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ABSTRACT

Teaching—Learning-Based Optimization (TLBO) algorithm has become an alternative
optimization method in a great number of applications in different fields of engineering
and science since it has been introduced in 2011. Teaching-learning-based
optimization (TLBO) is a population-based metaheuristic examination algorithm
stimulated by the teaching and learning procedure in a classroom environment. TLBO
with its comparatively reasonable performances outperforms some of the well-known
metaheuristics concerning constrained benchmark tasks, controlled mechanical
schemes, and nonstop non-linear numerical optimization problems. In the TLBO
algorithm’s variants, all the learners have an equal chance of receiving information
from the teacher and from each other as learners by interacting with each other in the
class. The Experimental results of the TLBO method are tested on the set of CEC2018
dynamic multi-objective optimization benchmark problems and the computed results
show that TLBO offers promising outcomes with diverse dynamic features and
changing environments compared with other algorithms. It works well with producing
a good class of population when alterations happen for pursuing the influential Pareto-
optimal set efficiently for refining population conjunction and multiplicity. TLBO
extracted improved or equal quality solutions compared to other evolutionary
algorithms. It is a promising alternative for the solution of difficult dynamic multi-

objective optimization problems.

Keywords: Dynamic Multi-Objective Optimization Problems, Optimization

Algorithms, Teaching Learning Based Optimization, Pareto-Front, Pareto-Set



Oz

Ogretme-Ogrenme Tabanli Optimizasyon (TLBO) algoritmasi, 2011 yilinda
tanitildigindan beri miithendislik ve bilimin 6nemli sayidaki farkli alanlarinda altenatif
bir optimizasyon yontemi olmustur. Ogretme-dgrenme tabanli optimizasyon (TLBO),
siif ortaminda 6gretme ve 6grenme slreci Uzerine kurgulanan popiilasyon tabanli bir
metasezgisel arama algoritmasidir. Karsilastirmali makul basarimlariyla TLBO,
kisitlamal1 kalite testi problemleri, kontrollii mekanik semalar ve kesintisiz dogrusal
olmayan sayisal optimizasyon problemlerinin ¢ozllmesinde iyi bilinen bazi
metasezgisel yontemlerden daha iistiin bagarim gostermektedir. TLBO algoritmasinin
degisik uygulamalarinda, tim O&grenenler smifta birbirleriyle etkilesime girerek
ogretmenden ve birbirlerinden esit bilgi alma sansina sahiptirler. TLBO yoénteminin
deneysel sonuglari, CEC2018 konferansinda yayinlanan dinamik ¢ok amagl kalite
testi optimizasyon problemleri kiimesi Uzerinde sinanmistir ve hesaplanan sonuglar
TLBO'nun diger algoritmalara kiyasla cesitli dinamik 6zellikler ve degisen ortamlarla
umut verici sonuglar sundugunu gostermektedir. Problem kosullar1 degistiginde,
algoritma iyi bir niifus yapist ve cesitliligi saglayarak Pareto-optimal ¢Ozimler
kiimesini verimli bir sekilde takip eder. TLBO’nun basarimi diger evrimsel
algoritmalarla karsilagtirildiginda iyilestirilmis veya ayn1 kalitede ¢oziimler elde ettigi
goriiliir. Algoritma zor dinamik ¢ok amagli optimizasyon problemlerinin ¢6ziimii i¢in

Iyi bir alternatiftir.

Anahtar Kelimeler: Dinamik Cok Amagli Optimizasyon Problemleri, Optimizasyon

Algoritmalari, Ogretme-Ogrenme Tabanli Optimizasyon, Pareto-On, Pareto-Kiime
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Chapter 1

INTRODUCTION

1.1 Background of Study

Evolutionary multi-objective optimization (EMO) significantly expanded in recent
years in the domain of scientific research [1]. As time goes on, a variety of efficient
evolutionary algorithms (EAs) had been suggested to identify the best algorithms in
order to conquer the obstacles in finding the ideal compromise of two or more
objectives that depict a Multi-objective Optimization Problem (MOP). However, the
majority of these techniques are effective for multi-objective problems MOPs with
static structures or characteristics, which do not change significantly over time.
However, due to their time-dependent characteristics, dynamic multi-objective
problems (DMOPSs) are extra challenging and exciting than constant multi-objective

problems [2].

Dynamic multi-objective problems constrain three main challenges or experiments.
First of all, environmental changes and the multiplicity of dynamics constrains
different stages of complications to algorithms as well as there is no particular or
singular change mechanism feedback that can entirely treat dynamics. Second, it is a
difficult process to keep inclusion and variety, the key factors that population-based
algorithms depend on for dynamics. Last but not least, algorithms are made more rigid
in order to investigate the new search area due to diversity loss whenever there is no

reaction time for environmental changes [3].



In order to carefully follow Pareto fronts or sets with temporal variation, algorithms
for DMOPs must establish a solid stability within variety and convergence so that any
surroundings modifications may be quickly addressed. All of these point to an urgent
need for innovative approaches to DMOPs [4]. As trial and rating real parameter multi-
objective EAs that operate within static parameters, benchmark frameworks with

various levels of complexity have also recently been established [5].

However, despite the requests from a variety of application areas, relatively few
analyses studies have been focused on either examining different challenges related
with the DMOPs or applying evolutionary computing methods to address the dynamic
multi-objective problems. In 2004, Farina et al. [6] the researcher took a big stride in
this direction when they suggested a test-suite of five real-parameter dynamic MOPs.
The authors of [7] encouraged EA scholars to investigate DMOPSs in great detail, but
this work has not yet attracted the same level of attention as that given to the disciplines

of dynamic single-objective optimization problems and static MOPs [8].

Due to the search-variables' temporal variability, the landscapes of the objective
functions, and/or the applicable restrictions, a MOP may exhibit dynamic behavior [9].
The Pareto-Front (PF) and Pareto-Set (PS) interactions, which are the primary
complexity of MOPs, can be subjected to temporal variation to add dynamicity to the
issue. Objective functions, constraint functions, and problem parameters all alter over
time in a dynamic optimization problem. These issues frequently come up while
solving genuine issues, particularly when tackling optimized control issues or issues
that demand for on-line optimization. Two computational approaches are often

employed.



The analysis of a solution against a variety of real-world instances of the dynamic
problem creates an off-line optimization problem that may be used to establish the
optimum control rules or regulations [10]. This method works well with problems that
require too much computer power to be solved online by any optimization technique.
The alternative strategy is a direct on-line optimization process. In such a scenario, the
problem is considered to be stationary for a certain amount of time, and an
optimization method is permitted to discover optimum or nearly optimal solutions for

up to two problems during the stationary period [11].

A new optimization is then conducted out for the new time frame, and a current
development is created based on the present problem scenario. The aim and objective
are to develop effective optimization algorithms that can track the optimal solution(s)
within a limited number of iterations in order to reduce the required time for fixing the
problem and the approximation error, even though this process is approximate due to

the static consideration of the problem during the time for optimization.
1.2 Aim of the Study

In this research, we consider utilizing the direct on-line optimization method formerly
developed to address dynamic optimization problems with multiple objective
functions. In the last ten years or so, the multi-objective optimization domain has seen
a fundamental change including how problems are addressed when utilizing
evolutionary computing techniques as opposed to conventional techniques. Since there
are many Pareto-optimal solutions to these issues, evolutionary multi-objective
optimization (EMO) techniques try to locate a large number of solutions that are as
near to the real Pareto-optimal front (POF) as they may be in a single simulation run.

These methodologies not only provide an accurate sense of the true POF's magnitude



(ideal and nadir solutions), but they also show the front's shape [12] and reveal if there
is a "knee" solution [13]. They also permit customers to investigate the obtained
solutions to identify any intriguing traits of the best possible solutions [14]. Despite
the EMO algorithm’s value, there hasn't been much enthusiasm for expanding the

concepts to address dynamic multi-objective optimization issues.

That subject is addressed in this work, in addition to a set of test cases for both
continuous and discrete dynamic multi-objective optimization problems, as well as a
general technique for solving such problems. The EMO scholars have examined
several static (not altering during optimization) test cases that illustrate all sorts of
challenges that an EMO algorithm may encounter into when convergent approaching
the POF [15]. Several other substantial real-world applications actually require time-
dependent (on-line) multi-objective optimization, where either the objective function
and constraint or the affiliated problem parameters or both vary with time. As
mentioned previously, these problems require a static optimization procedure, in
which the task is to find a set of design variables to optimize the objective functions,

which are static (iteration of the optimization process).

There aren't many EMO algorithms capable of solving these issues, and there aren't
enough test problems to fully evaluate a dynamic evolutionary multi-objective
optimization (DEMO) approach. Multi-Objective Optimization Problems (MOOPs)
that are dynamically changing either the objective functions or the constraints are
known as DMOOPS. This article focuses on bounded constraint DMOOPSs, which are
unconstrained DMOOPs with dynamically changing objectives and static boundary
restrictions. The fact that this paper does not concentrate on MOOPSs with noise should

also be emphasized. An algorithm should be trialed on DMOOPSs that test its ability to
4



deal with unique challenges, such as tracking a Pareto-Optimal Front (POF) that shifts
from convex to concave over time or locating a diverse set of solutions where the
density of solutions shifts over time, in order to ascertain whether it can solve

DMOOPs efficiently. Benchmark functions are those that fit this description [16].

The benchmark functions used for a comparative research have an impact on the
outcomes and efficiency of the analysis. Therefore, consideration should be given
while determining the benchmark functions. The unavailability of standardized
benchmark functions, however, is one of the major issues in the field of DMOO [17].
Choosing which benchmark functions to utilize is therefore not an easy task to
accomplish. Furthermore, there isn't presently a thorough description of DMOOPs in
the literature. In order to enable a consistent comparison of Dynamic Multi-Objective
Optimization Algorithms (DMOAS), this article provides a comprehensive
examination of DMOOPs that were offered in the literature and suggests an optimal
set of DMOO benchmark functions. These two primary goals were achieved by
identifying the following sub-goals: determining if the DMOOPs already published in
the literature are effectively evaluating the performance of DMOO algorithms
identifying weaknesses of present DMOOPs and resolving the discovered weaknesses
of current DMOOPs by proposing a strategy to produce DMOOPs with an isolated
POF, an approach to develop DMOOPs with a deceptive POF, and introducing new

DMOOPs with complex Pareto-Optimal Sets (POSs) [18, 19].

