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ABSTRACT

This thesis concantrates on numerical methods for solving ordinary differential equa-
tions. Firstly, we discuss the concept of convergence, local-truncation error, global-
truncation error, consistency, types of stability, zero-stability, and weak-stability. Af-
terwards, we inform some materials for Euler and Runge-Kutta method. The given
ordinary differential equation is analyzed on Euler and Runge-Kutta method to find
the approximated solution with the given initial conditions. Then, the stability of
each method is examined briefly. We also focus on numerical methods for systems.
Then, the reason of the stiff system is discussed. After investigating the numerical
methods, we gave advantages and disadvantages of Euler method and Fourth Order
Runge-Kutta method. Finally, numerical experiments is applied on Explicit Euler
method and Explicit Fourth Order Runge-Kutta method. The approximated solutions
with different step-size and analytical solutions of methods are computed in Matlab
software. The computation of approximated solutions of methods are compared with
analytical solutions. Then we discussed the accuracy of these methods when they
are applied to the specified system in Chapter 7. Finally, we conclude that Explicit

Fourth Order Runge-Kutta method is more accurate than the Explicit Euler method.

Keywords: Ordinary Differential Equations, Numerical solutions, Euler’s method,

Runge-Kutta method, Stiff System
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Bu calismada adi diferansiyel denklemlerin ¢oziimii i¢in sayisal yontemler irdelen-
mistir. [k olarak, yakinsama kavrami, yerel kesme hatasi, kiiresel kesme hatasi,
tutarhilik, kararhlik tiirleri, sifir kararlilik ve zayif kararlhilik kavramlari incelenmistir.
Ayrica, Euler ve Runge-Kutta metodlar1 verilmigtir. Verilen bir diferansiyel den-
klemin, yaklasik ¢6ziimiinii bulmak icin Euler ve Runge-Kutta yontemi verilen bas-
langi¢c kosullari ile analiz edilmis ve her bir yontem i¢in kararlilik kisaca ele alin-
mistir. Daha sonra, verilen sistemler i¢in sayisal yontemlere odaklanilmig ve sert
sistemin ¢ikis sebebi incelenmigtir. Euler yontemin ve dordiincii dereceden Runge-
Kutta yontemin avantajlar1 ve dezavantajlar1 verilmistir. Son olarak, sayisal deneyler
tizerinde Acik Euler ve Acik dordiincii dereceden Runge-Kutta yontemleri uygu-
lanmigtir. Farkli adim biiyiikliigii ele alinarak yaklagilan ¢oziimler ve yontemlerin
analitik ¢coziimleri Matlab yazilimikullanilarak hesaplanmistir. Elde edilen yaklagilir
coziimler ile analitik ¢ozlimler karsilastirilmistir. Daha sonra yontemler Boliim 7°de
belirtilen sistem ilizerine uygulanip yontemlerin dogrulugu tartisilmistir. Son olarak,
Acik Runge-Kutta yontemin yaklastirilmis ¢6ziimiiniin A¢ik Euler methoduna gore

daha az hatali oldugu sonucuna varilmistir.

Anahtar Kelimeler: Adi Diferensiyel Denklemler, Sayisal Coztimler, Euler Yon-

temi, Runge-Kutta Yontemi, Sert Sistemi
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Chapter 1

INTRODUCTION

Differential equations are among the most important mathematical tools used in pro-
ducing models in the physical sciences, biological sciences, and engineering. In this
text, we consider numerical methods for solving ordinary differential equations, that
is, those differential equations that have only one independent variable. We consider

the differential equations in the form of

Y () =[xy )

where y(x) is an unknown function that is being sought. The given function f (x,y)
of two variables defines the differential equation. This equation is called a first order
differential equation because it contains a first order derivative of unknown function.
The numerical methods for a first-order equation can be extended to a system of first
order equations ([12]). The brief of thesis is organized as follows: In the second
chapter, the concept of convergence, local-global truncation error, consistency, zero-
stability, weak-stability are investigated for ordinary differential equations. At this
stage we focused on simple first order differential equations, and multistep method
for the given necessary conditions in Chapter 2. The purpose of this study is to

find the best approximated solution which converge to analytical solution. Chapter



3 consist of the problem of stability for stiff system which focuses on the model
problem. It is the instructive form to determine the stiff numerical method. Then, in
the Chapter 4, Euler’s method is reviewed. The derivation of Euler’s method is stated
and using some basic definitions, error and the region of stability is determined. In
the next chapter, we discuss the derivation of the families of Runge-Kutta method.
After completing this, we present some necessary definitions of the stability, and
examined the absolute stability of Fourth Order Runge-Kutta method. In chapter 6,
we give the general form of system for first order equations. The aim of this study
is to compute the approximated solutions of system of differential equations. Then,
it follows the stability theory for systems. In the last chapter, some examples are
given, and each numerical method is solved by using Matlab software. After that,
the results of numerical methods are analyzed. Finally, we concluded by giving the
advantages and disadvantages of the specified numerical methods in Chapter 4 and
Chapter 5. Additionally, in this dissertation, equations and formulas is benefited from

two books.([15]), ([25])



Chapter 2

CONCEPT OF CONVERGENCE, LOCAL-GLOBAL
TRUNCATION ERROR, CONSISTENCY, STABILITY, WEAK

STABILITY AND ZERO STABILITY

A simple first order differential equation can be defined as

%)
_ay =Y'(x) = f(x,y(x) (2.1)
X

where % is describing the first derivative of y with respect to time and f(x,y) is any

function of time and y. We look for a solution to (2.1) for x > xg as

y(x0) =b (2.2)

where xg < x < b, xg and b are two real numbers. The first order differential equation
(2.1) with the condition described in (2.2) is known as the Initial Value Problem.
Analytical solution is defined by y(x), and approximate solution is represented by
yp. Introduce a general multistep method for solving initial value problem. Let the
several nodes given by x, = xo +nh,n=0,1,2, ...

The general conformation of multistep method can be shown as

)4
Yn+l = Zajyn—j"'hzbjf(xn—jayn—j) (2.3)

P
Jj=0 Jj=-1



where h >0 and ag,ay,.....,ap,b_1,bo, ....,b, are given constants term with |ap| +
|bp| # 0 as p > 0. This is named (p + 1) step method. In following chapters, we will
see that some methods can be produced by using multistep method as Euler Method,
The Midpoint Rule, Trapezoidal Rule, and Adams methods. When any numerical

method applied to a system, errors comprise in two forms.

1. Truncation (or discretization) Error: It is caused when approximations are used

to estimate some quantity. Truncation error are composed of two parts.

(a) Local Truncation Error: It is defined by 7,4 ,, and introduced the local

error at x,.,. It is shown as
n+p

Thip = Y(Xnip) = y(xn) — hO(xy, y(x1); 1) (2.4)

Local Truncation error arises when a numerical method is used to solve
initial value problem. The error occur after the first step and form in each

step.

Tn+l = y(xn+1) —Yn+l

To obtain the local truncation error, take difference between left hand side
and right hand side of method, and expand by using Taylor series. The

remaining term is called Local Truncation error. Finally, divide the result



to step size h. It is shown as

1
Ta(y) =7 Tn (2.5)

If y(x) is assumed to be sufficiently differentiable, then the local truncation

error for both explicit and implicit method can be written in the form

V(X4 p) = Ynep = CprtBPIyP T (x,) + O(RP)

Tpip = CprthP1yPH () + O(hPH?)

where C, states the error constant, p indicates the order of the method,
and lehyl”*1 (x) is the principal local truncation error ([27]). Thus, if
the local truncation error is O(h”*!), we can say that p represent the order
of the method. This means that |T,1Jr p| <C p+1hp+1. If p is larger, then the

method is more accurate.

(b) Global (or Accumulated) Truncation Error: It is denoted by e, which is

expressed

en = Y(Xp) = Yn (2.7)

where y(x,) is exact solution and y, is approximate solution. Global Trun-
cation error is caused by the accumulation of the local error in all of the

iterations.

2. Round-off Error: It originate due to the operations of computer that takes lim-



ited edition number of digit. After calculating the approximations of methods,
the result is dropped in specific location. It is denoted by R,x which is also

committed at the n th application of the methods.

The general multistep method of initial value problem satisfies

P
Y1) = D ayCin-)+h D" bif (a3 Cin )+ T (2.8)

P
J=0 j==1

where T, is the Local Truncation error, and

P P
Yurl = ) A+ h ) bif (Camjsyn-)+ Rusp (29)
=0 j=—1
where {y,} is the solution of multistep method and R, , is the Round-off error. Sub-
tracting (2.9) from (2.8) and considering the global error e, = y(x,,) — y,, we obtain
P p
€n+l = Zajen—j +h Z bj [f(xn—jay(xn—j) - f(xn—jayn—j)] + 0n+p
=0 j=—1

where () is obtained by subtracting round-off error from local truncation error as

0 = Ty4p — Ryyp. For any differentiable function y(x), define the truncation error

P P
T() = yCoe) = | D apCan)+h D by G|, n=p  (2.10)
j=0 j=-1

To state the error of numerical methods, use the Taylor expansion series for y(x,1).

