝐴𝑟4 − 𝐵𝑟3 + (1 + 𝑐)𝑟2 − 2𝑀𝑟 + 𝑞2
𝑑𝑟

𝑅ℎ

𝑟ℎ

− ∫
𝜔𝑞3𝑏

2(𝐴𝑟5 − 𝐵𝑟4 + (1 + 𝑐)𝑟3 − 2𝑀𝑟2 + 𝑞2𝑟)
𝑑𝑟

𝑅ℎ

𝑟ℎ

},           

    

 

 

 

   (7.62) 

the result is an awkward formula from the point of view of integration. To prevail over 

this issue we use the Taylor expansion, which accomplishes the GF as 

𝑇1 ≥ 𝑠𝑒𝑐ℎ2 1

2𝜔
{−

𝜆

𝑅ℎ−𝑟ℎ
−

𝑀

𝑅ℎ
2−𝑟ℎ

2 +
2𝑞2

3(𝑅ℎ
3−𝑟ℎ

3)
− (𝐵 +

1

2
𝜔𝑞𝑏) 𝑙𝑛(𝑅ℎ − 𝑟ℎ) + 𝑊1(𝑅ℎ −

𝑟ℎ) + 𝑋1(𝑅ℎ
2 − 𝑟ℎ

2) + 𝑌1(𝑅ℎ
3 − 𝑟ℎ

3) + 𝑍1(𝑅ℎ
4 − 𝑟ℎ

4) − 𝑃1(𝑅ℎ
5 − 𝑟ℎ

5)},                   (7.63)                     

where 

𝑊1 = 2𝐴 −
𝜔𝑏𝐴

𝑞
− 𝑞2,  (7.64) 

𝑋1 = (𝜔 +
𝜔𝑏

4𝑞2
(𝑞(1 + 𝑐) −

4𝑀2

𝑞
) − 𝑀),  (7.65) 

𝑌1 = −
𝜔𝑏

6𝑞2
(𝑞𝐵 −

4𝑀(𝑞2(1 + 𝑐) − 2𝑀2)

𝑞3
) +

𝑞2(1 + 𝑐) − 4𝑀2 + 4𝜔𝑀

3𝑞2
,  (7.66) 

𝑍1 =
𝜔

2𝑞2
(−(1 + 𝑐) +

4𝑀2

𝑞2
)  

−
1

8𝑞2
(−𝜔𝑞𝑏𝐴 +

𝜔𝑏(1 + 𝑐)2

𝑞
+

4𝜔𝑏𝑀(𝐵𝑞4 − 3𝑀𝑞2(1 + 𝑐) + 4𝑀3)

𝑞5
)  
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−
1

4𝑞2
(𝑞2𝐵 +

4𝑀(−𝑞2(1 + 𝑐) + 2𝑀2)

𝑞2
),  (7.67) 

and 

𝑃1 =
𝜔𝑏

5𝑞2
((−𝑞2(1 + 𝑐) + 6𝑀2)𝐵 − 2𝑀𝐴𝑞2) 

 

−
2𝜔𝑏𝑀(1 + 𝑐)

5𝑞7
(−𝑞2(1 + 𝑐) + 2𝑀2) 

 

−
𝜔𝑏𝑀

5𝑞9
(−𝑞4(1 + 𝑐2) + 12𝑀2𝑞2(1 + 𝑐) − 2𝑐𝑞4 − 16𝑀4) 

 

+
1

5𝑞2
(−𝑞2𝐴 + 4𝐵𝑀 + (1 + 𝑐)2 −

4𝑀2(3𝑞2(1 + 𝑐) − 4𝑀2)

𝑞4
) 

 

−
2

2𝑞2
(𝜔𝐵 +

4𝜔𝑀(−𝑞2(1 + 𝑐) + 2𝑀2)

𝑞4
), 

 

(7.68) 

