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ABSTRACT 

In this thesis, self-adjoint extensions of some of the operators used in quantum 

mechanics are studied. First, the necessary mathematical background namely, the 

vector spaces and Hilbert space are reviewed. Secondly, the theorem of von-

Neumann is introduced to determine the self-adjoint extension of the operators. The 

application of self-adjoint extensions of the momentum and spatial part of the Klein-

Gordon equation is investigated. The concept of quantum singularity structure of the 

negative mass Schwarzchild spacetime is investigated by the wave obeying the 

Klein-Gordon equation. 
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ÖZ 

Bu tezde, kuantum mekaniğinde kullanılan bazı operatörlerün kendi eşlenik 

uzantıları ele alınmıştır. İlk olarak, gerekli matematiksel altyapı olan, vektör uzayları 

ve Hilbert uzayı gözden geçirilmiştir. İkinci olarak ise, operatörlerin kendi eşlenik 

uzantılarını  belirlemek için kullanılan von-Neumann teoremi tanıtılmıştır. Daha 

sonra uygulama olarak Momentum operatörü ve Klein-Gordon denkleminin uzaysal 

kısmının kendi eşlenik uzantıları incelenmiştir. Son olarak negatif kütle 

Schwarzschild uzay-zamanın kuantum tekillik yapısı Klein-Gordon denklemine uyan 

dalgalar için incelenmiştir. 
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Chapter 1 

INTRODUCTION 

In physics operators are known as important tools that upon acting on a physical state 

they produce another physical states. 

 

In classical mechanics, the Lagrangian formalism is used for determining the 

dynamics of a system. Here the Lagrangian is written in terms of generalized 

coordinates  , generalized velocities    
  

  
. Alternatively the dynamics of a system 

can also be determined by the Hamiltonian          in which   denotes the 

conjugate momenta   
  

  
. 

 

Operators in quantum mechanics are extremely important because the whole 

quantum mechanics is formulated in terms of operators. Any physical quantity which 

can be measured experimentally is abbreviated as observable, and therefore it should 

be associated with a self-adjoint linear operator. In quantum mechanics, wave 

functions vary with space and time         ,  or equivalently momentum and time, 

therefore observables are differantial operators. 

 

In this thesis, the self-adjoint extensions of some of the operators used in quantum 

mechanics will be investigated. The main goal of the thesis is to understand whether 

the operator used in the considered problem has self-adjoint extensions or not. This is 
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important because since, the operators are associated with the observables it then 

provides physically important outcomes. 

 

One of the application arena for self-adjoint extensions is the case that occurs in the 

potential of a Schrödinger equation that obeys inverse square 
 

  
 behaviour. To avoid 

the divergences as    , the concept of self-adjoint extensions are used [1]. 

 

In this thesis, we studied the self-adjoint extensions of the momentum and spatial 

part of the Klein-Gordon equation. First, the momentum operator is considered for 

three different physical situations specified by the interval of the positions. This 

problem is considered first in [2]. Secondly, we consider another application arena of 

the use of self-adjoint extension concept. The application arena is the naked 

singularities that arose in the relativity theory. This problem is developed by 

Horowitz and Marolf [3]. One of the remarkable predictions of Einstein’s theory of 

relativity is the occurence of spacetime singularities. If the singularity is covered by 

horizon(s), this is called a black hole. But if there is no horizon than the spacetime is 

naked singular. 

 

At the singularity, all the physical quantities diverge. More importantly, all the 

known laws of physics do not hold at the singularity. 

 

We consider in this thesis, the negative mass Schwarzchild solution. This solution 

admit naked singularity at    . The wave obeying the Klein-Gordon equation will 

be considered in the negative mass Schwarzchild geometry. This problem is 

considered in [3], but calculations are not given in detail. The spatial part of the 
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Klein-Gordon equation will be treated as an operator. This operator is investigated 

whether it admits self-adjoint extensions or not. 

 

In the analysis of the operators whether they admit self-adjoint extensions or not, the 

theorem of von-Neumann is used. 

 

In chapter 2, we review the neccesarry mathematical background by stating the 

metric and vector spaces and finally we give the properties of Hilbert space which is 

the natural function space of quantum mechanics. 

 

In chapter 3, the theorem of von-Neumann is given. Chapter 4 is devoted for the 

applications of the momentum and spatial part of the Klein Gordon equation. The 

thesis is concluded with a conclusion in chapter 5. 
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Chapter 2 

THE NECESSARY MATHEMATICAL BACKGROUND 

The concept of  “space” is in fact one of the most important tool for describing the 

motion with physical quantities. Among the others, the 3-dimensional Euclidean 

space is the simplest one which is used for describing motions in our living world. In 

fact, the Euclidean space is not a vector space. However, we wish to review its basic 

properties in order to understand in detail the notion of vector spaces. 

 

At this stage we wish to define metric spaces and related concepts. For this purpose, 

we will review some of the related topics presented in the book “Introductory 

Functional Analysis with Applications” written by Erwin Kreyszig [4]. 

2.1 Definition of Metric Space 

A metric space is a pair      , where   is a set and   is a metric on   (or distance 

function on  ), that is, a function defined on    . (The symbol   denotes 

Cartesian product of sets:     is the set of all ordered pairs      , where     

and    . Hence       is the set of all ordered pairs of elements of X) such that 

for all          we have: 

i.   is real-valued, finite and nonnegative 

ii.          if and only if      

iii.                (symmetry) 

iv.                      (triangle inequality) 
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2.2 Application in Euclidean Space  

2.2.1 Real Line   

This is a 1-dimensional Euclidean space. It defines the set of all real numbers, the 

metric (distance) defined by 

            .                 (2.1) 

2.2.2 Euclidean Plane    

This is a 2-dimensional Euclidean space. The metric space   , is called the 

Euclidean plane, is obtained if we take the set of ordered pairs of real numbers, 

         ,           then, the Euclidean metric defined by 

                         .            (2.2) 

Another interpretation of this is that, in 2-dimensional Euclidean space, the shortest 

distance between two points is a straight line. 