Then the error will be determined by

T,(y) = O(h"*h)



Consistency is used to indicate the accuracy of the method. Consider the expression

of (2.5) to follow the consistency condition that is satisfied by

() —0 as h—0

Use the notation (2.5), and rewrite the multistep method. We obtain

P P
Y1) = D apyGin)+h D by () + hra(y)
=0 j=—1
Then introduce
7(h)= max |r,(y)| (2.11)
x0<xp<b
where node points [xg, b] are xo < x1 < ......... < xy < b. Multistep method is consistent

if y(x) is continuously differentiable on [xg, 5] and satisfied the following status

7(h)— 0 as h— 0 (2.12)

Order of the methods have a major role for the speed of the convergence. If the
condition (2.11) goes to zero rapidly, then approximate solution will be closer to the
exact solution. Thus, the speed of the convergence of approximated solution {y,}
to the exact solution y(x) is related with the speed of the convergence of condition
(2.11). When step size h will be chosen small, the intervals will increase. This

provide to be closer to 0. This relation is defined as

7(h) = O(h?) (2.13)



Theorem 2.0.1 ([1])Let m > 1 be a given integer. For (2.11) to hold for all continu-
ously differentiable functions y(x), that is, for the method (2.3) to be consistent, it is

necessary and sufficient that

ia] (2.14)
J=
Zb Zp:]a]—l (2.15)

j=—1

Further, for t(h) = O(h™) to be valid for all functions y(x) that are (m+ 1) times
continuously differentiable, it is necessary and sufficient that (2.14)-(2.15) hold and

that

Z( ])a]+lZ( b= 1,i=2

j=—1
Proof. ([2])Note that
Ty(ay+pw) =aT,(y)+BT,(w) (2.17)

for all constant «,8 and for all differentiable functions y(x), W. To examine the conse-
quences of (2.11)-(2.12) and (2.13), expand y(x) about x, using the Taylor’s theorem
to obtain

m 1 o
00 = ) = (=) ¥ () + Ry (1), (2.18)

i!
i=0



1 X
Ryt = f (e )"y D (5) dis

~ (x_xs)m+1

@) (2.19)

with &, between x and x,. We are assuming that y(x) is m + 1 times continuously
differentiable on the interval bounded by x and x,,. Substituting into (2.10) and using

(2.17), we obtain

- 1
T2) = D =G T ((r=3) )+ T (Rune)

i=0

It is necessary to calculate 7T, ((x— xn)i) fori>0

e Fori=0,
p
T,(1)=c El—ZaJ-
=0
e Fori>1,
T, ((x - xn)i) = (Xp41— xn)i
L i P i-1
- Zaj(xn_j—xn) +hZ bji(xn_j—xn)
=0 j=—1
=Ci/’li
c,—l—Z( ])la]+lZ( Dby, i1 (2.20)

j=—1



This gives us

T, ()= Y LhiyD () + T (Rys) (221)
=0 "

o~

From (2.19), it is straightforward that T, (R,,+1) = O(h’"”). If y is m+ 2 times con-

tinuously differentiable, we may write the remainder R,,,+1 (x) as

Rins1 () = oy o) DY 000 -
and then

To(Ryer) = o B0 ) + 0 (1) (2.22)
with

P P
emr = 1=| D (=)™ aj+(m+1) Y (=)"b;

j:O j=—l

To obtain the consistency condition (2.11)—(2.12), assuming that y is an arbitrary
twice continuously differentiable function, we need 7(h) = O(h) and this requires
T,(y) = O(hz). Using (2.21) with m = 1, we must have ¢y = ¢; = 0, which gives the
set of equations (2.14)—(2.15). In some texts, these equations are referred to as the
consistency conditions. It can be further shown that (2.14)—(2.15) are the necessary
and sufficient condition for consistency (2.11)—(2.12), even when y is only assumed
to be differentiable. To obtain (2.13) for some m > 1, we must have T, (y) = O(h"™*1).

From (2.21)—(2.20), this will be true if and only if c; = ¢3 =... = ¢, = 0. This proves

10



the conditions (2.16). m

For the largest value of p, which (2.13) holds, is known as the order or order of
convergence of method, stated in (2.3). Convergence occurs for multistep methods
then approximated solution {y,} tends to analytical solution {y(x,)} as the step size h
goes to zero. This describes that convergence in the limitas 4 — 0, n — oo, nh = x—xg

remaining fixed where x is between xy and b. It can be represented as

hli_ngoyn = y(xp)

To define the convergence of the initial value problem in (2.24) and the general mul-

tistep method in condition (2.3),

Y (x) = fry(x), x= X (2.24)

y(x0) = yo

The following theorem will be examined.

Theorem 2.0.2 (/3])Assume that the derivative function f(t,y) is continuous and

satisfies the Lipschitz Condition

lfCey) = f(xy2)l < K [y1 =2 (2.25)

for all —oco < y1, yy < 00, X9 < x < b, and for some constant K > 0. Let the initial

11



errors satisfy

n(h) = max |[y(x;))—y;] — 0 ash—0 (2.26)
0<i<p

Assume that the solution y(x) is continuously differentiable and method is consis-

tent, that is, that it satisfies (2.12). Finally, assume that the coefficients aj are all

nonnegative

aj2 0, j=0,1,..p

(2.27)
then the multistep method (2.3) is convergent and
max  [y(xn) —ynl < c1n(h) + co7(h) (2.28)
x0 <xp<b

for suitable constants cy, c;. If the solution y(x) is (m+ 1) times continuously differ-
entiable, the method (2.3) is of order m, and the initial errors satisfy n(h) = O(h™),

then the order of convergence of the method is m; that is, the error is of size O(h™).

Proof. ([4])Rewrite (2.10) and use y/ (x) = f(x,y(x)) to get

D

P
Y0oe) = | Y @y +h Y bifConjyyCin ) +ATa(y)

j=0 j=1

Subtracting (2.3) from this equality and using the notation e, = y(x,) —y,, we obtain

P P
envt = ) @jen j+h Y bi| FOn iy 0o )= fuejoyn- )]+ hr(h)
j=0 j==1

12



Apply the Lipschitz condition and the assumption (2.27) to obtain

P P
lens1] < Zaj |en—j| +hKZ |b]| |€n—j| + ht(h)
=0 j=—1

where
7(h) = max|t,(y)|
Introduce the maximum of error
fu= ilz%?.).(nleil’n =0,1,...,.N(h).

Using this function, we have

p p
lens1l < D aifu+hK )" |bj| fusr +hr(h)
=0 =

and applying (2.14), we obtain

lent1l < fu+hefur1 +hr(h), n>p

The right hand side is trivially a bound for f,, and thus,

Jn+1 £ futhefu +h(h)

13



For hc < % which is true as # — 0, we obtain

fu h
< h
It STt e
< (1+2he) f,y + 2ht(h)
Noting that f, = n(h), then
2c(b—xp) _ 1
f, < X=x0ppy 4| € - lr(h), X0 <X, <b (2.29)
C

|
The convergence of methods depends on consistency condition and stability. The
stability and convergence of numerical solution is related with the roots of the poly-
nomial
p .
p(r) =P = (2.30)
j=0
P
We can see that p(1) = 0 by considering the consistency condition  a; = 1. Let
Jj=0
ro=1and ry,r,...,r, be the roots of polynomial p(r). The method (2.3) satisfies the

root condition if

Iril<1,  j=0,..p (2.31)

Ir|=1=p'(rp=0()£0 (2.32)

These says that all roots of p(r), which is known first characteristic polynomial, be-

long to the closed unit circle {z: |z| < 1} in complex plane, and some simple roots of

14



p(r) lie on the boundary of the circle. It associated a characteristic polynomial as
n(r,hA) = p(r)—hio(r) (2.33)
The general solution of (2.26) can be defined if the roots r;(h1) are all distinct
P n
=27, | () (2.34)
]:

Since hAd =0, we get from equation (2.33) that p(r) = 0. So, roots of equation become

rj(0)=r;, j=0,1,...,p. When ro = 1, then the root of (2.33) is ro(0) = 1.

Definition 2.0.3 (/5])Assume the consistency conditions (2.14)-(2.15). Then the mul-

tistep method (2.3) is stable if and only if the root condition is satisfied.

Stability determines how well the method will perform in finding the approximated
solution in terms of satisfactoriness before actually performing the method. This
means that numerical errors generated during the solution, and these errors should
not be magnified.If Initial condition yy contains numerical errors, then this will effect
the further approximation y,,.

Solving the initial value problem numerically shows that there is a solution y(x) on a
given finite interval xp < x < b. Accordingly, it is needed to analyze the stability for

methods. We perturb the initial value problem (2.1) with yg + €. The result is

Ye(®) = F(x,ye(x) (2.35)

Ye(x) =yo+e€

15



This notations shows that y(x) and y.(x) are exist on the given interval for small

values of € and besides,
Iye =yl = max [ye(x)—y(x)| < ce for ¢ >0 (2.36)
x0<x<b

Similar procedure is analyzed for stability of multistep method. Let state the solution
of (2.4) with initial values yy, y1, ...,y for some differential equation y' (x) = f(x,y(x))

which perturb to the new values zo,z1,...,2,. Then,

max |y, —2,| < € (2.37)

0<n<p

These initial values are valid for depending on /. In contrast, the numerical solution
{yn: 0<n < N(h)}is stable if it is independent of h, and there is a constant ¢ with

for all sufficiently small € which is

max |y,—zxl <ce, 0<h<hg
0<n<N(h)

and N(h) is accepted the largest subscript N which xy < b. In addition, it is satisfying
the Lipschtz condition. Thus, we can say that numerical solution of multistep method
is stable if all approximate solution {y,} is stable. If the maximum error is less than
the beginning error which is €, then the I.V.P is called well-conditioned. Otherwise,
it is ill-conditioned. Consequently, the small changes in the initial value yq will affect

the solution of y(x) of the initial value problem for small e.

Theorem 2.0.4 (As described in [32])A linear multistep method is zero stable for
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any ordinary differential equation of the form (2.1) where f satisfies Lipschitz condi-
tion if and only if its first characteristic polynomial has zeros inside the closed unit

disc with any which lie on the unit circle being simple.

We say that if first characteristic polynomial’s all roots belong to the closed unit
disc, zero stability holds for a linear multistep method. This means that modulus of
first characteristics polynomial p(r) is less than or equal to 1, and satisfies the root
condition. There are two fundamental condition for convergence which is specified

in the following theorem;

Theorem 2.0.5 (/33])To be consistent and zero-stable are the most basic condition

for convergence of linear multistep method.

Definition 2.0.6 (/6])The linear multi-step method (2.3) is said to be relatively sta-
ble for a given hA if, for a given hA, the root r; satisfy |rj(h/l)| <rphd), j=1,2,3,....,p
Jor sufficiently small values of h. If a linear method is stable but not relatively stable,

then it is called weakly stable.

It is clear that a method is relatively stable if the characteristic roots r;(hA) satisfies

the given definition for nonzero values of |hA|.

Definition 2.0.7 ([18])A numerical method is said to be absolutely stable in a region

R of complex plane if, for all hAeR, all roots of the stability polynomial 7 (r,hA)
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associated with the method, satisfy

Iril<1, j=12,...p

Stability also includes some concept of absolute stability. Two parameters are con-
sidering for absolute stability: A" which is the eigenvalues of Jacobian matrix and
”h” which is the step size. Absolute stability depends on value of the product of these
two parameters, is called ~4. Analyzing of the stability at two parameters separately
is insufficient. The region of the stability is considered in a complex plane. Because
A can be either negative real part or complex. When numerical method is applied to
model equation y (x) = Ay(x) for performing the region of stability, then the modulus
of the nth step iteration should be less than or equal to 1. In system of differential
equations, first , the Jacobian matrix form is created by writing the coefficients of the
matrix variables. Then, the eigenvalues of Jacobian matrix is denoted by A, where
t =1,2,... are achieved by taking determinant of the Jacobian matrix which is equal
to zero. Finally, solving the system, we obtain the A;. If all eigenvalues of the matrix
are real, then the matrix is symmetric, and can have complex eigenvalues. Otherwise,
if eigenvalues of matrix are complex, then the parameter 21 will be also complex.
Consequently, the numerical method is absolutely stable if the parameter /A is in the

region of absolute stability.
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Chapter 3

STIFF SYSTEMS AND PROBLEMS OF STABILITY FOR STIFF

SYSTEM

3.1. Introduction

Stiff systems arises applications, such as chemical kinetics, mechanical system, con-
trol theory, electronics, and mathematical biology, and numerical solution of partial
differential equations. Stiffness is related with the concept of stability of numerical
methods. There are several definitions of stiff equation.

