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ABSTRACT 

We investigate the effect of Noncommutative Quantum Mechanics for a particle in 

Earth’s gravity using the Hamiltonian in two dimensions. We solve the Schrödinger 

equation in detail, we then split the Schrödinger equation into 𝑥 component and 𝑦 

component. For 𝑦  component, we further solve the equation and obtain a Simple 

Harmonic Oscillator (SHO) equation. For 𝑥 component, we come across an imaginary 

term that makes it a complex equation, after we solve it, we obtain a SHO equation 

again. The two equations for components of 𝑥 and 𝑦 are solved independently, and we 

obtain their energy levels, normalized stationary states with Hermite polynomials. A 

perturbation term appears due to noncommutativity in the Schrödinger equation which 

we dealt with subsequently. Our results contain corrections of which the most 

important here are the energy levels. Finally, we are able to combine energy levels 

from both components of 𝑥 and 𝑦, normalized stationary states as our full solutions. 

Keywords: Quantum Mechanics, Noncommutativity, Schrödinger equation, 

Hamiltonian, Harmonic Oscillator, energy levels.  
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ÖZ 

İki boyutlu Hamiltonian’ı kullanarak dünyanın yerçekimindeki bir parçacığın 

Noncommutative Kuantum Mekanik çerçevesinde araştırdık. İki boyutlu Schrödinger 

denkleminin çözebilmek için bileşenlerine ayırdık. Bileşenler birbirinden ayrı bir 

şekilde çözülebilmektedir. y bileşeni bilinen harmonik osilatör denklemine 

dönüşürken, x bileşeninin denklemi kompleks olup, sanal kısmı yine harmonik osilatör 

denklemine dönüşmektedir. İki bileşenlerinin denklemlerinin birbirinden bağımız 

çözülerek sitemin kuantum enerji durumlarını hesapladık. Normalize edilmiş dalga 

denklemleri Hermit polinom çözümlerini içermektedir. Elde ettiğimiz Schrödinger 

denkleminin çözümleri noncommutative açısal momentum operatörünü içeren kısmını 

pertürbasyon olarak ele alarak, enerji seviyelerine düzeltmeler hesaplanmaktadır. 

Enerji ve birleşenlerden oluşan normalize dalga fonksyonları  çözümlerini birleştirerek 

tek çözüm haline dönüşmektedir. 

Anahtar Kelimeler: Kuantum Mekanik, Noncommutative Kuantum Mekaniği, 

Schrödinger denklemi, Hamiltonian, Harmonik Osilatör, enerji seviyeleri 
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Chapter 1 

INTRODUCTION 

Physics has always been around us since before scientific discoveries. However, in 

Physics, QM is one of the most successful theories that transformed from “old 

Quantum theory”, i.e., the early attempt to understand microscopic phenomena, to a 

fully developed QM in the early 1900s. QM is a fundamental theory that describes the 

physical properties of nature on a very small scale. 

Lately, there has been growing interest in the study of noncommutativity in spacetime 

(Minkowski spacetime) in Physics. This is due to the study of string theory in Physics 

[See ref 1,2,3,6 and 8]. This kind of research has been conducted thoroughly in 

different areas of Physics. 

An energy-dependent NC QM has been studied in [14]. A model of dynamical NC 

QM was proposed where the NC strengths, that describe properties of the commutation 

relations of the coordinates and momenta, respectively, are random functions that 

depends on energy. For an arbitrary potential, the Schrödinger equation has been 

derived in a two-dimensional system. The equations found reduce the energy with 

small limit to the ordinary Quantum mechanical one, whereas the NC effect becomes 

important for large energy levels. Three cases were studied here thoroughly, where the 

strengths of the noncommutativity are investigated, by an independent energy-scale, 

connected to the vacuum Quantum fluctuations, by the energy of the particle, and by 
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a Quantum operator representation. An assumption was made in this research for a 

random power-law, where the NC strengths parameters, and their algebra have energy 

dependence. In all the three cases studied here, the Quantum evolutions of free particle 

and HO have been analyzed respectively. The general solutions of the NC Schrodinger 

equation and the energy levels were both obtained in detail. For the assumption that 

noncommutativity to be energy-dependent, it smooths the transition between NC 

geometry at the Planck length and ordinary commutative Quantum mechanical 

version. The two approaches; NC and commutative versions of QM are unified. NC 

effect made corrections in all the results obtained here. 

In [10], a Quantum Mechanical system has been studied in a central potential, results 

show the differences in NC QM and equivalent commutative case. Hamiltonian was 

used to describe a two-dimensional NC system. The result shows any two-dimensional 

NC system in a central potential is equivalent to a commutative system. For a two-

dimensional system, spectroscopy could be a sensible mechanism for detecting NC 

corrections in QM [11]. The results obtained reveal that, the connection between the 

commutative and NC regimes is so sudden (abrupt), i.e., 𝜃 → 0 is not straight, (𝜃 is 

the NC effect parameter). 

In [12], the effect of noncommutativity was also studied. This is a Classical mechanics 

research, where the laws of motion were investigated in a NC state. Firstly, Poisson 

brackets were redefined in a NC Phase space, both coordinates and momenta 

components have shown to contain corrections due to noncommutativity. Secondly, 

based on the newly defined Poisson brackets, Newton’s second law of motion has been 

derived. It shows for a free particle, that the acceleration in commutative space is non 

zero in NC phase space (i.e., a free particle in commutative space is not a free particle 
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with zero acceleration in NC phase space) because of the noncommutativity of 

momentum, if it is only the coordinate that is NC, it remains free particle with zero 

acceleration in NC phase space. The Harmonic oscillator was also studied as another 

example here. Due to noncommutativity of momenta and coordinates, a damping force 

appears in the result, though it also depends on the presence of the external field. Linear 

transformation was also used to solve the equation of motion for the Harmonic 

oscillator, same result was obtained which proves the correctness of the modified 

second law of motion found from the redefined Poisson brackets. The effect of 

noncommutativity was also shown in [9] where the Hamiltonian was considered for 

Isotropic charged Harmonic oscillator (ICHO) in Uniform Magnetic field (UMF) in a 

NC phase space. ICHO in UMF was solved both in commutative space and NC space, 

the results from the two states were compared. The Result from NC phase space 

indicates ICHO in UMF is seen as a Landau problem. Corresponding exact energies 

and the eigenfunctions were obtained. 

