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ABSTRACT

The aim of my thesis is to examine the Bernstein Operators, which are linear positive

operators and the properties of the New Generalized Operators.

My thesis consists of four parts. The first part is an introduction and gives information

about the parts that we will examine in the following chapters.

The second chapter is to give more information about all the fundamental theorems
and properties. In this section, the basic theorems used in the thesis are proved and

explained with examples.

In the third part, Korovkin Theorem’s proof and Bernstein Operators and

approximation propeties and converges uniformly of Bernstein operators are given.

In the last, new family of generalized Bernstein operators' definition and some
important theory of convergence approximation of functions are given. After that we
will examine some important results regarding the rate of converges and predictions
of new generelized operators, that are appliactions of the properties and formulas
which are foretold. Lastly, we examine the shape preservation properties and complete

the thesis.

Keywords: Modulus of Continuity, Rate of Converges, Lipschitz function, Korovkin

Theorem, Bernstein Operators, Shape Preserving.



0z

Tezimin amaci lineer pozitif operatorler olan Bernstein Operatorlerini ve yeni

genellestirilmis operatorlerin 6zelliklerini incelemektedir.

Bu tez dort liniteden olugsmaktadir. Birinci tinite giristir ve bundan sonraki ¢ tnitede

kullanilacak olan temel kavramlar agiklar.

Ikinci {inite, tiim temel teoremler ve dzellikler hakkinda daha fazla bilgi vermektir. Bu

boliimde tezde kullanilan temel teoremler ispatlanmistir ve 6rneklerle agiklanmustir.

Uclincii iinitede Korovkin Teoremi ve Bernstein Operatdrlerinin ispat1 ve Bernstein

operatdrlerinin yaklasim 6zellikleri ve hizlar1 verilmistir.

Son iinitede, genellestirilmis Bernstein Operatdrlerinin yeni bir ailesinin tanimini ve
fonksiyonlarin diizgiin yakinsama yaklasimi teorisinde énemli bir rol oynayan bazi
temel Ozellikleri veriyoruz. Daha sonra, ilk boliimde hatirlatilan 6zelliklerin ve
formiillerin dogrudan uygulamalari olan yeni dogrusal pozitif operatorlerin yakinsama
oranlar1 ve tahminleriyle ilgili bazi1 6nemli sonuclar1 inceleyecegiz. Son olarak, yeni

operatoriin sekil koruma 6zelliklerini inceliyoruz ve tezi tamamliyoruz.

Anahtar Kelimeler: Siireklilik modiilii, yakinsama orani, Lipschitz Fonksiyonu,

Korovkin Teoremi, Bernstein operatorleri, sekil koruma ozellikleri.
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Chapter 1

INTRODUCTION

The main subject of my thesis is to study Blending type Bernstein operators and the
approximation properties of a class of these operators. In approximation theory, which
is a very important area of mathematical analysis; it is intended to obtain a
representation of an arbitrary function, means other simple and more useful functions.
For this, first of all, introductory information and some basic concepts are given in the
second chapter. This general information section includes what is a linear positive
operators, basic properties and concepts of the theory of approximation, the modulus
of continuity and their properties. Most of the concepts are supported with examples
for better understanding of the subject. As we finish the second chapter, all the terms

that we will use in the third and fourth chapters are explained.

The third part started with the proof of Korovkin theorem. In 1885, the German
mathematician Weierstrass proved the existence of at least one polynomial that
converges to all continuous function on a finite interval. The difference of the theorem
of Weierstrass approximation from Taylor’s theorem, which is expressed as a function
with enough derivatives, locally approximated by Taylor polynomials is that it is
applied to a continuous function which isn’t necessarily differentiable and there is a
polynomial that converges to this function over the [a,b]. Using this theorem of

Weierstrass, Bernstein showed that Bernstein polynomials on [0,1] for the arbitrary



function fis continuous on [0,1]. Studies of Bernstein polynomials contributed to the

formation of the theory of linear positive operators in approximation problems.

Finally, in the fourth part, we will explain the new generalized Bernstein operators.
For this, we will explain the monotonic and convex properties, shape preservation. The
basic aim in this chapter is examine some important results regarding the rate of

converges and predictions of the new generalized operators.