In the real world, there are many multi-objective optimization problems (MOPS)
whose nature is dynamic, i.e., their objective functions, constraints, and/or parameters
may change over time. Due to their dynamism, dynamic MOPs (DMOPs) provide

serious challenges to evolutionary algorithms (EAS), as any change in the environment

5



may have an effect on the objective vector, constraints, and/or parameters. The Pareto-
optimal set (POS), which is a collection of mathematical solutions to MOPs, as well
as the Pareto-optimal front (POF), which is a representation of POS in the objective
space, may therefore evolve over time. In order to follow the shifting POF and/or POS

and produce a series of estimates over time, optimization must be performed [20].

DMOPs can be characterized in several ways depending on the nature dynamisms
involved [21]. Since many real-world applications, such as thermal scheduling [22]
and circular antenna design [23], have at least two objectives that are in conflict with
one another, or they are MOPs, there has been an increase in research interest in the
area of evolutionary multi-objective optimization over the past few years. The
objective of solving MOPs is to identify a group of tradeoff solutions rather than a

single optimal solution because of their multi-objectivity.

An MOP can be categorized as a DMOP if it has time-dependent components.
Planning, scheduling, and control are examples of several DMOPs that arise in nature
in real life [24]. Performance metrics, test problems, dynamism classification and
algorithm design are a few significant areas where contributions have been made in
this field [25, 26]. The most crucial of them is algorithm design since it is the means
by which DMOPs solve their issues [27].

1.3 Organization of the Thesis

The second Chapter represent a brief overview to optimization and TLBO algorithm
with a literature review on Dynamic Evolutionary algorithm. Chapter 3 is the

methodology part where it used in this thesis with a detail explanation. The

experimental results and evaluations is going to be demonstrated at Chapter 4 that



covers the outcomes and effects of the TLBO algorithm with discussion of the
accomplished results. The work will concluded in chapter 5, short brief of the whole

study and contribution for the future work based on the experimental results.



Chapter 2

LITERATURE REVIEW

2.1 Metaheuristic Search (MS) Algorithms

An appraisal of Population-based Meta-Heuristic strategies to enhance the
computational efficiency of heuristic procedures. Laporte and Osman [28] made it
clear throughout their research that over the years meta-heuristic is a mixture of
different ideas that have been redefined for discovering a novel space search of new
learning strategies to be used to assembly information with the purpose of obtaining
optimal solutions and applications in which approximate algorithms, regularly termed
as heuristic algorithms. They defined combinatorial optimization problems can be
framed as consuming finite or countable infinite of unusual number of solutions and it
Is a mathematical study formally demarcated as the of finding an optimal gathering of
separated objects typically finite in numbers [29]. They witnessed that there is a chance
of finding the accurate solutions of combinatorial optimization that state to a
remarkable progress in mathematical programming in computer technology
meanwhile in the sense that still there is a real challenge that realistically it is not easy
to solve large problem pattern in reasonable computation times, because of that

challenge.

The scholars of heuristics have made an intensive research area of research directed
to the development of many approximate algorithms where the concept of intelligently

the decent initial solutions have been found by generating a materialistic random



adaptive search spaces[30]. The learning strategies such as non-monotonic search
strategies that goes from testing to receiving neighbors came from a presented complex
neighborhoods mechanism such as ejection chains from the simulated annealing to get
a synthesis moves with correct data organizations that built on the adaptive search
spaces which gather data throughout the algorithms execution with the purpose of
finding possibly best set of solutions rather than a single solution by all possible means

[31, 32].

According to the passage of VVoss et al. [33], for the manipulation of hard optimization
problems, the ideal way to produce an efficient high quality set of solutions is a meta-
heuristic that it might be high or low level actions, or a humble local exploration, or a
manufacture process only. Especially with the new advances in the scheme and
application to approximate solutions of meta-heuristics, they defined for each iteration
an approximate means a broad or inadequate single solution or a collection of solutions

[34].

However, researchers highlights that in metaheuristic computing there is a big room
of research still seem not cover many issues and the field of metaheuristics has not
reached precocity compared to mathematics, chemistry or physics fields [35]. As we
know, metaheuristic algorithms can classified in two conducts, either population based
or non-population based algorithms (Yang,2010) to know the difference between them
in searching schemes for example, the population based algorithms use a set of strings
to simulate the selected phenomenon behavior in the search area like Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), which makes use of a large

number of agents or particles, is just one of many such algorithms. Others include



Teaching-Learning-Based Optimization (TLBO), Sine Cosine Algorithm (SCA),
Chemical Reaction Optimization (CRO), Harmony Search (HS), Clonal Selection
Algorithm (CLONALG), League Championship Algorithm (LCA), and Sine Cosine
Algorithm. Also described are Tabu Search (TS) and Variable Neighborhood Search

(VNS), two non-population based metaheuristics [36].

In view of to the pervious element about the population based algorithms, Rao et al.
(2011) presented the teaching-learning-based optimization (TLBO) algorithm which
requires a population size and amount of generations for its working with such normal
and common controlling parameters [37]. Because of TLBO successful
implementations and high intensity, and analysis, after its introduction in 2011, TLBO
algorithm has mentioned in so many metaheuristic research paper at international
journals of Elsevier, Springer-Verlag, Taylor & Francis, and IEEE Transactions, in
addition to international conferences. In the disciplines of economics, physics,
chemistry, biotechnology, civil engineering, mechanical design, thermal engineering,
manufacturing engineering, computer engineering, electronics engineering, and
structural engineering. It has widely been recognized by scholars in advanced
optimization [38].

2.2 Concept of Algorithm

The goal of teaching-learning-based optimization (TLBO) is to develop
comprehensive solutions for continuous optimization problems with a minimum of
computing work and a maximum of consistency. Researchers have been working on
building an algorithm to be free from algorithm-specific parameters. TLBO is a result

of the effort of researcher, since TLBO is a population-based algorithm, only common

10



control parameters, such the number of generations and population size, are needed,; it

does not require any algorithm-dependent parameters [39].

The TLBO algorithm is built on the outcome influence of a teacher on the how learners
are productive in a class. The outcome can be described as the term of results or grades.
Generally, the teacher is theorized as the highly learned person in the class who shares
his or her knowledge with the learners and it shows how much quality of the teacher
and knowledge that she/he has the more effective results on learners. As declared, the
result is considered as a term of marks or grades so it is understandable that decent
teachers educate learners such that they can have better results [40]. And above, to
reach a good results, learners also can learn from communication and interaction

between individuals, which aids in their outcomes.

Algorithm1. Basic Teaching-learning-based optimization Algorithm

1. Begin

2 Initialize NP (numbers of learners) and D (dimension);

3 Initialize learners and evaluate them;

4 while stopping condition is not met

5. Choose the best learner as X;eacher:

6. Calculate the mean X,,,.., Of all learners;

7 for each learners X;

8 I/ Teacher phase //

9 Tr = round[1 + rand(0,1)];

10. Update the learner X, e, = X; o0 + rand. Kieacher — T Xmean):

11. Evaluate the new learner X ,...;

12. Accept X, ., if itis better than the old one X,

13. /I learner phase //

14. Randomly select another learner X; which is different from X;;

15. Update the leamer X; ne, = Xi o + rand. (x; — x;) ,if f(x) < f(x;)
Xinew = Xiora + rand. (x; — x;) , if f(x)) < f(xj), ;

16. Evaluate the new learner X ,...,;

17. Accept X, ., if it is better than the old one X, ,4;

18. end for

19. end while

20. End

11



2.2.1 Characteristics of Algorithm

The function of TLBO is a population-based method and n is considered as a
population that is classified into dualistic phases, the ‘Teacher phase’ and ‘Learner
phase’ that considered as diverse scheme of variables, m, of the optimization problem
and offered to the learners as well. Essentially starting to the ‘Teacher phase’, the
selection of the teacher quality depends on his/her capabilities. Teacher tries to
improve the mean performance of the group of learners in their concerned topic. The
best resolution in the whole population is considered as the teacher. Any given
optimization problem involves parameters that are the designed variables in the
objective function and the best solution of the given optimization problem is the best
unbiased utility value. TLBO is alienated into dual fragments: the teacher part and the

learner part [41].
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Initialise the population design variables and termination criteria,
min, max, Itetyq, and Gmax

Initialize the random generated solutions and evaluate them,
i=1,iter=n,g=0

\ 4

Find a Pareto archive by non-dominated sorting and Identify the
best solution randomly, Z, .

Estimate the mean fitness value of learners in the population

A\ 4
Select the best fitness value as Teacher

A
Select teaching factor (T¢) as 1 or 2 heuristically and rand € (0,1)

Update the knowledge of the learner’s based on best solution
Zi,new = Zi,old + Tand( Zteacher — TF X Zmean)

The Teacher phase

Any
Improvement in
the knowledge if
the learner?

No

\4

Replace the new
learner’s knowledge to

Continue with the
existing solution
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Select random two solutions z; and z;, z; # z;

A 4

Zj ,new

Zj ,new

Update the knowledge of the learners using

Ziold + rand(zi - Zj),
Ziold + rand(zj - Zi),

if f(z) < f(z)
if f(z) > f(z)

Yes

A4

Any
Improvement in
the knowledge if
the learner?

Replace the existing solution
with modified solution and
store it into the archive

No

The Learner phase

A4

Continue with the
existing solution

Perform Non-Dominated Sorting and Identify the solution, Zj,.;

A4

External archive

|

Is termination
criteria
satisfied?

Final value of
solution

Flowchart of Basic Teaching-learning-based optimization Algorithm [42]
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2.3 The Teacher Phase

The first stages of the TLBO algorithm is the teacher phase, where the teacher teach
and train learners. Throughout this stage depending on the teacher skills and
knowledges, the instructor tries to increase the session's average score in the subject
they are teaching. The greatest way to describe the excellent educator is to say that
they represent the most knowledgeable member of the class or of the entire learning
environment. During the learning process in a classroom or in the environment of
learning, a teacher is the person who likely to have more knowledge more than the
students. The teaching learning based optimization method is built on this
characteristic, which is an inhabitant’s scheme that begins as a recognized collection

of resolutions recognized as inhabitants of optimization problems [41, 42].