Two parameters 𝑅ℎ and 𝑟ℎ, are upper and lower rigorous bounds respectively, which 

can obtained by [184] 

                𝑅ℎ =
2

(−2𝐴)
1
3

[√
2√3

𝛽
+ 4𝑐𝑜𝑠 (

1

3
𝑠𝑒𝑐−1 (

√√3

𝛽
+2(2√2𝛽+√6)

5𝛽+3√3
)) − 1],           (7.69) 

and the lower one reads 

             𝑟ℎ =
−2

(−2𝐴)
1
3

[√
2√3

𝛽
+ 4𝑐𝑜𝑠 (

1

3
𝑠𝑒𝑐−1 (

√√3

𝛽
+2(2√2𝛽+√6)

5𝛽+3√3
) +

𝜋

3
) + 1].       (7.70) 

We demystify our results obtained, by illustrating the GFs for different charge values, 

in this case to approach in ideal form of figure we got a significantly smaller amount 

of 𝑏 (around 0.1) than its value (𝑏 =  50) in effective potential case. The remarkable 

point in Fig. 6.9 is that GF for ℎ0 = 0 behaves as in the case of the AdS/dS black string 

[184,185]. The Fig. (7.9) is shown the changes of the GF by varying the charge 

parameter 𝑞, this changes are not stable since it grows by rising charge parameter up 

to 𝑞 = 4.5 and the start to decrease for 𝑞 = 5 and 𝑞 = 5.5. In another word, from Fig. 
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(7.9), one can see that the GF increases by only increasing a small range of charge but 

afterwards it has an inverse behavior. 

 
Figure 7.9: Plots of 𝑇 versus 𝜔 for the metric function𝑓1. The plot is governed by Eq. 

(7.63). The physical parameters are chosen as; 𝑀 =  1, 𝑏 =  0.1, 𝜆 =  0, 𝐴 =  −1, 

and 𝐵 =  𝐶 =  0. 

Second solution 

Based on previous part, let us substitute the effective potential of second solution Eq. 

(5.48) into Eq. (7.61) to get, 

𝑇2 ≥ 𝑠𝑒𝑐ℎ2
1

2𝜔
  

{∫ (
𝜆

𝑟2
+

2𝑀

𝑟3
−

2𝑞2

𝑟4
− 2𝐷)𝑑𝑟

𝑅ℎ

𝑟ℎ

+ ∫
2𝜔𝑞2𝑟 − 𝑞4

−𝐷𝑟4 + 𝑟2 − 2𝑀𝑟 + 𝑞2
𝑑𝑟 

𝑅ℎ

𝑟ℎ

−∫
𝜔𝑞3𝑏

2(−𝐷𝑟5 + 𝑟3 − 2𝑀𝑟2 + 𝑞2𝑟)
𝑑𝑟

𝑅ℎ

𝑟ℎ

}, 

    

 

 

 

   (7.71) 

 



78 
 

then after integration and using the Taylor expansion, the greybody equation is defined 

as 

𝑇2 ≥ 𝑠𝑒𝑐ℎ2
1

2𝜔
, 

{−
𝜆

𝑅ℎ − 𝑟ℎ
−

𝑀

𝑅ℎ
2 − 𝑟ℎ

2 +
2𝑞2

3(𝑅ℎ
3 − 𝑟ℎ

3)
−

1

2
𝜔𝑞𝑏𝑙𝑛(𝑅ℎ − 𝑟ℎ)

− 𝑊2(𝑅ℎ − 𝑟ℎ) + 𝑋2(𝑅ℎ
2 − 𝑟ℎ

2) + 𝑌2(𝑅ℎ
3 − 𝑟ℎ

3)

+ 𝑍2(𝑅ℎ
4 − 𝑟ℎ

4) + 𝑃2(𝑅ℎ
5 − 𝑟ℎ

5)},           

    

 

 