Chapter 2

PRELIMNIARIES

This chapter is devoted to the basic concepts and facts that are needed for the all thesis.
The present thesis is related with positive linear operators and these operators are based
on functions, function spaces and some special definitions and theorems. You can find

the basic definitions and properties related with all of these.
2.1 Space of the Continuous Function in a Finite Range
In the section we introduce and discuss the main definitions and properties about the

concept of continuous functions. Some definitions are illusrated by examples for the

better understanding of readers.

Definition 2.1.1: Assume h(x) is a function defined on a domain which includes the
point »,. A function h(x) is continuous at » = x,, if it satisfies the following
conditions:

I.  h(x) exists.

ii. lim h(x) exists.

n-xg

iii. lim h(») = h(,).

HoH)

if >0

Example 2.1.1: h(x) = |x| = {_}; <0

i. h(0) =0,soitisdefined at » = 0.

ii. lin?) h(»)=0, so limit exists.
T



iii.  limh(x) = h(x,) = 0.
»—0

The given function is continuous as it satisfies all conditions.

2x+1, ifr<1
Example 2.1.2: h(x) =142, ifx=1
—n+ 4, ife>1
i h(1) = 2,soitis defined at » = 1.
ii. lin} h(»)=3, so limit exists.
H—

i, lim hGo) # h(1).

Therefore, h(3) isn’t continuous at » = 1 since lirq h(3x) # h(1).
H—

Definition 2.1.2: Assume E is a non-empty subset of Rand {h,,} is a real valued
functions where m > 1 and h described on E. {h,,} is called pointwise convergent to
h on E if V x € E the sequence {h,,(x)} of real numbers converges to the function
h(»).
It means, V »x € E, 3 € > 0 and m,(3) such that;

|hm(3) — h(30)| <&, vV m = mg(x).

The notation h,, — h is used to denote the pointwise convergence of {h,,}to h.

Definition 2.1.3: Assume E is a non-empty subset of Rand {h,,} is a real valued
functions where m > 1 and h described on E and m is independent from . {h,,} is
called uniformly convergent to h, if ¢ > 0, 3 m, such that;

|hy (30) — h(%)| < &, Vvm=my,n €EE.

The notation h,,, =3 h is used to denote the uniform convergence of {h,,} to h.



Example 2.1.3: Forany » € R

1

i () = m(1 + »#2)

IS given.

I < 1, V¥ # € R we have;

Since o) =

1

|hm(%)—h(%)| = m—o SB

So, for a given ¢ > 0, choose N > % which is independent on » € R, then
| hy (3¢) — h(»0)| < &,

V # € R. Therefore, h, 3 h.

2.2 Linear Space

In mathematics, linear spaces are used for different purposes. Mostly it is used within

functional analysis. In this section, we will examine linear spaces in detail.

Definition 2.2.1: Assume X is a set and K be a scalar field. If two operators addition
and scalar multiplication
+: XxX - X,(t,y) > n+y,
-1 KxX - X, (y, #) - yx, satisfies the following conditions;
Vx,y,z € Xandy,¥d €K,
. (t+y)+z=n+(y+2),

. x+y=y+=xn,

ili. Vx€eX30€Xsuchthat»x+0=0+ x = ,

iv. Vx€eXandx #0,3(—x) € Xsuchthatx+ (—x)=(-»)+x=0

V. y(e+y)=vyxtyy,

vi.  (y+8)x =vyx + 6x,



vii.  y(6x%) = (y8)x,
viii. 1.y =xn.
Then X is called linear space over the scalar field K. If K = R, then it is called real

vector space.

Definition 2.2.2: Assume X is a vector space. A function with real value,
n - |l
for »,y € Xand y € M is called a norm over X, if it satifies;
i. |l#]|=0and]|x#|]|=0<x=0.
i sl = lylllall.

i e +yll < Il + lyll.

Example 2.2.1: Let |x| denote the absolute value of each » € R. The set of R is a
vector space on R and function
% - x|

is a norm on the vector space R.

Example 2.2.2: For all s = (3, 5, ..., #,) € R, this transformation,
1 = |I#llmax = max{ |»] : (1 <i<n)}

is a norm above R™.

Definition 2.2.3: Let X = C[a, b] be the set of all continuous functions defined on
[a,b]. Then C[a, b] is defined with following operations:
V f,g € Cl[a,b]and VA € R

L+ 9® = fk) + g(k).



i, fOK) = AfK).

Therefore, the vector space of C[a, b] is called space of continuous function.

Definition 2.2.4: The linear space X, which is defined norm on ||.||, is called the

normed vector space and shown as (X, ||. |]).

