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ABSTRACT 

It is no doubt that the insurance industry is no stranger to data driven decision making. 

The field of health insurance has seen profound transformation in recent times driven 

by technological advancement, data proliferation and evolved healthcare dynamics. 

Traditional methods for predicting health insurances premiums face several different 

challenges which can result in inaccurate pricing, adverse selection and suboptimal 

risk assessment. Some of these limitations including but not restricted to limited data 

utilization, static models and inefficiency in underwriting.  

This thesis project seeks to investigate comprehensively how machine learning based 

regression models and techniques, including linear regression, polynomial regression 

and XGBoost regression can be used in insurance to make predictions on health 

insurance premiums. Using a diverse historic US health insurance dataset gotten from 

Kaggle containing client insurance charges, demography information, lifestyle factors, 

these models meticulously tuned, trained, and evaluated. The study does in-depth 

examination of the methodologies, including exploratory data analysis, feature 

selection and engineering, hyperparameter optimization, and model evaluation, to 

determine the predictive accuracy of each model. 

Keywords: Health Insurance, Machine Learning, Statistics, Linear Regression, 

Polynomial, XGBroost, ML Models, Python. 
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ÖZ 

Sigorta endüstrisinin veri odaklı kararlar almaya yabancı olmadığı şüphesizdir. Sağlık 

sigortası alanında, teknolojik ilerleme, veri çoğalması ve gelişmiş sağlık dinamikleri 

tarafından yönlendirilen köklü bir dönüşüm yaşanmıştır. Geleneksel yöntemlerle 

sağlık sigortası primlerini tahmin etme, doğru fiyatlandırmayla, olumsuz seçimle ve 

altoptimal risk değerlendirmesiyle sonuçlanabilen çeşitli zorluklarla karşılaşmaktadır. 

Bu sınırlamalar arasında, ancak bunlarla sınırlı olmamak kaydıyla, sınırlı veri 

kullanımı, statik modeller ve underwritingdeki verimsizlik bulunmaktadır. 

Bu tez projesi, sağlık sigortası primlerine ilişkin tahminlerde bulunmak için makine 

öğrenmesi tabanlı regresyon modelleri ve tekniklerin, lineer regresyon, polinom 

regresyon ve XGBoost regresyonunun kapsamlı bir şekilde nasıl kullanılabileceğini 

araştırmayı amaçlamaktadır. Kaggle'dan alınan çeşitli tarihli bir ABD sağlık sigortası 

veri setini kullanarak, müşteri sigorta ücretleri, demografik bilgiler, yaşam tarzı 

faktörleri içeren bu modeller özenle ayarlanmış, eğitilmiş ve değerlendirilmiştir. 

Çalışma, keşifsel veri analizi, özellik seçimi ve mühendisliği, hiperparametre 

optimizasyonu ve model değerlendirmeyi içeren yöntemleri derinlemesine 

incelemekte ve her modelin tahmin doğruluğunu belirlemektedir. 

Anahtar Kelimeler: Sağlık Sigortası, Makine Öğrenimi, İstatistik, Lineer Regresyon, 

Polinom, XGBoost, ML Modeller, Python. 
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Chapter 1 

INTRODUCTION 

1.1  General 

The integration of Artificial Intelligence (AI) in the field of medical science within the 

last few decades has drastically involved with application of data engineering and 

analytics methods along with advanced machine learning algorithms to identify 

patterns within vast medical datasets and produce insightful predictions and outcomes. 

As medicine increasingly depends on different types of data variables like imaging, 

histopathological, and biochemical data, the amount of available information is rapidly 

growing, creating opportunities for machine learning advancements. AI and ML 

systems are poised to play a more significant role in healthcare, handling tasks ranging 

from research and data organization to pattern recognition and predictive analytics. 

These systems have the potential to revolutionize medical diagnostics and even 

contribute to treatment decisions. 

Although the health sector has experienced rapid technological advancement and 

innovation, nonetheless it still remains vulnerable serious uncertainties, dangers and 

risks. Individuals, are all exposed to different types of threats, which can vary in their 

severity and nature. These potential hazards encompass accidents, illnesses, and even 

mortality. Overall, people turn to experience of happiness and productivity when these 

risks are could be avoided or even eliminated. However, because risk cannot totally be 
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avoided or eliminated the financial industry has developed a number of financial 

products to allow individuals and corporations mitigate these risks. Amongst which is 

insurance; a policy, in which policyholders receive financial protection or 

reimbursement against losses from an insurer. Policies which cover for medical 

expenses are known as health insurance. After purchasing a health insurance, the 

policy holder is required to pay a periodic amount to the insurer called premium.   

How much a health insurance cost can be influences by several factors and it is 

determined by the process called underwriting. Insurance underwriting is carried out 

by actuaries or trained financial expects called underwriters who assess and evaluate 

the risks of insuring an individual or asset using several underwriting tools and 

processes to analyze factors involved to set price and premium for insurance policies.  

Underwriters rely on computerized probabilistic methods and actuarial data to assess 

the potential risk involved with insuring an individual or asset and based on this 

assessment they set the premium price for the insurance policy. The aim is to ensure 

that persons or assets with high-risk pay higher cost and premiums to maintain an 

equivalent level of protection compared to those with considerably lower-risk. 

AI and ML play important role in the health insurance sector. Here are some:  

• By analyzing large datasets, AI can identify patterns and generate insights, aiding 

in the early detection of fraud, abuse, waste management, and claims utilization, 

resulting in potential cost savings. 

• Using machine learning tools and techniques, AI enables dynamic data analysis of 

health insurer data and electronic health records, supporting better decision-

making in networks, claims, pricing, and risk management. 
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• AI facilitates more efficient claims adjudication and prior authorization 

workflows, delivering faster and more accurate predictive analytic reports. 

• Robotic process automation powered by AI streamlines administrative processes, 

reducing operational expenses and optimizing resources for technical functions. 

• AI tools can predict diseases and develop personalized treatments, leading to 

improved health outcomes and cost reductions. 

• Chatbots enhance member engagement, customer service, triage services, and 

appointment scheduling, saving administrative costs. 

• AI promotes remote and telehealth services utilization for triage, primary care, 

disease management, and diagnostic services, increasing accessibility and cost-

effectiveness. 

A data-driven and predictive modelling approach may shift healthcare from illness 

management to wellness management, improving diagnosis and treatment planning 

while reducing waste and overutilization, ultimately leading to better health outcomes 

and claims cost reduction. This approach can enhance insurers' claims ratios and 

competitiveness. 

1.2  Challenges of traditional methods 

For several decades, traditional methods of predicting health insurance premiums 

faced several challenges, which has impacted the accuracy of pricing and financial 

sustainability. Some of these challenges include: 

1. Limited Data Utilization: Traditional methods rely on limited historical claims 

data, which may not capture the full spectrum of variables affecting healthcare 

costs. This can result in underestimation or overestimation of premiums. [20] 
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2. Static Models: Many traditional models use static, actuarial approaches that do not 

adapt well to changing dynamics of healthcare products. They fail to account for 

emerging treatments, shifts in demographics, or advancements in medical 

technology. [22] 

3. Risk Pooling Issues: Traditional models often struggle with adverse selection, 

where healthier individuals may opt for lower coverage, leaving a riskier, costlier 

pool. This can lead to higher premiums for the sicker population. [20] 

4. Inefficiencies in Underwriting: Manual underwriting processes can be time-

consuming and prone to errors. Traditional underwriting doesn't harness advanced 

data analytics, leading to suboptimal risk assessment. [21] 

5. Lack of Personalization: Traditional models often provide one-size-fits-all pricing, 

neglecting individual health behaviors and risk profiles. Personalization is limited, 

and this can result in unfair pricing. [21] 

6. Regulatory Challenges: Regulatory constraints can limit innovation in premium 

prediction models, making it difficult for insurers to adapt to changing market 

conditions efficiently. [21] 

7. Data Privacy and Security: Handling sensitive health data in traditional models 

raises concerns about data privacy and security, which can impact insurers' ability 

to leverage big data for better predictions. [22] 

8. Rate Regulation: Government-imposed rate regulations can limit insurers' ability 

to set premiums based on actuarial principles, potentially leading to market 

distortions. [22] 
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Addressing these challenges involves integrating advanced data analytics, artificial 

intelligence, and improved regulatory frameworks. This is crucial for developing more 

accurate and equitable health insurance premium prediction models. 