Recently, in [19], the effect of NC QM was investigated in three dimensions on the 

energy levels of a charged isotropic HO in UMF in the direction of 𝑧. The expansion 

of this study to three dimensions shows to be non-trivial. All the corrections obtained 

here due to noncommutativity have negative signs, which implies that energy levels in 

NC state are smaller compared to the commutative ones. Hamiltonian was introduced 

for the charged isotropic HO in UMF, the momentum and position were both 

transformed, 𝐿𝑧 has been stated explicitly. The perturbative approach has also been 

introduced to solve the Hamiltonian, and to obtain the energy levels.  The results 

suggest that NC QM can be experimentally studied even in the low energy limit by 

employing a strong magnetic field to a three-dimension HO. 
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While some researches show corrections due to noncommutativity in spacetime, some 

show no corrections at all. For example, a case study in [7] shows no corrections due 

to the NC effect. A NC multiparticle QM was derived from NC QFT in the 

nonrelativistic limit. The result shows opposite charged particles have opposite NC 

effects. As such, there exist no corrections in the H-atom spectrum due to 

noncommutativity at the tree level. 

Research has been carried out in [20] to study QM on NCQ phase space. It is known 

that the study of NC QM is hugely motivated by the argument of the string theory. A 

general framework has been developed where NC QM described by noncommutativity 

matrix parameters for space and momentum turns out to be the same as QM on a 

suitable transformed quantum phase space. In the literature, results obtained showed 

the effect of noncommutativity only in space sector, however, there are added terms 

and corrections due to the NC effect in the momentum sector in quantum phase space 

as well. In section 2, a general NC QM has been discussed, 𝛼-star deformation on the 

Poisson bracket for classical observables was used to define Heisenberg commutation 

relation in NC QM. There is an argument that the introduction of a noncommutativity 

parameter 𝜃  on the space sector automatically introduces a noncommutativity 

parameter 𝛽 on the momentum sector both in quantum phase spaces since they are 

linked by the Heisenberg uncertainty relation. A parameter appears in the star-

commutation of space and momenta which was ignored because the interest is only in 

the first-order terms of 𝜃 and 𝛽. It is easier to use transformed quantum variables 

instead of quantum variables with star-product. The Jacobian has been stated. It is 

deduced that the deformation parameter 𝜃 in the space sector of Quantum phase space 

(QPS) has the same magnitude as the deformation parameter 𝛽  in the momentum 
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sector of the same QPS which depends on the physical system being studied. As stated 

earlier for noncommutativity parameters, in QPS, the introduction of 

noncommutativity on the space-like sector as a perturbation automatically introduces 

an equivalent noncommutativity on the momentum-like sector as a perturbation with 

opposite sign.  

In section 3 of [20], free particle and HO have both been treated. For a free particle, 

the investigation of the dynamics of a particle on a NC quantum phase space is similar 

to the investigation of the dynamics of this particle that has a charge 𝑞 on the ordinary 

quantum phase space in the influence of magnetic field. An additional term appears in 

the results which indicates the effect of noncommutativity on the quantum phase space. 

According to this research, a free particle behaves like the HO with a low frequency 

which depends on noncommutativity perturbation 𝛽 on the momentum sector. For the 

HO with a charge 𝑞, the result shows correction in the Hamiltonian, and the energy 

spectrum has some shifts due to the noncommutative effect in both space and 

momentum sectors of quantum phase space. A two-particle system has also been 

studied as another example here on NC quantum phase space. For a two-particle 

system with their respective masses and charges, it has been considered that their 

coordinate and momentum operators commute. According to this paper, studying a 

two-particle system on NC quantum phase space (QPS) is the same as studying it on 

the ordinary QPS in which transformation is performed. Variables of both momentum 

and space in the usual quantum phase space obey Heisenberg commutation relations 

the same way as in the NC quantum phase space without the star-product. The 

variables have been transformed, and they satisfy the Heisenberg commutation 

relations in many formats. Also, the Hamiltonian has been transformed in different 
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formats. The Schrödinger equation in NC quantum phase space is solved using 

separation of variables. There exist some corrections in the energy spectrum due to the 

noncommutativity effect in the two-particle system as previously shown. The H-atom 

is the last example here in [20]. Initially, only the electron was considered in a single-

particle system in an external Coulomb potential for the H-atom. A previously 

obtained result in this paper has been used to presume the NC corrections of the 

Hamiltonian by transforming the potential (𝑉(𝑥)). Later on, the H-atom has been 

considered as a two-particle system i.e., considering both electron and proton as 

dynamical particles. Treatment of a two-particle system was shown initially in this 

research. However, for a one-particle system, there are corrections both in the kinetic 

and potential terms. For the two-particle system, there exist corrections in the 

Hamiltonian. Also, in addition to the shift in the energy levels at tree level for H-atom, 

there is an additional term. The corrections and additional terms are due to the effect 

of noncommutativity in the momentum sector of NC QM, contrary to the belief in the 

literature that, there exists no NC correction at tree level for H-atom. Following a 

different approach by this paper, corrections appear in both the Hamiltonian and 

energy levels. 

The Hydrogen Atom spectrum has been reanalyzed in [4] and the result shows that, 

due to NC space, there are corrections in the spectrum. At first, only the electron has 

been considered in an external Coulomb field in a one-particle Schrodinger equation, 

result shows corrections due to noncommutativity in spacetime. But when proton was 

considered as a dynamical particle, i.e., solving for two-body Schrodinger equation, 

there exists no change in the spectrum in the NC space, because proton is a composite 

particle that has a structure. Proton in NC Hydrogen atom is shown essentially 

behaving as a commutative particle. 
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Another research has been carried out on the Hydrogen Atom spectrum and the Lamb 

shift in NC Quantum Electrodynamics in [5]. Here, the Hamiltonian has been used to 

describe the H-atom. The Hilbert space was considered and presumed to be the same 

as in the commutative system, just as in NC field theory. The effect of 

noncommutativity (𝜃) was assumed to be small, after studying the H-atom spectrum, 

it shows that due to the NC effect, even at field theory tree level, there exist some 

corrections to the Lamb shift transition (2𝑃1

2

 → 2𝑆1

2

). The corrections due to the effect 

of noncommutativity created a new direction called polarized Lamb shift and there is 

an open: 2𝑃1

2

−1

2 → 2𝑆1

2

1

2. The usual Lamb shift 2𝑃1

2

→  2𝑆1

2
 further split to 2𝑃1

2

1

2 →  2𝑆1

2

 

and 2𝑃1

2

−1

2 → 2𝑆1

2

. This means that, the effect of the NC parameter increases the widths 

and split the Lamb shift line by a factor proportional to 𝜃 (effect of NC parameter). 

Results have been presented on the Classical Coulomb potential on NC QM for H-

atom, and the Lamb shift corrections were obtained using NC QED. 

Noncommutativity of spacetime should appear only in a physical system according to 

this paper. 

Dirac and Klein Gordon Oscillators have been studied in NC space [see 16]. Results 

show that Klein Gordon Oscillator in NC space behaves similar to the dynamics of a 

particle in commutative space in a constant magnetic field. The Dirac Oscillator in NC 

space has a new term in the Hamiltonian, which indicates a charged particle with a 

dipole of electric and magnetic moments. In [13], Klein Gordon Oscillator has been 

studied again, this time in NC phase space. At first, Klein Gordon Oscillator was 

discussed in NC space. Later on, Klein Gordon Oscillator was investigated in NC 

phase space. Results show Klein Gordon Oscillators both in NC space and NC phase 
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space possess similar behavior as dynamics of a particle in commutative space moving 

in a UMF. After solving the Klein Gordon equation in NC phase space, energy levels 

were obtained, and an additional term appears due to the NC effect in space-space and 

momentum-momentum. 