Example 2.2.5: Let C[a,b] denotes the space of continuous function space which are
continous on [a,b]. Since [a,b] is compact and f is continuous it takes the maximum

and the minimum values. Therefore we can defined the norm;

Iflic = max |G, on Cla,bl

Definition 2.2.5: Assume that fe C[a, b] and f,,, is a sequence of functions in C[a,b]
then, the f,, converge uniformly to the function f on [a, b] if and only if it satisfies;
V % € [a,b]
| fn () = f(0)| < Mg,
where g, IS a sequence which converge to zero and M > 0. This convergence is
denoted by;
fmn Go) 3 £G0).

2.3 Operators

An operator is a special kind of function. Operators take a function as an input and
give a function as an output. Therfore operators are more general objects than
functions. In this section we will examine operators, which are linear and positive and

some of their basic properties that are needed later.



Definition 2.3.1: Assume X and Y are function spaces. If there is a function L that
corresponds to a function g in Y space for any function f taken from X, it is called an

operator on X and for each f € X it is denoted as

L) = gGo).

Example 2.3.1: The mapping A: C([0,1],K) — C([0,1],K) defined as A f(x) = f (),

f € C[0,1] is an operator.

Definition 2.3.2: Assume X and Y are two function spaces and L is the operator
defined in L:X = Y. If f and g are any two functions taken from X and oy, o, €
R be any numbers, L is called linear operator if it satisfy the condition;

L(oyf + azg9) = a1 L(f) + a;L(g).
The X is called the domain of the operator L and shown as X=D(L) and Y is called the

range of L and shown as R(L).

Example 2.3.2: The operator T defined by T (34, #,) = (35, %) is linear since;
T(yx + By) = T(yGe1, 72) + 8(y1,52))
= T(y#y + 8y1, vz + 6y2)
= T(yx, + 8y,, v, + 6y1)
=y (o, %1) + 8(y2,¥1)
=yTxn + 8Ty

istrueVy,d € Rand x,y € R? where x = (3¢4,3,) and y = (y;,y3).

Definition 2.3.3: Let X* and Y* be the spaces of positive-valued functions taken from

the space X and Y, respectively. That is



Xt ={feX:f(k) >0,vk }
Yr={geY:g(k)=0Vk }.
If the operator L defined on X* maps each positive function into a function g in Y™,
that is,
L(f; %) = 0 when f(k) >0,V k € D(f)
then the L is called a positive operator.

It means, if L: X* ¢ X - Y* c Y, then it is called linear positive operator.

Example 2.3.3: Szasz operators

[0e]

=) 52

j=0

defined on C[0,1] are linear positive operators.

Forall a;,a, € R and for all f;, f, € C[0,1], we have;

(m)!
j!

Sm(auf1 + axfz;2) = e m%Z(%ﬁ + azfz)( >

= 01 Sy (f15 %) + 0510 (f25 %)
S0 S, is linear.

(mz)

Foranyj € Nand x € [O,A] > 0andforf > 0,S,,(f;%) = 0. Therefore S,

IS positive operator.

In the present part we shall mention two important properties of linear positive

operators that are used in the proofs of some important theorems in the later chapters.



Property 1: Linear positive opeartors are monoton. It means, f(x) = g () implies that
L(f;#) = L(g;»).
If, Vx €R, f(3) = g(») then f(3) — g(x) = 0.
L is a positive operator so we can say,

L(f—g;%x) =0
also L is a linear, so

L(f;) — L(g; %) = 0,

and

L(f;2) = L(g;»).

Property 2: Let L be a linear positive operator. Then it satisfies the inequality;
IL(f; 20| < L(If]; 20).
VkE [ab], — If] < fk) < [fK)].
By using monotonicity of the linear positive operators, we can write;
—L(fl; ) < L(f ) < L(If; ).
Therefore we get;

IL(f; 2)| < L(Ifl; ).

Definition 2.3.4: If f has derivatives of all orders at » =x,, then the Taylor series for

the function f at », is,

Zﬁ(’fo) O — o)),
=

When » = 0 we get;



and this series is well-known Maclaurin series.

Definition 2.3.5: Assume that L:C[0,1] - C[0,1]. Holder’s inequality for p,q >

1,14 é =1andf,g € C[0,1], € [0,1] is provided as follows;

O |=

1 1
L(Ifgl; %) < LUfIP; 2)PLIf19; 20)9.