1.3  Design of The Study 

This design of this study involves the analysis of historical health insurance dataset 

from of an undisclosed region. The scope of this analysis will basically be applying 

machine learning techniques to process the data and running different regression 

models on the data. The accuracy of the models is then compared based on 

performance matrix.  

Firstly, we will explore the mathematical background of the different regression 

models implemented. Next, fundamental machine learning concepts as it pertains to 

this study, followed by initiating the machine learning process beginning with 

exploratory data analysis and data preprocessing to make sense of the dataset.   

With very large dataset with several attributes, it is difficult to use the traditional 

manual or computational analyses and avoid errors in the results. This is due to the 

fact that processed are many and not automated or streamlined to avoid leakages, errors 

and inefficiencies. Therefore, it is better to use machine learning for analysis using the 

best popular programing tool know as Python distributed by Anaconda. The line of 

codes is carried out in Jupiter notebook in Anaconda.   
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Chapter 2 

MATHEMATICAL BACKGROUNDS 

This study employs regression analysis, implemented in Python on the Jupiter 

notebook interface, to develop and train machine learning models to predict health 

insurance premiums. Regression analysis, a statistical method for investigating 

relationships between variables, finding broad application in fields like economics, 

engineering, biology, and insurance. Its predictive power and ability to explore 

variable relationships make it suitable for this research. 

In regression analysis, variables are characteristics taking on different values. In a 

simple model, the independent variable (denoted as 'x') predicts the dependent variable 

('y'). Multiple regression involves more than two variables, with independent variables 

(x1, x2, x3, etc.) predicting a single dependent variable (y). A scatter diagram, plotting 

values of x against y, visually depicts the relationship, whether increasing, decreasing, 

or none. The correlation coefficient, ranging from -1 to 1, quantifies this relationship. 

A coefficient of 1 indicates a perfect positive relationship, -1 represents a perfect 

negative relationship, and 0 signifies no relationship. Recognizing patterns like 

clusters adds valuable insights [2]. 

There are different regression analysis techniques, and the choice of a particular 

method to employ will depend on a number of factors. Some of these factors include 

the type of variables involved, the observed pattern of the scatter plot, the number and 
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properties of the independent variables involved. The different regression techniques 

involve with is study are examined in the subsequent sections: 

2.1  Linear Regression 

If y and x have some degree of linear relationship, then the corresponding straight-line 

relationship is expressed as  

𝑌 = 𝛽! + 𝛽"𝑥 + 𝜀	 (1)  

Equation above is called a simple linear regression model, where 𝛽! is y intercept and 

𝛽"is the slope. The slope 𝛽", represents how the average of y changes for one unit 

increase in x [1]. In practical scenarios, the variables rarely display a perfect linear 

relationship, and the error term ε accommodates the deference between the observed y 

value and the linear prediction (𝛽! + 𝛽"𝑥). Essentially, the error term (residual error 

or unexplained variation), ε is a random variable representing the model's inability to 

precisely fit the data. This value is determined by subtracting the predicted values 

(obtained from the regression equation) from the actual dependent variable values:  

𝜀# = 𝑦# − (𝛽! + 𝛽"𝑥#)	 (2)  

The sum of squared errors (SSE) is the common measure for assessing the overall error 

in the regression model. It is computed by summing the squared error terms for each 

individual data point. The goal of the regression model is to minimize the SSE, which 

indicates a better fit between values predicted and actual values. R-squared (R²), or the 

coefficient of determination, is a statistical measure that quantifies the proportion of 

variance in the dependent variable explained by the independent variable(s). It 

indicates the goodness of fit in the regression model, with a higher R² indicating a 

better fit. R² can take values between 0 and 1where 0 signifies no explanatory power, 

and 1 denotes perfect explanation of variance. R² is calculated by [1]. 
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R² = Explained variation / Total variation 

R² can also be interpreted as the proportion of the sum of squared errors (SSE) that is 

explained by the regression model.  

𝑅$ = 1 − /
𝑆𝑆𝐸
𝑆𝑆𝑇3

(3) 

Where SSE is the sum of squared errors, and SST is the total sum of squares, which 

represents the total variation in the dependent variable. SST is calculated as: 

𝑆𝑆𝑇 = ∑(𝑦# − ȳ)$ (4) 

Where yᵢ is the observed value of the dependent variable for each data point, and ȳ is 

the mean of the dependent variable [1]. 

Regression models hold validity only within the range where the independent variable 

has observable data. For example, if data (y and x) were collected, and x can take values 

in the interval x1<x<x2, the linear regression model serves as an effective 

approximation within this range. However, for regressor values outside this interval 

(x<x1 and x>x2), the model's performance diminishes, yielding poor or in most cases 

meaningless results [1][7]. 

In general, given k independent variables, x1, x2…xk, influencing the response variable 

y, the relationship is expressed as: 

𝑦 = 𝛽! + 𝛽"𝑥" + 𝛽$𝑥$ +⋯+ 𝛽%𝑥% + 𝜀	 (5)

This equation known as a multiple linear regression model, involving more than one 

regressor. The descriptor 'linear' pertains to the linearity in parameters 𝛽!, 𝛽", … , 𝛽%.  

It emphasizes linearity not just in cases where y has a linear relationship with the x 

variables, but also in situations where some x exhibits a nonlinear relationship [1].  
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The 𝛽, denotes the population regression coefficient while b is used as the sample 

regression coefficient. In theory, 𝛽 is used for definition, but in practices b is used 

since the regression analysis is conducted on samples. The linear regression model for 

a sample data is given by: 

𝑦 = 𝑏! + 𝑏"𝑥" + 𝑏$𝑥$ +⋯+ 𝑏%𝑥% + 𝜀	 (6) 

2.1.1 Ordinary Least Square Estimation of Parameters 

The OLS estimation uses calculus to derive values for the parameters β0 and β1 that 

minimize the residual sum of squares (RSS or SSE). RSS is given by [1]: 

𝑅𝑆𝑆(𝛽!, 𝛽") = >((𝛽! + 𝛽"𝑥#) − 𝑦#)$
&

#'"

	 (7) 

Taking partial derivatives of the RSS with respect to β0 and β1: 

𝜕𝑅𝑆𝑆
𝜕𝛽!

= 2>A(𝛽! + 𝛽"𝑥#) − 𝑦#B
&

#'"

 

and 

𝜕𝑅𝑆𝑆
𝜕𝛽"

= 2>𝑥#((𝛽! + 𝛽"𝑥#) − 𝑦#)
&

#'"

 

To get the minima, set these derivatives equal to zero, yielding the normal equations: 

∑𝑦# = 𝑛𝛽! + 𝛽"∑𝑥# 

∑𝑦#𝑥# = 𝛽!∑𝑥# + 𝛽"∑𝑥#$ 

where n is the sample size. 