Let A be the coefficient of matrix of mxm system. Let 4, and 4, be two eigenvalues
of the coefficient matrix. The given problem is stiff if |Re(/lﬂ)| > |Re(A,)]. It is re-
quired to integrate numerically over a long range, using the hugely small step length
to the interval.

Let A be the coeflicient matrix of linear system. For system of differential equation,

consider the eigenvalues A; of f,(x,y(x)). If eigenvalues A; have negative real part

Re(1) <0 (3.1.1)
with the very large magnitude
max |Re(4;)| > min |[Re(A;)| (3.1.2)
I<j<n I<j<n

19



then it make difficult to solve the system. We can say that the given problem is stiff.
By this definition, a stiff problem has a stable point with greatly different magnitudes
of eigenvalues.

To see the large magnitude between the eigenvalues, it is sufficient to look at the ratio

of

_ max|Re(4,)]

"~ min[Re(,)| (3.1.3)

which provides a measure of stiffness. It is clear that stiffness ratio is calculated by

dividing highest eigenvalue by lowest eigenvalue.
3.2. Definition of Stiffness
Given the mxm linear systems
y =Ay+®(x) (3.2.1)

where A is the coefficient of matrix that has different eigenvalues A; and correspond-

ing eigenvectors c¢;,t = 1,2,..,m has general solution in the form of

y(x) = Y ke'Fe, +P(x) (3.2.2)
=1

t
where k; 1s a constant term. Suppose that Re(4;) < 0, then the first term

m
Zk,e’l’xc, —50 as x — o (3.2.3)

=1
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which includes exponential terms, is called "transient part" and the remaining term
Y(x) is called "steady state part". In this system, to reach the accurate approximation,
the step size A is taken extremely small in our choice. It follows that the transient part
approach to zero as x — oo and A is real and negative. Steady state part will attain
to exact solution. Thus, the aim of numerical solution is to find the approximate so-
lution in steady state part and to ignore the transient part that includes the slowest
decaying exponential e . If the eigenvalues lie outside the region of stability, then
step length should be chosen exceedingly small to satisfy h4. Hence hA will lie in
region of the absolute stability. In order to recognize the necessary condition, step
size is to be excessively small for stability and it has negative real eigenvalues or
negative real part of complex eigenvalues. Under this consideration system of differ-
ential equation is referred as stiff system.

In general, stiffness is affected from stiffness ratio which resulted in enormous nu-
meral. It arises when the huge difference observed in the modulus of real part of

eigenvalues.

Definition 3.2.1 ([19])The linear system yl = Ay + D(x) is said to be stiff if

1. Re(1,)<0,t=1,2,...,mand

2. max |Re(4,)|> {I%il’l |IRe(A,)|, where At = 1,2,...,m are the eigenvalues
t=12,...m t=12,...m

of A. The ratio

[ max |Re(/l,)|]:[ min |Re(/l,)|] (3.2.4)
=1,2,...m t=1,2,...m

,,,,,,,,,,,,
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is called the stiffness ratio.

3.3. The Problem of Stability for Stiff System

We have seen the difficulties of the numerical solution of stiff system. It is essential to
consider the absolute stability of methods. There are various definitions of stability
for stiff systems that is proposed. These are applicable to any numerical method

which involves discretization with associated step length 4.

Definition 3.3.1 (/20])(Dahlquist’’) A numerical method is said to be A-stable if its

region of absolute stability contains the whole of the left-hand half-plane Re(hA) < 0.

It is shown in figure

Figure 3.1. The region of A—Stability

When A-stable is considered on stiff system that Re(4;) < 0, then step size can be
taken without any restriction, and the magnitude of real part of eigenvalues, which

represent max |Re(A;)|, disregard.
t=1,2,...m
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Definition 3.3.2 ([21])([35])(Widlund '3") A numerical method is said to be A(a)—stable,

ae (0,7/2), if its region of absolute stability contains the infinite wedge
Wy ={hAd| —a <m—arghd < a}

it is said to be A(0) —stable if it is A(«) —stable for some (sufficiently small) ae(0,7/2).
A numerical method is Ag—stable if its region of absolute stability includes the nega-

tive real axis in the complex plane.

If for a given A, Re(1) < 0, then the point i1 either will lie inside or outside the wedge
W, for all A > 0. Eventually, eigenvalues of a stiff system lie in a some wedge Wp;
s0, A(B)— stable can be considered on the numerical solution of initial value problem
without any restriction on step size. Especially, A(0)—stable can be used for real and

nonnegative eigenvalues of matrix A. It is shown as

7

-

f///

Figure 3.2. The region of A (@) —Stability

Definition 3.3.3 (/22])(Gear’>>3) A numerical method is said to be stiffly stable iff

1. its region of absolute stability contains R1 and R2,
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2. itis accurate for all kR, when applied to the scalar test equatipn= Ay, A
complex constant witRe(?) < 0, where®R 1 = {hi|Re(hA) < —a}, and

Ry ={hi|—a< Reh1) < b,—c < Im(h1) < c} and a, ¢ are positive real numbers.

It is shown as ([30])

W\ |

\\\\\\ i

Figure 3.3. The region of SfiStability

9
NN

SinceA is real and negative, the regiéa has no restriction oh. Eigenvalues decays
rapidly in the transient part. The valiid in R1 will lie in stability region by elimi-

nating the step size. Nevertheless, in the redtanthe step sizér should be chosen
excessively small to satistyl. Hereby, the valuda will lie in a stable region that is

shown in the above figure.

Definition 3.3.4 ([23])A one step numerical method is said to bestable if it is A-
stable and, in addition, when applied to the scalar test ¢iguay = Ay, 1 a complex
constant withRe(1) < 0, it yields y.1 = R(hA)yn, Where|‘R(h/l)| — 0asReht) —

—0Q,
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It is clear that A—stable is not enough to get accurate approximation, L— stabil-
ity is also required which can also be called as left stability. Definition of L—
stability needed, the R(hA) tends to zero along with the real part of A tends to
negative infinity. Obviously, A—stability=—stift-stability— A(a)—stability=—= A(0)-

stability= A(—stability ([34]).
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Chapter 4

EULER METHOD

4.1. Introduction

Many differential equations in engineering are so intricate. It is inapplicable to have
solution. Numerical methods provide ease for solving the differential equations. The
simplest method to solve initial value problem is Euler method which have one step
process for each equation before move on next step. This method is not an adequate
method to get the certain approximation. Differential equation can be solved simply
even though it is rather rough and least accurate. It is restricted to utilize because
each successive step during the process accumulates large errors. It has slow of
convergence which means a method of order 1. So the error is O(h). In contrast, the
remainder term and error analysis in Euler method provide convenience to state the

difference between the approximate and exact solutions.

4.2. Definition of Euler’s Method

Assume that initial value problem (2.1)—(2.2) is applied to numerical method on

the specified interval: [xo,b]. We can create nodes with equi-spaced subinterval for
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simplicity as

X0<x1<..<xy<b

If nodes is taken to be evenly spaced, numerical methods will generate an approxi-

mate solution y,. It is written simply which is called mesh point as follows

Xp=x0+nh, n=0,1,...N

where

_ (b—x0)
N

h

and £ is defined as step-size or (step of integration), a positive real number N. For
each n, the numerical approximation y, at a mesh points x;, can be smoothly obtained.

The initial condition is known as

y(x0) = yo

Assume that we have already calculated y, up to some n. This represent

Yn+1 = Yn +hf(Xn,yn) (4.2.1)
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It is known as Euler method with the initial condition. To attain Euler’s method,

consider a forward difference approximation to the derivative

’ 1
¥ () % Iy +h) = y()]

Equalize this to the initial value problem (2.1-2.2) at x,,. We obtain

1
E [y(xn +h) _y(xn)] = f(xn,y(xn))

Y(Xnt1) = y(xn) + hf (x5, y(x0))
Euler’s method can be represented by considering the approximated values
Yl =Yn+hf(Xp,yn), 0<n<N-1

The other way to derive the Euler’s method is to integrate the differential equation

(2.1) between two consecutive mesh points x;, and x,,1. We conclude that

Xn+1 Xn+1

[Ydx= [ fx,y(x)dx

Xn

Xn+1

YCoe) =y = [ fCey(x))dx, n=0,1,..,N-1

Xn

Xn+1

Y1) = y(x) + [ fOxy(x)dx (4.2.2)

Xn
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Here, we cannot integrate f(x,y(x)) without knowing y(x). Hence we must approxi-

mate the integral. Apply the numerical integration rule

Xn+1

[ g(x)dx ~ hg(x)

Xn

which is knowns as the rectangle rule with g(x) = f(x,y(x)). This means the simplest
approach is to approximate the area under function f(x,y(x)) by the rectangle with

base [x,, x,+1] and height f(x,y(x)). We can define the rectangle rule

Xn+1

[ g(x)dx ~ h[(1-0)g(xy) + Og(xns1)] (4.2.3)

Xn

with @€ [0, 1]. Then, substitute (4.2.3) into (4.2.2) by considering g(x,) = f(x,,y(xy)

to obtain

Y(xn+1) = Y(x) + h[(1 = ©) g(xn) + Og(x441)]
Y(Xn+1) = ¥(x0) + A [(1 = O) f (X0, ¥ (x0)) + Of (Xp41,Y (Xn4+1))]

y(x0) = yo

Then, supply the initial conditions to the one parameter method that is mentioned

above. This gives us the following method where O¢[0, 1]

Yn+l = Yn +h[(1 _®)f(xnayn)+®f(xn+1ayn+l)]

This definition motivates @ —method by considering approximate values. The ®—method

referred Euler’s method as ® = 0 which y,;; must be found merely left hand side.
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This definition that give y,.; directly is called explicit methods. For ® = 1 we re-

cover the Implicit (backward) Euler Method.