  (7.72) 

where 

𝑊2 = 2𝐷 + 𝑞2 +
𝜔𝑏𝑀

𝑞
,      (7.73) 

𝑋2 = 𝜔 − (
−𝜔𝑏

4𝑞
+

𝜔𝑏𝑀2

𝑞3
) − 𝑀,      (7.74) 

𝑌2 =
𝑞2 − 4𝑀2 + 4𝜔𝑀

3𝑞2
+

2𝜔𝑏𝑀(𝑞2 − 2𝑀2)

3𝑞5
,      (7.75) 

𝑍2 =
𝜔

2𝑞2
(
4𝑀2

𝑞2
− 1) −

𝜔𝑏

8𝑞2
(−𝑞𝐷 +

(𝑞2 − 12𝑀2)

𝑞3
+

16𝑀4

𝑞5
),      (7.76) 

and 

𝑃2 = −
1

10𝑞3
(2𝜔𝑏𝑀 (2𝐷 +

3

𝑞2
−

16𝑀2

𝑞4
+

16𝑀4

𝑞6
)) 

 

−
1

5𝑞2
(1 − 𝑞2𝐷 +

4𝑀

𝑞4
(𝑀(4𝑀2 − 3𝑞2) + 2𝜔(−𝑞2 + 2𝑀2))).      (7.77) 

From Eq. (7.72), one can see the rigorous bounds on the GFs for the second solution 

of dRGT massive gravity coupled with nonlinear electrodynamics and its plotted as 

shown in Fig. 7.10, the constant parameter 𝑏 is chosen to be small in comparison with 

the potential case, for both solutions of GF. 
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Figure 7.10: Plots of 𝑇 versus 𝜔 for the metric function 𝑓2. The plot is governed by 

Eq. (7.72). The physical parameters are chosen as; 𝑀 =  1, 𝑏 =  0.1, 𝜆 =  0, and 

𝐷 =  0.8. 

We can see that by increasing the charge parameter gradually, the GF approaches its 

maximum value then it starts to dwindle, this alteration happens after 𝑞 =  4.5 for 

both solutions. Therefore, we can conclude that, having a monotonous behavior in 

existence of charge for GF is far from expectation. 

7.4 Reflection and Transmission Coefficients of Rotating Polytropic 

Black Hole 

In this section, we investigate the computation of reflection and transmission 

coefficients via the WKB method. It is well known that the GFs in the Hawking 

radiation are related to the transmission through the BH perturbation potentials. To 

obtain those, one has to solve the classical scattering problem of incoming radiation 

being transmitted or reflected at the potential barrier. Let us consider a wave reaches 

the BH from the cosmological horizon 𝑟∗ ⟶ ∞ (𝑟 ⟶ 𝑟𝑐); due to the gravitational 

potential some of it will be transmitted and some will be reflected. The scattering 

boundary conditions have the following form [186] 
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Ψ = 𝑇(𝜔)𝑒−𝑖𝜔𝑟∗           𝑟∗ ⟶ −∞,      (7.78) 

Ψ = 𝑒−𝑖𝜔𝑟∗ + 𝑅(𝜔)𝑒𝑖𝜔𝑟∗        𝑟∗ ⟶ −∞,       (7.79) 

where 𝑇(𝜔) and 𝑅(𝜔) are transmission and reflection coefficients, respectively. Now 

to determine the square of the wave function’s amplitude, we can use the fact that the 

total probability of finding a wave must obey the normalization condition given 

|𝑇|2 + |𝑅|2 = 1,      (7.80) 

Therefore, the GF can be defined as 

𝛾𝑙(𝜔) = |𝑇(𝜔)|2.      (7.81) 

For accurate evaluation of the transmission and reflection coefficients, one can use the 

sixth order WKB formula [230], the reflection coefficient is given by 

𝑅 =
1

√1 + 𝑒𝑥𝑝(−2𝜋𝑖ℌ)
,    (7.82) 

and transmission coefficient 

𝑇 =
1

√1 + 𝑒𝑥𝑝(2𝜋𝑖ℌ)
,    (7.83) 

where 

ℌ = 𝑖
𝜔𝑛

2 − 𝑉(𝑟0)