Simultaneously solving these two equations gives the estimates for the regression 

coefficients β0 and β1 that minimize the RSS: 

𝛽" =	
𝑛(∑𝑥𝑦) − (∑𝑥)(∑𝑦)
(𝑛∑𝑥$) − (∑𝑥)$

=
∑A𝑥 − `𝑥BA𝑦 − `𝑦B

∑A𝑥 − `𝑥B
$ =

𝑆()
𝑆((

	 (8) 
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Where 𝑆(( = ∑A𝑥 − `𝑥B
$
 

𝛽! =	
∑𝑦 − 𝑏"∑𝑥

𝑛
= `𝑦 − 𝑏"`𝑥		 (9) 

Therefore, the derivatives used in the OLS method are the partial derivatives of the 

RSS with respect to β0 and β1 [1]. 

In the case of two independent variables x1 and x2, the parameters β0, β1 and β2 can be 

calculated manually by the following formula;  

𝛽" =	
(∑𝑥$$)(∑𝑥"𝑦) − (∑𝑥"𝑥$)(∑𝑥$𝑦)

(∑𝑥"$)(∑𝑥$$) − (∑𝑥"𝑥$)
	 (10) 

𝛽$ =	
(∑𝑥"$)(∑𝑥$𝑦) − (∑𝑥"𝑥$)(∑𝑥"𝑦)

(∑𝑥"$)(∑𝑥$$) − (∑𝑥"𝑥$)
	 (11) 

𝛽! = `𝑌 −	𝑏"`𝑋" − 𝑏$`𝑋$	 (12) 

Alternative, a matrix can be applied to the systems of equations to generalize the 

solution for any number of input variables.  In general, the linear regression equation 

is defined as: 

𝑦 = 𝛽! + 𝛽"𝑥" + 𝛽$𝑥$ +⋯+ 𝛽%𝑥% + 𝜀	 (13) 

Then, partially differentiating the coefficients of the RSS, the following equations are 

gotten:               

𝑛𝛽! + 𝛽"∑𝑥" + 𝛽$∑𝑥$ 				+ ⋯+ 𝛽%∑𝑥% = ∑𝑦 

𝛽!∑𝑥" + 𝛽"∑𝑥"$ + 𝛽$∑𝑥"𝑥$ +⋯+ 𝛽*∑𝑥% = ∑𝑥" 

⋮              ⋮               ⋮                        ⋮                ⋮ 

𝛽!∑𝑥% + 𝛽"∑𝑥"𝑥% + 𝛽$∑𝑥$𝑥% +⋯+ 𝛽%∑𝑥%$ = ∑𝑥%𝑦 

The generalized matrix form is: 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑛 >𝑥"#

&

#'"

>𝑥$#

&

#'"

⋯ >𝑥%#

&

#'"

>𝑥"#

&

#'"

>𝑥"#$
&

#'"

>𝑥"#𝑥$#

&

#'"

⋯ >𝑥"#𝑥%#

&

#'"

>𝑥$#

&

#'"

>𝑥"#𝑥$#

&

#'"

>𝑥$#$
&

#'"

⋯ >𝑥$#𝑥%#

&

#'"
⋮ ⋮ ⋮ ⋮ ⋮

>𝑥#%
&

#'"

>𝑥"#𝑥%#

&

#'"

>𝑥$#𝑥%#

&

#'"
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&

#'" ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝛽!
𝛽"
𝛽$
⋮
𝛽%⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ >𝑦#

+

,'"

>𝑦#𝑥"#

+

,'"

>𝑦#𝑥$#

+

,'"
⋮

>𝑦#𝑥%#

+

,'" ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

	 (14) 

2.2  Polynomial Regression  

A model is said to be polynomial when its input variable(s) has higher degree or order 

above 1. The models 

𝑦 = 	𝛽! + 𝛽"𝑥 + 𝛽$𝑥$ + 𝜀 

and 

𝑦 = 	𝛽! + 𝛽"𝑥" + 𝛽$𝑥$ + 𝛽""𝑥"$ + 𝛽$$𝑥$$ + 𝛽"$𝑥"𝑥$ + 𝜀	 (15) 

are both polynomial model of second degree with one and two variables, respectively. 

Here are a few important things considered when fitting polynomial to a single 

independent variable: 

• The degree of the polynomial model is kept as low as possible, preferably first or 

second-order. Higher-degree polynomials can lead to overfitting the data. 

Overfitting occurs when the model fits the training data too well and has poor 

performance on new data [5].  

• To choose the degree of the polynomial model, there are two techniques: forward 

selection and backward elimination. In forward selection, models are fit in 

increasing degree until the t test for the highest order is no longer significant. In 

the case of backward elimination, the highest order model is fit and terms are 
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deleted until the highest order remaining term is t significant. It is worth noting 

that both methods will not necessarily end in the same regression model [2]. 

• In polynomial regression, the X-matrix can become ill-conditioned as the order 

increases, meaning that the (X'X)-1 used to estimate parameters may not be 

accurate. This can result in considerable errors in parameter estimates. Ill-

conditioning increases when the values of x are in a narrow range, leading to 

multicollinearity between columns of the X-matrix [5]. 

• Extrapolation with polynomial models is typically reliable and meaningful within 

a specific range in the original data. Beyond this range, the responds variable may 

turn at odds with the natural behaviour of the system [2].  

• A hierarchical model in polynomial regression contains terms that are in hierarchy, 

i.e.; x, x2, x3, etc. This property is expected in all polynomial models because only 

hierarchical models are invariant under linear transformation. Nevertheless, in 

some cases a model may not need to be hierarchical, such as in the case of a two-

factor interaction, where one term would not have been included model based on 

its statistical significance [5]. 

• Multiple variable polynomial regression involves two or more independent 

variables and it is similar with one variable except that in addition to the parameters 

that capture the polynomial effect of each regressor, we also have parameters 

which captures the interaction effect between parameters. The regression function 

is called a response surface [2].  



 13 

2.2.1 Estimating the Parameters of Polynomial Regression 

The OLS method is also applicable to estimate all the coefficient of the polynomial 

regression, if and only if it is a hierarchical model [5]. Consider the following one-

input variable polynomial equation of order k;   

𝑦# =	𝛽! + 𝛽!𝑥# + 𝛽"𝑥#$ +⋯+ 𝛽"𝑥#% + 𝜀	 (16) 

𝑖 = 1,2, . . 𝑛 

Deriving the matrix for the estimation of parameters of higher degree polynomial, 

given the quadratic: 

𝑦# =	𝛽! + 𝛽"𝑥 + 𝛽$𝑥$ 

Sum of squares error: 

𝑅𝑆𝑆(𝛽!, 𝛽", 𝛽$) =>(𝛽! + 𝛽"𝑥# + 𝛽$𝑥#$ − 𝑦#)$
&

#'"

	 (17) 

The partial derivative of each of the three coefficients is given by: 

For 𝛽!, 

𝜕𝑅𝑆𝑆(𝛽!, 𝛽", 𝛽$)
𝜕𝛽!