The teacher who is the most knowledgeable and who can increase the students' grasp
of a certain topic in class is deemed to have the greatest impartial utility attribute of
inhabitants. However, each leaner has her/his own skills and capabilities to learn in the
classroom, not all students are the same so in not likely and conceivable therefore for
instructor to upsurge each student's level equally in the same way for each one because
students are different have different knowledge levels. So the best way is to control or
test students will be by the mean knowledge value. Afterward training and education
process to the students, the teacher expected to raise the learners' average knowledge
level to a higher average understanding value. If the If the resolution has any utility, it

is for example symbolized as X;,;which X; means the jth learners enterprise
adjustable objective function; j = 1,2, .....,m; and k symbolized the kth inhabitants

participants who is a student,k =1,2,...,n; plusisymbolized theith
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restatement,i = 1, 2, ...., Gpax, Where iterations G,,,, IS the quantity of all-out

generation of iterations [41, 42].

A tutor who is the best learner from the beginning of the teacher phase has been
recognized as the greatest resolution out of inhabitants to some optimization issue, and
it is decided from the value of the objective function. Depending on the kind of
optimization issue, the specified minimum value of the objective function is always
the optimum answer, for instance if the problem is one of minimization. At any
iteration allow x;, i remain the greatest resolution i intended for whatever assessment
of f(xy, ) is lowest amongst the inhabitants. That superlative resolution would become

represented by f(Xpese, 0)-

Then compute that mean outcome m;; of the students in a specific topic j . And how
well the teacher is able to raise the average class performance in the subject that they
are teaching depends entirely on their abilities and skills in the classroom. The
increase of the current mean outcome of each topic that has been taught through a
tutor intended for individually topic stands:

Dif ference_Mean;y; = 1;(X; kpest; — TrM;,;)
where X; ypest,: 1S the outcome of the ultimate student who is the tutor in matter j, and
depending on capability and skills of a teacher, “T¢“ is the instruction aspect that selects

the assessment of mean average to be altered.

The random number in the [0, 1] range is r;;. Tr’s value can either be 1 or 2. Tg’s
value is chosen at random with the same possibility as:

Tr = round|[1 + rand(0,1){2 — 1}]
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Tr is not a constraint in teaching learning based optimization technique, nor is that one
assessment provided as an input to the algorithm; instead, the program uses the

aforementioned equation to generate T’s value at random.

This procedure executes well for T, attributes of one and two, but it performs much
better if the value of Ty varies as per equation above randomly, either value 1 or 2.
Throughout that research of teaching learning based optimization technique focused
on tutor stage, it is noticed that diverse attributes of Ty are tested by 25 numbers of
runs. The mean solution is observed that the algorithm enhanced if the attribute of T
diverges by way of comparison above arbitrarily, moreover attribute one or two. Rao
et al. recommended that educating aspect of T attribute to be whichever one or else
two subjected to a rounding-up standards specified using the equation above and it is
only for simplifying purposes of the TLBO algorithm. Established for the
Dif ference_Mean; ;, that current resolution is restructured on a tutor stage;
Xjki = Xjri+ Difference_Mean; ;

Wherever X; ;. ; remains restructured attribute of X; ;. Admit X; , ; whatever this one
contributes w well utility attribute above X;, ;. Finally, of the tutor stage, entirely

recognized function attributes are kept plus recorded to convert the response to the

student stage.
2.4 The Learner Phase

It is the second stage of the teaching learning based optimization technique. The
second stage called the interaction phase, exchanging information or sharing
knowledge phase. In the class room or any learning environment process, learners
upsurge their knowledge by communication among themselves. The learning

environment process is not systematic or organized process because each learner
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cooperates and interrelates haphazardly through different students in the classroom for
improving his or her knowledge. The student absorbs innovative ideas only whenever
another students consume extra ideas and new information to share more than she/he

ensures. Bearing in mind an inhabitant’s mass oOf n.

Every student is connected through further students haphazardly, with any iteration i,
randomly ~ choice dualistic students X, and X, like atX'p; #

X', Where X'p ; and X' ; are the restructured values at the end of the teacher phase*:

X" = X i+ 10X i + X' 0.0) if fF(X'pi) < f(X'0,)

X"ipi = Xipi+ 10X + Xip) if F(X'qi) < f(X'pi)
Whenever that offers such greater utility assessment, accept X'; ,; . Atany

iteration i , loops are used to carry out the learner phase.

Algorithm 2: Learning enthusiasm based learner phase
for k =1:n;
Allow the current learner to be X} ,; ;
Randomly choice a different learner who isX", ;, such thatX'p; # X'y ;
it f(X'p0) < f(X'q0)i
for j=1:m;
Xipi = Xjpi+ 150X jpi = X'j01)

end for
else

forj:].:m X”j,p,i = X’j,p,i + Tj,i(X’j,Q,i - X’j,P,i)’
10. end for
11. end if

12. end for

©CoOoN o g R~ wbhPE

The effectively acknowledged operate attributes are retained like a contribution at the

conclusion of the student stage during a tutor stage of that subsequent repetition [41].
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2.5 Multi-Objective Teaching Learning Based Optimization

(MOTLBO)

The multi-objective application programs are implemented and studied in greater
detail since they accurately reflect the conditions that exist in the real world. Multi-
objective tasks contain more than one objective, each of which is of the best range, as
opposed to single-objective problems, which have only one objective and one optimal
solution. Because of this, multi-objective problems have a set of ideal solutions known
as the Pareto-Front, from which the designer must choose the best one based on the

importance of the objective [42].

Metaheuristics have been widely used to address a variety of technical, scientific, and
industrial issues, and have emerged as a potential best alternative to handle these multi-
objective design problems. Because they are gradient free, can handle almost any kind
of variable, and don't need any special information about problems, metaheuristics are
efficient compared to conventional approaches. They are inspired by natural events.
However, they are criticized because of flaws in their design that render them
ineffective for issues involving global optimization, such as local optimal traps,
premature convergence, the need to tune controlling parameters, least-quality

solutions, etc. [43].

Global diversification and local intensification equalization are important aspects of
an effective optimization algorithm that still need to be taken into consideration.
According to a review of the research, increasing diversification decreases search
intensity, and vice versa. However, a good balance between these two factors

determines how effective an optimization algorithm is, which encourages researchers
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to keep looking for algorithms that work better [44]. The authors therefore presented
a multi-objective teaching learning based optimization strategy for structuring
optimization design issues that is based on the dominant approach in an effort to find

a better and more global optimization method.

Subsequently for a specified enterprise resolutions x; and x, while prompts to f; and
f> function vector, x, will be named to be dominated by x; if two requirements are
met, the minimization goal will be achieved. For instance, the initial requirement is
that all factors in f; are equal to or fewer than their equivalent factors in f, . One or
more f; possible factors must expressly be fewer than their corresponding f,

component in the second precondition.

Non-dominated sets (NDS) are a proposed solution that is not controlled by other
members of the set after the defining of dominance. Multi-objective teaching learning
based optimization is structured by the concept of classroom teaching environment
which the teachers who are acknowledged as experts and have a major impact on the
outcomes or grades of the students. With such technique, the knowledge that the
teacher imparts to the class, as well as the interaction amongst students regarding their
shared knowledge, has a significant impact on the learner’s output. In multi-objective
teaching learning based optimization, the population is equal to the group of learners.
A specific function is given to them as design factors, fitness is equal to the grades
achieved by the students. Then, a desired solution is identified and recognized as the

teacher.

The multi-objective teaching learning based optimization structure produces a real-
time resolution for each objective, controls the non-dominated sets then save them in
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an exterior record to produce Pareto front. Every time a new set of improved
alternatives is generated, the exterior record is upgraded, the old resolution is
discarded, and therefore only non-dominated sets remain in the archiving at the end.
This helps produce a wide variety of Pareto optimal solutions. This method
outperforms search strategy while instantaneously treating all non-dominated sets
evenly. The goal is to maintain the diversity of the Pareto solution sets while producing

a Pareto solution set that is close to the actual Pareto solutions.
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Initialise the population design variables and termination criteria,
min, max, Iten,q, and Gmax

l

@ Initialize the random generated solutions and evaluate them,
—>

i=1,iter =n,g=0

Find a Pareto archive by non dominated sorting and Identify the
best solution randomly, Zj, .

N

Estimate the mean fitness value of learners in the population \

Select the best fitness value as Teacher

v

Select teaching factor (T¢) as 1 or 2 heuristically and rand € (0,1)

Update the knowledge of the learner’s based on best solution
Zi,new = Zjold + rand( Zteach er TF X Zmean )

The Teacher phase

'

Any
Improvement in
the knowledge if
the learner?

Yes No

Replace the new Continue with the
learner’s knowledge to existing solution

» H
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Select random two solutions z; and z;, z; # z;

A 4
Update the knowledge of the learners using

Z; new — Zi,old + rand(zi - Zj), lf f(Zi) < f(Z])

Zi new = Ziold +rand(zj - Zi), if f(z) > f(zj)

Any
Improvement in
the knowledge if
the learner?

Yes No

The Learner phase

A4 A4

Replace the existing solution Continue with the
with modified solution and existing solution

store it into the archive |
|

Perform Non-Dominated Sorting and Identify the solution, Zj,.;

External archive

|

Is termination
criteria
satisfied?

A4

Display Pareto
Optimal Set

Flow chart of Multi-Objective Teaching Learning Based Optimization (MOTLBO)
Algorithm [42].
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Chapter 3

METHODOLOGY

3.1 Overview

In this study, testing functions are significant to confirm and equate the act of
optimization algorithms. The test of consistency, effectiveness and justification of
optimization algorithms is commonly supported out by using a selected group of
common standard benchmarks. There are many benchmark functions reported in the
search area which they have a major importance to algorithm analysis because they
help for improved comprehension of the advantages and disadvantages of evolutionary
algorithms. Benchmark functions have varied properties and features which open a
way to correctly test optimization algorithms in such an equitable and balanced method
so, benchmark functions are very ultimate for testing because they have no standard

set or list [44].