Yl =Yn+hf(Xps1,Yn41), n=0,.,N-1 4.2.4)

In order to identify y,.; (4.2.4) need the solution of an implicit equation. Euler’s
method is also referred as Explicit Euler Method in order to pick out the difference.
This scheme gives a result for the value of ® = % which is denominated Trapezium

Rule Method. It is shown as

1
Ynt1 =Ynt Eh[f(xn’yn) +f(xn+layn+l)]’ n=0,. ,N-1

The other way to obtain numerical method is using multistep method. In general
form of multistep method, it is easier to achieve any numerical methods. Consider

the given form of (2.3) to obtain Euler method. As p = 0, we get that
Yne1 = aoYn + h[b_1 f (e 1, Yn1) + Do f (Xn, yn)|
If we give values instead of ag,b_1,bg kind of
ap=1,b_1 =0,bp =1
gives Euler method formulae. In contrast, if the values are taken as

ag = l,b_l = 1,[90 =0
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, we get Implicit Euler method

Yn+l1 = Yn +hf(xn+layn+l)

which y, ;1 will occur in both sides.

4.3. Error Analysis of Euler’s Method

The purpose of examining error of Euler’s method is to see how the approximated
solution works. In Euler’s method the slope of function affects the accuracy of meth-
ods. In order to minimize the error that occur, the step size should be chosen very
small. In other words, number of point need to be taken enormous between the given
interval. Thus, when step size is chosen excessively small, error is minimized and
approximated solution will be more better.

For error analysis, we consider the differential equation y(x) that satisfies

Y (%) = f(x,(x))

Assume that the solution of initial value problem is unique on xp < x < b, and this
solution has bounded second derivative y" (x) over given interval. To state the error

of Euler method, we begin by applying Taylor expansion series for y (x,4+1).

, h2
Y (1) = y0) +hy (o) + 3 (€,) + o)

31



for some x, < ¢, < x,41. Taylor approximation becomes

h2 14
Y (1) = y0n) + A f Con, YOm)) + =2y (€,) + o) (4.3.1)

If we compare the eguations (4.2.1) and (4.3.1), it yields

Vsl = Y+ hf(n,yn) + O(h?)

It is shown that local truncation error of forward Euler method is O(hz). The other
way to find truncation error; for any differentiable function y(x), we can define the

truncation error as follows

Ta(y) = y (K1) = y(xn) = 1 f (X, Y(Xn)) (4.3.2)

and the term

T, = %Zy”(gn) +0(n’) (4.3.3)

is called truncation error for Euler method. By considering the 2.5 in Chapter 2,

we have the local truncation error of Euler method

lr
Tn h n
1 ,
T = 5 1Y (ne) = y0n) = A f Gon yCiu))]. as'y (xn) = f G, Y(6)
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Then substitute the Taylor expansion about y(x;1) to get

1 ’

T = 5 [¥C0) + Ry Con) + OGR) =y () = f Con. y 0|
1

W= lon?)]

7, = O(h')

From the above explanation, It is clear that the truncation error is defined 7, = O(h?)
for Euler’s method and in general if T, = O(h”*!) which p indicates the order of
method, then method is the pth order. That is; Euler method is the first order method.
It can be explained that exact solution is equal to the approximate solution addedly to
local truncation error: y(x,) = y, + T,,. As the order of method is 1, the method is too
small. For this reason, it is not efficient method to obtain accuracy. To comprehend

the error in Euler method, subtract

Yn+l =Yn t hf(xnayn)

from (4.3.1) getting

h
Y(Xnt1) = Yn+1 = Y(xn) = yn + hf (X0, ¥(x0)) = hf (X, 1) + ?y ((fn) (4.3.4)

From the above explanation, the propagated error arises as following

y(xn) =ynth [f(xnay(xn)) _f(xnayn)] (4.3.5)
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Let e, = y(x,) — y, to rewrite the (4.3.4)

h2 144
ent1 = en[1+hK]+ =y (£,)

These results give a general error of Euler Methods. Now, we investigate the con-
vergence of Euler’s method for solving the general initial value problem on a given

interval [xg, b].

Y () = fx,y(x), o< x<b 4.3.6)

y(x0) = yo

For complete the error analysis the following Lemma and Theorem will be consid-

ered.

Lemma 4.3.1 (/9])For any real t,
l+t<é, 4.3.7)
and forany t > 1, any m > 0,

0<(1+p"<e™ (4.3.8)

Theorem 4.3.2 ([7])Let f(x,y) be a continuous function for xo < x <b and —oco <y <
oo, and further assume that f(x,y) satisfies the Lipschitz condition. Assume that the

solution y(x) of the general solution of initial value problem has a continuous second
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derivative on [xo,b]. Then the solution {y(x,)| xo < x < b} obtained by Euler’s method

satisfies
(b—x0)K _
max_[y(x,) = yal < 70K |eg| + (h), (4.3.9)
X0<xn,<b K
where
) = L |y| ~ 1) max y”(x)‘ (4.3.10)
2 00 2 X0<xn<b
and eg = y(x9) — yo. If, in addition, we have
ly(x0) —yol<cth ash—0 4.3.11)

for some c1 >0 (e.g., if y(xo) = yo for all h, then c¢1 = 0), then there is a constant

B > 0 for which

max |y(x,)—yu| < Bh (4.3.12)

X0<xn<b

Proof. ([8])Let e, = y(x,,) —yn,n > 0. Let N = N(h) be integer for which
Xy <b, xys1 > b.
Define

1 n”
T, = Ehy &,),0<n<Nh)-1,
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based on the truncation error. Easily, we obtain

max |t,| < 7(h)
0<n<N-1

using (4.3.10). Recalling (4.3.5), we have
en+1 = en+ [ f(xXn,y(xn)) = f(n, )] + ATy (4.3.13)
Taking bounds using Lipschtz condition, we obtain

|en+1| < |en| +hK|y(xn) _ynl +h|Tn|

lens1] < (1+hK)leq] +hr(h), 0 <n < N(h)—1 (4.3.14)
Apply this recursively to obtain
leal < (1+ K" eol + |1+ (1 +hK)+ ...+ (1 + hK)"™" | hr(h)

Using the formula for the sum of a finite geometric series,

-1

l+r+r2+..+71 = 1,r¢1 (4.3.15)
’/‘_
we obtain
1+hK) -1
leal < (1+hK)"|eol + %lr(h) (4.3.16)
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Using the Lemma 1, we obtain
(1 + hK)n < enhK = e(xn_XO)K < e(b—xO)K

and this with (4.3.16 ) implies the main result (4.3.9).
The remaining result (4.3.12) is a trivial corollary of (4.3.9) with the constant B given

by

L ek § I
DS =l

B=ce >

We can say that the result (4.3.12) is consistent. When step size is halved, Bh is also
halved. Euler’s method is convergent with order 1, because that is the power of & that

occurs in the error bound. In general, if we have

V(X)) = ynl < ch?, xo < x, < b

for some constant p > 0, then numerical methods is convergent with order p ([14]).

Let us consider the consistency on the examples:

1. For Euler methods: The numerical solution is

Yn+l1 = Yn +hf(xn+layn+l)
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Tp () = y(Xne1) = y(x0) — by (x) + O(h?)

1
Tn(y) = E [y(xn+1) —y(xp) — hy,(xn)]

This says that

Y(Xns1 )h —y(xn) ~y ()

and the order of the method is 1, O(h').

2. ([31])For midpoint method:

Yn+1 = Yn-1 +2hf(xmyn)

Here
Ta(y) = Y(Xs1) = Y(n1) = 2Ry ()
[ VG ) = y(X) s
Tn(y) =2 h y (xn)
Thusly,
Y(Xnt1) = y(xn) ~y (1)

2h

4.4. Numerical Stability of Euler’s Method

Recollect the definition of stability for initial value problem. Small changes in initial

value yg will perturbed the solution y(x) by €. Similar analysis is valid for Euler’s
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method. Introduce a new numerical solution {z,,} by
Zn+l :Zn+hf(xn,zn)a nzo’la"'aN_l

with initial values zg = yo + €. It is perturbed to the initial value problem. In order
to inspect the stability, compare two numerical solution {y,} in (2.1) and {z,} by

subtracting. We get

Intl = Yn+1 =3Tn—Yn +h[f(xn,zn) _f(xnayn)]

with initial value zg — yg = €. Introduce e, = z,, — y, to obtain

€ntl = €p +h[f(xnazn) _f(xnayn)]

To be more straightforward, use the Lipschtz condition and apply theorem (4.3.2) to

get

max |z, — y,| < e@0K |¢|
0<n<N

There is a constant ¢ > 0 such that

max |z, —yn| < Clel
0<n<N

This analog shows that error must be less than the received perturbed error in startup
for getting stable method. Thus, Euler method is a stable under the solution of the

initial value problem Now, we turn to examine the performance of Euler’s method on
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model problem. We have

Y (%) = Ay(x), x>0 (4.4.1)

y0)=1
When it is applied to the model problem, the numerical method is displayed

Yn1 = Yo+ hdyn = (1 +h) yn, 120 (4.4.2)

yo=1

We investigate the case A to find the region of stability of Euler methods. Recursively,

it is obtained
yu = (1+h)"yo (4.4.3)
It can be written for a fixed node point x,, = nh = x, as n —» o
/1_ n
yn:[l-l‘—x] _)e/lx
n

Since exact solution is decaying exponentially, numerical method also has same be-

havior. To show the stability of Explicit Euler method, we need that
[1+hA] <1

for A is real and negative. Thus, in the complex plane radius is 1 with centre 1. The

point 44 is in region of absolutely stable under specified interval with Re(1). Then
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the condition indicates the interval that Euler method is stable. It becomes
-2<hd<0

namely
O<h<%

This also satisfied the convergence of Euler method since in the notation (4.4.3),
yp — 0 as n — oo for any choice of step size holds. Thus, in Explicit Euler method,
step size should be chosen excessively small to provide the stability. The stability

region of Explicit Euler method is straightforward in the figure 4.1

2

1.5
;
- m
0
-05 v
=
-15
= -2 - 0 1

Figure 4.1. The region of absolute stability of Forward Euler Method
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On the other hand, we show the implicit Euler method to understand how methods

behaves in the model problem. Implicit Euler method states that

Yn+tl =Ynt hf(xn+1ayn+l)

After that substitute model problem to numerical method to obtain

Yn+tl =Yn t h/lyn+1

1

="

Yn+1 =
and by using induction

1 n
Yn = (m) Yo

Therefore, it is clear that for Re(1) < 0 implicit Euler method is stable if and only if

it satisfies

1
1
(1—hﬂ)<

So, |1 —hA| > 1 for any step size h > 0. Thus, we should choose step size h large to

ensure the stability. It is straightforward in figure (4.2)
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Figure 4.2. The region of absolute stability of Backward Euler Method

Consequently, when numerical method is absolutely stable, there is no restriction on
h. If the values of A that is real and negative has the large magnitude, then step size
should be chosen excessively small to satisfies 41. Hereby, it belong to the region of
absolute stability. This also affect the approximation solution. It provides the trun-
cation error to be small. Even though Euler’s method is absolute stable, we cannot
make any comment for Euler Method about weak-stable. Consider root condition

(2.30) and take p =0

p(r)=r—-ag

and root is

ro =ao

From the condition (2.14) of theorem 2.0.1, manifestly ro = 1. This shows that Euler
method is absolute stable, but we cannot apply the definition 2.0.5 which is related

with relatively stable and weak stable. Because it has one root.
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4.5. Rounding Error Accumulation of Euler’s Method

"Integer mode" and "floating point mode" provide to represent the numbers. Integer
mode is used for integer numbers and floating point mode is used for real numbers.
We concern with floating point mode. In numerical methods, numbers have greatly
varying size. In order to facilitate the operations, the limitations on the numbers of
digit are required. Rounding error is caused due to this modes. It affect the accuracy
in the numerical solution. Now, we analyze the error for Euler’s method. After
numerical method applied the to any differential equation, rounding error is being

performed.