=>2(𝛽! + 𝛽"𝑥# + 𝛽$𝑥#$ − 𝑦#)
&

#'"

 

To get the minima, equate to 0: 

0 = 𝑛𝛽! + 𝛽">𝑥#

&

#'"

+ 𝛽$>𝑥#$
&

#'"

−>𝑦#

&

#'"

 

>𝑦#

&

#'"

= 𝑛𝛽! + 𝛽">𝑥#

&

#'"

+ 𝛽$>𝑥#$
&

#'"

	 (18) 

For 𝛽", 

𝜕𝑅𝑆𝑆(𝛽!, 𝛽", 𝛽$)
𝜕𝛽"

=>2(𝛽! + 𝛽"𝑥# + 𝛽$𝑥#$ − 𝑦#)𝑥#

&

#'"

 



 14 

>𝑦#𝑥#

&

#'"

= 𝛽!>𝑥#

&

#'"

+ 𝛽">𝑥#$
&

#'"

+ 𝛽$>𝑥#*
&

#'"

	 (19) 

For 𝛽$, 

𝜕𝑅𝑅𝑆(𝛽!, 𝛽", 𝛽$)
𝜕𝛽$

=>2(𝛽! + 𝛽"𝑥# + 𝛽$𝑥#$ − 𝑦#)𝑥#$
&

#'"

 

>𝑦#𝑥#$
&

#'"

= 𝛽!>𝑥#$
&

#'"

+ 𝛽">𝑥#*
&

#'"

+ 𝛽$>𝑥#-
&

#'"

	 (20) 

The above equations derived can be generalized in a matrix, so that if k is a given 

degree of the polynomial, and n is the number none data points, then we get; 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑛 >𝑥#

&

#'"

>𝑥#$
&

#'"

⋯ >𝑥#%
&

#'"

>𝑥#$
&

#'"

>𝑥#$
&

#'"

>𝑥#*
&

#'"

⋯ >𝑥#%."
&

#'"

>𝑥#$
&

#'"

>𝑥#*
&

#'"

>𝑥#-
&

#'"

⋯ >𝑥#%.$
&

#'"
⋮ ⋮ ⋮ ⋮ ⋮

>𝑥#%
&

#'"

>𝑥#��."
&

#'"

>𝑥#%.$
&

#'"

⋯ >𝑥#$%
&

#'" ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝛽!
𝛽"
𝛽$
⋮
𝛽%⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ >𝑦#

+

,'"

>𝑦#𝑥#

+

,'"

>𝑦#𝑥#$
+

,'"
⋮

>𝑦#𝑥#%
+

,'" ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

	 (21) 

When solving an overdetermined system, a residual function is first created. This 

function involves summing the squared residuals, which then produces a parabola or 

paraboloid. The coefficients are then determined by locating the minimum point of the 

parabola/paraboloid using partial derivatives [1]. 

In polynomial interpolation, the goal is to construct a polynomial of degree (N-1) that 

passes through N given points that can be used to predict for any output of x. 

Extrapolation on the other hand is when x is out of the range of values in the training 

set. A good illustration of this is in time series predictions where we have data up to 
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today and we want to forecast the future outcome. Noise 𝜖, is also added to this 

function to explains the impact of hidden variables not observed [9] 

2.3  Gradient Boosted Tree Regression 

This is a very sophisticated machine learning model that allows for two distinct 

training approaches. The first approach starts with a complex model and then fitting 

its parameters (such as with neural networks), and subsequently fine-tunes its 

parameters. The second approach is iterative, where each step trains a simple model 

(boosting) like decision trees, and combines them to create a more refined and accurate 

model. These initial simple models are known as weak classifiers or base learners. This 

technique leverages the concept of boosting, in which subsequent models rectify errors 

made by their predecessors, using it to ultimately enhancing overall predictive 

performance. Gradient Boosted Trees performs works well in capturing complex 

interactions and non-linear patterns within the data, making them well-suited for tasks 

like regression [19].  

For the sake of simplicity, consider a regression problem with data points DN = {(x1, 

y1)...,(xN, yN)} where xi are explanatory values and yi are response values. The aim here 

is to find the prediction function, F(x) using training set, such as 

𝑚𝑖𝑛S (𝐹(𝑥) − 𝑦)$((,))∈3 	 (22)

ere T = {(x1, y1)…,(xN, yN)} is the test set. In boosting the goal is to construct a function 

f(x) iteratively. It is assumed that the function f(x) expresses the sum of other simple 

functions or weak learners hm(x) 

𝐹(𝑥) = > ℎ4(𝑥)
5

(4'")

	 (23) 
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where hm(x) is a decision tree.  

The way gradient boosted tree works is the training set is taken as the input and M is 

set as the maximum number of iterations. We compute the mean of all the target values 

yi in the first step, which become the initial approximation of function, F(x).   

𝐹!(𝑥) =
1
𝑁 > 𝑦#

6

(#'")

(24) 

In the following step, for each iteration, m=1, 2..., M, compute the residuals 𝑦7W = 𝑦# −

𝐹48"(𝑥#). Then fit a decision tree hm(x) to the target 𝑦7W  by using an auxiliary training 

set {(𝑥", 𝑦"Y), . . . , (𝑥6 , 𝑦6Y)}. Finally, we add this decision trees to improve the overall 

model performance 

𝐹4(𝑥) = 𝐹48"(𝑥) + 𝜆4ℎ4(𝑥) (25) 

where  𝜆4 is regularization or the learning rate derived by line search with the aim of 

reducing the loss function.  

2.4  Logistic Regression 

Logistic Regression, although not specifically implemented in this study, is another 

vital regression analysis technique; also referred to as covariates and a categorical 

dependent or response variable [3]. There are two types of logistic regression models; 

binary regression and multinomial logistic regression. Binary logistic regression is 

mainly used when the dependent variable is binary or dichotomous, example: 1 or 0, 

true or false, yes or no, etc, and the independent variable is either categorical and/or 

continuous. In the case where the dependent variable has more than two categories, 

then it is a multinomial logistic regression [3][6]. In the logistic regression, the 

relationship between the target variable and the independent variable can be 

represented by a sigmoid curve [2]. The analysis is based on the probabilities, odds 
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and odds ratio. In the case of binary logistic model, the odds of an event are the ratio 

of the probability that an event will occur to the probability it will not occur. Given the 

response variable Y and the explanatory variable X, let 𝜋(𝑥) = 𝑃(𝑌 = 1|𝑋 = 𝑥) =

1 − 𝑃(𝑌 = 0|𝑋 = 𝑥), the logistic regression model is given such that [6]: 

𝜋(𝑥) =
exp(𝛼 + 𝛽𝑥)

1 + exp(𝛼 + 𝛽𝑋)
(26) 

Also, the logit (log odds) has a linear relationship given by [6] 

𝑙𝑜𝑔𝑖𝑡A𝜋(𝑥)B = ln(𝑜𝑑𝑑𝑠) = ln k
𝜋(𝑥)

1 − 𝜋(𝑥)l =𝛼 + 𝛽𝜒
(27) 

In the case of multiple explanatory variables, which can be a combination of 

quantitative and qualitative, the regression function for 𝜋(𝑥) = 𝑃(𝑌 = 1)	at values 

𝑥 = (𝑥", . . . , 𝑥%) of k the regression model will be [6]: 

𝑙𝑜𝑔𝑖𝑡 [𝜋(𝑥)] = ln /
𝑝

1 − 𝑝3 =𝛼 + 𝛽"𝜒" +⋯+ 𝛽%𝜒% 	 (28) 

Where p is the probability that y = 1, for k explanatory variables. The left side of the 

equation is known as logit, or the log-odds. There is no error term in this model. The 

alternative equation for finding 𝜋(𝑥) is given by [6]: 

𝜋(𝑥) =
exp(𝛼 + 𝛽"𝜒" +⋯+ 𝛽%𝜒%)

1 + exp(𝛼 + 𝛽"𝜒" +⋯+ 𝛽%𝜒%)
=

1
1 + 𝑒8(9.:!;!.⋯.:";")

(29) 

 Given quantitative predictors, indicator variables are used for each category which are 

a suitable format that can be incorporated into the regression equation [6]. The 

coefficient 𝛽= represents the impact of 𝜒= on the log odds Y =1, while taking into 

account the other predictors 𝜒%. For instance, exp(𝛽=) is the factor by which the odd of 

a 1-unit increase in 𝜒=, while keeping fixed the other predictors 𝜒% [6]. 
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Logistic regression technique is used when the size of data is large and there is almost 

equal occurrence of values to come in target variable. There should also be no 

multicollinearity [6].  