With determination, we have studied and compiled a total of 14 benchmark functions
that are incorporating various properties. These 14 benchmark functions symbolize
various formulation settings, like period reliant on Pareto-Set hyperbolic geometry and
Pareto-Front forms, irregular Pareto-Front shapes, large-scale of variables, dis-
connectivity, and dynamically changed environment and so on. We want to advance
study into evolutionary dynamic multi-objective optimization by transmission learning
which can reprocess previous experiences to solve related source problems, Dynamic

multi-objective problems (DMOPSs) are widely used in evolutionary optimization. We
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want build optimization and see how good it performs and compares multi-objective

TLBO to others [45].

With any environmental changes with the DMOPs types of problem, directly the
environmental changes can be sensed with an experimental review of a random
population member so, there is a necessary desire to handle and trace the balance
between time restriction and time changing to carefully track Pareto fronts on DMOPs.
The first part of the formulation should result a true Pareto-front and then concepts the
benchmark equivalent to that, staring by getting an initial population for better
performance. Resolving the DMOPs should be solved by a few computational costs

and get a good final approximation population member to reach to the best solution.

With benchmark problems, we know the real PF that are only partial points depending
on rather we have continuous or discrete input variables it can only be points or at the
end would be a line, but we can see it’s the best solutions resulting out of the

optimization problem we have [45].
3.2 MTLBO Operation

In this segment, the multi-objective stimulating benchmarks is going to be studied and
compared with other inhabitants founded well experienced approaches to rate the
productivity of multi-objective teaching learning based optimization. In order to
resolve the 14 benchmark problems at hand, the multi-objective TLBO simulates the
processes of instruction and learning in a classroom environment. Both tutor and the
student stage are into advancement. Getting a population from the classroom
environment, staring from teacher phase which by nominating learners from the

population to get to identify which one is the best graded student who would have been

25



nominated to be the teacher. The teacher has two main responsibilities that are training
and grading. Firstly, the teacher is in charge for teaching the learners. Secondly, the

teacher is responsible for improving the mean grade in the classroom [42, 45].

Secondly, going through the learner phase which it is about randomization chooses
and interactions. Each learner chooses an acquaintance at random with whom to
interact. While the interaction part, the two learners learn from each other and share
their knowledge together. During this phase, our objective is to increase the mean
grade in the classroom [46]. These processes are reiterated according to the stopping
criteria in the benchmark problems parameters is met.

3.3 Configure Parameters

The parameters have taken into account in the experiment from their original papers
[45]. There are two key constraints of teaching learning based optimization method
that has been included which they are classification parameters and control parameters.
The inhabitants dimension , n was fixed to one hundred for both multi-objective cases
which they are from problem DF1 to problem DF9 and three-objective cases which

they are from problem DF10 to problem DF14.

Number of variables and strength of change n; both are equivalent towards ten. The
number of changes is equivalent towards 30. Independent runs are equal to 20 on
independent times on each test occurrence. Depending on the changing of
environments, if environments change very quickly the number of frequency of change
T; is going to be 10, if it is the opposite, it is going be 30. Stopping conditions and
the number of executions is 100(30T; + 50) where T; is the number of frequency of

changes, with TLBO algorithm with all possible changes during the process should be
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covered especially during the learner phase, it ends with an assigned number of

generations before the first environmental change occurs [47]. Additional constraints.

All the constraints in the associated algorithms castoff the matching sets as in their

main papers [45].

Algorithm 3 :Pseudo Code of MTLBO Algorithm

1
2
3
4
5.
6.
7
8
9
1

0.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21,
22,
23.
24,

25.
26.
27.
28.
29.
30.
31.
32.
33.

fori=1to D
a « selesct a random interger in (1,2, ....,NP)
Initialize learners and evaluate them;
M(@) = X"();
End
for k=1 to NP
if r, < 0.5 // Teaching
fori=1to D
if r, <SP
Tr(i) = round(1 + r,);
Xnew (l) = Xk(l) +713. (xbest(i) - TF(L) M(l)):_
End
Endfor
else /I learning from each other between learners
fori=1to D
r « selesct a random interger in (1,2, ....,NP)
if
M@@) = X"(D);
End
for k=1 to NP
if r, < 0.5 // Teaching
fori=1to D
if X, is better than X,
Xnew @ = Xk(i) + 75 (xr(l) - xk(i))}_
Else
Xnew (l) = Xk(i) + 75, (xk(l) - xr(i));,
End
Endif
end
End
if X0 is better than X,
X = Xnew
End

That inhabitant’s dimension (Pareto-Set) plus the max quantity of group of iterations

G N, Stand among the controller constraints by teaching learning based optimization

method.
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Set up student X as the inhabitants starting point = {X;1, X2, ..... Xik, .. X}
which X;  represents the assigned sum amount of confrontation of i on k. The sum
amount of confrontation were produced by using;

Xik = Xminik +7and(0,1) Xmaxi k — Xminix) Which Xiin i PIUS Xmaxi k
Accordingly, a greater and inferior limits serve as symbols for X; ., and the random
integer in the range [0, 1] is represented by rand (0, 1). It should be noted that all

students who identify as X; , must adhere to the requirements [48].

To accomplish the main objective of the process in an experiment, each learner's grade
is first valued. This is done by converting the decision variables of the learner's X;
value into the objective function, allowing us to obtain the objective value, which is
solely based on the learner's grade. Next, a maximum evaluation student is chosen to

be the tutor plus their grade is customary with X; ;.

The first teacher phase which it is all about improvement and grading, m is going to
be the mean grade of the classroom. During the teacher phase, the teacher tries to
improve the average evaluation on students to his/her level X,,.,;. Certainly, there is a
difference in knowledge and experience among tutor and students that may remain
stated with Dif ference_Mean = r(X,.s: — TrM) where Ty is the education aspect,
its value is selected as one otherwise two, plus it was unsystematically definite by an
equivalent possibility T = round [1 + rand (0, 1) (2 — 1)]. T chooses an average
evaluation to stay altered, plus r is an unsystematic quantity into zero and one variety.
From that above difference attributes, X,o, ; x = X;x + Dif ference_Mean where
the current resolution X is modernized into a tutor stage. After updating that solution,

it is now necessary to evaluate it to see if X,,.,, offers a well utility attribute than X plus
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complies with a control parameters. If yes, use X,,.,, to update the solution; if not, stick

with X [48].

The second step, known as the learner phase, is where students choose other students
at random from whom they would share their expertise through interaction. For the
purpose of enhancing their learning experiences, students are certified to exchange
information at random with other students throughout this phase. If the other students
in the class have a greater level of comprehension than the learner has, then the learner

will undoubtedly pick up new information and content this manner.

On the other hand, if the other learners do not have additional expertise, the student
will not acquire any new knowledge or information. To execute this phase, we are
going to let X, be the other learner who has been selected randomly. The learning of
X (recipient learner) from X, (selected learner who has more knowledge) is

mathematically conveyed as in

Xnewin = Xix +1 Kix — Xai ), if f(Xix) < f(Xa,i,k),

Xnewik = {Xix +T Xa,ife— Xi ), if f(Xix) 2 f(Xa,i,k)_

Learners who has higher evaluation among the original student in addition to the

recently created student is going to remain acknowledged concurrently with that

instructor phase [48].

The teaching learning based optimization algorithm completes plus productions of the
existing resolution that has been regarded as great resolution from the group of

iterations, when a maximum number by generations is achieved, if the stopping
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conditions are satisfied. If not, assess each student's grade before moving on to the

next instructor phase [48].
3.4 Compared Algorithms

In determining problematic comprehensive optimization problems, there are so many
surveys in the literature only works for the comparison between optimization
algorithms to search and identify which algorithms is going reach the best solution.
From the original paper intended for resolving dynamic multi-objective problems , a
methodology for testing problems which the set of the 14 benchmark functions has
been tested with serval algorithms with their variety of different dynamic
characteristics with keeping the same existing approaches and parameter settings as
the proposed parameters from the original paper [45]. Here are some brief descriptions
of these algorithms to know their techniques and to get to know what the difference
between these algorithms to compare them with multi-objective TLBO algorithm after
been done with the experimental results.

3.4.1 Population Prediction Strategy (PPS)

In both cooperative DMOQOOs, singular DOOs and cooperative, prediction-based
techniques have proven useful for predicting some inaccessible sites [49]. By
accounting for the presence of continuously occurring dynamic multi-objective
optimization problems, researchers expand this indicator to compute a whole
population [50]. The key clue of Population Prediction Strategy (PPS) is to split of the
PS that is separated within dual measures which are core population objection as well

as a multiplex [51].

In order to calculate the next center and estimate the next center's manifold population,

a structure of population center points is retained. So, Population Prediction Strategy
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possibly will set a full population by uniting the anticipated point and projected
manifold once a modification is sensed [52]. A period sequence of earlier population
centers will be used to identify another inhabitant’s midpoint, the auto regression (AR)

model has been used [53].

Correspondingly, old diversified population are also recycled to calculate new
diversified population. At that point, an innovative inhabitance resolve to be
accumulated grounded on the expected inhabitance center besides diversified
population [54].

3.4.2 Transfer Learning Based DMOEA (TrDMOEA)

The inhabitants based evolutionary algorithms and transfer learning are both utilized
within transmission knowledge founded interactive several priorities generative
technique, which is the framework for attempting to solve interactive several priorities
generative optimization issues. An essential factor for understanding here is that
algorithmic framework effect at diverse periods have altered deliveries for producing
an operative examination population. TrDMOEA feats the transfer learning method by
means of an instrument to produce an actual preliminary population group through
reprocessing previous understanding to rapidity the evolutionary procedure.
Therefore, some inhabitants founded multi-objective procedures may advantage by its
addition deprived of requiring a substantial adjustments, and there are no significant
changes required [55].

3.4.3 Mixture of Experts (MOE)

There is always a request to improve the population prediction framework because it
is challenging when it comes to the distribution of suitable loads to respectively of the

mechanisms at diverse times [56]. The loads assigned to the prediction mechanisms
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will change as a result of the dynamic development and the mechanism with a better
estimate accuracy must be assumed advanced load more than other mechanisms. So,
the mixture of experts (MOE) framework considered to a modest operative
collaborative construction that allows proficient converting among mechanisms in the
collaborative based on their virtual act for producing strong POS and improving the
complete prediction excellence in cooperation with dynamic multi objective

optimization problems [57].