2.2.3 Three-dimensional Euclidean Space    

This metric space consists of the set of ordered triples of real numbers   

          ,              then the Euclidean metric defined by 

                                        .            (2.3) 

2.2.4 Euclidean Space   , Unitary Space   , Complex Plane   

The previous examples are special cases of n-dimensional Euclidean space   . This 

space is obtained if the set of all ordered n-tuples of real numbers, written                

              ,                etc, and the Euclidean metric defined by 

                                    .            (2.4) 

Unitary space    is defined by the space of all ordered n-tuples of complex numbers 

with the metric defined by 

                                    .            (2.5) 

The complex plane   is defined when    . The usual metric defined by 
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            .                     (2.6) 

2.2.5 Space   , Hilbert Sequence Space    

Let     be a fixed real number. By definition each element in the space    is a 

sequence                  of numbers such that     
      

    converges; 

thus 

                       
    

                         (2.7) 

and the metric is defined by 

                             
  

    
 

               (2.8) 

where        and       
    

   . The real and complex space    is obtained if 

one takes real sequence or complex sequence respectively, subject to the condition 

that Eq. (2.7) is satisfied. In the case     we have the famous Hilbert sequence 

space    with metric defined by 

                 
 
   .                  (2.9) 

2.2.6 Sequence space    

This example shows how the general concept of a metric space is. 

As a set  , the set of all bounded sequences of complex numbers is taken; then every 

element of   is a complex sequence,             briefly        such that for 

all         we have, 

                                          (2.10) 

where    is real number.    does not depend on  , but depends on  . The metric 

defined by 

                                                  (2.11) 

         and           

sup means the least upper bound.(Supremum) 



 

7 
 

A subset   of the real line   is bounded above if    has an upper bound, that is, if 

there is a     such that     for all    . Then if    , there exists the 

supremum of   (or least upper bound of  ), written 

    , 

that is, the upper bound of   such that         for every upper bound   of  . 

Also 

                                                                        

for every nonempty subset    . 

Each element of   is a sequence so that    is a sequence space. 

2.2.7 Open Set, Closed Set 

There are auxiliary concepts which play a role for connection of metric spaces. We 

wish to consider some types of subset in a given metric space        . 

2.2.7.a Definition of Ball and Sphere 

Given a point      and a real number    , we define three types of sets: 

i.                            (open ball) 

ii.                             (closed ball) 

iii.                            (sphere) 

   is center, and   is the radius. Moreover, definition means 

                         .                           (2.12) 

2.2.7.b Definition of Open set and Closed set 

If a subset   of a metric space   contains a ball about each of its points, it is an open 

set. In addition of that,   is a subset of  , and if  ’s complement is open in  , then 

  is said to be closed,        is open. 

Consequently; an open ball is an open set and a closed ball is a closed set. 
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2.2.8 Definition of Continuous mapping 

Assume that         and         are metric spaces. 

A mapping       is said to be continuous at a point      if for every     

there is a     such that 

                                               for all satisfying          .                  (2.13) 

If   is continuous at every point of  , this implies that   is continuous. 

Note that, continuous mapping is characterized in terms of open sets. 

2.2.9 Definition of Dense set and Seperable space 

If   is a subset of a metric space  , then   is called dense in   if     , where   

denotes the closure of   that represents the smallest closed set containing  . 

If   has a countable subset which is dense in  ,   is said to be seperable. 

Countable subset is a set which has finitely many elements or if we can associate 

positive integers with the elements of  . 

2.3 Convergence, Cauchy Sequence, Completeness 

In order to discuss the concept of convergence of the sequence of real numbers, the 

metric on   is very useful. Similarly, to be able to discuss the convergence of the 

sequence of complex numbers, the metric on the complex plane   must be used. 

Hence, in an arbitrary metric space        , we may consider a sequence      of 

elements        of   and use the metric   to define convergence. 

2.3.1 Definition of Convergence of a Sequence and Limit 

 A sequence      in a metric space         is said to converge or to be 

convergent if there is an     such that 

                                                             (2.14) 

  is called the limit of      and we write 

                                           .           (2.15) 
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We say that      converges to  . If     is not convergent, it is said to be divergent. 

It will be usefull to recall that a sequence      of real or complex numbers converges 

on the real line   or in the complex plane  , respectively, if and only if it satisfies 

the Cauchy convergence criterion. 

2.3.2 Cauchy Convergence Criterion 

A number   is called a limit point of a (real or complex) sequence of numbers      

if for every given     we have 

                                   (2.16) 

for infinitely many  . 

A (real or complex) sequence      is said to be convergent, if there is a number   

such that, for every given    , the following condition holds; 

                         (2.17) 

for all but finitely many  . This   is called the limit of the sequence     . 

2.3.3 Theorem: Cauchy Convergence 

A (real or complex) sequence      is convergent if and only if for every     there 

is an   such that 

           for all       .                (2.18) 

Proof: 

(a) If      converges and   is its limit, then for every given     there is an   

(depending on  ) such that 

                          
 

 
      for every                                         

so that by the triangle inequality for       we obtain 

                                                 
 

 
 

 

 
  .                   

(b) Conversly, suppose that the statement involving Eq. (2.18) holds. Given 

   , we can choose an       in Eq. (2.18) and see that every    with     
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lies in the disk   of radius   about   . Since there is a disk which contains   as well 

as the finitely many     , the sequence      is bounded. By the Bolzano-

Weierstrass theorem (The Bolzano-Weierstrass theorem states that a bounded 

sequence      has at least one limit point) it has limit point  . Since Eq. (2.18) holds 

for every    , an     being given, there is an    such that        
 

 
,  by the 

triangle inequality we have for all      

                                           
 

 
 

 

 
               

which shows that      is convergent with the limit  . 

Now, the concept of the completeness of a metric space must be defined for future 

analysis in this context. The quantity         is the distance          from    to 

   on the real line   or in the complex plane  . Therefore, the inequality of the 

Cauchy criterion may be written in the following form, 

                                       .            (2.19) 

Recall that      is called Cauchy sequence if the condition of Cauchy criterion is 

satisfied. This simply means that the Cauchy sequence converges on real line   or in 

complex plane  . However, in some cases, the Cauchy sequence may not converge 

and violates the completeness phenomena of the space. 

2.3.4 Definition of Cauchy sequence and Completeness 

A sequence      in a metric space         is said to be Cauchy if for every     

there is an        such that 

                         for every                           (2.20) 

The space   is said to be complete if every Cauchy sequence in   converges. 

The Cauchy convergence criterion in terms of completeness implies the following: 

2.3.5 Theorem: Real line and Complex plane 

The real line and the complex plane are complete metric spaces. 



 

11 
 

Complete and incomplete metric spaces are important in applications. For example, 

in complete metric spaces the geodesic equation which describes the future time 

evolution of the particle is also complete and possesses no divergences. However, if 

the metric space is incomplete, the geodesic equations are also incomplete, hence, it 

is designated as the singularity which is a very important subject in physics. 

2.3.6 Theorem: Convergent sequence 

Every convergent sequence in a metric space is a Cauchy sequence. 