2.5  Pros and Cons of Regression Analysis 

Pros: 

• Regression works very well when the data has a relationship; linear or quadratic. 

• It is easy to implement, interpret and train efficiently. 

• It can effectively manage overfitting by making use of either dimensionality 

reduction techniques, regularization or cross validation.  

• Extrapolation can be made even beyond the given dataset.  

Cons:  

• It relies on the assumption there is a relationship between the response and 

explanatory variables. 

• It can be sensitive to noise and may overfit in case of high correlation. 

• Regression models are very sensitive to outliers which can significantly affect the 

performance. 

• It is exposed to multicollinearity which can affect the stability of the model. This 

should be avoided.  

Regression analysis on large data set is mainly carried out using computer software, 

such as Python, R, MATLAB, SPSS, EViews, etc. For this research Python is 

employed. 
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Chapter 3 

MACHINE LEARNING FUNDERMENTALS 

Machine Learning (ML) is a type of artificial intelligence which employs algorithms 

and statistical techniques to processes and identify patterns in raw data. The primary 

objective of ML is to enable computer systems to learn and improve from experience 

without requiring explicit programming or intervention from humans [9].  

Python is the most popular programming language for machine learning because it is 

easy to use, open source, and has a wide array of libraries and tools for data 

manipulation, modeling, and evaluation. Machine learning with Python involves using 

the Python programming language and associated libraries to build and train models 

that can learn patterns in data, make predictions, and make decisions. The most 

popularly used Python libraries for machine learning which will also be employed in 

this thesis include; NumPy, Pandas, Scikit-learn, TensorFlow [10]. 

3.1  Machine Learning Libraries in Python 

• NumPy: The name is the short for numerical Python and the library is made up of 

array objects. Using NumPy, we are able to carry out the following operations in 

Python: mathematical and logical operations on array, Fourier transformation, and 

last but not the least, operations related with linear algebra [10].  

• Pandas: This is another very important library for machine learning. It is primarily 

used for handling data; data manipulation, processing and analysis. Using Pandas 
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for data processing we can effectively load, prepare, manipulate, model, and 

perform analyses on the data [10].  

• Matplotlib: Matplotlib is such a vital library in Python for ML data visualization; 

used to create visualizations and plots in 2D and 3D. It provides a wide range of 

tools for creating graphs, charts, histograms, scatterplots, and more, and is widely 

used in the scientific community for visualizing data and communicating research 

findings [10]. 

• Seaborn: It is another useful Python library, for data visualization that provides a 

high-level interface for creating informative and attractive statistical graphics. The 

library offers a variety of plotting functions for different types of data, such as 

scatter plots, line plots, bar plots, histograms, and heatmaps. Seaborn is built to 

work smoothly with Pandas data frames and NumPy arrays, and other data analysis 

libraries [10].  

• Scikit-learn: This also another useful Python library machine learning. Some key 

features that make it very essential are that It is built on top of NumPy, Matplotlib 

and SciPy, It can be accessed by everyone and can be used in different contexts, 

and finally, a wide variety of ML algorithms can be implemented using it. [10] 

Depending on the platform one is using, these libraries can be installed/imported for 

use by just a single line of code. In Jupiter Notebook, the packages are imported into 

Python script by the following line of codes [10]: 
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Figure 1: Lines of Code for Various ML Python Libraries 

Prominent machine learning techniques include supervised learning, unsupervised 

learning, semi-supervised learning and reinforced learning [10].  

Supervised learning: involves training a model on a labeled dataset; one where each 

data point is associated with an output or response variable. The goal of the model is 

to learn a mapping from input variables to the output variables and using it to make 

predictions on new or unseen data. To illustrate, consider: 

 X: the set of input or independent variables, and;  

Y: the corresponding output variable.  

Here, the goal is to employ an algorithm for learning the mapping function connecting 

input variables to the output variable: Y=f(x). The primary aim is to create an accurate 

approximation of this mapping function, such that when presented with new input data 

(X), the algorithm can make reliable predictions for the output variable (Y). The reason 

this is called "supervised" is that, the learning process is being guided by human 

supervisor. Examples of supervised algorithms include Linear Regression, Decision 

Trees, Random Forest and K-Nearest Neighbors (KNN) [9][10]. In machine learning 

regression model, given inputs and output that are quantitative, it seeks to learn from 

training set and formulate a numeric function that captions its relationship. In 

polynomial interpolation, the goal is to find a polynomial of degree (N-1) that passes 

through N given points that can be used to predict for any output of x. 
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Unsupervised machine learning algorithm; entails training a model on an unlabeled 

dataset, where there is no target or output variable to be predicted. Unlike supervised 

learning Algorithms, unsupervised learning operates independently of a supervisor 

guiding the learning process. Instead, it extracts patterns and insights from data, even 

when input data is unlabeled. This approach is useful when it is not feasible to use pre-

labeled training data, as is the case with supervised learning [10].  

To illustrate, suppose we have a set of input variables, denoted by x, but we do not 

have any corresponding output variables. In this case, unsupervised learning 

algorithms can be used to discover interesting relationships and patterns within the 

data, without any need for pre-existing labels or guidance. Examples of unsupervised 

learning algorithms include K-nearest neighbors, K-means clustering, dimensionality 

reduction, and anomaly detection. Unsupervised learning is also very useful in 

exploratory data analysis, data visualization, and feature engineering [10]. 

Semi-supervised learning; a type of machine learning methods that lies somewhere 

between fully supervised and fully unsupervised approaches. These methods rely on a 

combination of small amounts of labeled data, as in supervised learning, and large 

amounts of unlabeled data, as in unsupervised learning. The different approaches that 

can be used to implement semi-supervised learning. 

One approach is first to construct a supervised model using the small available small 

labeled dataset. Subsequently, an unsupervised model is applied to the extensive 

unlabeled data to generate additional labeled samples. These samples are then 

incorporated into the model training, and the process can be repeated in iterations. 
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The other approach involves using unsupervised techniques to cluster similar data 

samples, and then annotating these identified groups. The combination of this 

information is then been used to train the model. This approach requires some 

additional effort, but can potentially yield more accurate results [10]. 

• Reinforcement learning; a type of machine learning method where there is an agent 

who is to be trained over time so that it will be able to interact with a specific 

environment. This is different from other learning methods and is not commonly 

used. The agent follows a set of strategies for interacting with the environment and 

takes actions based on the current state of the environment after observing it. The 

main steps involved in reinforcement learning [10]: 

1. preparing the agent with initial strategies, 

2. observing the environment and its current state, 

3. selecting an optimal policy based on the current state and performing an action, 

4. receiving a reward or penalty based on the action taken, 

5. updating strategies if needed, and 

6. repeating steps 2-5 until the agent learns and adopts optimal policies. 
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Chapter 4 

DATA ANALYSIS 

The dataset used in this thesis is gotten from Kaggle. Kaggle is an online platform for 

data science and machine learning that provides datasets and offers a community for 

data science enthusiasts to collaborate and learn from one another. Kaggle was 

founded in 2010 and acquired by Google in 2017. This dataset consists of 1338 entries 

related to insurance, with insurance charges given against the following attributes: 

Age, Sex, BMI (body mass index), Number of Children, Smoker, and Region [12]. 