Denote 9, which is called rounding error. It is the precision of the arithmetic and

affected the approximate solution {y,}. We have

Vel =Yn+hf(xp,yn)+06,, n=0,1,...,N(h)—1 4.5.1)
Assume that
|0, < cu. max |y(x)| = cu. |||l (4.5.2)
x0<x<b

where u = 2.2x10716 is the machine epsilon of the computer and the magnitude of ¢
is 1 or larger 1. Let 6(h)be a bound on the rounding errors
o(hy= max |0, (4.5.3)

0<n<N(h)-1

To see the effect of rounding error subtract the approximate solution (4.5.1) from the
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exact solution to have

1 14
V(Xp41) = Yn+1 =Y(xn) —yn+h [f(xn,y(xn)) - f(xnayn)] + Ehzy ('fn) —0n (4.5.4)

y(x0)=yo =0
This is equivalent to the form
Y(Xn1) = Y1 = Y(Xn) =y + [ f (X0, y(xn)) = [ (X, )| + BT (h) = 6,
where 7,41 = %hzy”(fn) 18 the local truncation error. It is same as the notation
)= 2T
The error term of (4.5.4) can be written as follows
ht(h)—o6(h)=h [T(h) — %] (4.5.5)
Setting e, = y(x,) — yp, take bounds of notation (4.5.4) using the Lipschtz condition

len+1| < len| + hK |e,| + ht(h) —6(h) (4.5.6)

len+1] < (1 +hK)le,|+ ht(h) —o6(h) (4.5.1)

By an inductive argument and applying the proof of the theorem (4.3.2) we obtain,

(b=xp)K

hK

_ e
len| < P70 |go| +

-
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where eg = 0 is getting from (4.5.4). So, we reach the last form as

(b-x0)K [ 1
e 7" cu
el < shly) -5 ||y||oo]
1 ’” Cu
V() =Vl < €1 {Eh'y “m - ||y||oo} = E(h) 4.5.7)

It is clear from the above operations that error will decrease as & decrease at the
beginning; but at the critical point the optimum value of 4*, the error will increase.
At the second term in brackets on the right hand side of (4.5.7) affect the error despite
the fact that machine epsilon u is small. The figure (4.3) also demonstrate the above

explanation.

z=E(h)

:; m——

Figure 4.3. Rounding Error Curve for (4.5.7)
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4.6. Euler’s Method for Systems

The numerical solution for system is same as for a single equation. Numerical
method is applied to each equation in the system. It is shown in detailed in Chapter
6 that is written in a matrix form. To be more clarity, we consider Euler’s method for

a system of two differential equations. Let

Y1) = filx,y1,y2)

Y5(x) = fo(x,y1,¥2)

with initial conditions

y1(x0) = y1,0

y2(x0) = y2,0

In order to obtain system of Euler’s method, consider the Taylor expansion for each

equation.

h2 144
yl(xn+l) = yl(xn) +hfl(xn’yl,n,y2,n) + ?)’1 (é:n)

h2 ”
yZ(xn+l) = yZ(xn) + hfZ(xn’yl,n)ayZ,n) + ?yz (gn)
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for some ¢,,,,, in [x,, x,+1]. We get Euler’s method for a system of two equation by

ignoring the error terms and considering the initial conditions

Vin+1 =YVin+hf1(Xn Y10 Y2.0)

Vo1 =Yon +hfo(XnY1,0,Y2.0)

This indicates the general form of system in matrices format as

Yor1 =Yn t hf(xn’ yn)
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Chapter S

RUNGE-KUTTA METHOD

5.1. Introduction

The Runge-Kutta method is popular method for solving initial value problem. It is
most accurate and stable method. It arise when Leonhard Euler have made improve-
ments on Euler method to produce Improved Euler method. Then, Runge is realized
this method which is similar method with the second order Runge Kutta method. A
few years later in 1989 Runge acquired Fourth Order of Runge Kutta method and af-
terwards, it is developed by Heun(1900) and Kutta(1901). Fourth Order Runge-Kutta
method intend to increase accuracy to get better approximated solution. This means
that the aim of this method is to achieve higher accuracy and to find explicit method
of higher order. In this section, we discuss the formulation of method, concept of
convergence, stability, consistency for RK4 method. In spite of the fact that Runge
Kutta methods are all explicit, implicit Runge Kutta method is also observed. It has
the same idea of Euler method. Euler method is the first order accurate; in addition it
require only a single evaluation of f(x,,y,) to obtain y,+; from y,. In contrast, Runge
Kutta method has higher accuracy. It re-evaluates the function f at two consecutive
points (x,,y,) and (x,+1,Yn+1)- It requires four evaluations per step. Due to this,

Runge-Kutta method is quite accurate, and it has faster rates of convergence.
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5.2. Problem of Runge-Kutta Method

Analyze the initial value problem to find the solution of ordinary differential equa-

tions

Y () = f(x,y(x)) (5.2.1)

y(x0) = yo

The general form Runge-Kutta method is

Vil =Yn +hF (X, y5h), n=0,...,N—-1 (5.3.2)

where F(.,.;.) is called an increment function on the interval [x,,x,+1]. It can be

defined in general form as

F(x,y;h) = blkl +b2k2 +...+ bk, (523)

where b,,’s are constant and k,,’s are

ki = f(xn,yn) (5.2.4)
k2 = f(xn + Czh,yn + a21k1h)

k3 = f(xn + C3h,yn + a31k1h + a32k2h)

ks = f(xn + Csh,yn +as’1k1h + as,zkzh +... +as’s_1ks_1h)
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where ¢’s and a’s are constants. Here, each of function k’s are represent slope of the
solution which are approximated to y(x). These coeflicients a;;,c; b; must be satisfied

the system of Runge-Kutta method. These are usually arranged in Butcher tableau or

(partitioned tableau)
c| A
bT
The coefficient 7 is a vector of quadrature weights, and a;; (i, j = 1,...,s) indicates

the matrix A.

5.3. Explicit Runge Kutta Method

The family of s—stage Explicit Runge Kutta method can be formed as shown in the

following:

b1 f(Xn,yn) + bof (X + C2h, f (X, yn +hlaziki]) +...

Yn+1 =Ynth +bs 1 f(xp+cs—1h,y,+h [as—l,lkl + as_l,zkz +...+ as_l,s_z])

+bs f(xy + csh,y,+hlas k) +aspky +...+as5-1])

(5.3.1)

N
Yas1 =Yn+h ) ik
i=1
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where

ki = f(Xn,yn),
s—1

ki= O+ cihyn+h ) aijkp), i=1,2,....s (5.3.2)
=1

where h = x,,1 — x,. The coeflicients {ci,a,-, b j} determine the numerical method.
This form was developed for higher accuracy methods. However, formulas can be

defined different notations as

i-1

G=ya+h Yy aiifOn+cihz), =12, (5.3.4)
=1

Yust =Yn+h ) bif (xa+cjhz;) 43.5)
=1

The coeflicients {c,-,ai, b j} for Explicit Runge Kutta methods can be simplified by

using the following Butcher Tableau

C2 | a2

€3 | d3r daszx
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If Runge-Kutta method is consistent, then the coeflicients {ai, j} and {c j} must satisfy

the condition

i—1
aj,j = Ci, i=2,...,S (535)

™

j=1
The simplest Runge—Kutta method is the (Explicit) Euler method. The formula of

Euler method which is the first order, is mentioned previous chapter as y,4+1 = y, +

f(xn,yn). The corresponding tableau is

The other example is given the midpoint method which is a second-order method

1 1
Yn+tl =Ynt hf(xn + Eh,yn + Ehf(xnayn)

and its Butcher tableau is shown as

00

1|1

2]z 0
0 1

In order to evaluate y(x,+1), each of higher order derivatives is required to expand at

the point x; in the Taylor series. It is convenient to analyze any Runge-Kutta method
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by using some formulae of derivatives which is

Y (x) = f((x))
V(@) = £ 0(x) Y (1) = £/ (3(x) fO(x)
Y"(x) = £ 500) (FO),Y () + F GG Gy (x)

= [ ) (FOE), FOCN)+ G f G [ (X))

It can be simplified to avoid complication by taking f = f(y(x)), fy = ' ((x)), fyy =

f g (y(x)). We obtain

yx)=f
Y ()= fif (5.3.6)
Y @) = ff 2+ SRS

71

Y @) = fow > +4f S +fy3f

In order to generate the second order Runge Kutta method, we observe Taylor expan-

sions for y(x,+1) which has the form

’ h2 14 h3 7 hp ( )
Y1) = Y(xn) + hy (¥n) + 77y () + 37y )+ + P P (xnt) (5.3.7)
So as to attain the second order Runge Kutta method, we should take the derivation
of f(x,y) for the functions kj,k;. Consider the second order Taylor series and use
notations of (5.3.5)—(5.3.6) to construct the Runge Kutta method with order 2. Thus,

instead of y, (x,), we can write f(x,y) and we need to evaluate y” (x,,) with respect to
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y. After substituting, we takes form
Y1) = ) + S + S f + 00 (538)
The approximate solution of second order Runge Kutta method can be obtained
Yn+1 = Yn +hb1ki + bokz] (5.3.9)
where

ki=f,y)=f (5.3.10)

ky = f(xp+cah,y,+hask)) = f+hax £y, + WPanf fr

Then, replace the slope of solution to form of the approximation solution y,; and

neglect function of f that depend on x to obtain

Yast =Yn+h|bif +ba(f +han f1,)] (5.3.11)

Now, we match (5.3.8) with Taylor series (5.3.7). This satisfy the following equations

bi+by=1 (5.3.12)

bras = =
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So, we have two conditions with three unknowns values. If we choose b; =0, by, =1

and ar1 = %, Runge Kutta method with order 2

1 1
Ynel =Yn+hf (xn + Eh,yn + Ehf(xn,yn)