This is known Cauchy Schwarz when p =g=2.
2.4 Rate Of Convergence

Theory of rate of convergence explores whether a function in a given space can be
approximated with a family of functions belonging to the same space with good
properties. There exists an iterative algorithm that is trying to find the maximum or
minimum. In this section we will study how long it will take to reach that optimal value

by using rate of converges.

We can find rate of converge to series a,,, (m — o) which satisfies inequality;

Ly (f; ) — fGO)| < ca,,,  c € RY.

Definition 2.4.1: Let f € C[a, b], for { > 0,

w4 =w(@) = max |f(k) - fGo)

»,ke€[a,b]
[k—x|<

The function w({) defined in this way is called the modulus of continuity of f.

Theorem 2.4.1: The modulus of continuity w(f; {) satisfies following properties:
. w( ¢ =0.
. If{ <¢ thenw(f;¢) < w(f; $,).

Il. l{liréw(f;{)zo.

11



IV. Form€eN,w(f,m{) <m.w(; ).
V. ForAeR",w(f;A) <A+ Dow(f; .

VI f(K) = fG)] < w(f; [k —x)).

[k—2|

VIL 1500 = fGol < (R4 1) 0 0).
Proof:
I. Itisclear that it is maximum of absolute value, by the definition of modulus of
continuity.
Il.  For {; < {,, theregion of [k — x| < ¢, is greater than the region [k — x| < {;.
Proof is clear, such that when region grow then the supremum grow.
I1l.  fis continuous, V € = 0,when |»x; — »,| < n, there exists at least one n >
0 such that;
If(21) — fG2)| < .
So,
sup|f(x1) — fGr2)| <.
By the definition of w(f; n);
w(f;n) <e
Use (1) for { < n, we can say that;
w({;{) <e

IV. By the definition of the modulus of continuity for m € N. We can say that;

w(f;m{) = supb] If(k) — fGo)l.

nK€la,
|k—3|<m{
If
|k — x| < m(,
then

#—m{ <k<x»+md

12



By choice k = » + mbh, for |h| < ¢ we can say that;

w(f;m{) = sup |f(%+mh) fOOl.

»,k €[a,b]
[h|=¢

On the other hand;

sup. [fG¢+ mh) ~ f(e)| = sup 2[f(%+ G+ Dh) = e + ]|

nk€lab] wkelab
Ih|<¢ |h|<c J=0

Apply the triangle inequality to the right of equation, we get;

5w WGk mh) = fGIS Y sup IfGco+ G+ DR = e+ jh)
Ihi<¢ =0 ihisg

<5 +o(f58) + -+ o(f;)
= mw(f; {).
V. If the whole part of the number A € R* is denoted by [|A]], the inequality
[IAl]] < A < [IAl] + 1 is valid by the definition of the integer function. Since
[|A]] is the positive integer, if the property (IV) is applied to the right side of
inequality,
(@ [IAM] + D¢ < ([IM] + Do (f; O
IS obtained.
On the other hand, since [|A|]] + 1 <A+ 1 for V A € R™ then;
@G AT+ D¢ < A+ Dw(E D).
Using (1.4.1) from here, we can write
w A = A+ Dw(f )

VI.  Ifweselect { = |k — x| inexpression w(f; (), we get;

w(@ k=) = sup If(k) fOOI.

}{E a
So proof is clear that supremum of [f(k) — f(3¢)| is w(f; |k — x|).

VII.  From (VI), we can write;

13



|k — x|
() = fGOl < w<f; 7 C)-

Using the property (V) of this inequality the proof is clear as follows;

|k — x|
¢

() — fGo) S( +1>wG;C)-

Definition 2.4.2: For 0 <a <1and N > 0;

|f(k) — fG)| < NIk —»]*.
The functions satisfying the above condition are called Lipschitz class functions. The
set of all Lipschitz class functions are shown as lipy(a). Moreover, N is called

Lipschitz constant and f is Lipschitz class function i.e. f € lipy ().

Example 2.4.1: If w(f,{) < N¢ for some constant N >0, then Lipschitz condition is

satisfied for f; the least value N satisfying such inequality is the Lipschitz constant of

f.

Example 2.4.2: If w(f,{) < N¢* for some constants N >0, a € [0,1] then f satisfies

the Holder condition of factor «.