The attributes of the dataset are a combination of both numerical and categorical 

variables. This dataset doesn't contain any missing or undefined values [11]. This 

dataset was used to forecast the health insurance premium. The entire methodology 

carried out in this thesis follows the steps shown in Figure below: 

 
Figure 2: Stages of the Machine Learning Process 

4.1  Exploratory Data Analysis (EDA) 

In Exploratory Data Analysis (EDA), the main statistical characteristics of the dataset 

are explored and summarized, with the aim of understanding its structure and 
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identifying relevant patterns, relationships and trends that may be present. EDA is 

performed on the dataset before applying any formal ML algorithms to it. This is to 

guide the selection of appropriate technique and attributes for the models [10]. EDA 

is mainly cross-classified in two ways; graphical method and non-graphical method. 

Non-graphical methods involve the computing the summary statistics which includes 

the mean, standard deviation, correlation, skewness, outliers, of all variables in the 

data. Graphical method visually summarizes the data in a diagrammatic fashion for 

easy comprehension and comparison. [13].  

The statistical summary of the dataset was assessed, which provided details such as 

the count, mean, standard deviation, and other related statistics pertaining to the 

columns in the dataset. 

 
Figure 3: Summary Statistics of Dataset 

There are two types of data visualization techniques; single-variable or “univariate” 

and multivariate plot. In univariate plot, each variable is visualized and understood 

independently. Univariate plots used in this analysis include histogram, density plot, 

pie chart and box and whisker plot. Multi-variable or multivariate methods on the other 

hand, we can plot and see the interaction between two or more variables at a time to 
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explore their relationships. Multivariate plot used here include correlation matrix plot 

and scattered matrix plot [13][10]. EDA is presented below. 

• Charges: 

 
Figure 4: Histogram and Box Plot of Charges Attribute 

Table 1: Distribution of Data Values in Charges Attribute 
Maximum Charges 63770.43 
Minimum Charges 1121.87 
Mean 13279.12 
Median 9386.16 
Skewness 1.51 
Total number of outliers 139 

We have on the left in the figure above is the histogram with a class number of 30 and 

on the left the whisker and box plot of the distribution of charges. It can be seen that 

on average, clients have insurance costs of around $13,279, but there are also clients 

whose insurance costs exceed $60,000, and these clients are outliers that cause the 

distribution of the charges column to be right-skewed with a skewness value of 1.5. 
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• Age: 

 
Figure 5: Histogram and Scattered Plot of Age Attribute 

Table 2: Distribution of Data Values in Age Attribute 
Skewness 0.054780773126998195 
Mean 39 
Median 39.0 
Minimum Age 18 
Maximum Age 64 

The figure above we see the distribution of ages following a symmetric pattern, with 

a skewness value close to 0 and the mean and median values being similar. The scatter 

plot shows that there is a positive correlation between a client's age and their charges, 

meaning that the cost increases as the client gets older. Additionally, smokers tend to 

have higher charges than non-smokers. 
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• Sex: 

 
Figure 6: Bar Chart and Box Plot of Sex Attribute 

Table 3: Distribution of Data Values in Sex Attribute 
 Smoker  Mean 

Charges Sex No Yes Total 
Female 547 115 662 125700 
Male 516 159 675 13975 
Total  1063 274 1337  

The figure above on the right shows the counts of gender with the ration of smoker 

and none smoker and on the left, the box and whisker plot on the left showing the 

gender distribution against the charges. The number of male and female clients is not 

significantly different, as well as the ration of smoker are similar. But when looking at 

the box plot, there is a significant difference in the range of insurance costs, with the 

average insurance cost for male clients being around $13,975 and for female clients 

being around $12,570. This may be due to the fact that there are more male clients who 

smoke compared to female clients. 
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• Body Mass Index (BMI): 

 
Figure 7: Bar Chart and Box and Scattered Plot of BMI Attribute 

Table 4: Number of Outliers for Each Number of Children 
Skewness of BMI 0.28 
Mean of BMI 30.66 
Median of BMI 30.40 

From the plots above, it can be observed the BMI distribution follows a bell-shaped 

normal curve with minimal outliers. The scatter plot illustrates a mild positive 

correlation between the BMI and charges columns. If the client does not smoke, the 

increase in insurance cost due to BMI is not significant. However, for smokers, their 

insurance cost increases as their BMI increases.  

• Children: 

Figure 8: Bar Chart and Box Plot for Children Attribute 



 30 

 

Table 5: Number of Outliers for Each Number of Children 

Children Number of Outliers 
0 63 
1 32 
2 19 
3 16 
4 2 
5 1 

From the plots above, the histogram shows a left skewness and based on the box plot 

between the children and charges columns, there is a weak positive relationship 

between these two attributes. The outliers of charges also reflect when plotted against 

the number of children. 

• Smoker: 

 

Figure 9: Bar Chart and Box Plot for Smokers Attribute 
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Table 6: Distribution of Data Values in Smokers Attribute 
Smoker Count Average Charges Outliers 
No 1063 8440.660306508935 46 
Yes 274 32050.23183153285 0 

From above, it can be observed that, 274 people are smokers, this is equivalent to 

around 20% of the insurance clients. Although this number is relatively small, smokers 

have to pay a significantly higher cost of approximately $32,050 compared to non-

smokers who only have to pay around $8,441. 

• Region: 

 
Figure 10: Bar Chart and Box Plot for Region Attribute 

Table 7: Distribution of Data Values in Region Attribute 
Region Counts Average Charge Outliers count 

southeast 364 14735.411438 26 
southwest 325 12346.937377 38 
northwest 324 12450.840844 29 
northeast 324 13406.384516 29 

From the above plot and table, it can be observed that the count and average charges 

for each region are relatively similar except for southeast region that is noticeably 

higher. The higher average charges for southeast region can be accounted for by the 
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fact that it has more smokers in this region and also a higher insurance cost for this 

region. Below is a multivariate exploration plots of the dataset. 

 
Figure 11: Pairplot Chart for Entire Dataset 

 
Figure 12: Pairplot Chart Differentiating Smokers and None-smokers 
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Figure 13: Correlation Matrix 

From the above pairplot and correlation plot, we can clearly see the relationships 

between each of the variables. The pair plot only includes quantitative variables, while 

the second pairplot differentiates smokers from non-smokers. It is evident from these 

plots that the number of children has no correlation with the target variable, implying 

that it is not an important variable in the determination of insurance charges. Therefore, 

we will drop this variable from our analysis.   
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4.2  Data Pre-processing and Model Definition 

Data pre-processing is the next very important step that is carried out in this analysis. 

Most classic statistical theories assume that the data is in the correct form and ready to 

be analyzed and so pay more emphasize on modeling, prediction, and statistical 

inferences [14]. Original data in most case is impure, meaning it contains inconsistent 

or omitted values, biased meaning certain parts of the population are poorly 

represented, or the variables maybe in inappropriate form for analysis. Thus, analyzing 

this data will open one up to erroneous results and potentially misleading decisions 

[14]. In data pre-processing stage, we seek to modify the data to adjust for the impact 

of outliers and also to transform inappropriate datatypes based on the knowledge 

gained from exploratory data analysis to ensure it is meaningful before feed it to the 

ML algorithms.  