In [17], research has been carried out on the Bohr Van Leeuwen theorem in NC space. 

In this research, the classical Bohr Van Leeuwen theorem was revised. The effect of 

noncommutativity of space coordinates on the Bohr Van Leeuwen theorem was 

studied. The result shows that, in general, the Bohr Van Leeuwen theorem is not 

contented in NC space defined by Symplectic structure. Hence, we need special 

attention because a classical treatment of the partition function of a charged particle in 

a magnetic field gives rise to non-zero magnetism. In the end, the discussions here may 

be expanded to NC phase space where the momenta and the coordinates do not 

commute according to this research. 

In [15], the Landau quantization analog has been studied for a particle with neutral 

polarization in the influence of equivalent electric and magnetic external fields in the 

framework of NC QM. The particle possesses electrical and magnetic dipole moments. 

It interacts with the fields through Aharonov-Casher and He-McKellar-Wilkens 

effects. This research presented an analysis of the usual Landau quantization for a 

charged particle that moves in a similar external magnetic field. It also shows a review 

on Landau-like quantization for magnetic and electric dipoles in the influence of 

external magnetic and electric fields. A general overview was given on NC QM before 

investigating the Landau-like effects in NC space and NC phase space. The result 

shows corrections in the Landau-like energy levels arising due to the NC effect in both 

space and phase space. Similarly, corrections to the mass and cyclotron frequency in 
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both NC space and NC phase space were detected, likewise as the impact of 

noncommutativity in the energy levels, the radial wave functions, and the magnetic 

length. Lastly, it was proved that the commutative result can be recovered within the 

limit 𝜃 → 0. 

In this research project, we will study noncommutative Quantum Mechanics in 

Minkowski spacetime at the order of the Planck length. It is believed that, at short 

distances, the concept of spacetime may break down at the order of Planck length 

 𝑙𝜌=√
𝐺ℏ

𝑐2
. (1.1) 

𝐺, ℏ and 𝑐 are the Gravitational constant, reduced Planck constant, and speed of light 

respectively. Here, when the Heisenberg’s Uncertainty Principle was introduced to the 

system, the idea of space and time collapse from any functional meaning. Some 

changes in the Physics near the Planck scale such as the spacetime noncommutativity 

are required. 

Noncommutativity is generally associated with the effect of the geometry of space. 

Noncommutative Quantum Mechanics may be defined as the study of nonvanishing 

position and momentum commutators, see [19]. 

From [14], we learn that, the union of Heisenberg’s Uncertainty Principle with 

Eisenstein’s theory of General relativity concludes that, at high energy, the usual 

concept of space and time may lose any functional meaning. In general, we see from 

literature, at short distances (high energy), that classical geometric ideas and notions 

are not relevant when describing physical phenomena (measurable variables), 

therefore, we need to study them in QM. We define the phase space in QM by replacing 
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the classical canonical variables (momenta and coordinates) with their QM counterpart 

Hermitian Operators, i.e., 

 𝑃 → �̂� and 𝑋 → �̂�. (1.2) 

such that they satisfy the Heisenberg’s commutation relations. 

The aim of this research is to modify the Heisenberg’s commutation relations and 

investigate the effect of noncommutativity on some specific Quantum systems. 
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Chapter 2 

COMMUTATIVE AND NONCOMMUTATIVE PHASE 

SPACES 

2.1 Commutative Phase Space 

We define commutative phase space by changing the canonical variables, momentum 

and coordinate with QM Hermitian Operators from the previous Chapter in (1.2) 

i.e., 𝑃 →  �̂� 𝑎𝑛𝑑 𝑋 →  �̂�. 

General, for two operators �̂� and �̂�, we define their commutator as 

 [�̂�, �̂�] = �̂��̂� − �̂�𝐴,̂ (2.1) 

If [�̂�, �̂�] = 0,we say the operators �̂� and �̂� do commute (they are Commutative). If 

the result is non-zero, the operators �̂� and �̂�  do not commute (they are 

noncommutative). 

The German theoretical Physicist, Werner Heisenberg deduced a principle which 

states that; “it is impossible to determine or measure both position and momentum of 

a particle simultaneously with precision”, i.e., 

 𝛥𝑥𝛥𝑝 ≥ ћ/2. (2.2) 

We present the following commutation relations for momenta and coordinates. 

For coordinates, we postulate that 
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 [�̂�, �̂�] = �̂��̂� − �̂��̂� = 0, (2.3) 

 [�̂�, �̂�] = [�̂�, �̂�] = 0, (2.4) 

and 

 [�̂�, �̂�] = [�̂�, �̂�] = [�̂�, �̂�] = 0. (2.5) 

In general, the commutator for coordinates is, 

 [�̂�𝑖 , �̂�𝑗] = 0. (2.6) 

The commutator for momenta is presented as 

 [�̂�𝑥, �̂�𝑥] = [�̂�𝑦, �̂�𝑧] = [�̂�𝑥, �̂�𝑧] = 0. (2.7) 

In general, the commutator for momenta is 

 [�̂�𝑖 , �̂�𝑗] = 0. (2.8) 

However, commutator of position coordinates and momenta is different 

 [�̂�, �̂�𝑥] ≠ 0.  (2.9) 

Proof; 

 [𝑋,̂ �̂�𝑥] = �̂��̂�𝑥 − �̂�𝑥�̂�, (2.10) 

but we know 

 �̂� =  �̂�, �̂�𝑥 = −𝑖ℏ
𝜕

𝜕𝑥
, (2.11) 

substituting (2.11) into (2.10) 

 [�̂�, �̂�𝑥]ψ = �̂� (−𝑖ℏ
𝜕

𝜕𝑥
) 𝜓 − (−𝑖ℏ

𝜕

𝜕𝑥
) �̂�𝜓, (2.12) 

we introduced a test function 𝜓 so that �̂� can operate on it. An operator acts on a 

function to give a new function. An operator is also a mathematical object that allow 

us to represent physical observables in QM.  