14



Chapter 3

KOROVKIN THEOREM AND BERNSTEIN

OPERTATORS

The subject of linear positive operators and approximation in contemporary functional
analysis and theory of functions is a research area that has emerged in the last sixty
years. At present, approaches to the theory of approximations are mostly based on real
valued continuous functions with the help of algebraic polynomials. Bohman stated
and proved that linear positive operators only need to fulfill three conditions in order
to converge properly to a continuous function in the closed interval [0,1], (Bohman
1952). Later in 1953, Korovkin proved the same theorem by expanding the range for
operators of integral type, (Korovkin 1953). Therefore this theorem is more commonly
known as the Bohman-Korovkin theorem. After that, Korovkin gave a very important
theorem for the approximation of linear positive operators, since Bernstein operators
are also linear positive operators, studies on this have gained momentum. The
Bernstein operator By, (f; ) is an operartor of », which order is m™. It was constructed

by Bernstein to give a simple proof of Weiestrass’s approximation theorem.
3.1 Korovkin Theorem

In 1952, H.Bohman studied the problem of converging linear positive operators in the
form of sum to the continuous function fin [0,1]. However, the value of the operators
investigated by H.Bohman is independent of the values outside the [0,1] range of the
function f. Therefore, in 1953, P.P.Korovkin proved a general theorem and showed

that the conditioning expressed by Bohman is also valid in the general case.
15



Definition 3.1.1: Linear Positive Operator Series L, (f; »#) are uniformly converges to

f if and only if;
Ly (1) = 1, (3.L1)
Ln(K; %) 3 », (3.1.2)
L, (k% %) = #2. (3.1.3)

Theorem 3.1.1: If a linear positive operator L, (f; ) satisfies Bohman's conditions on
closed interval [a,b] when m — oo then for any continuous function f on [a,b] then
Lin (5 20) =3 f(0).
Proof:
Let’s f € C[a,b]. ThenV &> 0, 3¢ > 0suchthatVk € RandV x € [a,b]
If(k) — fGOl <e, (3.1.4)
provided that |k — x| < .
Moreover, V % € R, 3 N > 0 such that;
IfGOl < N.
Since f is bounded and apply the triangle inequality, if |k — x| = ¢ we get;
If(k) — fGol < [fR)] + [fG)| < N+ N < 2N.
and
k—xl=2¢ = (k-x)?=

So,

k2’51 o 2 (k=% 2 2N, (3.1.5)

S
By using inequality (3.2.4) & (3.2.5) we get;
If(K) — f(0)] < e+ 2N < a+2<—l;l(k—x)2. (3.1.6)

Since L,: C[a,b] = C[a, b] is linear positive, it follows that;

16



ILin (5 2) — FGOlcrap) = L FR) — FGo); 20) + FGo0) (Lin (15 20) — Dllcpa by

< Il (FR) — £Go); 2 llcpapy + 1fllcpapg 1Lm (15 2) — Ll ca,p)

< L (1K) — FGO; #llcrap) + Nfllcrap) 1Lm (15 2) — lcfap)-
Then from (3.1.1), when m — oo, 3 g, such that e, = 0. So;

Ifllcpapy 1Lm (15 20) — Lllcrap) < &m-

In this case;
ILin (5 2) = fGOlcrap) < L (K — FGOL; 2 llcpap) + €m 3.1.7)
can be written.

Let us show that;
1im [[Ln (1K) = fGAL; 7 [l cpapy = 0
By using inequality (3.1.6) and (3.1.7) we have,
F00) ~ FOOl < &+ 2 (k=)
Taking Ly, for both sides,

Ln(IfK) = FGOL;2) < Ly (8:2) + L (55 (K =200 %)

2N

= el (1;%) + 22

L ((k— n)?%; %)
= €Ly, (1;%) + Zq—lem(kZ — 2kt + 123 3)

= el (1;%) + i—’ij(kz; %) — %me(k; %) + i—?szm(Lx)

E—T[Lm(kz;%) — 1% + 1% - ﬂ%[Lm(k; n) —n+ x|

=g[L,(1;0) =1+ 1] + 2

+2<—?%2[Lm(1;z) —1+1]

= elLimn(1520) = 1] + £ + 5 [Lin (% 20) = 52 + 2506 = ZtlLg (i ) = ]
—‘;—?%2 + %%Z[Lm(l;k) - 1]+ 2{—?%2

=e+ (sm + i_—l:}fz) [L(1;2%) — 1] + i_—l:[Lm(kz;%) —n?] — é—?%[Lm(k; ») — x].