√−2𝑉ˊˊ(𝑟0)
− Λ2 − Λ3, 

 

   (7.84) 

in which Λ2 and Λ3 represent the second and third order WKB formula correction: 

     Λ2 =
1

√−2𝑉0
ˊˊ

[
1

8
(
𝑉0

(4)

𝑉0
ˊˊ

)(
1

4
+ 𝛼2) −

1

288
(
𝑉0

(3)

𝑉0
ˊˊ

)

2

(7 + 60𝛼2)], 

 

   (7.85) 

and 
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Λ3 =
1

√−2𝑉0
ˊˊ
[

5

6912
(

𝑉0
(3)

𝑉0
ˊˊ )

4

(77 + 188𝛼2) −
1

384
(
𝑉0

ˊˊˊ(2)
𝑉0

(4)

𝑉0
ˊˊ(3) ) (51 + 100𝛼2) +

1

2304
(
𝑉0

(4)

𝑉0
ˊˊ )

2

(67 + 68𝛼2) −
1

288
(

𝑉0
ˊˊˊ𝑉0

(5)

𝑉0
ˊˊ(2) ) (19 + 28𝛼2) −

1

288
(

𝑉0
(6)

𝑉0
ˊˊ ) (5 + 4𝛼2)].  

 (7.86) 

Prime and the superscript (n) denote differentiation with respect to 𝑟∗. Recall that, 

potential formula was given in Eq. 5.67. 

The performance of the reflection and transmission coefficients for rotating parameter 

𝑎 = 0.011 and 𝑎 = 0.5 are depicted in Fig. 7.11 and Fig. 7.12, respectively. In order 

to develop a broader perspective, Fig. (7.13) is depicted, which represents more 

detachments. 

 
(a)                                                          (b) 

Figure 7.11: Plots of reflection probability for 𝑎 =  0.011 (𝑎) and 𝑎 =  0.50 (𝑏). 

The physical parameters are chosen as; 𝑀 =  3;𝑚 =  1;  𝐿 =  1, and 𝜆 = 6. 
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(a)                                                             (b) 

Figure 7.12: Plots of transmission probability for 𝑎 =  0.011 (𝑎) and 𝑎 =  0.50 (𝑏). 

The physical parameters are chosen as; 𝑀 =  3;𝑚 =  1;  𝐿 =  1, and 𝜆 = 6. 

 
                     (a)                                                         (b) 

 
(c)                                                             (d) 

Figure 7.13: comparison between the imaginary and real part of the transmission 

probability in Fig. 7.12 

Namely, in the Fig. (7.13), under the change of 𝑎, the real and imaginary parts can be 

compared. It is seen that the imaginary part undergoes more changes than the real part 

with the variation of a parameter.   
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Chapter 8 

QUASINORMAL MODES 

Non-trivial information about thermalisation in quantum field theory are obtained by 

studying small perturbations of a BH away from the equilibrium. Such perturbations 

are described by QNMs [188, 189]. These special oscillations are similar to normal 

modes of a closed system. However, since the perturbation can fall into the BH or 

radiate to infinity, the corresponding frequencies are complex [190]. The oscillation 

frequency is defined by the real part and the rate of specific damping mode as a result 

of a radiation is determined by imaginary part. Thus, by getting the QNMs in the BGM, 

the comparison of theoretical predictions with the experimental data supplied by 

"future" LIGO and VIRGO type experiments would help us to numerically constrain 

the LSB parameter. Thus, in general, it is important to accumulate data on QNMs of 

BHs in various theories of gravity [191]. 