After simplifying, equation (2.12) becomes 
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 [�̂�, �̂�𝑥] =  𝑖ℏ. (2.13) 

(2.13) shows position coordinate and corresponding momentum (momentum in the 

𝑥 − axis) are noncommutative. This is the same for other coordinates with their 

corresponding momenta as well 

 [�̂�, �̂�𝑥] =  [�̂�, �̂�𝑦] = [�̂�, �̂�𝑧] = 𝑖ℏ. (2.14) 

Now, commutator of coordinates with noncorresponding momenta is different as we 

see here 

 [�̂�, �̂�𝑦] = �̂��̂�𝑦 − �̂�𝑦�̂�, (2.15) 

we know that 

 �̂� =  �̂�, �̂�𝑦 = −𝑖ℏ
𝜕

𝜕𝑦
, (2.16) 

(2.16) into (2.15) 

  [�̂�, �̂�𝑦]ψ = �̂� (−𝑖ℏ
𝜕

𝜕𝑦
) 𝜓 − (−𝑖ℏ

𝜕

𝜕𝑦
) �̂�𝜓, 

 

(2.17) 

after simplification, one finds 

  [�̂�, �̂�𝑦] = 0. 

 

(2.18) 

(2.18) clearly shows coordinate commutes with noncorresponding momentum. This is 

the same for all coordinates and noncorresponding momenta 

 [�̂�, �̂�𝑦] = [�̂�, �̂�𝑧] = [�̂�, �̂�𝑧] = [�̂�, �̂�𝑥] = 0. (2.19) 

In general, the commutator of coordinates and momenta is given by;  

 [�̂�𝑖 , �̂�𝑗] = 𝛿𝑗
𝑖𝑖ℏ. (2.20) 

where 𝛿𝑗
𝑖 is the Kronecker delta.  

The above commutations for momenta and coordinates indicate that; when momentum 

is in the direction of the corresponding coordinate i.e., (2.14) the operators do not 

commute with each other, this implies that their values cannot be found simultaneously 
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with precision. However, when momentum is not in the corresponding direction of the 

position coordinate i.e., (2.19) the operators do commute, which implies that their 

values can be measured with accuracy simultaneously.  

The general commutation relations in Commutative phase space from (2.6) (2.8) and 

(2.20) are summarized here 

 [�̂�𝑖 , �̂�𝑗] = 0. (2.21) 

 [�̂�𝑖 , �̂�𝑗] = 0. (2.22) 

 [�̂�𝑖 , �̂�𝑗] = 𝛿𝑗
𝑖𝑖ℏ. (2.23) 

2.2 Noncommutative (NC) Phase Space 

From [19], noncommutative Quantum Mechanics may be defined as the study of 

nonvanishing commutator of position and momentum. 

When operators do not commute, i.e., their values can’t be measured simultaneously 

with precision, then, they are noncommutative. (2.14) shows operators not commuting. 

when momentum is in the direction of the corresponding position i.e., (2.14) the 

operators do not commute with each other. 

To deal with noncommutativity in phase space, we employ the Weyl Moyal star 

product, thereby changing the standard product of the fields by the star product 

 (𝑓 ∗ 𝑔)(𝑥, 𝑝) = exp (
𝑖

2𝛼2
𝜃𝑖𝑗𝜕𝑖

𝑥𝜕𝑗
𝑥 +

𝑖

2𝛼2
𝜂𝑖𝑗𝜕𝑖

𝑝𝜕𝑗
𝑝) 𝑓(𝑥)𝑔(𝑥). (2.24) 

However, instead of the star product, we employ the Bopp’s shift i.e., we transform 

our coordinates and momenta as thus 

 �̂�𝑎 → 𝑋𝑎 −
1

2
𝜃𝑎𝑏𝑃𝑏 . (2.25) 
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 �̂�𝑎 → 𝑃𝑎 +
1

2
𝜂𝑎𝑏𝑋𝑏 . (2.26) 

Such that, they satisfy the commutation relations in NC phase space 

 [�̂�𝑎, �̂�𝑏] = 𝑖ℏ𝜃𝑎𝑏 , 𝜃𝑎𝑏 = 𝜃 (
0 1 1

−1 0 1
−1 −1 0

), (2.27) 

 [�̂�𝑎, �̂�𝑏] = 𝑖ℏ𝜂𝑎𝑏 , 𝜂𝑎𝑏 =  𝜂 (
0 1 1

−1 0 1
−1 −1 0

), (2.28) 

and 

  [�̂�𝑖 , �̂�𝑗] = 𝑖ℏ𝛾𝑗
𝑖. (2.29) 

PROOF: Using transformations from (2.25) and (2.26) we shall prove (2.27), (2,28) 

and (2,29). 

A. (2.27) 

 [�̂�𝑎, �̂�𝑏] = [𝑋𝑎 −
1

2
𝜃𝑎𝑖𝑃𝑖, 𝑋𝑏 −

1

2
𝜃𝑏𝑗𝑃𝑗], (2.30) 

now, we apply the commutator rule to (2.29) 

 

[�̂�𝑎, �̂�𝑏] = [𝑋𝑎 , 𝑋𝑏] −
1

2
𝜃𝑏𝑗[  𝑋𝑎 , 𝑃𝑗] −

1

2
𝜃𝑎𝑖[𝑃𝑖 , 𝑋𝑏]

+
1

4
𝜃𝑎𝑖𝜃𝑏𝑗[𝑃𝑖, 𝑃𝑗], 

(2.31) 

further simplifications and summing up from i to i and j to j in 2nd and 3rd terms 

respectively, we’ve 

 [�̂�𝑎, �̂�𝑏] = 𝑖ℏ𝜃𝑎𝑏 . (2.32) 

B. (2.28) 

 [�̂�𝑎 , �̂�𝑏] = [𝑃𝑎 +
1

2
𝜂𝑎𝑗𝑋𝑗 , 𝑃𝑏 +

1

2
𝜂𝑏𝑖𝑋

𝑖], (2.33) 

applying the commutator rule 
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[�̂�𝑎, �̂�𝑏] = [𝑃𝑎, 𝑃𝑏] +
1

2
𝜂𝑏𝑖[𝑃𝑎,𝑋

𝑖] +
1

2
𝜂𝑎𝑗[𝑋𝑗 , 𝑃𝑏]

+
1

4
𝜂𝑎𝑗𝜂𝑏𝑖[𝑋𝑗, 𝑋𝑖], 

(2.34) 

summing up from i to i and j to j in 2nd and 3rd terms respectively and simplifying the 

equation, we have 

 [�̂�𝑎, �̂�𝑏] = 𝑖ℏ𝜂𝑎𝑏 . (2.35) 

C. (2.29) 

 [�̂�𝑖, �̂�𝑗] = [𝑋𝑖 −
1

2
𝜃𝑖𝑘𝑃𝑘 , 𝑃𝑗 +

1

2
𝜂𝑗𝑘𝑋𝑙], (2.36) 

when one applies the commutator rule to (2.36), we have 

 

[�̂�𝑖 , �̂�𝑗] = [𝑋𝑖, 𝑃𝑗] +
1

2
𝜂𝑗𝑙[𝑋𝑖, 𝑋𝑙] −

1

2
𝜃𝑖𝑘[𝑃𝑘 , 𝑃𝑗]

−
1

4
𝜃𝑖𝑘𝜂𝑗𝑙[𝑃𝑘, 𝑋𝑙], 

(2.37) 

simplifying (2.37), we have 

 [�̂�𝑖, �̂�𝑗] = 𝑖ℏ𝛾𝑗
𝑖, 𝛾𝑗

𝑖 = (𝛿𝑗
𝑖 + 𝛿𝑗

𝑘 1

4
𝜃𝑖𝑘𝜂𝑗𝑘). (2.38) 

We conclude this Chapter with the commutation relations in NC phase space from 

(2.32), (2.35) and (2.38). 