Proof:  

If     , then for every     there is an        such that 

        
 

 
             for all                              

Hence by the triangle inequality we obtain for       

                                                            
 

 
 

 

 
           

this shows that (    is Cauchy. 

2.3.7 Theorem: Closure and Closed Set 

Let   be a nonempty subset of a metric space       and    its closure. 

Then: 

(a)       if and only if there is a sequence      in   such that     . 

(b)   is closed if and only if the situation     ,      implies that    . 

Proof:  

(a) Let      . If    , a sequence of that type is        . If    , it is a 

point of accumulation of  . Hence for each         the ball     
 

 
  contains an 

    , and      because 
 

 
   as    . 
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Conversly, if      is in   and     , then     or every neighborhood of   

contains points     , so that   is a point of accumulation of  . Hence      , by 

the definition of the closure. 

(b)   is closed if and only if     , so that Thm.  (2.3.7b) follows from (a). 

2.3.8 Theorem: Complete Subspace 

A subspace    of a complete metric space   is itself complete if and only if the set   

is closed in  . 

Proof: 

Let   be complete. By Thm. (2.3.7a), for every      there is a sequence      in   

which converges to  . Since      is Cauchy by Thm. (2.3.4) and   is complete,      

converges in  , the limit being unique. Hence    . This proves that   is closed 

because      was arbitrary. 

Conversly, let   be closed and      Cauchy in  . Then       , which implies 

     by Thm. (2.3.7a), and     since      by assumption. Hence the 

arbitrary Cauchy sequence      converges in  , which proves completeness of  . 

2.3.9 Theorem: Continuous Mapping 

A mapping  :     of a metric space       into a metric space       is 

continuous at a point      if and only if 

                                                .               (2.21) 

Proof: 

Assume   to be continuous at   . Then for a given     there is     such that 

             implies                                

Let      . Then there is an   such that for all     we have    

                     .                                     

Hence, for all    , 



 

13 
 

                                     

By definition this means that        . 

Conversly, we assume that 

           implies                     

and prove that then   is continuous at   . Suppose this is false. Then there is an 

    such that for every     there is an      satisfying           but  

            . 

In particular, for   
 

 
 there is an    satisfying          

 

 
  but  

             . 

Clearly       but       does not converge to    . This contradicts         

and proves the theorem. 

2.4 Examples 

2.4.1 Completeness of    and    

Euclidean space    and unitary space    are complete. 

Proof: 

Consider   . The Euclidean metric on    is defined by 

                
  

    
 

                   

where        and       . We consider any Cauchy sequence      in   , 

writing       
      

 . Since      is Cauchy, for every     there is an   

such that 

              
      

      
    

 

   .              

Squaring, we have for  ,     and          

   
    

        and      
    

    .          
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This shows that for each fixed  ,        , the sequence    
      

       is a 

Cauchy sequence of real numbers. It converges by Thm. (2.3.3) say,   
       as 

   . Using these   limits, we define            . Clearly,       For     

         .                             

This shows that   is the limit of      and proves completeness of    because      

was an arbitrary Cauchy sequence. Completeness of   , follows from Thm. (2.3.3) 

by the same procedure. 

2.4.2 Completeness of    

The space    is complete; here   is fixed and       . 

Proof: 

Let      be any Cauchy sequence in the space   , where       
      

      . 

Then for every     there is an   such that for all      , 

              
      

      
    

 

   .                     

It follows that for every         we have 

   
      

               .                        

For a fixed   we see that    
      

     is a Cauchy sequence of numbers. It 

converges since   and   are complete. 

With limits,   
       and    , we define             and show that      

and     . 

                     
      

      
                    for all                 .  

Let    ; 

         
      

      
                    for             .             

Let    ; 

                    
   

   
    

 
 
            for    .                                  
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This represents          
 . Since      was an arbitrary Cauchy sequence in   , this 

provides completeness of   , where      . 

2.4.3 Completeness of    

The space    is complete. 

Proof: 

Let       
      

       and      is any Cauchy sequence in the space    . Then 

the metric on    is defined by 

                     where        and       .           

     is Cauchy, for any     there is an   such that for all      , 

                           
      

                                  

               
      

                          for every fixed  .                     

From Thm. (2.3.3), if we convert       as    , the sequence becomes 

   
      

      . Using these infinitely many limits        we define            

and show that      and     . Now    , we have 

   
                                                        

for       
       ,    

        is for all  .    is a real number. 

If we use the triangle inequality 

                    
   

     
   

              .                  

This inequality is valid for all  .      is a bounded sequence of numbers. This 

implies that          .Then  

                     
         .                            

It shows     .    was an arbitrary Cauchy sequence, depend on that    is 

complete. 
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2.4.4 Completeness of   

If a space consists of all convergent sequences        of complex number with the 

metric which is induced from the space     the space is complete. 

Proof: 

  is a subspace of   , and   is closed in   . We consider any         , the 

closure of  . 

Let       
       such that     . So given any    , there is an   such that 

for     and all   we have  

                                     
                

 

 
,  for      and  all  .            

The terms of    
   

 form a convergent sequence when      . 

Then 

                      
      

     
 

 
                    .            

Now triangle inequality holds for all   

|             
        

      
        

                      

It means        is convergent. Since     was arbitrary, this proves closedness of 

  in   , and completeness of  . 

2.5 Normed Spaces, Banach Spaces 

2.5.1 Introduction 

A normed space is a vector space which is releated with a metric defined by norm. 

A Banach space is complete metric space. An operator is a mapping from a normed 

space     to another normed space    . A functional is a mapping from a normed 

space     to a scalar field         . If they take the vector space structure, and are 

continuous, they are called bounded linear operators (functionals). If and only if an 

operator is bounded, it is continuous. 
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       is the set of all bounded linear operators from a normed space    to another 

normed space    . 

2.5.2 Definition of Vector Space 

A vector space(or linear space) over a field   is a nonempty set   of elements     

together with two algebraic operations.    … called vectors. 

These operations are called vector addition and multiplication. 

i. Vector addition: 

It is commutative and associative for all vectors. 

                                             (2.22) 

                       .                      (2.23) 

There exists a zero vector    . Moreover, there exists a vector      for every vector. 

                                     (2.24) 

              .             (2.25) 

ii. Multiplication by scalars: 

For all vectors     and scalars    ; 

                                   (2.26) 

                             (2.27) 

                                       (2.28) 

            .  (Distributive laws)  (2.29) 

For addition is a mapping        

For multiplication is a mapping       

  is a scalar field of the vector space  . If     (the field of real numbers),   is 

called a real vector space. If     (the field of complex numbers),   is called 

complex vector space. We can denote the zero vector by  . 