This is called Modified Euler method. Another particular solution of (4.3.12) is

Heun’s method since b; = %,bz = % and a| = 1. The resulting method is

h
Yn+l1 =Yt Ef(xnayn + f(xn + hayn + hf(xnayn)))

It is possible to acquire third order Runge Kutta method by using the same construc-
tion. Expansion of the term will include the order 43.Thus, for the Runge Kutta

method of order third, we consider third order Taylor expansion which has the form
2 h3

’ ]’l 77 "
Y1) = () + hy () + 57y (Kn) + 33y () + O(h*)

It is required to find y" (xn), ym (x,) and also we need to expand ki, k2, k3 by using

derive expansion. The numerical solution is written as

Yn+1 = Yn +h[b1ki + baky + b3ks] (5.3.13)
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where

kl = f(X,)’)
ko = f(xn +coh,y, +hasriky) (5.3.14)

k3 = f(xn +c3h,y, + hlaziky +azks])
Expanding k; as a Taylor series we obtain
ky = f+heafe+hasiky fy+h? Lipg 2k K|+0) (5.3.15
2= f+heafethanky fy+ WPanf fot Shay | fot 2k fog + fiyki |+ O0) (53.15)

and substitute k; to equation (5.3.15) and ignore the function which is depending of

X to obtain
ky = f+hay ffy+ %hzagl f 2+ 00
Similarly, in order to obtain k3, same process is applied in turn
ks = f+h(asik) +axnks) f, + %hz (a3, k7 +a3,83) iy
Then by substituting k;’s (i = 1,2,3) to the numerical solution, we obtain

Yns1 = Y+ (b1 +ba+b3) f + h? (baag + byas) +bzaz) £,

h3
+ (523, +b3a3, + bsad, ) £ fyy + WP bzanaa £ 1
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Ultimately, we match the Taylor expansion of exact solution with the expansion of

solution. We have

1
Y(Xns1) = Yns1 = h(by +by +b3 = 1) f + h? (bzazl +bsas; +b3032—§)ffy (5.3.16)
h_3 2 2 2 _l 2 3 _l
+ 2 b26121 +b36l31 +b3a32 3 f fyy+h (b3a32a21 6)ffyfy

It is clear that set of functions

b] + bz + b3 =1
1

bras +b3a31 +b3a32 = 5 (5.3.17)
1
bza%] +b3a%1 +b3a%2 = §
1
bzazaz; = 3

There are four equations with six unknowns. By taking convenient value for un-

knowns, we get through two particular solution of third order Runge Kutta method:

1. ([28])Since by = 3,60 = 0,b3 = 3,421 = 1,a31 = L,a3 =

w2

, the result gives

Heun’s third order formula

h
Yn+l =Ynt Z (k1 +3k3)
ki = f(x,y)

1 1
ky = fx+3hy+shki)

2 2
k3 = f(x+ gh,y + ghkz)
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2. ([29])Since by = ¢,by = 3,b3 = ¢,a21 = 3,a31 = l,a3 = 2, the result gives

Kutta’s third order formula

h
Ynel =Yn+ 3 (k1 +4ky +k3)

ki = f(x,y)
ky = f( +lh +lhk)
2= J(x 2,)’ 5 1

ky = f(x+h,y—hki +2hky)

5.4. Implicit Runge-Kutta Method

The implicit method is more different than explicit methods. It is such a complicated
method; but in solving differential equation, it has helpful numerical stability. The

form of s- stage Runge Kutta method is defined as

S
Yast =Yn+h ) biki
i=1

where

ki = fQon+cihyn+h ) aikp), i=1,..s (5.4.2)
=1

It has a Butcher tableau
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¢ |ann 42 ... Qi
C2 a2 4z ... dys
Cs | ds1 dg2 ... dgg

by by .. b

If the equation is a system of m differential equation, then the coefficients will be
system of sm nonlinear equation. It is clear that s nonlinear equations of system has

s unknowns k;. We now introduce a famous Runge Kutta method.

5.5. Fourth Order Runge-Kutta Method

The most popular method Fourth Order Runge-Kutta method is obtained as
1
Yntl =¥nt g (k1 + 2ky + 2k3 + ka)

where

ki = f(xn’yn)
1 1
o = fn+ 5+ ki) (55.2)

1 1
k = n _h,n _kh
3=f(x ) y+22)

ks = f(xn+h,y, +kzh)

Fourth Order Runge Kutta method is the well-known sample of all Runge Kutta

methods. Its tableau is
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0

1)1

2 2

1 1

310 3

110 0 1
1111
6 3 3 6

It is clear that RK4 method is consistent over the condition (5.3.8). The local trun-
cation error is O(h°). Also, it has four evaluation of function f in each step. We can
construct the function of f same as the second order method. First we begin with

Taylor expansion of exact solution
’ 1 2.7 1 3.1 1 4 11 5
Y1) = Y(n) + By () + Sh7Y" () + 7y () + 2717y () + OR7) - (5.5.3)

Then we replaced the first derivative, second derivative, third derivative, and fourth

derivative by using differentiation of (5.2.1). The expression will be interpreted

1 1
Y1) =y +hf + S f fyo o [ ff 2 + 1 (5.5.4)

1
+5WUMJ%4MAﬁ+ﬁﬂ+m#)

To contrast the approximate and exact solution, we need to indicate the expansion of

numerical method. By assuming

Y41 = Yn +hlbiky +boky +b3ks + baky] (5.5.5)

61



with

ki = f(x,y)
ko = f(x,+c2h,y,+haziky) (5.5.6)
k3 = f(xy+c3h,y, +hlaziki +azzks])

ks = f(xp +cah,yn+hlas ki +asky + aszks]

In order to extend k;’s we use again Taylor expansion formulae

oo m

1 o .
ZZjv(m_j)yD{D(z Df (x,y) W™= (5.5.7)
m=0j=0 7 :

Here, expansion is only depending on y, so we neglect x which appears in argument
of f. After expansion is carry out, substitute k;’s to numerical method. Afterwards,

we have to match the expansions (5.5.4) and (5.5.5). We achieve ([16])

bi+by+bs+by=1 (5.5.8a)

bycr +b3cz +bacy = % (5.5.8b)
mé+mé+mﬁ=% (5.5.8¢)

bszazocy + bgasycr + baagzes = % (5.5.8d)
mg+m@+m&=% (5.5.8¢)

bsyczazpcy + bacsasncr + bacgagzcs = % (5.5.8f)
b3azych + baasycs +byagscs ::i%i (5.5.82)
byagzazycy = % (5.5.8h)
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In place of above a system of 8 equations in 10 unknowns is obtained. To show the
application is so complicated for Fourth Order Runge Kutta method. In contrast, It
can be solved by taking some appropriate value. Thus, since ¢4 = 1 is taken, by, b3, b4
obtain for equation (5.5.8b),(5.5.8c) and (5.5.8¢c) ; then solve for as;,a42,a43 from
equation (5.5.8d), (5.5.8f), (5.5.8g); finally substituting to #. Many solution and s—
stages families of solution is arise these condition. There are two well known fourth

order methods

h
Yn+l =Yn+ 3 (k1 +2ko +2k3 + ky)

ki = f(Xn,yn)
1 1
k2 = f(xn + zh,yn + Eklh)

1 1
k3 = f(x,+ zh’yn + EkZh)

kg = f(xp+h,y, +k3h)
and

h
Ynel =Yn+ 3 (k1 +3ky +3k3 + k)

63



ki = f(Xn,yn)

1 1
k2 = f(xn + gh,yn + §hk1)

2 1
k3 = f(x, + ghayn - ghkl + hk2)

kg = f(xn + h,yn + hk| — hky + hk3)

5.6. Stability of Runge-Kutta Method

Runge-Kutta method has the same property of stability. Observe that the model

problem

y =21 (5.6.1)

¥(0) =yo

with real and negative A. Denote z” = [z1,22,...,25] and e =[1,1,...,1] is the
s—dimensional vector. Apply the general form of s—stages to model problem to

get

Z, = yp,e+hlAz, (5.6.2)

Vel = Yu+hAbT z,
After some operations applied, it gives

Vel =Y +hAbT (1= hAA) ey, = (1+hb" (1-h1A) e)y, (5.6.3)

64



Then the method has stability function if
R(p) = (1+hab” (1-h1A)"e) (5.6.4)

The Runge-Kutta method is A—Stable if modulus of function is less than 1 for Re (21)<0

which is
IR(mI < 1 (5.6.5)
for all complex hA.

Definition 5.6.1 (/24]) The method (5.3.2) is said to have order p if p is the largest

integer for which
Y(x+h) = y(x) = hF (x, y(x); h) = O(h"*") (5.6.6)
holds, where y(x) is known as the theoretical solution of the initial value problem.

Definition 5.6.2 ([26]) The method (5.3.2) is said to be consistent with initial value

problem if

F(x,y,0) = f(x,y) (5.6.7)

The method is zero stable if F(x,y(x);h) =0 as h — 0. It can be shown as follows:

1
Vel = Yn+ E(kl +2ky + 2k3 + kq) (5.6.8)
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This equation becomes

Yn+1=Yn =0 (5.6.9)

If we apply the root condition, the characteristic equation is satisfied

Then root conditions hold when the modulus of root is less than or equal to 1 which
shown as |r| < 1. We can say that the fourth order of Runge Kutta method is zero

stable.

To confirm that Runge Kutta method have greater accuracy than Euler method, we

need to calculate the local truncation error. Assume that

Flyn Xuih) = > bik;
i=1

RK4 is consistent if F(y,, x,;0) = f(x,,y,)) then we must approve this rule. Replac-

ing the consistency condition into F(y,, x,;h) = Zis:] biki, we get

=
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which is the necessary condition to satisfy the consistency condition for Runge-Kutta

method. Furthermore, we can define the local truncation error is

Ty = y(xn+1) _y(xn) _hF(y(xn), xn;h)

The comparison of definition (5.6.2) and the local truncation error gives us

Tpi1 = O(hP™h)

where p is the order of the method. It is clear that 7, = O(h) is the local truncation
error of Fourth Order Runge Kutta method. Order of method assure the accuracy of
the method. For RK4 method, the local truncation error is appeared O(h°). This
means that the order of RK4 method is four. In case that RK4 is consistent and zero

stable, RK4 converges to analytical solution.