 [�̂�𝑎, �̂�𝑏] = 𝑖ℏ𝜃𝑎𝑏 , (2.39) 

 [�̂�𝑎, �̂�𝑏] = 𝑖ℏ𝜂𝑎𝑏 , (2.40) 

and 

 [�̂�𝑖, �̂�𝑗] = 𝑖ℏ𝛾𝑗
𝑖, 𝛾𝑗

𝑖 = (𝛿𝑗
𝑖 + 𝛿𝑗

𝑘 1

4
𝜃𝑖𝑘𝜂𝑗𝑘). (2.41) 

𝜃𝑖𝑘 and 𝜂𝑗𝑘  are antisymmetric tensors, they are noncommutativity parameters for 

coordinates and momenta respectively.  
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In the next chapter, we are going to use the Schrödinger equation in two-dimensions 

to solve for a Quantum particle inside Earth’s gravity. We will transform both the 

coordinate and momentum in the Schrödinger equation. We will solve for the energy 

levels and the normalized stationary states with the Hermite polynomials.  
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Chapter 3 

PARTICLE IN EARTH’S GRAVITY 

We consider a Quantum particle inside Earth’s gravity. Using the Hamiltonian, we 

describe the particle in a two-dimensional system 

 �̂� = �̂� + �̂�. (3.1) 

According to the Classical mechanics, the kinetic energy �̂� and Potential energy �̂� are 

defined as 

 �̂� =
1

2
𝑚𝑣2, �̂� = {

𝑚𝑔�̂�
∞

,
𝑦 ≥ 𝑦𝑜

𝑦 < 𝑦𝑜
, (3.2) 

where 𝑦𝑜 is a constant. The Hamiltonian takes the form 

 �̂� =
�̂�2

2𝑚
+ 𝑚𝑔�̂�. (3.3) 

We present the momentum �̂� in two-dimension, �̂� = �̂�𝑥 + �̂�𝑦, which yields 

 �̂� =
1

2𝑚
(�̂�𝑥

2 + �̂�𝑦
2) + 𝑚𝑔�̂�.   (3.4) 

The corresponding time independent Schrödinger equation is written as 

 �̂�𝜙 = 𝐸𝜙,  (3.5) 

Where  𝐸 represent the particle’s energy. 

Now, using the Bopp’s shift, we transform �̂�𝑥, �̂�𝑦 and �̂� as we studied in chapter 2.  

For �̂�𝑥, one writes 

 �̂�𝑥 =  𝛼𝑃𝑥 +
1

2𝛼ℏ
𝜂12𝑦,  (3.6) 
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where 𝜂𝑎𝑏 (NC effect for momentum) is the anti-symmetric tensor. See [18] for tensor 

reading, where 

 𝜂12 = 𝜂1 = 𝜂,   (3.7) 

which implies that 

 �̂�𝑥 =  𝛼𝑃𝑥 +
1

2𝛼ℏ
𝜂𝑦.   (3.8) 

For �̂�𝑦, we apply 

 �̂�𝑦 = 𝛼𝑃𝑦 +
1

2𝛼ℏ
𝜂21𝑥,   (3.9) 

where 𝜂21, is given by 

 𝜂21 = −𝜂, (3.10) 

which results in 

 �̂�𝑦 =  𝛼𝑃𝑦 −
1

2𝛼ℏ
𝜂𝑥. (3.11) 

For �̂�, the transformation implies 

 �̂� =  𝛼𝑦 −
1

2𝛼ℏ
𝜃21𝑃𝑥 , (3.12) 

where 𝜃𝑖𝑗 , (NC effect of the position) is the anti-symmetric tensor introduced before, 

such that, 

 𝜃21 = −𝜃, (3.13) 

and therefore, we have for �̂� 

 �̂� =  𝛼𝑦 +
1

2𝛼ℏ
𝜃𝑃𝑥. (3.14) 

From (3.5), our Schrödinger equation takes the form 

 
1

2
(�̂�𝑥

2 + �̂�𝑦
2)𝜙 + 𝑚𝑔�̂�𝜙 = 𝐸𝜙. (3.15) 

Now, we substitute (3.8), (3.11) and (3.14) into (3.15) and the Schrödinger equation 

takes the form 
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1

2𝑚
((𝛼𝑃𝑥 +

1

2𝛼ℏ
𝜂𝑦)

2

+ (𝛼𝑃𝑦 −
1

2𝛼ℏ
𝜂𝑥)

2

) 𝜙

+ 𝑚𝑔 (𝛼𝑦 +
1

2𝛼ℏ
𝜃𝑃𝑥) 𝜙 = 𝐸𝜙. 

(3.16) 

One simplifies (3.16) as 

 

1

2𝑚
[𝛼2(𝑃𝑥

2 + 𝑃𝑦
2) +

𝜂

ℏ
(𝑦𝑃𝑥 − 𝑥𝑃𝑦) + 𝜂2

(𝑥2 + 𝑦2)

4𝛼2ℏ2

+ 𝑚𝑔 (𝛼𝑦 +
1

2𝛼ℏ
𝜃𝑃𝑥)] 𝜙 = 𝐸𝜙. 

(3.17) 

However, we know that 

 𝑥𝑃𝑦 + 𝑦𝑃𝑥 = 𝐿𝑧 , (3.18) 

so (3.17) yields 

 

(
𝛼2

2𝑚
(𝑃𝑥

2 + 𝑃𝑦
2) −

𝜂

2𝑚ℏ
𝐿𝑧 + 𝜂2

(𝑥2 + 𝑦2)

8𝑚𝛼2ℏ2

+ 𝑚𝑔 (𝛼𝑦 +
1

2𝛼ℏ
𝜃𝑃𝑥)) 𝜙 = 𝐸𝜙. 

(3.19) 

We recall the definition of the operators 

 𝑃𝑥 = −𝑖ℏ𝜕𝑥, 𝑃𝑥
2 = −ℏ2𝜕𝑥

2, 𝑃𝑦
2 = −ℏ2𝜕𝑦

2. (3.20) 

When we substitute the operators (3.20) into (3.19), the Schrödinger equation becomes 

 

(−
ℏ2𝛼2

2𝑚
(𝜕𝑥

2 + 𝜕𝑦
2) −

𝜂

2𝑚ℏ
𝐿𝑧 + 𝜂2

(𝑥2 + 𝑦2)

8𝑚𝛼2ℏ2

+ 𝑚𝑔 (𝛼𝑦 −
𝑖𝜃

2𝛼
𝜕𝑥)) 𝜙 = 𝐸𝜙. 