17



vx € [a,b], g) < sup Ig(%)l =b

uea

and

h(x) < sup |h(#)| = c,

n€la,b]

then;

L (If(K) — fGO)1; %) < €+ b[Lip(1; %) — 1] + P L (K% 2¢) = 2] + c[Luy (k; 20) — 5],
Taking maximum norm we get,

L (If(K) = G520l cab) < €m + blIL, (1;3¢) — Lllcpap) + > 1L (%5 20) —

—3%|lcfap] + CllLm (ks %) — 3¢l cap)-
Then by using Bohman’s conditions;
I Lin (If(K) = FGOL; 20l cpap) < €n

hm ”Lm(lf(k) f(}f)l J'f)”C[ab = 0, since lim €m = 0.

m-—oco

Also it satisfies inequality (2.2.7)

1L 2) = 0O,y < 1L (GO0 = FOOLs x|, + e

1 (5520 = OOy =
So the Korovkin Theorem is provided.
3.2 Bernstein Operators

The main result in the development of the theory of approximation, founded in 1885
by the German Mathematician K. Weierstrass, for each f € C[0,1], 3 a polynomial

P(») such that for any & > 0, the assertion that,

fG) =Pl <e

18



x € [a,b] is true. This theorem is related to the fact that the space of polynomials is
dense in C[a,b]. Weierstrass’s first proof was quite difficult to understand because it
was complex and long. Such complexity has motivated many mathematicians to find

easy, more simpler and understandable proofs.

The Bernstein operators are given as follows;

m

BuaCfi2) = D () buny 0.

j=0
For any function f defined in [0,1] were introduced in 1912 to give a simpler proof of
Weierstrass’s approximation theory. It was created by the Russian mathematician S.N.

Bernstein. The method of defining Bernstein polynomials helped to define many new

sets of polynomials that are approximating to continuous functions.

Definition 3.2.1: Assume f € C[0,1] is given. For 0 < » < 1, m*™" order Bernstein

Operators are defined as;

m

B i) = Y F(5) by 00

j=0
where
bumj (G0) = Chydd (1 — 5™,
and
ji /My m
Cm = (j ) T (m-jyr

The basic structure of these polynomials depends on the binomial formula;

m
(a+b)m= Y C_alpm
j=0

19



where a,b € R* and m € N. If a = »x and b = 1 — x are taken with » € [0,1] in this

formula, we get;

Ge+1—)m =" =1= ) C_ (1 —x)m,
%

Lemma 3.2.1: Bernstein operators are linear and positive.
Proof:

VY a,,a, € RandV fi, f, € C[0,1] there exists;

Bm (ayfy + apfa; %) = Z(%ﬁ + azf>) (%) Ci’n%j(l — %)M
j=0

= a, zm:fl (L) el —s0m 4, ifz (L) chia sy
=0

=0
= a;Bpn (f1; %) + a;Bn (f2; 20).

So By, is linear.

For »x €[0,1],5(1 —3)™J >0and for f>0,B,(f;%) =>0. Therefore B, is

positive.

Theorem 3.2.1: Let’sfbe continuous then Bernstein operators are uniformly
converges on [0,1] to f(x).
In other words if f € C[0,1], then;

Bn(fix) 3 f(x), xe€][0,1].

Proof: Now, let us investigate the conditions of the Korovkin’s;

m

Bm(1;20) = Z (r;n) W(1 =)™

j=0

=1 —-x+x)m

20



B (k%) = i]_z(r]n) (1 — )™
< (Tt

m
ji—1 - . . — . .
=y I (T ) = 0m + 23 (M et - m)
£ m j—1 m . j—1
]:

z(m—l)m m-—2\ ., e m—1\ . -
=X Z( )}{]_ (1—1{)m_1 + — ( . )%1(1_%)m— —j
j=2 j=0
m-—2
m-—1 -2\ .M
= DS (M B om e
j=0
m-—1 74
:KZQ(l_%+K)m—2+_
m
m-—1 H
:]{2( )+_
m m
2
H—xu
=%+
Therefore;
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B,(1;%) =1
B (k;») = x

n — un?