The definition of convergence is given in Chapter 2. To investigate the convergence
of Runge-Kutta method, consistency and stability condition must be hold. Consider

the form of method

Yn+1 =Yn +hF (X, y05h), n>0 (5.6.10)

which refers to the numerical solution of initial value problem (5.2.1). Using the

truncation error

Tri1 = y(Xnt1) = y(xn) = hE(x, y(x), h; f) (5.6.11)
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we define

1
Tu(y) = ETnH(y)

In order to show the convergence of the solution (5.6.10), we need to have 7,(y) — 0

as h — 0 since

y(xn+1) —YVn

" = F(x.y(x).hi f) (5.6.12)

Tn(y) =
We need that
F (%0, y00) 1 ) — ¥ (1) = f(x,)(x)) ash— 0
This shows that
N(h) = sup yy<x<b, —co<y<col f(X,y) = F(x,y,h; ) (5.6.1)
and since
nth)y—0 as h—0 (5.6.14)

the consistency condition is hold. We can also show the consistency result by other

way. Rewrite (5.6.12) in the form

Y(Xnt1) = y(x) + hF (xp, y(x0), 5 f) + hta(y) (5.6.15)
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then define

7(h) = max [7,(y)|
xg<x<b

The condition can be used for consistency condition while 7(h) — 0 as h — 0.

Apart from that we need to check the Lipschitz condition on F;
|F(x,y,h; f) = F(x,z,h; )l < Ly — 2] (5.6.16)

forall x <x<b,—c0<y,z<ooandh>0.

Theorem 5.6.3 (/10])Assume that the Runge-Kutta method satisfies the Lipschitz

condition. Then, for the initial value problem, the solution {y,} satisfies

eb—x0)L _
max|y(x) =yl < P70l [y (x0) = yol + [fl 7(h) (5.6.17)

X0<xp<

where

()= max |r,0)] (5.6.18)

X0<xXp<

If the consistency condition (5.6.14) is also satisfied, then the numerical solution {y,}

converges to y(x).

Proof. ([11])Subtract (5.6.15) from (5.6.10) to obtain

en+1 = en+h[F (o, y(x0), 15 ) — F (X, o s )] + hty () (5.6.19)
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in which e, = y(x,) —y,. Apply the Lipschitz condition (5.6.16) and use (5.6.18) to

get
lens1] < (1 +hL) e+ hr(h), xo <xy <b (5.6.20)

As with the convergence proof in Theorem 4.3.2 for the Euler method, given in
Section 4.3 of Chapter 3, this leads easily to the result (5.6.9). In most cases, it is
known by direct computation that 7 (h) — 0 as h — 0, and in that case, convergence
of {y,} to y(x) is immediately proved. But all that we need to know is that (5.6.14) is

satisfied. To see this, write

ht,(y) = Y(Xn41) = y(xn) — AF (X, y(X0), h; f)
1
= hyl(xn) + zhzy”(fn) —hF (X, y(xn); ), yl(xn) = f(xn, y(xn))
1
hlTa ) < ) + =2 [y

1
w(h) <n(h)+ s h[y ||,

Thus 7(h) — 0 as h — 0, completing the proof. m

5.6.1. Absolute Stability of Runge-Kutta Method

The adequate technique is to consider model problem

y =2y (5.7.1)

y(0) =yo
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The analytical solution of initial value problem is y, (x) = ypexp (4dx) where A negative
real number. Here, analytical solution converge to 0 as x — +oco at the exponen-
tial part. Note that this condition also is necessary for the solution of Runge Kutta
method. We investigate that what condition on step size the solution of Runge Kutta
method will satisfy the same behavior. By choosing the appropriate step size in the
numerical solution of initial value problem on the interval [xg, x,,,] with x,, > x, the
numerical solution reproduce desired status. When the numerical solution is applied
to the model problem, the interval of line 24 must satisfy the absolute stability con-
dition. This shows that solution of Runge Kutta method tends to zero as x — oo.

Now, perform the Runge Kutta fourth order method to model problem to obtain

ki = f(x,y) =2y
ky = f(xn +c2h, yu + haziky) = A(y+ hax Ay) =
= Ay(1 +az hd)
ks = f(xn+c3h,yu + hlaziky + azkal) (5.7.2)
= A(y+hlaz Ay +andy (1 +az hd)])
= Ay(1+halas +as]+ P Pazpan)
kq = f(xn+ cah,y, +hlasiky +agks + agzks] =
= /l(y + hag1 Ay] + hagp Ay [1 + a1 hA] + hagz Ay [1 +hA[az +azn] + hz/lzagzagl])

= /ly(l + h/la41 + h/1a42 + h2/12a42a21 + h/la43 + hz/lza43 [a31 + a32] + h3/l3a43a32a21>
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- i-1
Assuming h = hd and } a;j = c;, (i = 1,..,5), then rewrite (5.7.2)
j=1

k1:/1y

k2 = /ly 1 +a21}_1)

ky = Ay| 1+ hes + h2a32a21) (5.7.3)

k4 = /ly 1+ ;LC4 + h2a42a21 + h2a43C3 + h3a43a32a21
Afterwards, substitute into (5.2.3) to obtain
F(x,y;h) = b1ky + byky + bsks + baky

and

b + bz(l +a21/jl) + bs (1 + i_lC3 +h2a32a21)
Yn+1 :)’n+h Yn

+b4 1+ hC4 + h2a42a21 + h2a43C3 + h3a43a32a21)

_ (b1 +b2+b3 +b4)+(b2a21 +b3C3 +b4C4);l
Yn+l=Yn=h _ | (5374

+(b3aza +baasaz +baaszcs) i + bsaszazan b’
Ynet[¥n = 1+ (b1 +ba+b3 +ba) h+ (baazy +bscs +bacs) I

3 4
+(b3azpany +bsasrazy +bsaszc3) b + bsaszazpaz i h
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Now, we turn to the conditions (5.5.8a), (5.5.8b), (5.5.8d), (5.5.8h). It is evident that

the difference equation satisfies these conditions; so it is obtained

- 15 15 17
Y+l = (1 +h+ 5hz + 5/13 + ﬂh“) Y (5.7.5)

Consequently, method is absolutely stable, that is, y, tends to 0 if and only if

- 15 15 1
1+h+=h*+-1+—n

> G o <1 (5.7.6)

The plot of this function towards h pose that the interval of absolute stability in

he[-2.78,0].
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Chapter 6

SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

6.1. Introduction

More application problems include a system of several equation. The solution of a
system of ordinary differential equation is required in engineering and science that
has more complicated situations. The initial value problem of m differential equa-

tion’s system can be put into a form as

Y (0 =£(x,y(x), y(x0) =Yo (6.1)

We can write as follows

V1) = il y1(x),y2(x), ., ym(X)),  yi(x0) = Y10

Y5(x) = o6, y1(2),2(X), s ym(X)),  y2(x0) = Y20

V(%) = [, 31(20),¥2(X), ;. (%)), Ym(X0) = Ym0
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with the given some interval xp < x < b. The general form of system can be repre-

sented the solution and the differential equation by using the column vector. Indicate,

yl(x) )’1,0 fl(x,yl,YZ,~~-7ym)
yZ(X) y2,0 fZ(-xaylayZ’---aym)
y(x) = » Yo = s f(x’ Y) =
] ym(x) ] i Ym,0 ] ] fm(xaylayZa---,ym) |

with'y = [y1,y2, ---,ym]T-

Example 6.1.1 ([13])The initial value problem

¥] =y1(x) = 2y2(x) +4cos(x) - 2sin(x),, y1(0) =1,

¥ = 3y1(x) —4y2(x) + 5 cos(x) — 5sin(x), y2(0) =2

has the solution

yi(x) = cos(x) +sin(x),  ya(x) =2cos(x)

System can be written as

Y () =Ay(x0) + @(x),  y(0) =1y,
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with

Vi 1 -2
y= A= :
2 3 4
4 cos(x)—2sin(x) 1
O(x) = » Yo =
5cos(x) —5sin(x) 2

In the notation above it can be represented as

f(x,y) =Ay + ®(x), y=[y1.3]"
6.2. Stability Theory for System

Stability means that small disturbance in the initial value problems causes a small
change in the solution. Here, we consider the numerical methods for solving the
initial value problems that are numerically stable. Small change in initial value prob-
lem will cause a small change in the numerical solution for any sufficiently small

step size.

To examine the stability of system keep in view the initial value problem

Y'(x0) = fx,y(x)),

y(x0) = yo
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Instead of this, we consider the stability of numerical method for the model problem

Y (x) = Ay(x) + g(x)

y0)=1

Stability and convergence can be answered for this problem. Expand y’(x) = f(x,y)

to get
SO, y(x0) = f(x0,y0) + fr(x0,y0)(x = x0) + fy(x0,Y0)(¥(X) — yo)
Thus,
Y (x) = flx,y(x)
= Ay(x) = yo) +&(x)
with

g(x) = f(x0,y0) + fr(x0,y0)(x — Xx0),

A= fy(x0,y0)

Let V(x) = y(x) — yo, then we obtain

V'(x) = AV(x) + g(x)

which is called model equation for the initial value problem. Make small change in
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the initial value problem and see the difference in the solution

VAx) = AWVelx) +8(x)

Velxg) =Vp+e

Here, g(x) will be cancelled. Because we are interested in the differ of the solutions

and we get model problem. Subtracting them we get

VI(x) =V (x) = AVe(x) - V(%))

Ve(xo) = V(xg) = €

Take W = V/(x) — V'(x) to obtain

W' =aw

W(xp) =€

These operations demonstrate the stability and convergence of model equation. Now,
we examine the more general problem for system by considering the model equation.

It is similar with the above analysis.

The initial value problem of m differential equations of system describe as

y =f(x,y), xo<x<b

y(x0)=1Yo
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The final version of the model problem is defined

y'(x0) = Ay(x) +g(x)

with A = f,(x,yo). if f is differentiable, then f,(x,y) indicate a Jacobian matrix.

afi(X,)’l ,yZa ,ym)
Ay,

£,(x.y)i,j = , I<ij<m

This system can be written as

Yy = Ay +g(x)

which can be reduced to equivalent system

7= dizi+y(x), 1<i<m

with Ay, 42,..., 4,, the eigenvalues of A = f,(xo,y(X)).

To investigate the stability of multistep method (3), examine the special model equa-

tion case

Y (x) = Ay(x),

yo=1
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After applied it to the multistep method, it becomes

pP
Yn+l = Zajyl’l ]+h/l Z bj)’n —jsnzp
j=0 j=-1
)4
%lezaaﬂ%j+hﬂb1%H1+hﬂ§:bﬂnj
j=0 j=0
we get
p
(1=hAb_1)yns1 = ) (a;+hAb;)yn-;
=0

This is called a linear difference equation of (p + 1).We investigate a general solution

in a form
yn=1",n>0

Substitute this form to the method and multiply by 7"

p . p .
Pl = Zajrp_/+h/l Z bjrP™/
which is called characteristic equation. Denote the second characteristic roots,
o(r) = Z birP™ =b_ lrp+1+er J
j=-1
and remind that the first root of polynomials

p
p(ry=rt =" a;r

=0
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Thus first and second characteristic polynomial of (2.3) can be defined by
n(r,hA) = p(r)—hdo(r) =0

The stability of numerical methods will be analyzed, when the step size is not chosen
very small. The model problem is the instructive technique to state the region of the
stability for any methods. We will investigate the case A for this.