                                (2.30) 



 

18 
 

                            (2.31) 

                 .                         (2.32) 

2.5.3 Examples 

a) Space   (Euclidean space) 

This is a real vector space with the two algebraic operations; 

                                      (2.33) 

              .                         (2.34) 

b) Space    

This is a complex vector space with the algebraic operations,    . 

c) Space    

It’s a vector space with the algebraic operations as usual in connection with 

sequences; 

                                                         (2.35) 

                                                       (2.36) 

          and           implies       . 

A subspace of a vector space   is a nonempty subset   of   such that for all 

        and all scalars     we have          . 

A linear combination of vectors         of a vector space  ; 

                 where            are any scalars. 

2.5.4 Definition of Linear independence and Linear dependence 

For   is a set of vectors               in a vector space  , then linear 

independence and dependence are defined by; 

                             are scalars)         (2.37) 

If this is the only r-tuple of scalars for last equation holds, the set   is said to be 

linearly independent. If    is not linearly independent,   is linearly dependent. If 
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every nonempty finite subset of   is linearly independent, an arbitrary subset   of   

is said to be linearly independent. 

2.5.5 Definition of Finite and Infinite dimensional vector spaces 

If there is a positive integer   such that   contains a linearly independent set of   

vectors where as any set of     or more vectors of   is linearly dependent, then 

vector space   is finite dimensional.   is dimension of  .         

  is not finite, means,   is finite. 

2.5.6 Theorem: Dimension of a subspace 

Let   be an n-dimensional vector space. Then any proper subspace   of   has 

dimension less than  .  

Proof: 

If     , then       ( no proper subspace) 

If       , then      , and     implies       . 

               .                          

If      were  , then   would have a basis of   elements so that    . 

Consequently any linear independent set of vectors in   must have fewer than   

elements. 

           .                                

2.6 Normed Space, Banach Space 

For a relation between algebraic and geometric properties of  , we define on   a 

metric   in a special way. 

First of all, we introduce a norm which uses the algebraic operations of vector space. 

Then we obtain a metric with using norm. This leads to the normed space. 
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2.6.1 Definition of Normed space and Banach space 

A normed space   is a vector space with a norm defined on it. A Banach space is a 

complete normed space. A norm         on a   is a real-valued function on   whose 

value at a    . 

i.         

ii.           

iii.                    

iv.                       (Triangle inequality) 

  and   are arbitrary vectors in  .   is any scalar. A metric   on   is denoted by; 

                        (metric induced by norm) .          (2.38) 

2.6.2 Euclidean space    and unitary space    

They are Banach space with norm defined by 

                    
  

    
 

                .                (2.39) 

The metric is denoted by 

                                   .          (2.40) 

2.6.3 Space    

It’s Banach space with norm and metric 

            
  

    
 

      and                          
  

    
 

 .            (2.41) 

2.6.4 Space    

It’s Banach space with norm 

                         .                                        (2.42) 

2.6.5 Lemma (Translation Invariance) 

A metric   induced by a norm on a normed space   satisfies   
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                   and                    for all        and every 

scaler  . 

Proof: 

                                                         

                                         .                            

2.7 Further Properties of Normed Spaces 

A subspace   of a normed space   is a subspace of   considered as a vector space. 

A subspace   of a Banach space   is a subspace of   considered as a normed space. 

2.7.1 Theorem: Subspace of a Banach space 

A subspace   of a Banach space   is complete if and only if the set   is closed in  . 

i.      is a sequence in a normed space  .       is convergent, if   contains an 

  ; 

                          .                                              (2.43) 

ii.      is Cauchy if for every     there is  ; 

                              for all      .               (2.44) 

We can associate with      the sequence      of partial sums 

                                                              (2.45) 

If    is convergent, then      and           . 

The infinite series               
     is said convergent.   is the sum of 

the series. 

2.8 Finite Dimensional Normed Spaces and Subspaces 

2.8.1 Theorem: Closedness 

Every finite dimensional subspace   of a normed space   is closed in  . 

 

 



 

22 
 

2.8.2 Definition of Equivalent norms 

A norm       on a vector space   is said to be equivalent to a norm        on  , if 

there are positive numbers   and   for all     

                                     
 
              .                       (2.46) 

2.9 Linear Operators 

2.9.1 Definition of Linear Operator 

Assume that   is a linear operator 

i. The domain      of   is a vector space. The range      lies in a vector 

space over the same field. 

ii. For all          and scalars   

                                   (2.47) 

          .                       (2.48) 

The null space of           is the set of all        such that     .  

2.9.2 Definition of Identity operator ( ) 

      is defined by      for all    . 

2.9.3 Definition of Zero operator ( ) 

      is defined by      for all    . 

2.10 Inner Product Spaces 

We can add and multiply vectors by scalars in a normed spaces. The length of a 

vector generalizes by norm. However, what is still missing in a general normed 

space, is an analogue of the familiar dot product. 

                                                        (2.49) 

            .                                 (2.50) 

The case for orthogonality; 

            .                             (2.51) 
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The dot product and orthogonality can be generalized to arbitrary vector spaces. It 

leads to inner product spaces. Moreover, Hilbert spaces are complete inner product 

spaces. 

 

Hilbert spaces is known to be the natural function spaces of Quantum mechanics. It 

is the space of square integrable         complex-valued functions on  , that is, of 

all functions       for which 

           
 

  
.                (2.52) 

Definition of inner product; 

         .              (2.53) 

Norm of a vector  ; 

                   
 

  .                (2.54) 

Orthogonality condition for vectors   and  ; 

           .                    (2.55) 

If   is Hilbert space, then; 

i.  ’s representations are a direct sum of a closed subspaces. It’s a orthogonal 

complement. 

ii.   has orthonormal sets and sequences. 

iii. The Riesz representation is bounded linear functionals by inner products. 

iv.    is a Hilbert-adjoint operator of a bounded linear operator  . 

2.10.1 Definition of Inner Product Spaces and Hilbert Spaces 

An inner product on   is a mapping of     into the scalar field  . 

For all vectors       and scalars   we have; 

i.                         

ii.                 
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iii.                   

iv.        ,          when       

v. Norm of  ,                     

vi. Metric on  ,                          . 

Inner product spaces are normed spaces, Hilbert spaces are Banach spaces. 

vii. If   is a real vector space,                  (symmetry) 

viii. A norm on an inner product space satisfies; 

       
 
        

 
        

 
        .      (parallelogram equality)         ( 2.56) 

So all normed spaces are not inner product spaces. 