• Handling Outliers 

From EDA, the box and whisker plots for all other explanatory variable indicated there 

exist a significant number of outliers in the target variable which is charges. The 

outliers are examined closely to against the categorical variables for any possible 

explain for their existence in the context of our data source.  

 
Figure 14: Box Plot for Smokers, Genders and Region Respectively 
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Number of outliers: 139, Percentage of outliers: 10.388639760837071%. 

From the last two plots above, we can see that all categories in the variable have similar 

counts and they contains different number outliers but not much differences. These 

differences cannot be accounted for by any explanation.  For the first plot, there is a 

significant difference in the plots; the smoker box and whisker plot have no outliers 

but its values begin notably higher and goes way further than that of none smokes. 

This can be explained by the fact that smokers are charged for health insurances more 

than none smokers for health insurances because they are at high risk. The outliers 

make up about 10% of our data and most of them are smokers and because the outliers 

are not random but has a meaningful presence in the data, will not be deleted.  

• Feature Selection  

The strength of a machine learning model depends greatly on the data features used 

for training. Including irrelevant features will negatively impact model. Conversely, 

using mainly relevant feature enhances accuracy [10]. Features selection involves 

selecting the most appropriate features to the desired output based on certain criteria. 

Feature selection is important because it reduces overfeeding, improves model 

accuracy and reduces training time for the ML model [10].  From correlation analysis 

in EDA, it is clear seen that not all of the features are relevant to the regression. There 

are some with approximately no correlation with the target variable charges, and are 

therefore dropped from the data. The following will be used age, bmi and smoker. 

 
Figure 15: Line of Code to Drop Insignificant Variable from Dataset 
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• Splitting Dataset 

In data splitting, we partitioned the data into training set, validation set and testing set 

in the ration of 7:2:1. That is, 70% of the data will be training set, 20% will be 

validation set and 10% will be testing set. Our model will then be fitted to the training 

set to get the coefficients. The validation set is employed for unbiased model 

evaluation during hyperparameter tuning. Final prediction is made using the test set 

[14]. The essence of splitting is to avoid a biased performance in prediction. This is 

also to avoid overfitting or underfitting.  Overfitting happens when a model is very 

complex that it is learning both from the existing relationship and the noise in the data 

while in underfeeding the model is weak to capture the relationships in the data, for 

instance, depicting nonlinearity as a linear model [14].  

 
Figure 16: Lines of Code to Split Dataset 

• Features Transformation 

Manually handling each feature and carrying out transformation or scaling 

individually may lead to errors and data leakage, fall short of encapsulation, and can 
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be very difficult to manage and deploy. A robust and more efficient way this is handled 

in an end-to-end machine learning workflow, ensuring consistency and better model 

performance is by implementing a Pipeline. In machine learning, pipelines are a way 

of combining different data transformers and estimators chaining them into a single 

unit and allowing for a streamlined automated workflow for data preprocessing and 

model training [16][10]. The preprocessing pipeline is built using three packages 

imported from the scikit-learn library: pipeline, PCA, and ColumnTransformer.  

StandardScalar(): It is use to standardize all numerical features in our data ensuring 

that all the features have a mean of zero and a unit standard deviation [10]. 

OneHotEncoder(): This is used to encode categorical features in our dataset by 

converting them into a binary vector in which each category becomes a separate binary 

feature [10].  

Dimensionality reduction with PCA() employs linear projection technique to 

transform correlated features in the dataset in higher dimension into series of 

uncorrelated features in lower dimension space while retaining important information 

[15][10].  
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Figure 17: Lines of Code for Dimensionality Reduction and Pipeline 

4.3  Model Implementation 

For our analysis, three regression models are implemented namely; 

• Linear; the normal Linear Regression model.  

• Poly; Linear Regression model with Polynomial Features, tuned using grid 

search with 5-fold cross-validation.  

• XGBR; Extreme Gradient Boosting Regressor model, tuned using grid search 

with 5-fold cross validation.  

Grid search with 5-fold cross-validation is used for optimizing performance of the 

model by systematically testing various combinations of hyperparameter values. Grid 

search also identifies the best settings that maximize model performance, while the 5-

fold cross-validation ensures robust evaluation by dividing the dataset into five 

subsets. The model is trained and evaluated multiple times, allowing for a more 

accurate estimation on new data and reducing the influence of random variations.  
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4.4  Evaluation of Models 

In this section we examine and compare the performance and the effectiveness of each 

of the trained models. Here, we evaluate the performance metrics for each of the model 

and compare to see which model has a higher accuracy in making prediction and the 

goodness of fit. The metrics of interest to our analysis include  

• Mean Absolute Error (MAE); computes the mean absolute difference of the 

predicted output values and the actual output values. It shows the average 

magnitude of the error.  

• Mean Squared Error (MSE); computes the mean squared difference between 

predicted output values and the actual output values.  

• Root Mean Squared Error (RMSE); It takes the square root of the MSE, providing 

a measurement in the same unit as the output variable. This is more interpretable 

than MSE.  

• R-squared (R2) Score; measures the proportion of variation in the target variable 

that can be explained by the model. It ranges from 0 to 1 where an R2 of 1 indicates 

perfect fit.  

After creating the Preprocessing pipeline, the algorithms; Linear regression, 

polynomial regression and Extreme gradient boost regression were trained 

individually on the training set, and predictions made on the test set. For each of the 

models, the regression coefficient and the performance metrics were evaluated as well.  

• Linear Regression; The regression coefficients for this model was determined 

using the OLS method. The coefficient of the of the regression along with other 

statistics relevant to test for its significance presented in the table below. We can 
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see that their P-values are <0.05, implying that the resulting values from the trained 

model are significant. The table below shows the intercept and coefficient from the 

regression: 

 
Figure 18: Results from OLS Linear Regression 

• Polynomial Regression; the model was trained and the regression coefficient 

were determined using OLS method as well and present below. 

‘para_grid_polynomial’ is a dictionary in scikilearn that specifies the 

hyperparameter grid for the model. The hyperparameter tuned is 

'polynomial_features__degree', and it tests with the values [2, 3, 4]. The 

pipeline then runs with these different degrees of polynomial features, and the best 

degree (which came out to be 3) automatically adopted based on cross-validated 

performance. With the degree of 3, We observe that the main performance 

measure, R- squared of train set is 0.83356, of the validation set is 0.86951 and of 

the test set is 0.83107. The lack of any significant discrepancy in these values 

implies that there no problem of overfitting and the model performs well with new 
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data. The problem with the model of degree 3 is its complexity; it contains 19 

features, 7 of which are none significant. Below is the regression statistics; 

 
Figure 19: Results from OLS Polynomial Regression with Degree 3 

We trained the same polynomial model but with a degree 2 and with obtain 

approximately same and less complex with 9 features with only two non-significant 

features. The performance measure, R-squared for training set came out 0.830037, for 

validation set 0.869791 and for test set 0.830149. here are the features of the model: 

x1= age, x2 = bmi, x3 = smoker, x4 = age2, x5 = agebmi, x6 = agesmoker, x7 = bmi2, 

x8 = bmismoker and x9 = smoker2.  
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Figure 20: Results from OLS Polynomial Regression with Degree 2 

• XGBoosting Regression; Grid search with cross validation of 5 was performed to 

optimize hyperparameters. This was done by ‘param_grid_xgbr’ a dictionary 

from scikitlearn library specifying the hyperparameter grid to be searched during 

cross-validation. In this case, the grid includes two hyperparameters: 

‘n_estimators’ and ‘max_depth’. The values specified in the lists [100, 200, 

300] and [3, 4, 5] respectively were tested during the grid search process to find 

the best combination. The model was trained to predict the target variable and it 

consisted of 100 trees, each with a maximum debt of 3. The XGBoost Regressor 

results were as well quite good both for the training and validation sets. The 

performance metrics, R – squared for the training set was 0.949807, for the 

validation set 0.846999 and for testing set 0.809378.  