A MOE found to be a widely held ensemble structural design in machine learning
because of its quickness, strength, and accurateness [58] in resolving multifaceted
reversion, organization problems, language demonstrating and system identification
difficulties. Initially, the MOE framework is intended for static data depend on
statistical individuality of the training sets [59]. The MOE framework correspondingly
has been effectively utilized to several time sequence modeling presentations, in
addition to actual time controller and graphic applications [60].

3.4.4 Multi Objective Evolutionary Algorithm based on Decomposition for First
Order Difference Model (MOEA/D-FD)

The initial command derivative method that relies on Multi Objective Evolutionary
Algorithm based on Decomposition algorithm (MOEA/D-FD) is a common resolution
structure for algorithm. This algorithm corrupts a MOOP within a numeral by a
particular reasonable enhancement substitute problems otherwise modest MOOPs in
addition at that time procedures a heuristic examination to enhance these optimization

substitute problems concurrently and accommodatingly [61].

In particular, MOEA/D-FD algorithm operates old data to calculate the position of the

innovative POS subsequently an alteration is sensed. The innovative population is
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collected of dual types of resolutions which they are the dated and the anticipated
results. The association of population intermediate point outlines as an expected
direction. In the direction of creating the innovative population expanded so it should
be consistently circulated characters nominated from the earlier population are utilized
in the prediction procedure [62].

3.4.5 Fitting based Prediction Algorithm (FBP)

For the purpose of continuous research of attempting to interactive several priorities
generative problems through a revised estimation predicated optimization system,
researchers have proposed an algorithm in 2021 called Fitting based prediction
algorithm as an innovative and incorporating a novel machinery that holds a
consistency pattern built on a multi-“regularity model-based multi-objective estimation
of distribution algorithm (RM-MEDA) “ is integrated into suchlike maximizing several

objectives in dynamical situations[63].

An approach that includes two stages for forecasting non-dominated solutions,
modeling and the curve fitting scheme, the prediction constructed response mechanism
targets to produce a great value population when changes occur. It primarily consists
of three different subpopulations for effectively following the affecting Pareto optimal
set. For each section has an essential part for generate well feature population, refining
whichever assortment or conjunction, when a modification take place in the

background surroundings.

The primary subpopulation is shaped by a modest linear forecast symbol with dual
diverse phase dimensions. A few novel selection entities created by the fitting-based
prediction technique are included in the following subpopulation. By implementing a

current selection strategy, the next subgroup is created, providing virtually functional
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examination entities for improving population congregation and multiplicity. The
outcome of the experiment that made with an innovative fitting based prediction (FBP)
algorithm have reasonable success paralleled with utilizing a few cutting-edge
techniques and presented an anticipated procedure has a respectable following

capability and replies rapid to environmental alterations [45].
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Chapter 4

EXPERIMENTAL RESULT AND EVALUATIONS

4.1 Introduction

A thorough explanation of the algorithms employed in this thesis is presented in this
chapter. Implementation appraisal of the TLBO algorithm and the demonstration of
the equivalent achievement established separately from the usual meta-heuristics is to
be assumed within the point of reference of tested united of CEC2018 contest on
DMOPs [64]. It contains information on benchmark functions, performance measures,
comparing methodologies, parameter settings, and monetary outcomes. The suggested

value for each parameter remains the same based on the literature.

4.2 CEC2018 Benchmark Dynamic Multi-objective Optimization

Test Problems

CEC2018 benchmark DMOPs has a challenging difficulties that accords with
numerous goals and phases subjected possessions [64]. Throughout the testing phase
with all the different algorithms not only multi-objective TLBO, there are three main
challenges which first is the environmental alterations where a selection of dynamics
position changed stages of problems to algorithms plus there is not any solitary

alteration response mechanism that is able to process all dynamics.

Additional, multiplicity which it is the main sensitive incentive of population based
algorithms that it is difficult to be fully preserved. Lastly, Time limit on dynamic multi-

objective problems necessitates algorithms to spread a respectable stability between
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diversity and convergence where with any environmental changes are able to be on
time promptly controlled to be strictly pursue time fluctuating Pareto fronts or sets that
sometimes is rather tight for algorithms. CEC2018 Benchmark problems are important

for test and better understanding to TLBO and other algorithm analysis.

CEC2018 benchmark problems are total of fourteen functions are layering varied
possessions including period reliant on Pareto-Front and Pareto-Set hyperbolic
geometry, ambiguous Pareto-Front forms, dis-connectivity and hyperextension. To
test the multi-objective TLBO algorithm on the benchmark problems, we have been
implemented in MATLAB code. The CEC2018 proposed test set called DF that have
9 nine with two objectives from DF1 till DF9 and 5 three objective problems from

DF10 till DF14. The key dynamic features of CEC2018 Benchmark problems that

separately problem contains are presented in Table 4.1 [64].

Table 4.1: The key dynamic features of CEC2018 Benchmark problems

Problems No. Dynamic Functions Notes

objectives

DF1 2 Concavity and convexity are | Dynamic Pareto-Front
mixed, optimum location. and Pareto-Set

DF2 2 Variable associated to Static convex Pareto-
position changed, optimum | Front, dynamic Pareto-
location Set, severe diversity loss.

DF3 2 Concavity and convexity are | “Dynamic Pareto-Front
mixed, Varying connection, | and Pareto-Set*.
and optimum location.

DF4 2 “Varying connection, “Dynamic Pareto-Front
Pareto-Front portions, and Pareto-Set*.
bounds of Pareto-Set".

DF5 2 Quantity of knee portions, “Dynamic Pareto-Front
optimum location. and Pareto-Set.

DF6 2 Concavity and convexity are | “Dynamic Pareto-Front
mixed, multimodality, and Pareto-Set*.
optimum location.

DF7 2 “Pareto-Front portions, Convex Pareto-Front,
optimum location®. static Pareto-Set centroid,
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dynamic Pareto-Front
and PS.

Quantity of knee portions,
optimum location.

DF8 Concavity and convexity are | Static Pareto-Set
mixed, distribution of centroid, dynamic
solutions, location of Pareto-Front and PS,
optima. varying connection.

DF9 Quantity of disconnected “Dynamic Pareto-Set and
Pareto-Front segments, Pareto-Front, varying
optimum location. connection®,

DF10 Concavity and convexity are | “Dynamic Pareto-Set and
mixed, optimum location. Pareto-Front, varying

connection®,

DF11 Size of Pareto-Front “Dynamic Pareto-Set and
portions, Pareto-Front Pareto-Front, concave
portions, optimum location. | Pareto-Front, varying

connection®.

DF12 Quantity of Pareto-Front “Dynamic Pareto-Set and
holes, optimum location. Pareto-Front, concave

Pareto-Front, varying
connection®.

DF13 “Quantity of disconnected “Dynamic Pareto-Set and
Pareto-Front segments, Pareto-Front, the Pareto-
optimum location®. Front can be a

continuous convex or
concave segment, or
several disconnected
segments".

DF14 Degenerate Pareto-Front, Dynamic Pareto-Set and

Pareto-Front, varying
connection.

4.2.1 Problems Definition

The subsequent representations are extensively utilized in each problem definition
such as M is a quantity of objects that alterations starting by two to three depends on
each problem number objectives of each problem, n is the sum of deciding factors, x;
“is the i-th“deciding factors, f; “is the i-th“aim factors, T is the a production reverse, T;

is frequency of change, n; is the degree of the alteration and t represents time instant

[45].
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4.2.1.1 DF1

Due of its small dynamic on the Pareto-Set and its Pareto-Front geometric deviations
from contour to convex hull and conversely, the DF1 issue is utilized to measure the
capability of concavity distinctions to be pursued.

4.2.1.2 DF2

DF2 has a straightforward dynamic into PS, and the second problem’s PF residues
indeclinable through the time period. Yet, the adjustment of the station connected
decision variable x,. is dynamic challenging because it able to make severe multiplicity
damage to population. Towards a solution to DF2, must consider to maintain and boost
techniques to reach a well diversity preservation.

4.2.1.3 DF3

The characteristics of DF3 is a combination of convexity or concavity, inconstant
connections, and position of optimal solution. This problem is utilized to test the
measure the tracing capability of concavity or convexity distinctions and time
fluctuating inconstant relations. The features of DF3 which are concavity or convexity
contrasts, and the variables gets associated when the time is completed.

4.2.1.4 DF4

The dynamic problem DF4 has changing aspects on equally the PF plus PS.
Throughout the time, the distance and location of the Pareto-Set deviations. The
extension and bending of the Pareto-Front division has a time fluctuating.

4.2.1.5 DF5

This DF5 problem’s remarks are dynamic Pareto-Front and Pareto-Set. For Pareto-Set
is relatively common, but the Pareto-Front has geometries changing through the course

of time phase. Because one the main challenging through my testing that sometimes
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the Pareto-Front can be linear and through other times it comprises numerous domestic
concave or convex section that because it is reliant on time.

4.2.1.6 DF6

Remarkably for DF6 problem, The DF6 problem's design has produced a clear
knowledge of how well algorithms function when their properties are satisfied
dynamically. Naturally, Pareto-Front geometry changes with time, and Pareto-Front
have knee facts and extended conclusions.

4.2.1.7 DF7

Irregularly, the Pareto-Front series of DF7 is measured and have alterations over time.
Although, Pareto-Set is dynamic but PS center points stays not effected or changed.
Throughout the research, it has been found that this type of assets is sometimes
problematic for center points that based on prediction techniques.

4.2.1.8 DF8

Through the study of DF8 problem, it has a fixed Pareto-Set center points. It is not
easy to approximate the Pareto-Set because it contrasts over time. The complete PF
geometrical adjustments among concavity-convexity, plus comprises hyperextension
states, so it gets a circulation of solutions.

4.2.1.9 DF9

The DF9 is the last problem with two objectives problems. DF9 has subordinated
between variables. There are time-variable amounts of broken Pareto-Front sections
in this issue.

4.2.1.10 DF10

The DF10 problem has three number of objectives. The most obvious and evident tasks
of this DF10 problem postures to for example with multi-objective TLBO algorithm

is to find a way to preserve consistency of resolutions on the desperately formed
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Pareto-Front at approximately period stages. However, it has a fixed and not changed
Pareto-Set center points in malice of the difference of the Pareto-Set situation. Its
Pareto-Front geometry alterations from convexity to concavity, and vice versa.
4.2.1.11 DF11

With the DF11 problem features are the extent of Pareto-Front state the time changing
decrease or increase of the Pareto-Front section. Moreover, the Pareto-Front transfers
concluded over time absent from and near to the derivation.