2.10.2 Definition of Orthogonality 

        and          .                        (2.57) 

We also say that   and   are orthogonal and they are perpendicular to each other. 

2.10.3 Euclidean space    

The space    is a Hilbert space with inner product 

                                                               (2.58) 

                          and                   .        (2.59) 

Norm becomes; 

           
 

     
      

  
 

 .                       (2.60) 

Euclidean metric defined by; 

                                       
 

  

            
           

  
 

 .              (2.61) 

2.10.4 Unitary space    

The space    is given by 

                                                                   .           (2.62) 
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2.10.5 Space         

The vector space of all continuous real-valued functions on       forms a normed 

space  . The norm is defined by 

               
 

 
 

 

 
.                        (2.63) 

Inner product is defined by 

                   
 

 
.                           (2.64) 

When we keep         real, we consider complex-valued functions. For these 

functions, a complex vector space is formed. Inner product becomes; 

                                         
 

 
 .                      (2.65) 

So for norm of  , 

                                 
 

 
  and                        .          (2.66) 

Here            is the complex conjugate of     . Finally; 

                  
 

 

 

 
.             (2.67) 

2.10.6 Hilbert sequence space    

For this space inner product and norm is defined by 

                
 
                 

 

        
  

    
 

 .          (2.68) 

2.10.7 Space    

The space    with     is not an inner product space, hence not a Hilbert space. 

Proof: 

The norm of    with     cannot be obtained from an inner product. It means that 

the norm does not satisfy the parallelogram equality. 

                
 
        

 
      

 
 .                              

Let take                 and                  
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   is complete. Hence    with     is a Banach space which is not a Hilbert space. 

2.11 Properties of Inner Product Spaces 

2.11.1 Lemma (Schwarz Inequality, Triangle Inequality) 

First of all we have an equation; 

      
 
                                .                      (2.69) 

An inner product and corresponding norm satisfy the Schwarz inequality and the 

triangle inequality. 

a)                     .   (Schwarz Inequality)                      (2.70) 

The meaning of equality sign is       is a linearly dependent set. 

Proof: 

If    , then         . Let     for every scalar   ; 

          
 
              .     

                                                                  

If we choose      
     

     
, the expression in the brackets [ ] is zero. 

            
     

     
            

 
  

        

      
 

  where                         . 

b)                     .   (Triangle inequality)                       (2.71) 

The equality sign means     or      (  real and   ) 

Proof: 

We have 

       
 
                  

 
                        .        
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By the Schwarz Inequality, 

                           .                        

And by the triangle equality, 

       
 
      

 
                                    

      
 
                                              

                                .                                                         

2.11.2 Lemma ( Continuity of Inner Product) 

If an inner product space,      and     , then              . 

Proof: 

                                                        

                                                       .                 

                                                                              

 since        and        as    . 

2.11.3 Theorem: Subspace 

Let   be a subspace of a Hilbert space  . Then 

a)   is complete if and only if   is closed in  . 

b) If   is finite dimensional, then   is complete. 

c) If   is seperable, so is  . 

Every subset of a seperable inner product space is seperable. 

2.11.4 Theorem: Riesz Representation 

Let   ,    be Hilbert spaces and            a bounded sesquilinear form. Then 

  has a representation                where          is a bounded linear 

operator.   is uniquely determined by   has norm 

           .                         (2.72) 
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2.12 Hilbert-Adjoint Operator 

2.12.1 Definition of Hilbert-adjoint operator  

   and     are Hilbert spaces, where         be a bounded linear operator. Then 

   is the Hilbert-adjoint operator of A. 

         

                             for all        and     . 

2.12.2 Theorem: Existence 

The Hilbert adjoint operator exists, is unique and a bounded linear operator with 

norm 

            .                           (2.73) 

Proof: 

A sesquilinear form on        is defined by 

             .                        

The inner product is sesquilinear and   is linear. Conjugate linearity of the form is 

                                             

                                                             

                                                   .                              

In fact   is bounded. From the Schwarz inequality, 

                                               

                              and                                     

             
   

        

          
  

         

           
                          

Finally; 

           .            

From Riesz representation for  ; 
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               .                     

              is a uniquely determined bounded linear operator with norm 

                  .                         

2.12.3 Lemma (Zero operator) 

Let   and   be inner product spaces and       a bounded linear operator. 

Then: 

a)     if and only if          for all     and    . 

b) If      , where   is complex, and          for all    , then 

   . 

Proof: 

a)     means      for all  . 

                           .                       

b)           for every           

                                             

           .                                

By assumption, the first two terms are zero. Let    ; 

                  .                                                                    

Let     and      ; 

                  .                                                                  

It is essential that   be complex. 

2.12.4 Theorem: Properties of Hilbert-adjoint operators 

Let    ,   be Hilbert spaces,          and         bounded linear operators 

and   any scalar. Then we have; 

a)                                

b)               
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c)            

d)         

e)                        

f)                     

g)               (assuming        

Proof: 

a)                  so        

                                                                                  

b)                      so                                          

=                                                                        

=             .                                                 

Finally                   for all  . 

c)                                        

                                                                       

                                                 .                    

d)       is written       for all     . 

                                and          .          

e)           , but           . By the Schwarz inequality 

      
 
                                                          

     
 
                                                     

replace   by    

                
 
       .                                    

f)      obtain      

g)                                              .                      
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2.13 Self-Adjoint, Unitary and Normal Operators 

2.13.1 Definition of Self-adjoint, Unitary and Normal operators 

A is a bounded linear operator where     on a Hilbert space   then; 

  is self-adjoint or Hermitian if      [10]. 

  is unitary if   is bijective and      . 

  is normal if        . 

When   is self-adjoint;                   becomes                . 

If   is self-adjoint or unitary,   is normal. However, a normal operator need not be 

self-adjoint or unitary. 

2.13.2 Example (Matrices) 

If a basis for    is given and a linear operator on    is represented by a certain 

matrix, then its Hilbert-adjoint operator is represented by the complex conjugate 

transpose of that matrix. 

The inner product defined by 

            , where   and   are written as column vectors. 

  means transposition; 

                                  .                                              (2.74) 

Let          be a linear operator.  

  and    are represented by two n-rowed square matrices, say,   and  . 

                                                               (2.75) 

                                           and                 .               (2.76) 

Consequently,  

                              .             (2.77) 

i. For Representing matrices; 

Hermitian if   is self-adjoint(Hermitian), 
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Unitary if   is unitary, 

Normal if   is normal. 

ii. For a linear operator         , representing matrices are; 

Real symmetric if   is self-adjoint, 

Orthogonal is   is unitary. 

iii. For a square matrix        ; 

Hermitian if       (hence           

Skew-Hermitian if         (hence            

Unitary if         

Normal if          . 