B (K% %) = x% +
Then, it shows that;

1- nlliirgolle(l; n) = o3 =0

2- nlliLrgOIIBm(k; n) — #|lcro,1; =0

_ 2
3- lim ||By (K% 30) = #%|lcpo,1) = lim ”%2 +u—x2”
m-oo ’ m-—>00 m

C[0,1]
, n— n? 1
= lim max = lim —=0
m-oo 0<x<1 m m-o 4m

For f € C[0,1],

IBm (f; 3¢) — fGllcro,1 — 0,

by the Korovkin Theorem.

Theorem 3.2.2: B, (f; %) defined in the theorem (3.1.1), the inequality
3 1
B 20 — 0Ol < 5 o (%)
is provided for the continuous function f on the [0,1].
Proof: Let by, ;(») = (T) # (1 — )™, from the definition of Bernstein operator

and linearity property;

B 20) = G| = if(la) b GO) = )
]

j=0
-5 <f () —f(%)>bm,j ()

j=0
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gi|( ) = 560)| b 00

j=0
(3.2.8)

is obtained. By choosing k = i in the property (VI1) of the modulus of continuity;

(L) - fo0] < (lm |+1>w(f<m>

can be written. If we write this instead in (3.2.8) we get;

B (f; 20) — f(%)l<z<m |+1>w(fcm>bml<x)

=w(f;5m)l (%)+—2\’ x\bm,j(n)‘

Apply the Cauchy Schwarz to the second part of the sum, we get;

1

m 2
B0 = 5CO1 < 0G| 1+ = (bin00) (Z( x) m,,-(x)>
]

Nlr—\

In this case;

no :
B (5 20) = 0O < 0(f Gm) ”%(Z (Z-x) bm,,-(x)> .

j=0

(3.2.9)

m . 2
Since Z (% — %) bm,j(0) = By ((k— #)?%; %) and By, is linear, then;
=0

B ((k — 2)%; ) = By (kK?; %) — 2By, (K; %) + 2B, (1; %)

n(l—x
=xn?+ ( )—2%2+x2
m
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_n(1—3)
=—

If we write this instead in (3.2.9) we get;

1+—

1Bm (f; 70) = fGOI < w(f; (m) v

1Jxm—u1

V x € [0,1] it becomes;
Jr(l—n) < gnaxlwlx(l —n) = %
<u<

From here,

IBm (5 2) — G| < w(f; ()

JERN
r 1

is obtained.

T ¢m = mz is chosen, we get the inequality;
-1 1
IBm(f; %) —f(G)]| < w (f;m 2) (1 +§)

3 1
= — . 2.
zw@m )
This inequality shows us that the rate of converges of the operator By, ; to the function

1
f, with » € [a, b] is smaller than the rate of converges of m™z to 0.
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Chapter 4

BLENDING TYPE BERNSTEIN OPERATORS

Blending type operators are the presence of more than one operator in one place. In
this chapter, we examine the new generalized Bernstein operators with parameter a
and their convexity, monotonicity and other important properties.

4.1 The New Generalized Bernstein Operators

Bernstein polynomials and their modifications have been intensely studied because of
their useful structure. Chen et al. introduced a generalization of the Bernstein
operators. They proved the rate of convergence and shape preserving properties for

these operators.

Definition 4.1.1: Assume that fis a continuous function on [0,1]. ¥ m € Z* and any

real constant a € [0,1], the a — Bernstein operators are defined for f as:
T %) = X0 P (0) (4.1.1)
where f, = f(i) Forj € [0,1], P{¥ () is defined by P () = 1 —, P{3 () = »

and

P00 = [(m ; 2) (1 - a)n + (‘]Tl__zz) - -0+ () wnd -

n)] W1 —y)m-i-t
The a — Bernstein operators include classical Bernstein operator when a = 1 where;

p) = (m) W —w)m i,

m,j J
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Therefore a -Bernstein operators have following property;

Toa G0 = 6 ()00 =90™ = B0,
i=0

Lemma 4.1.1: For all m € N,m > 1 and independent of o, T, o(f; ) satisfies

following properties;
l. f is interpolated by the a —Bernstein operator at both endpoints [a,b];
Tin,o(f; 0) = £(0) and Ty o(f; 1) = f(1).
Il. The a — Bernstein operator is linear operator, such that;

Tm,a(ﬁf"' yg) = BTm,(x(f) + YTm,a(g) (4.1.2)

v f,g € C[0,1] where defined on [0,1] and all B,y € R.