4.2.1.12 DF12

The DF12 problem has a time changing amount of Pareto-Front gaps that may cause a
difficultly for degeneration and decomposition reaction with working mass vectors
procedures because mass vectors are missed if they occur to go through the gaps.
4.2.1.13 DF13

The DF13 problem produces an equally nonstop and disengaged Pareto-Front
geometries. The amount of separated Pareto-Front sections contrasts with time. The
DF13 problem is cooperative for an improved recognition of the influence of dis-
connectivity on procedures.

4.2.1.14 DF14

The last problem is DF14 that its dynamics is the altering measurement and dimension
of the Pareto-Front. The Pareto-Front may be deteriorated into a 1-D various. Once the
Pareto-Front is not debased, the size measurement of the 2-D Pareto-Front various

changes through time and then the sum number of knee states deviations consequently.
4.3 Experimental Setup

The apparatus for the experiment in the problem testing were done with the Windows
10 with 12.0 GB RAM and Intel (R) Core(TM) i5-4210U CPU @ 1.70GHz 2.40GHz.

TLBO was coded in MATLAB R2020a.
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4.4 Experimental Results

Through experimental evaluation of the CEC2018 benchmark functions, this section
evaluates the development of the TLBO technique. Teaching-Learning-Based
Optimization utilized dual dynamic operatives which a tutor and learning stage to
reach to the best solutions [65]. The TLBO versions give all students an equal
opportunity to receive knowledge by a tutor during tutor stage or by different students
during the learner phase while interacting with one another in the surroundings. The
goal is to obtain multi-objective TLBO algorithm outputs that fundamentally differ
from those produced by other algorithms, such as PPS, TrTDMOEA, MOE, MOEA/D-
FD and FBP. All parameter settings retain the equivalent with the proposal according
to the works [45]. The quantity calculated by the iteration and inhabitants dimension

n are equals towards one hundred.

In benchmarking functions that are set to different values, the magnitude of change
n; and the periodicity of transformation T, both considered to be critical factors.
Compared methods are PPS, TrDMOEA, MOE, MOEA/D-FD, FBP and TLBO is
measured by the performance indicators mean inverted generational distance (MIGD)
where average inverted generational distance (IGD) value of each generation

calculated by using all obtained values.

At the beginning, as it shows in the table 4.2 “the mean and standard deviation values

of mean computed for the inverted generational distance” only by TLBO algorithm

while T;= ten or thirty and n,=ten.
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Table 4.2: Mean and standard deviation values of MIGD obtained by TLBO.

Problems T, MIGD (mean(std.))
DF1 10 5.547559e-04(1.152445335e-06)
30 5.550688e-04(1.130365634e-06)
DF2 10 4.977080e-04(1.187683974e-19)
30 4.977080e-04(1.187683974e-19)
DF3 10 5.533056e-04(3.345533385e-06)
30 5.522105e-04 (2.342609196€-06)
DF4 10 1.158211e-01(1.134807594e-03)
30 1.160380e-01(6.285690996e-04)
DF5 10 5.450574e-04(0.000000e+00)
30 5.617553e-04(1.187684e-19)
DF6 10 5.345085e-04(1.725729403e-04)
30 5.872768e-04(1.745424612e-04)
DF7 10 8.691893e-04(1.564040065e-04)
30 9.113349e-04(1.400583352e-04)
DF8 10 5.921441e-04(3.573923657e-05)
30 5.398238e-04(5.678381361e-05)
DF9 10 1.114255e-03(1.706886289¢-04)
30 1.132780e-03(1.775577148e-04)
DF10 10 3.108685e-04(5.173776964¢-05)
30 3.538017e-04(3.269924124e-06)
DF11 10 8.548749e-03(2.970231882¢-03)
30 7.459446¢-03(2.415660505e-03)
DF12 10 4.331565e-04(4.730526588e-05)
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30 4.327370e-04(4.704364441e-05)
DF13 10 6.686750e-03(8.302527373e-03)
30 6.518140e-03(5.016824512e-03)
DF14 10 1.936050e-04(7.184213433e-05)
30 2.163864e-04(5.544607406e-05)
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Figure 4.3: The Plot of PF with T;=10 for DF3
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Problem ID: DF4, taut=10,t=1.20
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Figure 4.6: The Plot of PF with T,=10 for DF6
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Problem ID: DF7, taut=10,t=1.20
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Figure 4.7: The Plot of PF with T,=10 for DF7

Problem ID: DF8, taut=10,t=1.20

10°7
|

10°}

MIGD

10-10 L . . . .

1] 10 20 30 40 50
lteration

Figure 4.8: The Plot of PF with T;=10 for DF8
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Figure 4.9: The Plot of PF with T;=10 for DF9
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Figure 4.10: The Plot of PF with T;=10 for DF10
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Problem ID: DF11, taut = 10, t = 2.32

Figure 4.11: The Plot of PF with T,=10 for DF11
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Figure 4.12: The Plot of PF with T,=10 for DF12
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Figure 4.13: The Plot of PF with T,=10 for DF13
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Figure 4.14: The Plot of PF with T;=10 for DF14
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Figure 4.15: The Plot of PF with T;=30 for DF1
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Figure 4.16: The Plot of PF with T,=30 for DF2
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Figure 4.17: The Plot of PF with T,=30 for DF3
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Figure 4.18: The Plot of PF with T;=30 for DF4
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Problem ID: DF5, taut= 30
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Figure 4.19: The Plot of PF with T;=30 for DF5
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Figure 4.20: The Plot of PF with T,=30 for DF6
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Figure 4.21: The Plot of PF with T,=30 for DF7
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Figure 4.22: The Plot of PF with T,=30 for DF8
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Problem ID: DF9, taut=30
104} 1

MIGD

102 A . ; :
0O 20 40 60 80 100

Iteration
Figure 4.23: The Plot of PF with T;=30 for DF9
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Figure 4.26: The Plot of PF with T,=30 for DF12
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As the evaluation of multi-objective TLBO as its own without comparing TLBO with
other algorithms, TLBO algorithm has sculpted a potential function for itself for such
an advanced optimization problem. The TLBO algorithm is very recent, yet it has a
promising future for solving dynamic optimization issues. The algorithm detailed
parameter are less concept which consider as one of the algorithm's appealing

characteristics. It is relatively easy to use and administer, and it may produce optimal

Problem ID: DF13, t_aqt =30,t=0.80

Figure 4.27: The Plot of PF with T,=30 for DF13
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Figure 4.28: The Plot of PF with T,=30 for DF14

resolutions within reasonably a reduced amount of operate estimations.

Table 4.3: Mean and standard deviation values of MIGD obtained by six algorithms

for (n., Ty) =(5,20) .

Algorithms
Pro. | TTDMOEA PPS MOE MOEA/D-FD FBP TLBO
No.
DF1 1.777e- 3.668e- 6.941e- 1.179%e- 1.065e- 5.543746e-04
2(2.139e-3) | 1(7.186e-2) | 3(3.613e-4) | 2(1.764e-4) | 2(7.992e-4) | (9.791749339e-07)
DF2 | 6.565e- 2.440e- 1.323e- 1.073e- 4.170e- 4.977080e-04
3(6.454e-4) | 1(5.131e-2) | 2(4.886e-4) | 2(3.404e-4) | 2(3.022e-3) | (1.187683974e-19)
DF3 | 5.734e- 1.797e- 1.364e- 4.606e- 1.882e- 5.503783e-04
2(1.981e-2) | 1(1.494e-1) | 1(1.182e-4) | 2(4.499e-3) | 2(6.951e-3) | (3.190313768e-06)
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DF4 | 5.872e- 1.370e- |0.145¢+0(2.6]  0.986e- 10.635¢- 1.147962e-01
1(1.742e-3) | 1(1.003e-2) | 67e-3) | 1(2.085e-3) | 1(2.613e-2) | (1.260227187¢-03)
DF5 | 2.808e- 3.723e- |1.533e+0(1.0] 2.027e- 1.541e- 5.4520756-04
2(3.792e-4) | 1(1.041e-1) | 63e-3) | 2(2.061e-4) | 2(9.571e-4) | (2.534679334e-07)
DF6 | 9.798e- |7.797e+0(8.8(3.381e+2(2.2|5.414e+3(4.38| 5.863¢- 5.941529¢-04
1(2.154e-1) | 83e-3) 48e+1) 4e-4) 3(2.991e-1) | (1.775116595¢-04)
DF7 | 3.829- 5436e- |6.859e+2(2.1|  9.758e- 2.177e- 8.684413e-04
2(1.287e-3) | 2(1.662e-2) | 8564e-3) | 1(2.863e-3) | 3(2.135e-2) | (1.596559291e-04)
DF8 | 8.208e- 5.431e- 2.657¢- 6.731e- 4.728e- 5.861553¢-04
2(4.023e-4) | 1(1.111e-1) | 1(1.315e-2) | 1(2.418e-2) | 1(2.973e-3) | (5.905181419¢-05)
DF9 | 9.792e- 1931le- |2.318e+1(3.1] 8.535¢- 10.468e- 1.135222¢-03
2(2.423e-3) | 1(1.144e-2) | 82e-4) | 2(3.959%-2) | 3(7.891e-2) | (1.787326635¢-04)
DF10| 2.804e- 7.591e- 2.632e- 0.977e- 2.167e- 3.579481e-04
1(6.160e-3) | 1(2.447e-1) | 2(5.677e-3) | 2(4.411e-3) | 1(2.765e-2) | (5.897937628¢-06)
DF11| 2.846e- 4.123e- 8.630e- 7.414e- 7.474e- 6.305027¢-03
1(3.159e-2) | 1(1.151e-1) | 1(2.535e-3) | 1(4.128e-4) | 1(1.225e-3) | (2.954590475¢-03)
DF12| 3.266e- 5.148e- 3.813e- 8.731e- 1.683e- 4.336009¢-04
1(1.545e-2) | 1(4.258e-1) | 2(2.401e-2) | 2(3.021e-1) | 2(5.338e-4) | (4.930979508¢-05)
DF13| 1.659- 1552¢e- |1.633e+1(2.3| 1.641e- 2.719- 1.256808e-02
1(2.258e-3) | 1(1.963e-2) | 52e-3) | 2(2.475e-1) | 2(5.578e-2) | (7.562334478¢-03)
DF14| 7.204e- 3.668e- |2.148e+1(3.1] 2.282- 6.612¢- 2.517544e-04
2(3.136e-4) | 1(7.186e-2) | 27e-4) | 0(2.850e-3) | 0(2.421e-2) | (7.239825673¢-05)

Table 4.4: Mean and standard deviation values of MIGD obtained by six algorithms
for (n,, Ty) = (10,10) .