In general multistep methods (2.3), the characteristic equation is represented as

p P
= T —ha Y b =0
/=0 j=1

for the determined model equation.
All roots of characteristic equation have magnitude 1 to satisfy the absolute stability.

We can find s4 from the characteristic equation.

p P
PPl Zajrp_j =hA Z bjrp_j
=0 j=—I
pprl_ Z?:O ajrp—j
= ——; —
Zj:—l ber J

This shows the region of the stability of method. When the constant A is real, then A4
is negative (1 < 0); or when A is complex, assume that Re(1) < 0 in stable differential

equation problems. The true solution of the given model problem is

y(x) = et

Considering the above cases, the solution of model problem tends to zero as x tends
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to infinity.

y(x) — 0as x — oo

When the any numerical method is applied to model problem, the approximated

solution satisfied

y(xp) — 0 as x, — o

If hA is satisfied for above definition in any numerical method, then it is called region

of absolute stability of the numerical method.

82



Chapter 7

NUMERICAL EXPERIMENTS ON SIMPLE SYSTEMS

7.1. Introduction

Numerical experiments is mentioned to prove which numerical methods converge
faster to analytic solutions. Numerical experiments are investigated over an exam-
ple. In comparing different numerical methods, numerical experiments must be done
using the same of ordinary differential equations.([17]). For comparison bases, Hull
and Enright (1976) pointed out some assumptions that must be undertaken. Assump-
tions include assuming that the method is modelled to integrate between initial values
specified. Another assumption is assuming that local error is observed by keeping the
absolute error under the specified error tolerance. Differential equation is inspected

two varied numerical methods.

The given differential equations are analyzed for Explicit Euler method, Explicit
Runge-Kutta method. Analytical solution of ODE is calculated as well. Each one
of all is examined at varied step sizes. Step size is started with 0.1 and continued

with halved. Afterward, the absolute error is identified.

Initially, exact solution of DE is computed and then approximated solution is cal-
culated by using Matlab software for each numerical method at different step size.

Afterwards, absolute error are computed by taking difference analytical solution
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to approximated solutions and presented in the same table at each step size. Ulti-
mately,errors at each step size of method are compared with other numerical meth-
ods. All numbers in the table. The computation process, errors and according to

graphs of each steps can be found in Appendix A and Appendix B.

7.2. Numerical Experiments on Stiff System
7.2.1. Numerical Experiments on Explicit Euler method

Consider the following example of stiff system;

du =8u(x)—5v(x)+ 10w (x)

dx

ﬂ =2u(x)+ 1v(x)+2w(x)
dx

d_w = —4u(x)+4v(x)+6w(x)
dx

where initial conditions are u(0) = 2,v(0) = 2,w(0) = —3. It can be shown in general

form as y(0) = [2,2, —3]7. Its theoretical solution is given

u(x) = 6> — 4¢3,
v(x) = —4&> + 6,

w(x) = —e 2 + 3>

where y (x) = [u(x),v(x),w(0)] .[36]

Explicit Euler method and Explicit Fourth Order Runge Kutta method of numerical

methods is considered to solve system of ordinary differential equations. The system
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is computed in Matlab software to evaluate values of the approximated and analytical
solution for Explicit Euler method and Explicit Fourth Order Runge Kutta method.
Initially, Explicit Euler method and Explicit Fourth Order Runge Kutta method is
computed for the given system at different step size. The system and analytical solu-
tions is entered into Matlab software for each method separately. Then analytical so-
lution and approximated solution is evaluated with step sizes 0.1,0.05,0.025,0.0125,
0.00625 and 0.003125. Afterwards, the absolute errors which is obtain by differ ap-
proximated solution from analytical solution, are calculated at specified step size.
Error tables with exact solution, approximated solution, and graphs, which is related
with exact and approximated solution, are shown in Appendix 2. In this table, we can
see how the approximated solutions behave when the step size is reduced by half. We
can compare the exact solution with approximate solution and identify the safe step
size ,which the approximated solution tends to analytical solution, through this table.
It can be determined the proximity of the approximated solution to exact solution

since the step size is changed.

In order to compute the approximated solution, step size is started with 0.1 for Ex-
plicit Euler method. As can be seen from the table in step size 0.1,0.05, 0.025 and
0.0125, the resulted of approximated solution is not closeness to exact solution. So,
these step sizes do not lie in the region of absolute stability. The difference between
exact solution and approximated solution must be excessively small. The computed
approximated solutions have much difference from analytical solutions as it seen in

the table. Nevertheless, the step size will lie inside the region of absolute stability
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since h < 0.003125. The approximated solution is closer to exact solution. This

shows that the small step size provides the better approximation.

Application of Explicit Euler method is not occasionally preferred to use in stiff
systems. The reason is that cannot give the accurate approximated solution in fixed
error tolerance well. In order to achieve certain approximation, the step size must be

taken very small. This cause more iterations and high computation.

7.2.2. Numerical Experiments on Explicit Fourth Order Runge-Kutta method

The same system is computed in Matlab software. It is taken for comparing the
Explicit Euler method and Explicit Runge Kutta method. The same technique which
is implemented for Explicit Euler method, is applied to RK4. The computation of
Explicit Runge Kutta of fourth order method in same stiff system is also given at
different step sizes in Table for given systems. Step size is started from 0.1 and com-
putation progress is proceed of half. Evaluation of analytical solution is same and the
approximated solution is computed by using the step sizes 0.1,0.05,0.025,0.0125
respectively. In addition, local error of numerical method is generated by taking
modulus. Error tables with graphic can be found in Appendix 2. As it is seen in
table, at the step size & = 0.1, errors in system lie in the region of absolute stability.
Thus,absolute error is started to behave as approximate solutions But, the approxi-
mation of u(x),v(x), w(x) is not close to analytical solution. It is also appreciable in
absolute error which is not small absolute error. Again, when step sizes are taken

0.05 and 0.025, we can see in the table that absolute error is started to behave as
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approximate solutions. These results indicate that the acceptable approximations,
and step sizes are in the region of the absolute stability. if the step size is used less
than 0.0125, the approximate solution will have same solutions with analytical so-
lutions. It is also noticeable from the error evaluation that have excessively small
difference. This shows that approximated solution turn into the exact solution at step

size h = 0.0125.
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Chapter 8

COMPARISON OF EULER METHOD AND RUNGE-KUTTA

METHOD WITH ADVANTAGES AND DISADVANTAGES

1. EULER METHOD:

Advantages:

Euler’s method is the simplest of all linear multi-step method to obtain the ap-
proximated solution of the specified initial value problem. It has the one-step
techniques, and it can be easily programmed. Most of the ordinary differen-
tial equations can be solved conjecturally with numerical method and approxi-
mated solution y, .| can be obtained from y,. The derivation of Euler’s method
can be revealed by constructing Taylor series. Approximated solution can be
acquired at each step before progressing to the next step. In addition, it has
merely single computation of function f in each time (step-size). The error
analysis, which involve local and global truncation error, and remainder term
can be obtained smoothly. Consequently, Euler’s method has the practical so-
lution techniques in order to solve the complicated differential equations.
Disadvantages:

In spite of the simplicity, it is restricted to use. The reason is; it generate large
error in each successive step during the computation which is the accumulated

error. In order to avoid the formation of larger error, step-size should be taken
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excessively small. Therefore, it needs high computation of time. Additively,
approximated solution converge slower to analytical solution. This means that
the order of method is 1 and the error is observable O(hz). It is a slow rate of

convergence.

. RUNGE-KUTTA METHOD:

Advantages:

The idea of families of Runge Kutta method is too complicated, but higher or-
der provides much better approximated solutions than Euler method. The most
popular Runge-Kutta method is the method of order four. It is good choice to
get more accurate and more efficient solutions for solving the specified ordi-
nary differential equations.The approximated solution converge faster to exact
solution and the order of RK4 is 4 and the truncation error is O(hS).
Disadvantages:

Method is re-evaluating the function f at each time to obtain the predictable
solution. It requires four evaluation per step. So, the computation of function
may take long time. The derivation of Runge-Kutta method is obtained from
Taylor series, but it is tedious to calculate higher derivative. To avoid this, the

function f is evaluated at more points.
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Chapter 9

CONCLUSION

In this thesis, we have discussed numerical methods for solving systems of ordi-
nary differential equations. Some necessary conditions and definitions are given to
examine the numerical methods. After that, by considering these conceptions and
definitions, Euler methods and Runge Kutta method of order 4 are developed and,
derivations and stabilities of both methods are discussed. Afterwards, the system of
ODE is given and, we discussed the efficiency of two methods at the different step
size for systems using Tables of approximated solutions with exact solutions. At the
end, we gave information about the advantages and disadvantages of Euler’s method
and Runge Kutta method. Consequently, we see that in the Euler’s method exces-
sively small step size converge to analytical solution. Therefore, large number of
computation is needed. In contrast, Runge Kutta method gives better results and it

converge faster to analytical solution and has less iteration to get accuracy solution.
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Figure 2. Graph of approximated solution and exact solution by using Explicit Euler
method with 4 = 0.05
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Figure 3. Graph of approximated solution and exact solution by using Explicit Euler
method with 4 = 0.025
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Figure 4. Graph of approximated solution and exact solution by using Explicit Euler
method with 2 =0.0125
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Figure 5. Graph of approximated solution and exact solution by using Explicit Euler
method with 4 = 0.00625
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Figure 6. Graph of approximated solution and exact solution by using Explicit Euler
method with 2 =0.003125
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Figure 7. Graph of approximated solution and exact solution by using Explicit Euler
method with 4 = 0.0015625

111



Appendix B. Fourth Order Runge Kutta method
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Figure 8. Graph of approximated solution and exact solution by using Explicit RK4
method with 2= 0.1
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Figure 9. Graph of approximated solution and exact solution by using Explicit RK4
method with 4 = 0.05
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Figure 10. Graph of approximated solution and exact solution by using Explicit RK4
method with & = 0.025
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Figure 11. Graph of approximated solution and exact solution by using Explicit RK4
method with 2 =0.0125
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Figure 12. Graph of approximated solution and exact solution by using Explicit RK4
method with 4 = 0.00625
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