2.13.3 Theorem: Self-adjointness 

Let       be a bounded linear operator on a Hilbert-space  . Then: 

a) If   is self-adjoint,        is real for all    . 

b) If   is complex and        is real for all    , the operator   is self-

adjoint. 

Proof: 

a) If   is self-adjoint 

                                            for all  .                                

Complex conjugate is equal to itself so that it is real. 

b) If        is real for all  , then 

                                                                                             

                                              .                     

       so   is complex. 
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Chapter 3 

SELF-ADJOINT EXTENSOINS OF THE OPERATORS 

3.1 Introduction 

In quantum mechanics, one of the important questions is to count the how many self-

adjoint extensions of the operator admit. In order to determine the number of self-

adjoint extensions of the operators, the best well-known reliable method which is 

introduced by von-Neumann is used. In this method the concept of deficiency indices 

is used, which is related with an ordered pair of positive integers        . This 

mathematical review is introduced on a paper written by Ishibashi and Hosoya [5]. 

Let us start with some essential definitions. 

 

Consider a Hilbert space   which represents by inner product      . An operator on 

  is a pair: a linear mapping       and its domain of definition     . The pair 

         can be written as  . If an operator   with       densly defined (which 

means that any vector     can be approximated by vectors in      as closely as 

possible) in   satisfies 

                                                               (3.1) 

if this is the case then   is called symmetric or Hermitian (    ). 

 

An operator    is an extension of   if             and       ,          . 

Extensions are obtained by relaxing the boundary conditions of the     . Consider 

sequences            such that there exit limits 
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                                                   .            (3.2) 

If, for every such sequence,        and     , then          is said to be 

closed. If nonclosed operator   has a closed extension then it is called closable. 

Furthermore, closure is defined if every closable operator has smallest extension. 

 

Assume that          is a symmetric operator. Let us denote       to be the set of 

all     for which there exist a     such that  

                                                        .                                    (3.3) 

Then, since      is dense, χ is uniquely defined by          and Eq.      . An 

operator             defined by       for every          is called the adjoint 

of         . When the case is,    is a proper extension of  , then        can be 

larger than     . If                    , then          is said to be self-

adjoint. 

 

Now let us consider the following examples which illustrate extensions of the 

symmetric operators to self-adjoint ones. 

 

Let the Hilbert space          , the set of square integrable functions in the 

interval      . Consider the momentum operator  ; 

        
 

  
                                   (3.4) 

with 

                                                        ,                        (3.5) 

where          denotes the set of absolutely continuous functions on      , and 

their derivatives are in        . 
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Let us first show that the momentum operator   is a symmetric operator   

                          .                 (3.6) 

Proof: 

                      
 

  
           

  

 

 

 

 

 

 
                

 

  
       

   

  
     

  
       

  
 

 

  
       

   

  
        

            
 

  
       

   

  
 

 

 

      
 

  
           

   

  
  

 

 

 

 

 

                 
     

 

  
          

 

  
  

 

 

 

 

 

         . 

However, if                 hence, 

         
 

  
                       .          (3.7) 

Note that                  so that            and is not self-adjoint. 

 

Next, take up an operator    with same action as   in      with the domain 

                                               (3.8) 

in which   is a real number. Obviously, this is an extension of  . For       
  , 

there is    , which is defined by 

                         
                           (3.9) 

Namely since, 

           
     , which reads as 

      
  

  
          

    
 

 

 

 
                     (3.10) 

The Eq. (3.10) can be verified, if we integrate the LHS by the method of integration 

by parts; 

          
  

  
   

 

 
                                 (3.11) 
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Let take derivatives 

             
   

  
   

          
  

  
          . 

         
  

  
           

  

 
    

   

  
  

 

 
           (3.12) 

Note that the term       should vanish in order to satisfy Eq. (3.10). Therefore,   

       
                             Hence 

      
  

  
   

 

 
    

 

  
    

 

 
            (3.13) 

                  =      
    

 

 
                       (3.14) 

       =     
      

 

 
.                       (3.15) 

Recall from the imposed condition that 

                     .               (3.16) 

Using the boundary condition for  , in the above equation,  

                                .                      (3.17) 

                                      
 
           (3.18) 

hence,                 (0)=       . 

This result implies that 

        
                                    (3.19) 

Hence,    is self-adjoint. Since   is arbitrary, it shows that   has infinitely many 

different self-adjoint extensions. 

3.1.1 Definition of Deficiency subspaces 

In order to count how many self-adjoint extensions of an operator has, the concept of 

deficiency indices is used. The deficiency subspaces    is defined by 
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                                                   (3.20) 

                                      (3.21) 

The dimensions        are the deficiency indices of the operator   and will be 

denoted by the ordered pair        . The ordered pair are not depend on the choice 

of       . They depends only on whether   lies in the upper(lower) half complex 

plane. 

 

Generally we consider       and       , where   is an arbitrary positive 

constant and it is required for dimensional reasons. The deficiency indices are found 

by counting the number of solutions of       ; (for    ), 

                                 (3.22) 

that belong to the Hilbert space  . If solutions do not satisfy the square integrability 

condition (i.e        ), the operator   has a unique self-adjoint extension and it 

is self-adjoint. As a result, the operator   has a unique self-adjoint extension if and 

only if, the solutions which satisfy Eq. (3.22), don’t belong to the Hilbert-space. 

3.1.2 Theorem: Criteria for essentially self-adjoint operators 

For an operator   with deficiency indices        , there are three possibilities: 

i. If         then A is self-adjoint.  (necessary and sufficient condition) 

ii. If          , then A has infinitely many self-adjoint extensions and is 

parametrized by a unitart     matrix. (   real parameters) 

iii. If       ; A has no self-adjoint extensions. 

 

How can we decide the deficiency indices      ? 

We check the square integrability conditions for functions. In mathematics, a square-

integrable function, also called a quadratically integrable function, is a real- or 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Real_number
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complex-valued measurable function for which the integral of the square of the 

absolute value is finite. Thus, if 

             
 

  
,                      (3.23) 

then   is quadratically integrable on the real line        . The quadratically 

integrable functions form an inner product space namely the Hilbert space. 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Measurable_function
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Absolute_value
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Chapter 4 

APPLICATIONS 

In this section, we are concerned with the self-adjoint extensions of the operators. 

The momentum and the Klein-Gordon operators will be considered as an application. 