(3.21) 

Now, we let 

 
𝜂2

8𝑚𝛼2ℏ2 =
1

2
𝑚𝜔2,  (3.22) 

or equivalently 
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 𝜔 =
𝜂

2𝑚𝛼ℏ
, (3.22′) 

 upon which (3.21) becomes 

 

(−
ℏ2𝛼2

2𝑚
(𝜕𝑥

2 + 𝜕𝑦
2) −

𝜂

2𝑚ℏ
𝐿𝑧 +

1

2
𝑚𝜔2𝑥2 +

1

2
𝑚𝜔2𝑦2 + 𝑚𝑔𝛼𝑦

−
𝑖𝑚𝑔𝜃

2𝛼
𝜕𝑥) 𝜙 = 𝐸𝜙. 

(3.23) 

To simplify (3.23) we take 

 

1

2
𝑚𝜔2𝑦2 + 𝑚𝑔𝛼𝑦 =

1

2
𝑚𝜔2 (𝑦2 +

2𝑔𝛼

𝜔2
𝑦 + (

𝑔𝛼

𝜔2
)2 − (

𝑔𝛼

𝜔2
)2), (3.24) 

so that 

 
1

2
𝑚𝜔2𝑦2 + 𝑚𝑔𝛼𝑦 =

1

2
𝑚𝜔2(𝑦 +

𝑔𝛼

𝜔2
)2 −

1

2
𝑚 (

𝑔𝛼

𝜔
)

2

. (3.25) 

We replace (𝑦 +
𝑔𝛼

𝜔2) with �̃� so that 

 
1

2
𝑚𝜔2𝑦2 + 𝑚𝑔𝛼𝑦 =

1

2
𝑚𝜔2�̃�2 −

1

2
𝑚(

𝑔𝛼

𝜔
)2. (3.26) 

Coming back to our equation (3.23), the Schrödinger equation takes the form 

 

(−
ℏ2𝛼2

2𝑚
(𝜕𝑥

2 + 𝜕𝑦
2) +

1

2
𝑚𝜔2𝑥2 +

1

2
𝑚𝜔2�̃�2 −

𝑖𝑚𝑔𝜃

2𝛼
𝜕𝑥) 𝜙

−
𝜂

2𝑚ℏ
𝐿𝑧𝜙 = (𝐸 +

1

2
𝑚 (

𝑔𝛼

𝜔
)

2

)𝜙. 

(3.27) 

We note that, �̃� = (𝑦 +
𝑔𝛼

𝜔2)  which implies 
𝑑

𝑑𝑦
=

𝑑

𝑑�̃�

𝑑�̃�

𝑑𝑦
=

𝑑

𝑑�̃�
,  and consequently 

(
𝑑

𝑑�̃�
)

2

= (
𝑑

𝑑𝑦
)

2

. 

The Schrödinger equation (3.27) may be written as 

 (𝐻0 −
𝜂

2𝑚ℏ
𝐿𝑧) 𝜙 = �̃�𝜙, (3.28) 

in which 
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  𝐿𝑧 = (𝑥𝑃𝑦 − 𝑦𝑃𝑥), (3.29) 

 𝐻0 = −
ℏ2𝛼2

2𝑚
(𝜕𝑥

2 + 𝜕�̃�
2) +

1

2
𝑚𝜔2(𝑥2 + �̃�2) −

𝑖𝑚𝑔𝜃

2𝛼
𝜕𝑥, (3.30) 

and 

  �̃� = 𝐸 +
1

2
𝑚(

𝑔𝛼

𝜔
)2. (3.31) 

The term −
𝜂

2𝑚ℏ
𝐿𝑧 doesn’t commute with 𝐻𝑜 i.e.,  

  [𝐻0, −
𝜂

2𝑚ℏ
𝐿𝑧] ≠ 0, (3.32) 

which forces us to consider it as a perturbation term. Therefore, first we solve the 

Schrödinger equation for 𝐻0 i.e.,  

  𝐻0𝜙0 = �̃�0𝜙0, (3.33) 

and then we apply the time independent perturbation theory to obtain the effect of 

−
𝜂

2𝑚ℏ
𝐿𝑧 on the energy spectrum as well as the eigenfunctions.  

The main Schrödinger equation is given by 

 (−
ℏ2𝛼2

2𝑚
(𝜕𝑥

2 + 𝜕�̃�
2) +

1

2
𝑚𝜔2(𝑥2 + �̃�2) −

𝑖𝑚𝑔𝜃

2𝛼
𝜕𝑥) 𝜙0 = �̃�0𝜙0, (3.34) 

which after some manipulation reads as 

  (−(𝜕𝑥
2 + 𝜕�̃�

2) +
𝑚2𝜔2

ℏ2𝛼2
(𝑥2 + �̃�2) −

𝑖𝑚2𝑔𝜃

ℏ2𝛼3
𝜕𝑥) 𝜙𝑜 =

2𝑚�̃�0

ℏ2𝛼2
𝜙0. (3.35) 

For simplicity, we set (
𝑚𝜔

𝛼ℏ
)2 = ξ2,   

𝑚2𝑔𝜃

ℏ2𝛼3 = 𝛿, and 
2𝑚�̌�0

ℏ2𝛼2 = 𝜀0̃. 

This implies (3.35) shapes out to be 

  (−(𝜕𝑥
2 + 𝜕�̃�

2) + ξ2(𝑥2 + �̃�2) − 𝑖𝛿𝜕𝑥)𝜙0 = 𝜀0̃𝜙0. (3.36) 

Applying the separation method, we introduce  

 𝜙0(𝑥, �̃� ) = 𝑋(𝑥)𝑌(�̃� ), (3.37) 

upon which (3.36) reduces to  
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 −
1

𝑋(𝑥)

𝑑2

𝑑𝑥2
𝑋 −

1

𝑌(�̃� )

𝑑2

𝑑�̃� 2
𝑌 + ξ2(𝑥2 + �̃�2) − 𝑖

𝛿

𝑋

𝑑

𝑑𝑥
𝑋 = 𝜀0̃, (3.38) 

or after the separation 

  −
1

𝑋

𝑑2

𝑑𝑥2
𝑋 + ξ2𝑥2 − 𝑖

𝛿

𝑋

𝑑

𝑑𝑥
𝑋 = 𝜀0̃𝑥, (3.39) 

and 

 −
1

𝑌

𝑑2

𝑑�̃� 2
𝑌 + ξ2�̃�2 = 𝜀0̃𝑦, (3.40) 

where the energy 

 𝜀0̃ = 𝜀0̃𝑥 + 𝜀0̃𝑦. (3.41) 