Algorithms
Pro.| TrTDMOEA PPS MOE MOEA/D-FD FBP TLBO
No.
DF1| 8.431le- 3.729%- 1.487e- 9.522¢- 5.844e- 5.54755%€-
2(9.136e-2) | 1(6.416e-2) | 2(1.322e-3) | 3(1.371e-4) | 3(2.682e-4) |04(1.152445335
e-06)
DF2| 8.149- 2.261e- 3.718e- 1.097e- 3.937e- 4.977080e-
3(5.478e-4) | 1(4.723e-2) | 2(2.567e-3) | 2(2.093e-4) | 2(4.765e-3) |04(1.187683974
e-19)
DF3| 3.358e- 1.460e- 1.447e- 3.386e- 1.162e- 5.533056e-
2(1.542e-2) | 1(1.323e-1) | 1(9.352e-4) | 2(2.023e-3) | 2(5.596e-3) |04(3.345533385
e-06)
DF4| 5.644e- 1.162e- |2.217e+1(2.8 2.069e- 8.138e- 1.158211e-
1(1.407e-1) | 1(1.222e-2) 49e-2) 0(2.686e-3) [3(1.5140e-4)|01(1.134807594
e-03)
DF5| 2.583e- 3.628e- |1.228e+0(2.1 1.455e- 6.832e- 5.450574e-
2(4.359e-3) | 1(9.444e-2) 29e-3) 2(2.501e-4) | 3(7.967e-4) |04(0.000000e+0
0)
DF6|1.209e+0(2.7|7.477e+0(7.3|4.581e+0(6.1|5.080e+0(5.32|  6.140e- 5.345085¢-
04e-1) 84e-1) 82e-1) 7e-1) 1(4.412e-2) |04(1.725729403
e-04)
DF7| 3.546e- 6.051e- |2.429e+1(4.4| 9.106e- 8.874e- 8.691893e-
2(9.378e-4) | 2(1.616e-2) 65e-2) 0(2.418e-1) | 2(3.261e-3) |04(1.564040065
e-04)
DF8| 7.954e- 1.569¢- 2.782e- 3.053e- 6.263e- 5.921441e-
2(7.347e-3) | 2(1.487e-4) | 0(5.910e-3) | 1(2.051e-2) | 4(6.123e-5) |04(3.573923657
e-05)
DF9| 7.540e- 4.713e- |1.078e+0(3.8| 8.732e- 6.755e- 1.114255e-
2(1.771e-2) | 1(1.280e-1) 07e-3) 2(1.473e-2) | 2(5.406e-3) |03(1.706886289
e-04)
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DF1| 2.775e- 1.816e- 2.631e- 2.652e- 2.124e- 3.108685¢-
0 | 1(1.289-2) | 1(1.075e-3) | 0(3.819e-2) | 0(3.667e-1) | 0(4.832e-4) |04(5.173776964
e-05)
DF1| 2.877e- 6.551e- 2.141e- 5.373e- 5.247e- 8.548749e-
1 | 1(1.657e-2) | 1(2.509e-3) | 2(4.126e-4) | 2(3.384e-4) | 0(4.549e-9) |03(2.970231882
e-03)
DF1| 2.448e- 1.231e- 2.261e- 9.526e- 2.924e- 4.331565¢-
2 | 0(3.281e-2) | 0(9.512e-2) | 0(4.656e-0) | 0(2.738e-3) |1(1.074e-2)*|04(4.730526588
e-05)
DF1| 1.542e- 4.057e- |2.107e+0(1.3| 2.239%- 1.500e- 6.686750e-
3 | 1(7.866e-3) | 1(2.940e-2) 0le-2) 1(5.951e-3) | 1(4.638e-3) |03(8.302527373
e-03)
DF1| 6.943e- 1.620e- 9.391e- 2.221e- 4.362¢- 1.936050e-
4 | 2(3.387e-3) | 1(2.177e-2) | 2(4.883e-2) | 0(4.208e-3) | 0(2.728e-4) |04(7.184213433
e-05)

Table 4.5: Mean and standard deviation values of MIGD obtained by six algorithms
for (n,, T;) = (10,20) .

Algorithms
Pro. | TTDMOEA PPS MOE MOEA/D-FD FBP TLBO
No.
DF1 5.809e- 2.479%- 7.599- 6.546e- 6.461e- 5.6939-04
2(1.091e-3) | 1(5.558e-2) | 3(1.148e-3) | 3(1.322e-4) | 2(3.306e-4) | (0.0000e+0)
DF2 8.197e- 1.508e- 1.060e- 9.222e- 3.182e- 5.1594e-04
3(2.152e-5) | 1(4.644e-2) | 2(6.531e-4) | 3(1.670e-4) | 2(2.665e-3) | (0.0000e+0)
DF3 8.895e- 1.662e- 2.527e- 9.217e- 6.927e- 5.7222e-04
2(1.175e-3) | 1(1.457e-1) | 4(2.578e-3) | 2(2.145e-3) | 1(8.572e-2) | (1.1877e-19)
DF4 | 5.588e- 4.808e- 2.145e+1(8.47 3.351e- 5.139%- 1.1906e-01
1(1.801e-2) | 1(1.193e-1) 7e-2) 0(5.528e-3) | 0(2.782e-1) | (1.5202e-17)
DF5 3.118e- 1.044e- 1.221e+0(6.43 2.580e- 2.219e- 5.6176e-04
2(2.894e-4) | 1(2.204e-2) 9e-4) 2(1.771e-4) | 2(4.738e-4) | (1.1877e-19)
DF6 [1.953e+0(2.5/4.032e+0(6.98|4.864e+1(7.94 |3.235e+1(1.07| 4.933e- |5.966829¢-04
70e-1) 1e-0) 7e-2) 2e+0) 0(4.439%¢-3) {(1.786581410e
-04)
DF7 7.67%- 8.795e- 3.310e+0(1.90 1.241e- 5.523e- | 7.832935e-04
2(9.822e-3) | 2(8.222e-3) Oe-4) 1(1.096e-2) | 2(3.420e-4) ((3.603890691e
-05)
DF8 8.472e- 1.390e- 2.481e- 2.374e- 2.210e- |6.143387e-(04
2(2.789e-5) | 1(3.522e-3) | 0(7.381e-3) | 0(4.063e-2) | 0(2.143e-5) |1.651854004e-
06)
DF9 6.534e- 2.970e- 2.176e+1(4.81 7.396e- 4.867e- | 1.135430e-03
2(1.396e-2) | 1(1.167e-1) 3e-3) 2(2.394e-3) | 1(4.271e-2) |(1.785319387e
-04)
DF10| 2.867e- 2.491e- 1.341e- 3.147e- 1.276e- |3.423863e-(04
1(1.412e-2) | 1(7.535e-3) | 0(2.384e-4) | 0(1.227e-2) | 0(3.241e-2) |5.211456590e-
05)
DF11| 2.507e- 7.639%- 8.318e- 8.480e- 6.782e- |5.803690e-(03
1(2.641e-2) | 1(1.988e-3) | 0(5.672e-3) | 0(3.787e-4) | 0(2.814e-2) |2.999773089-
03)
DF12| 3.36%e- 3.099e- 2.127e- 9.348e- 4.219e- |1.704444e-(03
1(1.431e-2) | 1(1.016e-0) | 0(2.826e-2) | 1(2.987e-7) | 0(5.384e-6) |1.324239560e-
05)
DF13| 1.715e- 2.996e- [3.108e+1(8.51 1.782e- 2.814e- |1.704478e-(02
1(2.208e-3) | 1(1.908e-2) 5e-2) 0(2.351e-3) | 0(7.854e-2) [8.152212585¢-
03)
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DF14

7.995e-
2(7.074e-3)

1.095e-
1(9.542¢-2)

0(1.476e-2)

7.231e- 2.427e-

0(4.208e-2)

5.674e-
1(1.472¢-4)

2.678613¢-(04
7.164322933e-
05)

The last type is the testing application is to apply a different values of T; which are

50 and 100 to see how the TLBO algorithms would react. Afterwards, an illustration

of the PS and PF with different values of generation counter such as t equal to 2.32,

1.16, 0.80, 0.60, 0.48, 0.40, 0.36, 0.32, 0.28, and 0.24.

Table 4.6: Mean and standard deviation values of MIGD obtained by TLBO with
(ng)=50 and (T,) = (50, 100) .