8.1 Scalar and Dirac Quasinormal Modes of Kerr like BH in BGM 

In this section, for both scalar and Dirac perturbations, we follow the WKB 

approximation method [192, 193] to derive the frequencies of the QNMs of the Kerr-

like BH in the BGM. To this end, we shall simply transform the obtained one-

dimensional Schrödinger-like equation [see Eqs. (7.23)] to the following Zerilli [164] 

type differential equation: 

𝑑2𝑍

𝑑𝑟∗2
+ 𝑉𝐺𝑒𝑓𝑓𝑍 = 0, (8.1) 
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where 𝑍 function is assumed to have a time-dependence 𝑒𝑖𝜔𝑡, 𝑉𝐺𝑒𝑓𝑓 is the generic 

effective potential, and 𝑟∗ is the tortoise coordinate as being stated above. 

Comparing with the numerical results, the WKB approach is known to be a good 

prediction for obtaining the QNMs. In this method, 𝑉𝐺𝑒𝑓𝑓 is written by using the 

tortoise coordinate so as to be constant at 𝑟∗ ⟶ 0 (event horizon) and at 𝑟∗ ⟶ +∞ 

(spatial infinity). The maximum value of 𝑉𝐺𝑒𝑓𝑓, which we symbolize it as 𝑉0 from now 

on, is achieved at 𝑟∗
0. Three regions are defined as follows: region-I from −∞ to 𝑟1, 

which is the first turning point where the potential becomes zero, region-II from 𝑟1 to 

𝑟2, namely the second turning point, and region-III from 𝑟2 to +∞. In region-II, the 

Taylor expansion is made over 𝑟∗
0. In Regions-I and -III, the solution can be 

approximated by an exponential function: 

𝑍~𝑒𝑥𝑝 [
1

𝜁
∑ 𝜁𝑛Ξ𝑛(𝑥)

∞

𝑛=0

] ,      𝜁 ⟶ 0.      (8.2) 

This expression can be substituted in Eq. (8.1) to get Ξ𝑛 as a function of the potential 

and its derivative. We then impose the boundary conditions of the QNMs 

𝑍~𝑒−𝑖𝜔𝑟∗     𝑟∗ ⟶ −∞,      (8.3) 

𝑍~𝑒𝑖𝜔𝑟∗       𝑟∗ ⟶ −∞,      (8.4) 

and match the solutions of regions-I and -III with the solution of region-II at the turning 

points, 𝑟1 and 𝑟2, respectively. The WKB approximation can be extended from the 

third to sixth order. This allows us to obtain the complex frequencies of the QNMs 

from the following expression 

𝜔2 = [𝑉0 + √2𝑉0
ˊΛ(𝑛) − 𝑖 (𝑛 +

1

2
)√−2𝑉0

ˊ(1 + Ω(𝑛))],      (8.5) 
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where Λ(n) and Ω(n) are defined in Eqs. (7.85) and (7.86). With the help of the 

effective potential (5.58), one can easily get 𝑉𝐺𝑒𝑓𝑓. After making straightforward 

calculations and numerical analysis, we have obtained the bosonic QNMs, which are 

tabulated in Table 8.1 for the angular momentum 𝑙 =  2. In Table 8.1, the case of 𝑚 =

 0 for the first (fundamental) overtone 𝑛 =  0 is considered (higher 

tones also show similar results that are parallel to the behaviors of the n = 0 mode). 

The revealed knowledge from Table 8.1 is that the oscillations decrease when the LSB 

parameter increases. But for the damping rate, there is no ostensive information about 

the LSB effect. At the beginning, we have a decrease in the imaginary part of the QNM 

frequencies but then this linear relationship between them disappears and shows an 

irregular behavior. Those bizarre behaviors can be understandable from Fig. 5.3 which 

shows the potential barriers that scalar QNMs are affected: the potential can take 

negative and positive values. 