The table below shows the summary performance for the validation set of the three 

models implemented.  
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Table 8: Performance Metrics for Validation Set for All the Models 
Metrics Linear Polynomial (deg 2) XGBR 

MAE 4054.12495 2656.60558 2926.04353 
MSE 32398941.584 19749371.012 23206382.601 
RMSE 5692.0068 4444.02644 4817.3003 
R – Squared 0.78639 0.86979 0.84700 
Adjusted R – Squared 0.78396 0.86831 0.84526 

The table above, shows a comparison the performance metrics of the models in making 

more accurate predictions. It comes out clear that the polynomial model overall 

performs best. It has the lowest MAE, MSE, and RMSE, indicating better accuracy in 

predicting the target variable. Also, the R-squared value for this model was closest to 

1, implying that the features in the model explain a significant portion (i.e., 87%) of 

the variance in the target variable.  and it is closely followed by the XGBR model 

which also performs pretty well.    

 

 

 

 

 

 



 44 

Chapter 5 

CONCLUSION 

In this study, the dataset used consists of client data from an insurance company with 

the aim of using machine learning model to predict the insurance cost a client will pay. 

From the data analysis process carried out we come to several take aways and 

conclusions: 

• Through Exploratory Data Analysis (EDA), it was found that the average insurance 

cost paid by clients is $13,279, which is heavily influenced by whether a client is 

a smoker or not.  

• Smokers make up only about 20% of the clients but have significantly higher 

insurance costs, with a mean of $32,050, while non-smokers pay an average of 

$8,441. 

• The insurance cost is also affected by other factors such as age and body mass 

index (BMI). Older clients or clients with higher BMIs tend to have higher 

insurance costs. The average age of the clients is 39 years, although most of them 

are in their twenties, and the average BMI in the dataset is around 31 kg/m2. 

• The Sex, Number of children and Region attributes each had a correlation of 

approximately zero with Charges. This implies features play almost no role in the 

determination of insurance cost and so were dropped out of the dataset. 

•  Outliers were present in all features and are consistent in size. They were retained 

because they are meaningful in the context of the dataset.  
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• Based on the EDA results, the three regression models were created: Linear 

Regression, Polynomial Regression, and Extreme Gradient Boosting Regressor 

(XGBR). All models were trained using features that can influence the "charges" 

column, namely age, BMI, and smoker status.  

• Evaluation of models is based on the performance metrics; the polynomial model 

preforms best in making accurate predictions, followed very closely by the XGBR 

model and the linear model also still performs impressively well.  

Some of Limitation of this Research include: 

• Firstly, the analysis is limited to a specific dataset with limited variables which 

may not be a representation of the general population and/or account for all the 

factors influencing insurance charges.  

• Secondly, unmeasured variables could impact insurance premiums that are not 

accounted for by our models.  

• Lastly, the study focuses mainly on regression models and does not explore other 

advanced machine learning algorithms or statistical techniques that may yield mor 

intriguing results.  

This study is relevant for several reasons which are: 

• The analysis of health insurance dataset provides insights into the factors 

influencing insurance premium and also how these factors relate and interact with 

each other. 

• The developed regression models contribute to our current understanding 

insurance data and strive for a more accurate prediction based on many different 

attribute and parameters.  
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• The research highlights the significance of exploratory data analysis, data 

preprocessing and model development in the entire data analysis process for better 

predictions.  

• Machine learning, and AI in general, is highly beneficial in the health insurance 

sector due to its capability of analyzing vast amounts of data fast and efficiently, 

resulting in streamlined operations and cost savings for both policyholders and 

insurers. 

• By automating repetitive tasks, AI allows insurance professionals to focus on 

enhancing the policyholder's experience, benefiting patients, hospitals, physicians, 

and insurance providers alike. 

• ML's ability to process historical data contributes to cognitive computing, 

addressing various challenges in healthcare applications and systems. 

This analysis shows the potential of ML in forecasting health insurance premiums and 

highlights the need for further exploration and comprehensive investigation in this 

domain.  

 

 

 

 



 47 

REFERENCES 

[1] Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). Probability & 

Statistics for Engineers & Scientists (pp. 389-396). 

[2] Douglas, M. C., Montgomery, D. C., & Runger, G. C. (2012). Introduction to 

Linear Regression Analysis (5th ed.) (pp. 2, 224-253, 423). Wiley. 

[3] Hosmer, D. W., Jr., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic 

Regression. (pp. 1, 31) Wiley. 

[4] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to 

Statistical Learning with Applications in R. Springer. 

[5] Shalabh. (2019). Polynomial Regression Models. Lecture Notes. Department of 

Mathematics and Statistics, Indian Institute of Technology Kanpur. 

[6] Agresti, A. (2013). Categorical Data Analysis (3rd ed.) (pp. 163,182-183). Wiley. 

[7] Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2004). Applied Linear 

Regression Models. (pp. 48-53) McGraw-Hill Education. 

[8] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). Introduction to 

Statistical Learning. (pp. 237-244) Springer. 



 48 

[9] Alpaydın, E. (2014). Introduction to Machine Learning (2nd ed.). (pp. 3, 34-36) 

MIT Press. 

[10] Tutorialspoint (2019). Machine learning with Python.  (pp. 3, 12-16, 17-19, 51-) 

www.tutorialspoint.com  

[11] Kaggle website.    https://www.kaggle.com/  

[12] Kaggle (2020). US Health Insurance Dataset  

        https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset  

[13] Seltman, H. J. (2018). Experimental Design and Analysis. (pp. 61-99) 

[14] Shepperd, M. (2022). CS5702 Modern Data Book.   

https://bookdown.org/martin_shepperd/ModernDataBook/  

[15] Mirko Stojiljković.  Split Your Dataset With scikit-learn's train_test_split()  

https://realpython.com/train-test-split-python-data/  

[16] Pipelines and composite estimators. 

https://scikit-learn.org/stable/modules/compose.html#pipelines-and-composite-

estimators  

[17] Zheng, A., & Casari, A. (2018). Feature Engineering for Machine Learning: 

Principles and Techniques for Data Scientists. (pp. 102)  O’Reilly. 



 49 

[18] Artificial Intelligence and Health Insurance 

 https://www.rgare.com/knowledge-center/article/a.i.-and-health-insurance#    

[19] Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting 

Machine. The Annals of Statistics, 29(5), 1189–1232. 

[20] Pauly, M. V., & Kunreuther, H. (2013). An Introduction to the Economics of Risk 

and Insurance. University of Pennsylvania Press. 

[21] PWC. (2018). InsurTech's Potential to Revolutionize Traditional Underwriting. 

Retrieved from 

https://www.pwc.com/us/en/industries/insurance/library/insurtech-

underwriting.html  

[22] Cutler, D. M., & Zeckhauser, R. J. (2000). The Anatomy of Health Insurance. 

Handbook of Health Economics, 1, 563-643.  

 