Problems T, MIGD (mean(std.))
DF1 50 5.555170e-04(1.275803424e-06)
100 5.550347e-04(1.079853918e-06)
DF2 50 4.977080e-04(1.187683974e-19)
100 4.977080e-04(1.187683974e-19)
DF3 50 5.543418e-04(1.064060698e-06)
100 5.557810e-04(1.875932157e-07)
DF4 50 1.167124e-01(5.018026136e-04)
100 1.164366e-01(3.912790726e-04)
DF5 50 5.451564e-04(2.423722409e-07)
100 5.451564e-04(2.423722409e-07)
DF6 50 5.625005e-04(1.634959366€-04)
100 4.894502e-04(1.300569701e-04)
DF7 50 9.758247e-04(1.076847121e-04)
100 1.060530e-03(6.514668883e-05)
DF8 50 5.729837¢-04(4.178359762¢-05)
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100 6.156862¢-04(2.100617468e-06)
DF9 50 1.128461e-03(1.754995529¢-04)
100 1.099799e-03(1.630417988e-04)
DF10 50 3.508884¢-04(1.294910333¢-06)
100 3.493700e-04(3.311522570e-07)
DF11 50 8.970584¢-03(1.588173787¢-03)
100 1.044719e-02(7.957767881e-04)
DF12 50 4.339508e-04(4.761091793¢-05)
100 4.328435e-04(4.715653091¢e-05)
DF13 50 3.078063e-03(1.798106942¢-03)
100 4.041419e-04(0.000000000e+00)
DF14 50 1.746447e-04(2.873042227¢-05)
100 1.477516e-04(1.425645886¢-05)

Problem ID: DF1, taut=50,t=0.48
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O 100} 3
= 1
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Problem ID: DF1, taut=100,t=0.24
2_? v v 1
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O
=
25¢
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Iteration
Figure 4.29: The Plot of PF with T,= (50, 100) for DF1
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Problem ID: DF2, taut=50,t=0.24
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Figure 4.30: The Plot of PF with T;= (50, 100) for DF2
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Figure 4.31: The Plot of PF with T;= (50, 100) for DF3
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Problem ID: DF4, taut=50,t=0.24
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Figure 4.32: The Plot of PF with T;= (50, 100) for DF4
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Figure 4.33: The Plot of PF with T;= (50, 100) for DF5
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0 Problem ID: DF6, taut=50,t=0.24
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Figure 4.34: The Plot of PF with T;= (50, 100) for DF6
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Figure 4.35: The Plot of PF with T;= (50, 100) for DF7
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Problem ID: DF8, taut=50,t=0.24
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Figure 4.36: The Plot of PF with T,= (50, 100) for DF8
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Figure 4.37: The Plot of PF with T;= (50, 100) for DF9

58



Problem ID: DF10, taut = 50, t = 0.48

Problem ID: DF10, taut = 100, t = 0.24
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Figure 4.38: The Plot of PF with T;= (50, 100) for DF10

Problem ID: DF11, taut = 50, t = 0.48
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Problem ID: DF11, taut = 100,t = 0.24

Figure 4.39: The Plot of PF with T;= (50, 100) for DF11
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Problem ID: DF12, taut = 50, t = 0.48
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Figure 4.40: The Plot of PF with T,= (50, 100) for DF12

Problem ID: DF13, taut =50, t =0.48
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Figure 4.41: The Plot of PF with T;= (50, 100) for DF13
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Problem ID: DF14,!aqt=SO.t=0.48
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Figure 4.42: The Plot of PF with T;= (50, 100) for DF14

t := 2.32, 1.16, 0.80, 0.60, 0.48,
0.40, 0.36, 0.32, 0.28, 0.24,

0.9 1

0.8 |- 1

0.7 1

06 1

0.5 1

f2

04 :

03 1

02 1

0.1 1

0 1 1 1 1
] 0.2 0.4 0.6 0.8 1

1
Figure 4.43: lllustration of PS and PF with different generation counter t for DF1
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Figure 4.44: lllustration of PS and PF with different generation counter t for DF2

t:=2.32, 1.16, 0.80, 0.60, 0.48,
0.40, 0.36, 0.32, 0.28, 0.24,

0.9 |- 1

0.8 |- 1

0.7 |- 1

0.6 |- -

f2

0S| -

0.4 - -

0.3 -

02 -

01 F -

o 1 L 1 L
4] 0.2 0.4 0.6 0.8 1

1
Figure 4.45: Illustration of PS and PF with different generation counter t for DF3
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t:=2.32, 1.16, 0.80, 0.60, 0.48,
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f1
Figure 4.46: lllustration of PS and PF with different generation counter t for DF4
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Figure 4.47: lllustration of PS and PF with different generation counter t for DF5
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Figure 4.48: Illustration of PS and PF with different generation counter t for DF6
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Figure 4.49: lllustration of PS and PF with different generation counter t for DF7
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Figure 4.50: lllustration of PS and PF with different generation counter t for DF8
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Figure 4.51: lllustration of PS and PF with different generation counter t for DF9
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Figure 4.52: Illustration of PS and PF with different generation counter t for DF10
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Figure 4.53: Illlustration of PS and PF with different generation counter t for DF11
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Figure 4.55: Illustration of PS and PF with different generation counter t for DF13

67



0 1
06 = i

o e e 06
o 04 05 02 o4 05
f2 f1 f2 f1

Figure 4.56: Illustration of PS and PF with different generation counter t for DF14

Even though the results of TLBO algorithm In table 4.4 are quite similar to FBP
algorithm, we can when the values of the (n, , T;) = (10,10) are the same and the
TLBO algorithm were assigned as the fixed parameters with very low population size
as compared to that of 1000 in case of FBP algorithm and the number iterations
f100(30¢, + 50) fitness evaluations where 500 fitness evaluations are conducted

before the initial environmental modification progress occurs.

So the multi-objective TLBO algorithm needs more iterations for consistency and has
converged the optimum result in hundred iteration only. Whereas, TLBO algorithm
has demonstrated its supremacy in standings of faster convergence proportion for
MOOPs through coalescing entirely the goals from teacher phase to the learners phase

with mutual procedure parameters bounds will be found that contents all the differing
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objectives. As TLBO is a parameter less algorithm. The results has united very fast
because with TLBO positive outcomes were just united and achieved for optimization

wherever the fitness distance association was high.

TLBO has outdone the five algorithms for seven benchmark functions: DF1, DF5,
DF6, DF7, DF11, DF12 and DF13 despite the fact it could be diverse with a proper
range of parameters is critical for the getting of the ideal response because its method
mechanism on the repercussions of the inspiration of a teacher on learners. Similar to
environment stimulated procedures, teaching-learning-based optimization algorithm’s
technique was built which utilize an inhabitants of resolutions to continue to the total

result.

Teaching-learning-based optimization algorithm customs the much more effective
remedy for the incarnation to alteration the current solution in the population, thus
continuing to increase the convergence rate. The most important feature that multi-
objective TLBO has no division to the population, it utilizes the average attribute of
the inhabitants for apprise such resolution by presenting the perception of number of

teachers.

Teaching learning based optimization algorithm displays a well act with less
computational power for problems of a high dimensionality by evaluating the outcome
of the sum of teachers on the fitness assessment of the experimentation and objective
performance on actual big measurement problems like DF10, DF11, DF12, DF13 and
DF14. TBLO algorithm is made for minimization of the entire operational period of
all key transmits. For the evaluation results documented in Table 4.3, Table 4.4 and
Table 4.5 implies that presume nothing exists as the optimal values for all the test
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functions like DF2 and DF3 are not affected the time parameter value with problem
DF6 and DF8 are barley affected but DF5 and DF9 are steady while other dimensional
cases like DF10, DF11, DF12, DF13 and DF14 are affected by this parameter too

much.

Although it is not always the best, this testing experimentation funds that TLBO has
superior performance in comparison to other options when with the proposed FBP.
Separately from the above examination, to consider the presentation of the compared
dynamic multi-objective algorithm PPS, TrDMOEA, MOE, MOEA/D-FD and FBP,
They are all built with the same reaction technique used in TLBO that simulates the
outcomes comprise mean values, standard deviation evaluate problems based on
MIGD results which MIGD is more consistent to differentiate among algorithms to
make statement of the overall effectiveness of the compared machine learning
algorithms because of the influence of the changes of the frequency which make it
difficult to find a descent value calculations to the POF where TLBO is less responsive
and vulnerable to the frequency and severity of change. That’s why it displays more
consistent capability and mends quicker from dynamic environments adjusts that

shown in the plots for the CEC2018 dynamic problems.
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Chapter 5

CONCLUSION

The objective of this thesis to test with the most recent development TLBO. It mergers
the Teacher and Learner dual essential stages for the multi-objective resolve problems
with diverse features, that consequence in total ideal resolutions. Many publications
have addressed in their discussions that TLBO is an inventions for superior or
comparable results that has greater speed over others evolutionary algorithms, which
TLBO has less parameters because of that, it can be more simply functional by experts
for explaining problematic manufacturing design complications. These entitlements
were retested during the experiment on CEC2018 proposed dynamic benchmark
problems. In this thesis, the test was made within the elementary Teaching-learning-
based optimization algorithm and demonstrated such an efficiency thanks to the

algorithm’s design and its structure.

The application of Teaching-learning-based optimization technique has wanted to
keep its exact constraint fewer notion in operational processes or else the operator
would be confronted with the load of alteration TLBO precise constraints with the
general controller constraints. There is no optimization algorithm available in the
researcher domain has ever necessitated that it is the most effective optimization
algorithm currently in use neither TLBO algorithm but as a fact TLBO algorithm has
showing that it is straightforward to apply because it has no limited or boundaries

which outlines the possibility of the optimization process and it delivers the optimal
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consequences in a reasonably less number of assignment appraisals. So, there is no
requirement to have any uncertainties on these features, as the TLBO algorithm has
recognized itself with a different point of view when it comes with testing with

benchmark problems.

Throughout our testing procuress the algorithm results in outcome non-dominated sets
near to the true Pareto resolutions relatively with improved the range amongst results
set. Numerical trials prove that multi-objective teaching learning based optimization
outdoes the other algorithms mentioning to examination correctness and junction
degree. It gets the optimal resolution with minimum computer work that shows its
strength in comparison to the other MS. It has verified its control as far as speed
convergence frequency as newly industrialized algorithm is successfully applied to
cases like the dimensionality problems similar to the last ones in CEC2018 problems
like DF10 , DF11, DF12 , DF13 and DF14. For the TLBO algorithm path of the
processing to get to the solution that is upgraded and compressed in the teacher phase
along with the learner phase so if we can put this the multi-objective TLBO computed
and calculated two times multiple by the population size multiple by the number of
generations with receiving the total function evaluations performed for duplication

removal.

Rao and Patel utilized that formulation method to sum the several system operates
assessments in the meantime pointing experimentations with TLBO algorithm. As that
component assessments obligatory for replication subtraction so Rao and Patel (2012)
rationally come close to the equal for diverse population sizes while no one of the
previous researchers have come close to the he idea of component assessments are

necessary towards removing duplication. While associating the potential effectiveness
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of diverse algorithms on numerous benchmark utilities. The new forward thinking
optimization Teaching-learning-based technique that has been created on the outcome
of the impact of a tutor on the outcome of students in a classroom. The algorithm has
proven itself in the engineering fields because it can be utilized in a high amount of

constraints and multi-objective function.

In the future, we'd want to rate TLBO’s consideration consequently manipulation
controls by involving created statistics with different settings, and associate them with
other optimization algorithm to classify the true assessment and misuse influences of
TLBO about the algorithm’s internal mechanisms and an improved justification of the

obtainable results may be given to the field of scientific research.
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