In the next step, we shall apply the methodology applied for QNM bosons in the 

previous section to the fermions. To this end, we consider the potentials obtained in 

Eq. (6.78) and use them in Eqs. (8.5)–(8.7). Table 8.2 constitutes the main results of 

this part: the numerically computed QNM frequencies for varying values of the LSB 

parameter for the fix rotating parameter 𝑎 =  0.4 are displayed in the table. It is 

obvious from Table 8.2 that both oscillatory and damping parts of the fermionic QNMs 

tend to decrease with the increasing LSB parameter. On the contrary, they increase 

with increasing 𝑙 and 𝑛 values: hence, the characteristic fermionic QNMs are different 

from the bosonic ones. 
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Table 8.1: QNMs of scalar waves in the Kerr-like BH Spacetime in the BGM. 

L 𝜔𝑏𝑜𝑠𝑜𝑛𝑠 

0 0.374411 − 0.089694𝑖 

1 0.372640 − 0.045766𝑖 

1.1 0.372553 − 0.044986𝑖 

1.2 0.372473 − 0.044784𝑖 

1.3 0.372399 − 0.045302𝑖 

1.4 0.372332 − 0.046902𝑖 

1.5 0.372269 − 0.050064𝑖 

1.6 0.372210 − 0.056650𝑖 

1.7 0.372155 − 0.073158𝑖 

1.8 0.372104 − 0.244808𝑖 

1.9 0.372063 − 0.099344𝑖 

2 0.372025 − 0.071826𝑖 

2.1 0.371990 − 0.058375𝑖 

2.2 

 
0.371956 − 0.050093𝑖 
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Table 8.2: QNMs of Dirac waves in the Kerr-like BH Spacetime in the BGM. 

𝑙 𝑛 𝐿 𝜔𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠 

1 0 1 0.228468 − 0.065297𝑖 

  2 0.191896 − 0.052521𝑖 

  3 0.170421 − 0.044723𝑖 

1 1 1 0.265474 − 0.169833𝑖 

  2 0.221535 − 0.137485𝑖 

  3 0.195343 − 0.117735𝑖 

2 0 1 0.360666 − 0.065766𝑖 

  2 0.300382 − 0.052794𝑖 

  3 0.265097 − 0.044763𝑖 

 1 1 0.389890 − 0.182970𝑖 

  2 0.323537 − 0.147340𝑖 

  3 0.284319 − 0.125374𝑖 

 2 1 0.427069 − 0.279806𝑖 

  2 0.353472 − 0.225666𝑖 

  3 0.309573 − 0.192416𝑖 
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Chapter 9 

CONCLUSION 

After giving general information about HR, GF and QNM in the introduction (chapter 

2) of this thesis, chapter 3 has been devoted to the BHs of the BGM, which are 

SBHBGM and Kerr like BH in the BGM. In the sequel, in chapter 4, we have moved 

on to the GUP modified theory which is one of the simplest theory in confirmation of 

the existence of minimal observable length. In section 4.1, we have obtained the 

modified Hawking temperatures of the SBHBGM, within the framework of GUP: the 

bosons’ GUP modified HR has been given in subsection 4.1.1 whereas fermions’ 

modified HR has been studied in subsection 4.1.2. The results seen in Eqs. (4.20) and 

(4.47) have shown us how HR is affected by the GUP and LSB parameter scalar and 

fermionic perturbations, respectively. In particular, we have revealed that, being 

independent of the spin of the emitted particle, GUP causes a change in the Hawking 

temperature of the BH. In addition, the effect of LSB parameter is noticeable. 