4.1 Momentum operator 

The theorem of von-Neumann will be considered for momentum operator for three 

different intervals which describe three different physical situations. 

 

Let us consider the Hilbert space is          . The interval       will take 

different values for each physical situation. The one dimensional momentum 

operator   is given by 

       
 

  
.                             (4.1) 

Therefore, the operator   in the theorem will be replaced by the momentum operator 

  for the present problem. 

Hence we have 

                                                                                                   (4.2) 

Assume that   
 

 
, 

                                                           
 

  
     

 

 
                                         (4.3) 

                                                             
 

  
    

 

 
                                            (4.4) 

                                                              
   

  
   

  

 
                                           (4.5) 
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                                          (4.6) 

                                                                      
 
 

                                           (4.7) 

Now, we have to the investigate the behaviour of this function for three different 

intervals      . 

 

First, the whole real axis is considered in the interval       . Then in the 

second case, the positive axis whose range is       will be taken into 

consideration. Finally, the range will be taken       on a finite interval. 

4.1.1 The operator   on the whole real axis 

This simply means that the interval will be 

                                                    . 

The condition for a self-adjointness is explained in the previous section. It is required 

to determine the deficiency indices         which requires to use the inner-product 

Eq. (3.23). 

                                                     
              

 

  

 

  
                           (4.8) 

                                                  
   

  

   
 

  
    

  

 
  

  

    
    .             (4.9) 

None of the functions    belongs to the Hilbert space and therefore the deficiency 

indices            . Therefore, the momentum operator   in the considered 

interval is self-adjoint. 

4.1.2 The operator   on the positive semi-axis 

In this case the interval is 

                                                    . 

                                
        

 

 
  

 
   

  

   
 

 
 

    
 

 
  

  

   
        (4.10) 

                                
        

 

 
  

 
   

  

   
 

 
 

   
 

 
  

  

   
         (4.11) 
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Calculations has revealed that only    belongs to the Hilbert space and therefore the 

deficiency indices are      . According to the von-Neumann theorem, the 

momentum operator   has no self-adjoint extension. 

4.1.3 The operator   on the finite interval 

In this case interval is 

                                                    . 

                                
        

 

 
  

 
   

  

   
 

 
 

    
 

 
  

  

   
            (4.12) 

                                
        

 

 
  

 
   

  

   
 

 
 

    
 

 
  

  

   
            (4.13) 

Calculations has revealed that both of   and     belong to the Hilbert space and 

therefore the deficiency indices are      . According to the von-Neumann theorem, 

the momentum operator   has many self-adjoint extensions. 

4.2 Klein Gordon Fields 

As a second example we consider the spatial part of the Klein-Gordon massless wave 

equation in a curved geometry. The massive Klein-Gordon wave equation is given by 

                                                                                                              (4.14) 

where   stands for the mass. Since our focus on massless wave, without loss of 

generality we take it as    . The symbol   stands for the dalambertian operator 

defined by 

                         
 

   
       

                                       (4.15) 

in which,     is the metric tensor in contravariant form and   is the determinant of 

the metric. 

As a curved geometry we consider the following metric 

        
  

 
     

   

   
  

 
 
                                         (4.16) 
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this metric is known as the negative mass Schwarzchild solution. Schwarzchild 

solution for     is known as the static black-hole solution in general relativity. 

Black holes are known to be the mysterious objects predicted by Einstein’s theory of 

relativity that even light can not escape from its horizon located at     . This 

spherically symmetric black hole has a central curvature singularity at    . In 

classical general relativity singularities are defined as the geodesics incompleteness 

for the timelike and null geodesics. Particles are following timelike, while the 

photons are following null geodesics. However, this singularity in the case of black 

holes is hidden by horizon. This picture changes completely if the mass is negative. 

In this case, there is no black hole and therefore the singularity at     becomes 

naked. This type of singularities are called naked singularities. 

 

As an application of self-adjoint extension of an operators, we wish to consider the 

propagation of quantum fields obeying the Klein-Gordon equation to see whether or 

not the quantum field falls into the singularity or not. This way of analysing the 

singularities helps us to understand whether the classical singularity is quantum 

mechanically regular or not. In other words, the singularity will be analysed in 

quantum mechanical point of view. To achieve this goal, the notion of self-adjoint 

extension of the spatial part of the Klein-Gordon operator will be used, and we will 

try to count the number of self-adjoint extension with the help of von-Neumann 

theorem. 

 

In order to understand better the concept of self-adjoint extension of an operator, let 

us first investigate, the Klein-Gordon equation for a free particle. 
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We know that Schrödinger equation is given by 

  
  

  
  

  

  
                                   (4.17) 

where      is an effective potential and, since we are interested with free particles, 

we take the potential       . 

Then Eq. (4.17) becomes, 

  
  

  
  

  

  
   .              (4.18) 

The right hand side of Eq. (4.18) is known as the Hamiltonian of the system that can 

be written as, 

   
  

  
   

  

  
               (4.19) 

     
  

  
               (4.20) 

where   is momentum. 

        is the wave corresponding to the initial state and,          is the wave 

corresponding to some later time.      is the temporal part of wave function. 

                                 (4.21) 

If we write this equation into Eq. (4.20), we find 

                   
  

  
             (4.22) 

 

       
         

  

 

  

  
                          (4.23) 

where   is a constant. 

Finally we have two equations 

   
                 

  
  

  
   

                                 (4.24) 

If we solve second part of Eq. (4.24), 

  

 
 

 

  
                 (4.25) 
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                     (4.26) 

We find solution when      

    
   

  .                         (4.27)  

4.2.1 Theorem: 

If    is the eigenfunction of the operator  , and   is the eigenvalue of the operator. 

Then, 

 
       

             
                                   (4.28) 

Proof:  

If        , then               is satisfied. 

Let prove, 

        
       

  

 

   

     

We expand the Taylor series, 

 
       

  
 

 

   

      

                     

                

Finally, 

  
       

  
 
               . 

If we apply the theorem to the first part of the Eq. (4.24) then, 

                                  

                  

          
   

            
   

                       

            
   

         .                        (4.29) 
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The above result can be written in terms of operator   such that,  

                         .                                   (4.30) 

If the operator   is not essentially self-adjoint, the future time evolution of the wave 

function is ambigous. The reason is that, we do not know which extension of the 

operator    is used. This physically implies that the future time evolution of the 

wave can not be predicted. Hence, the classically singular spacetime remains 

quantum singular as well. 

 

But, if the operator    has a unique self-adjoint extension, the future time evolution 

of the wave can be predicted with the given initial condition        . Then we say 

that the classically singular spacetime is quantum mechanically regular. 