Equation (3.40) may be written as 

 −𝑌′′(�̃�) + ξ2�̃�2𝑌 = 𝜀0̃𝑦𝑌, (3.42) 

which is the equation of the Simple Harmonic Oscillator (SHO) in QM. However, the 

standard SHO is represented by the following Schrödinger equation 

 −
ℏ2

2𝑚

𝑑2

𝑑𝑥2
𝜓𝑛(𝑥) +

1

2
𝑚𝛺2𝑥2𝜓𝑛(𝑥) = 𝐸𝑛𝜓𝑛(𝑥), (3.43) 

such that, the energy eigenvalues are given by 

 𝐸𝑛 = (𝑛 +
1

2
) ℏ𝛺, (3.44) 

and the energy eigenfunctions read as 

 𝜓𝑛(𝑥) =
1

√2𝑛𝑛!
(

𝑚𝛺

𝜋ℏ
)

1
4

𝑒−
𝑚𝛺𝑥2

2ℏ 𝐻𝑛 (√
𝑚𝛺

ℏ
𝑥), (3.45) 

𝑛 =  0,1,2,3 …. 

In (3.45), 𝐻𝑛(𝑡) are the Hermite polynomials defined by 

 𝐻𝑛(𝑡) = (−1)𝑛𝑒𝑡2 𝑑𝑛

𝑑𝑡𝑛
(𝑒−𝑡2

). (3.46) 
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Comparing (3.42) and (3.43), we set 
ℏ2

2𝑚
= 1, 

1

2
𝑚𝛺2 = ξ2and 𝐸𝑛 = 𝜀0̃𝑦, which yields 

𝑚 =
ℏ2

2
, and 𝛺 =

2𝜉

ℏ
. 

and 

 (𝜀0̃𝑦)𝑛 = (2𝑛 + 1)𝜉. (3.47) 

Also, from (3.45) we get 

 𝑌𝑛(�̃� ) =
1

√2𝑛𝑛!
(

𝜉

𝜋
)

1
4

𝑒−
1
2

𝜉�̃� 2𝐻𝑛(√𝜉�̃� ). (3.48) 

Let’s add that setting 𝑦𝑜 =
𝑔𝛼

𝜔2 in (3.2) which helps to satisfy the boundary condition 

𝑌𝑛(0) = 0.  Therefore, only the odd solution of (3.47) are acceptable i.e., 𝑛 =

 1,3,5, …. which reveals 𝑛 = 2�̃�  + 1, �̃� = 0,1,2, …. 

 (𝜀0̃𝑦)�̃� = (4�̃� + 3)𝜉, (3.49) 

and 

 𝑌�̃�(�̃� ) =
1

√22�̃� +1(2�̃�  + 1)!
(

𝜉

𝜋
)

1
4

𝑒−
1
2

𝜉�̃� 2𝐻2�̃� +1(√𝜉�̃� ). (3.50) 

After we solved the 𝑦-component of the Schrödinger equation, we go back to solve the 

𝑥-component as well. 

Equation (3.39) may be written as 

 −𝑋′′(𝑥) + ξ2𝑥2𝑋 − 𝑖𝛿𝑋′(𝑥) = 𝜉𝑜𝑥𝑋(𝑥), (3.51) 

we apply the ansatz 

 𝑋(𝑥) = ℎ(𝑥)𝑈(𝑥), (3.52) 

into (3.51) to obtain 

 −(ℎ′′𝑈 + 2ℎ′𝑈′ + ℎ𝑈′′) + 𝜉2𝑥2ℎ𝑈 − 𝑖𝛿(ℎ′𝑈 + ℎ𝑈′) = 𝜀0̃𝑥ℎ𝑈, (3.53) 

we divide (3.55) by ℎ and factorize by derivatives of U  
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 −𝑈′′ + (
−2ℎ′

ℎ
− 𝑖𝛿

ℎ

ℎ
) 𝑈′ + 𝑈 (

−ℎ′′

ℎ
+ ξ2𝑥2 − 𝑖𝛿

ℎ′

ℎ
) = 𝜀0̃𝑥𝑈, (3.54) 

we also set coefficient of 𝑈′ to zero 

 
2ℎ′

ℎ
+ 𝑖𝛿 = 0, (3.55) 

we find ℎ to be 

 ℎ = 𝑒
−𝑖𝛿

2
𝑥, (3.56) 

and therefore (3.54) becomes  

 −𝑈′′ + (− (
−𝑖𝛿

2
)

2

+ ξ2𝑥2 − 𝑖𝛿 (
−𝑖𝛿

2
)) 𝑈 = 𝜀0̃𝑥𝑈. (3.57) 

We simplify (3.57) to get 

 −𝑈′′ + ξ2𝑥2𝑈 = (𝜀�̃�𝑥 +
𝛿2

4
)𝑈. (3.58) 

As can be seen from (3.58), it is again a SHO equation with  
ℏ2

2𝑚
= 1, 

1

2
𝑚𝛺2 = ξ2 and 

𝐸𝑛 = 𝜀0̃𝑥 +
𝛿2

4
. 

Therefore, the solution can be written as (note that, 𝑚 =
ℏ2

2
 and 𝛺 =

2𝜉

ℏ
) 

 (𝜀0̃𝑥)𝑛′ +
𝛿2

4
= (𝑛′ +

1

2
) 2𝜉, (3.59) 

(3.59) reduce to 

 (𝜀0̃𝑥)𝑛′ = (2𝑛′ + 1)𝜉 −
𝛿2

4
, (3.60) 

and  

 𝑋𝑛′(𝑥) =
1

√2𝑛′
𝑛′!

(
𝜉

𝜋
)

1
4

𝑒
−𝜉
2

𝑥2

𝐻𝑛′(√𝜉𝑥). (3.61) 

𝑛′ = 0,1,2,3, …. 
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Finally, the full solution in 𝑥-direction is given by 

 𝑋𝑛′(𝑥) = 𝑒
−𝑖𝛿

2
𝑥𝑈𝑛′(𝑥). (3.62) 

Next, we write the full solution for 𝜙0(𝑥, �̃�) which is the multiplication of 𝑋𝑛′(𝑥) and 

𝑌�̃�(�̃�), given by 

 𝜙0𝑛′�̃�(𝑥, �̃�) = 𝑒
−𝑖𝛿

2
𝑥𝑈𝑛′(𝑥)𝑌�̃�(�̃�), (3.63) 

with the energy given by  

 𝜀0̃𝑛′�̃� = (𝜀0̃𝑥)𝑛′ + (𝜀0̃�̃�)�̃� = ((2𝑛′ + 1)𝜉 −
𝛿2

4
) + ((4�̃� + 3)𝜉). (3.64) 

We recall that 𝜀0̃ =
2𝑚

ℏ2𝛼2 �̃�0, where 𝑚 represent the mass of the particle and �̃�0 is the 

energy of the main Hamiltonian i.e., energy of the unperturbed Hamiltonian 𝐻0 . 