For the GUP modified HR, we have also studied the rotating Polytropic BH in the Kerr 

spacetime. To this end, the dragging coordinate system has been applied to the rotating 

polytropic BH metric to diagonalize the metric (4.50) as in Eq. (4.56). The evaluation 

is considered in boson’s tunneling and the GUP modified Klein Gordon equation is 

employed for that dragging line-element (4.56). 
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For computing the GF or transmission probability, first the effective potential should 

be handled, which is derived from the one-dimensional Schrödinger like wave 

equation. In line with this purpose, the scalar and Dirac perturbations are considered, 

in chapters 5 and 6. In the fifth chapter, where we have considered both massless (5.1) 

and massive (5.49) Klein-Gordon equations for the bosonic perturbations, we have 

first derived the effective potential (5.67) of the SBHBGM. The behaviors of these 

effective potentials by are depicted in Fig. 5.1 according to the change in L parameter. 

In other words, we have shown that LSB has a potential barrier-reducing property. 

Furthermore, the same process for the scalar perturbation of the charged dRGT 

massive gravity BHs in nonlinear electrodynamics has been considered in section 5.2. 

However, we have used the charged Klein-Gordon equations [Eqqs. (5.35) and (5.36] 

for this purpose. The Schrödinger equation and effective potential are derived for both 

solutions of charged dRGT massive gravity BH, see Eqs. (5.46) and (5.48). Finally, 

the impression of the controlling parameter of ω which appeared in the effective 

potential by coupling of nonlinear electrodynamics for both solutions is evaluated in 

Figures 5.2.a and 5.2.b which for both, by increasing the frequency the potential peak 

increases as well. 

In sections 5.3 and 5.4, we have studied the scalar perturbations in Kerr space time for 

bumblebee and polytropic BHs. The massive Klein-Gordon equation (5.49) has been 

employed to determine the effective potential in Eq. (5.58). The process was not as 

straightforward as non-rotating spacetime since there were physical parameters that 

simultaneously depended on 𝑟 and 𝜃. Fig. 5.3 shows the effect of LSB parameter on 

the effective potential of the Kerr like BH in the BGM it was seen that, the presence or 

absence of LSB makes a significant difference in the effective potential. The same 
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procedure was repeated in section 5.2, for the rotating polytropic BH. Fig. (5.4) which 

is about effective potential of the rotating polytropic BH (5.67), reveals a that there is 

a deduction in the potential barrier in the case of increasing 𝐿2 parameter. Since 𝐿2 

parameter is inversely proportional to the cosmological constant, we can say that the 

height of the effective potentials (i.e, barrier) increases with the cosmological constant.  

Chapter 6 has been allocated to the Dirac perturbation in which, we employed the NP 

formalism to find the effective potential of the fermion fields propagating in the BH 

geometry of the BGM. To this end, we used the Chandrasekar Dirac equations (6.7) - 

(6.10) which comprise with the components of the wave functions, spin coefficients, 

and directional covariant derivative operators for the SBHBGM in section 6.1.1 and 

for Kerr BGM in section 6.1.2. Since the Dirac perturbation belongs to the spinor 

particles, the results are dual one for spin-up and one for spin-down which are 

separated by (+/−) signs, respectively. The obtained effective potentials (6.37) are 

illustrated in Fig. 6.1 for spin-(+1/2) and spin-(-1/2) in order to exhibit the reaction of 

the both effective potentials under influence of the LSB parameter. To avoid the 

complicated calculations for the Kerr like (rotating)BH in the BGM, the Kerr 

geometry, in section 6.1.2, the dragging coordinate transformation has been applied, 

see Eq. (6.38). Then the NP tetrad and the dual co-tetrad of the Kerr-like BH geometry 

have been defined in Eqs. (6-50)- (6-57). After normalizing them by spin boost Lorentz 

transformation (6.48) and solving the CDEs, by substituting the non-zero spin 

coefficients, we have obtained the massless fermionic effective potentials in Eq. 

(6.78), which have been shown in the Figs. 6.2.a and 6.2.b. 