 

Our aim in this thesis to investigate whether the spatial part of the Klein-Gordon 

operator admit the unique self-adjoint extensions or not. For the massless case the 

Klein-Gordon operator is 

        
 

   
       

        .                          (4.31) 

The covariant form of the negative mass Schwarzchild solution is given by 

    

 
 
 

 
 
        

 
 

    
  

     
           

 
 

 
 

                                                    (4.32) 

and its contravariant form is given by 

    

 
 
 

 
 

  

    
   

       

  
 

  
 

   
 

        
 
 

 
 

                                                  (4.33) 
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where        
    

 
 and the determinant   is calculated and found as 

                                                              .                                                 (4.34) 

In order to find the spatial part of the Klein-Gordon equation, we write Eq. (4.31) for 

the metric in the following form  

                                        
   

   
                                                                (4.35) 

where   is the spatial part of the Klein-Gordon operator. 

Eq. (4.31) can be written explicitly as 

                   
 

   
 
 

  
       

  

  
  

 

  
       

  

  
                                                       

                   
 

   
 
 

  
       

  

  
  

 

  
       

  

  
  =0                         (4.36) 

Substituting the related functions we have, 
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    =0                                (4.38) 

 

      
 
       

    

   

   
     

 

  
        

  

  
    

  
 

      
       

   

   
         

  

  
     

   

   
 

 

    

   

              (4.39) 

rewriting the above equation as 

  

    

   

   
 

     

 

  

  
      

  

  
     

   

   
  

           
    

      

  

  
 

 

  
   

   
 

 

       
   

                                     (4.40) 

Seperating the temporal part, we have 
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                              (4.41) 

This equation can be simplified further to have, 

               
   

   
  

      

 

 

  
          

 

  
      

  

   
                 

                          
        

      

 

  
 

    

  
  

   
 

    

       
  

                              (4.42) 

If this equation is compared with Eq. (4.35) then, one can easily read the spatial 

operator   to be 

         
  

   
      

     

 
 

     

  
 
 

  
 

    

  
 
  

   
     

 

  
  

    

       
  

     (4.43) 

The next step is to investigate this operator by using the theorem of von-Neumann 

explained in Chapter 3. The key point in the theorem is to apply the Kernel 

                                                                                                                (4.44) 

where    is the extension of the operator  . According to the theorem if the spatial 

part of the Klein-Gordon equation has a unique self-adjoint extension then the 

solution to the Eq. (4.44) must not belong to the Hilbert space. In other words, 

solutions must not satisfy the square integrability conditions that is, 

                .                      (4.45) 

Since the singularity is at    , our aim will be look for a seperable solution to the 

equation         , and analyse whether the radial part of the operator and its 

solution is essentially self-adjoint or not. 

We assume a separable solution in the form of 

                                                                 .                                      (4.46) 
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48 
 

        
      

 
           

  

  
      

   

   
          

 
    

  
  

    

    

       

  
 

        

   
 

 

     
        

                   (4.48) 

We know        
  

 
  then       
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                            (4.50) 

Finally, the radial part of Klein-gordon equation 
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                         (4.53) 

where        is a seperability constant. Since the singularity is at    , we need to 

find the behaviour of the metric near    , which leads,        
  

 
 

  

 
, then 

the metric becomes 

                                  
  

 
     

   

 
  

 
 
                 .                  (4.54) 

According to the limiting values and assuming for     case which corresponds to 

the S-wave, the Eq. (4.53) simplies to  

 
   

   
 

 

 

  

  
                                                 (4.55) 

whose solution is given by 

                                                    (4.56) 
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In which    and    are integration constants. The next step is to investigate the 

square integrability of the solution near    . The squared norm for the metric Eq. 

(4.54) is given by, 

                                                  =   
    

 
  .                                                    (4.57) 
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where   
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The above integral as     is finite. That is to say    
    

 
    . 

This implies that the solution      is square integrable and hence the spatial operator 

of the Klein-Gordon equation has an extension. 

 

According to the von-Neumann defficiency indices    . The physical meaning of 

this result is that, the classical naked singularity of a negative mass Schwarzchild 

solution is quantum mechanically singular as well. 

The use of the concept of the extensions of the self-adjoint operators in analysing the 

singularities is used succesfully in 3 dimensional [6,7] geometries as well. 
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Chapter 5 

CONCLUSION 

In this thesis, application of self-adjoint extensions of some of the operators are 

investigated. In the analysis, the theorem proposed by von-Neumann is used. 

After giving a review of mathematical background of the topic in chapter 2, we 

describe the theorem of von-Neumann in chapter 3. The main idea of the theorem is 

to investigate operator with the Kernel          , and counting the number of 

solutions that belongs to the Hilbert space which is a function space of   . If the 

squared-norm of the solution do not belong to Hilbert space (i.e         
 

  
  

then the deficiency indices        . According to the theorem this means that, 

the operator   is self-adjoint and possesses unique extension. However, if    

      , then the operator   has infinitely many self-adjoint extensions. This 

particular case is verified if the squared-norm,         
 

  
. 

 

First, the momentum operator is considered for three different physical situations. 

Three different physical situations are obtained by bounding the interval of the 

position   . The results obtained for this problem are; The momentum operator  , 

has a unique self-adjoint extension on the whole real axis (i.e       ). If the 

position interval is bounded on the positive semi-axis (i.e      ), then the 

dediciency indices are       and therefore the momentum operator   has no self-

adjoint extension. As a third example the momentum operator   is considered on a 

finite interval (i.e       . Analysis has revealed that the deficiency indices 
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     . From the von-Neumann theorem this result indicates that momentum operator 

  has infinitely many self-adjoint extensions. 

 

Finally, we consider the Klein-Gordon equation in the background of negative mass 

Schwarchild spacetime. This spacetime admits naked singularity at    . 

Classically, this spacetime is singular. However, it is of interest whether this 

spacetime remains regular against the propagation of waves obeying the Klein-

Gordon equation. Hence, the Klein-Gordon equation is written by seperating the 

temporal part (i.e 
   

   
      and the spatial operator   is considered. 

 

As was given in the thesis, the solution of Schrödinger equation for free particles is 

given by                         . Here    denotes the spatial part of Klein-

Gordon equation. If we prove that the spatial operator    has a unique self-adjoint 

extension, then the future time evolution of the wave can be predicted. Our analysis 

has revealed that the deficiency indice is    . Hence, the spatial part of the Klein-

Gordon equation has infinitely many self-adjoint extension. The conclusion is that, 

the classically singular spacetime remains quantum mechanically singular as well. 
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