Therefore, one writes 

 (�̃�0)𝑛′�̃� =
ℏ2𝛼2

2𝑚
(𝜀0̃)𝑛′�̃� =

ℏ2𝛼2

2𝑚
((2𝑛′ + 4�̃� + 4)𝜉 −

𝛿2

4
), (3.65) 

and the full eigenfunctions 𝜙0𝑛′�̃� are given by 

 =
1

√2𝑛′
𝑛′! √22�̃� +1(2�̃�  + 1)!

(
𝜉

𝜋
)

1
2

𝑒
−𝑖𝛿

2
𝑥𝑒−

1
2

𝜉(�̃� 2+𝑥2) 𝐻𝑛′(√𝜉𝑥)𝐻2�̃� +1(√𝜉�̃� ). (3.66) 

 

Our next move is to find the effect of the ignored term 𝐻1 = −
𝜂

2𝑚ℏ
𝐿𝑧 on our energy 

spectrum  as a small perturbation. 

The first order correction to the energy eigenvalues is simply given by  

 ∆𝐸
𝑛′�̃�

(1)
=< 𝜙0𝑛′�̃�|𝐻1|𝜙0𝑛′�̃� >. (3.67) 

In this regard one obtains 

 ∆𝐸
𝑛′�̃�

(1)
=< 𝜙0𝑛′�̃�| −

𝜂

2𝑚ℏ
(𝑥𝑃𝑦 − 𝑦𝑃𝑥)|𝜙0𝑛′�̃� >, (3.68) 
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we then have, 

 ∆𝐸
𝑛′�̃�

(1)
= −

𝜂

2𝑚ℏ
(< 𝜙0𝑛′�̃�|𝑥𝑃𝑦|𝜙0𝑛′�̃� > −< 𝜙0𝑛′�̃�|𝑦𝑃𝑥|𝜙0𝑛′�̃� >). (3.69) 

We see that, since both 𝑥 and 𝑃𝑥 play as odd functions, the integral over the symmetric 

limit vanishes, and consequently there is no correction on the energy of the system up 

to the first order. 

Therefore, in terms of the initial parameters, we find the energy spectrum to be  

 �̃�𝑛′�̃� =
ℏ2𝛼2

2𝑚
(2(𝑛′ + 2�̃� + 2) (

𝑚𝜔

𝛼ℏ
) −

𝛿2

4
), (3.70) 

where 𝜔 =
𝜂

2𝑚𝛼ℏ
 and 𝛿 =

𝑚2𝑔𝜃

ℏ2𝛼3  upon which 

 �̃�𝑛′�̃� =
ℏ2𝛼2

2𝑚
(2(𝑛′ + 2�̃� + 2) (

𝜂

2ℏ2𝛼2
 ) −

1

4
(

𝑚2𝑔𝜃

ℏ2𝛼3
)

2

 ), (3.71) 

which reduce to 

 �̃�𝑛′�̃� =
𝜂

2𝑚
(𝑛′ + 2�̃� + 2) −

1

8

𝑚3𝑔2𝜃2

ℏ2𝛼4
. (3.72) 

From (3.31) we evaluate our final energy i.e., energy of the particle 

 

𝐸 = �̃� −
1

2
𝑚(

𝑔𝛼

𝜔
)2. 

(3.73) 

thus, (note that 𝜔 =
𝜂

2𝑚𝛼ℏ
) 

 𝐸 = 2𝑚(𝑛′ + 2�̃� + 2) − 2𝑚3𝑔2 (
𝜃2

16ℏ2𝛼4
+

ℏ2𝛼4

𝜂2
) (3.74) 

We conclude this Chapter having found our energy levels for both 𝑥  and 𝑦 

components of the Schrodinger equation. Also, the normalized stationary states with 

their Hermite polynomials in both 𝑥 -ccomponent and 𝑦 -component have been 

compiled. There’re corrections due to the effect of noncommutativity in both 𝑥 and 𝑦 

components of the Schrödinger equation. We harmonized the energy eigenvalues and 
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the eigenfunctions into single equations as our full solutions. In the coming chapter, 

we shall discuss more on those corrections and some additional term we have found 

due to noncommutativity.  
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Chapter 4 

DISCUSSION AND CONCLUSION 

We see from literature how the NC effect modifies equations by bringing in some 

corrections or introducing a whole new term(s). We know that at high energy i.e., short 

distance, Classical geometrical notions and concepts aren’t suited to describe physical 

phenomena, we therefore transform our Classical variables; coordinates and momenta 

into QM Hermitian operators.  

We have used the transformation of coordinates and momenta to satisfy the Heisenberg 

commutation relations in the commutative phase space section. Also, we have used the 

transformations from (2.20) and (2.21) to satisfy the Heisenberg commutation 

relations in the NC phase space.  

In Chapter 3, we introduced the Hamiltonian in two-dimension for a particle in Earth’s 

gravity. We transformed the coordinates and momenta in the Schrödinger equation 

which led us to series of Mathematical manipulations, calculations, and findings. We 

then split the Schrödinger equation into 𝑥 and 𝑦 components. For 𝑦 component, we 

solved the equation into becoming a Simple Harmonic Oscillator SHO equation. We 

solved it and obtained the energy levels and the eigenfunctions with its Hermite 

Polynomials. 
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Nevertheless, in the 𝑥-component, the equation is a little bit complicated, with the 

appearance of an imaginary term makes it a complex equation. We applied the 

separation method and solved it to become a Simple Harmonic Oscillator equation. 

The energy levels have been obtained so also the eigenfunction with the Hermite 

Polynomials. 

Both in the 𝑥 and 𝑦 components, the energy levels have corrections. In 𝑦-component, 

the energy levels have slight corrections after we substituted back the values of 

ℏ and 𝛺, it got shifted by the multiple of 2𝜉 and 𝑛 = 2�̃�  + 1. 

However, in the 𝑥 -component, after substituting back the values of ℏ and 𝛺 , the 

energy levels also shifted by a multiple of 2𝜉, and a new term appeared (−
𝛿2

4
), which 

means the energy levels in NC phase space for 𝑥-component are smaller by (−
𝛿2

4
) 

compared to the commutative ones. 

A perturbation term appeared in the Schrödinger equation due to noncommutativity 

effect. However, it doesn’t commute with the main Hamiltonian. We applied time 

independent perturbation theory to obtain the effect of the perturbation term on the 

energy spectrum as well as the eigenfunction. The integral over the symmetric limit 

vanishes due to odd functions in coordinate and corresponding momentum, and 

consequently there exist no correction on the energy of the system up to the first order.  

Finally, we combined energy eigenvalues from both components of 𝑥 and 𝑦, so also 

the normalized stationary states (eigenfunctions) back into single results as our full 
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solutions. All these corrections in eigenfunctions and eigenvalues are due to the effect 

of noncommutativity in spacetime.   
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