In Chapter 7, we have studied various methods of greybody radiation which mostly 

are analyzed by major semi-analytic equation (7.1) having the effective potential as 
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the basic parameter. Computation of the GFs under alterations of physical parameters 

showed us that GFs are mainly under the control of the effective potential. The method 

followed in this thesis has been represented in section 7.1 for both bosonic and 

fermionic particles by regarding the following two conditions: 1) ℎ(𝑟∗) > 0 and 2) 

ℎ(−∞) = ℎ(+∞) = 𝜔, to simplify Eq. (7.2). Moreover, the integration determined in 

tortoise coordinate (𝑟∗). Making use of the semi-analytic method directly is not an 

appropriate way in all geometries, since it is included only the lowers bound. 

 In order to refine the semi-analytic method, we have applied the Miller-Good 

transformation in section 7.2 for the SBHSQ. The Miller-Good transformation 

generates a general bound on quantum transmission probabilities. In this approach, a 

particular transformation is applied to the Schrödinger equation in such a way that the 

effective potential (7.12) is modified to yield a better transmission probability for the 

Hawking quanta. The results given in Eq. (7.57) and Fig. (7.8) has represented the 

behavior of the GF of the SBHSQ, which are all obtained by the Miller–Good 

transformation. It is obvious that the specific form of the GF depends on some 

parameters that are related to the potential barrier. 

The rigorous bound method in the content of massive gravity is a proper method to 

calculate the GF which has been addressed in section 7.3 for the solutions of charged 

dRGT massive gravity coupled with nonlinear electrodynamics. In this approach, the 

existence of the boundaries, see Eqs. (7.67) and (7.68), are facilitated to determine the 

GFs. Fig. 7.9 has revealed that the charge parameter is a constructive factor in the GF 

for the first solution. But for the second solution which has been depicted by Fig (7.10) 

the behavior of the GF is not monotonous under varying the charge parameter 𝑞.  
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The greybody radiation is also determined by the transmission coefficient, we have 

considered the WKB method to get the reflection and transmission coefficients in 

section 7.4, for the rotating polytropic BH. From Figs. (7.11) and (7.12), it has been 

seen that both reflection and transmission coefficients increase with the growing 

rotating parameter, where the latter remark is in accordance with the behavior of the 

relevant effective potentials. In the Fig. (7.13) the comparison between the imaginary 

and real parts for a) 𝑎 = 0.011 and b) 𝑎 = 0.05 which has been made, It can be seen 

from the related Fig. (7.13), while the real part is rising by increasing the rotating 

parameter the imaginary part decrease significantly. On the other hand, we have found 

that the change in the rotation parameter 𝑎 does not radically change the transmission 

and reflection coefficients. 

In chapter 8, the QNMs of the Kerr like BH in the BGM has been studied.  In 

subsection 8.1, for both scalar and Dirac perturbations, we followed the six order WKB 

approximation method to derive the frequencies of the QNMs of the Kerr-like BH in 

the BGM. To this end, we have obtained the corresponding one-dimensional 

Schrödinger-like equations. Those obtained numerical results which are from the 

complex frequencies seen in Eq. (8.5) have been tabulated for different quantum 

parameters with the LSB parameter in Tables 8.1 and 8.2. The fixed physical 

parameters seen in Table 8.1 are as follows; angular momentum 𝑙 =  2 and 𝑚 =  0 

(for the first (fundamental) overtone 𝑛 =  0). Thus we have evaluated the effect of 

LSB parameter on the bosonic QNMs, which shows a regular behavior in the real part 

(oscillation frequency) rather than imaginary part. The fermionic QNM results have 

been served in Table 8.2, it was seen that for both oscillatory and damping parts, QNM 

values tend to decrease with the increasing LSB parameter. 
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Throughout this thesis studies, five scientific articles are published [56,38,39,93,94]. 

In addition, an article regarding to the GUP modified Hawking radiation for the 

rotating polytropic BH is currently under review by a scientific journal at the time of 

publication of this thesis. I will continue to use the knowledge and experience that I 

have gained with this dissertation to reveal the physical properties of other black holes, 

wormholes, and even the black strings. Those will be my near future goals. 
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