We can express (4.1.1) in the following form to discuss other properties of these

operators;
Tma (i) = (1 — ) (ky +ky) + aifj (r]n) W(1 — w)m
j=0
where
ky = ifi (m ]_ 2) W (1 =)™,

o=y 5 (72, )#a—om,

When j =m in k,; and j =0 in k,, they are both zero. They can be expressed as;
m-—1

k= ("7 %) —omi,

J=1
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j=1

m-—2

m—Z)
-1

where ( =0ink; and ( ) = 0 in k,. Replace j by j +1 in the k,, we

get;

m-1 5
m — . s
ky; = ij+1(j_2)%1(1_”)m =1,
j=1

Therefore we obtain;

m-—1

ky +k; = Z [-fl (m ; 2) + fj+1 (m 2)] W (1 =)™,

j=

Seeing that;

We have

m-1 1
k; +k, = z [Aj (m ]_ )] W (1 —x)™-1
=1

(4.1.3)

Where A; is a linear combination of f; and fj,{such as;

A = (1 —ﬁ)fj +—Lfiun. (4.1.4)

Theorem 4.1.1: We can express T, ., (f; ») as:

ma(f%)—(l—a)z ( : )u’(l x)m11+a2f] (1 — )™

(4.1.5)

where
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j j
7\j2(1_m—1>fj+m—1fj+1'

Lemma 4.1.2: The following identities are valid for these operators.
i Tmo(l2) =1 (4.1.6)
i, Thelkn) = (4.12.7)
Proof:

I. When we use (4.1.4) and (4.1.5), if f(>) =1 then f; = A; = 1 and

T2 = (1 - ) mz_l (M7 H)Ha - ai (™)1 =0y
j=0

j=0

Therefore, for the constant function 1 is, this operator;
m-—1 m
T (1330 = (1= 00 ) Py ) + @ ) Pyj0) = 1
=0 =0

i, If f(x)=x, then f; = L. So;

m m—1 m m-—1

j j i+l j
;\-=(1——> =
] m-—1 +

and

j=0

+ ai % (T) W (1 =)™

j=0

m-—1 i m
) )
=(1—-) Z mpm_l'j ) + O(Z Epm'j n)
j=0 j=0
=M.

These complete the proof.
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Lemma 4.1.3: The a-Bernstein operators reproduce linear polynomials v 3,y € R
such that;
Tina (B2 +v; %) = B +y.

Proof: It can be proved easily by using (4.1.6), (4.1.7) and its linearity. Namely;

Tm,a (B +v; %) = B + .

Lemma 4.1.4: The a-Bernstein operator is a positive operator.

Proof: Using (4.1.6) and Lemma (4.1.4);

If m < f(x) < Nthenm < Ty, (f; ) < N for » € [0,1].

Especially, if m=0, we obtain;

If f(3) = 0 then Ty, o (f; ) = 0,5 € [0,1].

4.2 Approximation by the Generalized Bernstein Operator

In this section, for Blending Type Bernstein operators we investigate the degree of

approximation by using the Lipschitz class and modulus of continuity.

Theorem 4.2.1: The a-Bernstein operator has specific notation by means of difference

operators. That is;

m

Tma(f2) = Z [(1 - ) ( )Asgo + a(s ) Asfo] xS

s=0

where;

h=ilm) = (s

Proof: Expand the term (4.1.3) with (1 — x)™7=1, we have

m-—1 m—-{-1
k1+k2—z ( . ) (™ ‘1)9&’
j=1 £=0

Putj + ¢ instead of s, then we have;
29



and also we can write;

("FHCTH=007"

then put the double summation as;

m-1 S
ky +k, = Z (™ 1);{52(—1)5-1' (f) A
i=1 =0

When we use the expansion for difference formula;

m
Kk, +k, = Z (™ Yo,
r=0
When s = m, the sum is zero.
m m
Zf,- (1) —sm-i = z (T)wonss, .
j=1 s=0

So we get;

Tma (%) = z [(1 - a) (m s_ 1) ASgy + a (I:) Asfo] xS
s=0

Lemma 4.2.1: We can express the higher order difference of A; as follows;
AS) = (1 - ﬁ) A+ 22 a5
Proof: it can be proved by induction.
i.  When s=0, the equation is correct.
ii.  Assume it holds fors=k — 1.
iii.  Prove it for s=k.

AR) = A[AR1)]

30
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Ay = a|(1 - L) Akt + B Ay

=A< (1- L) + (1= agav )| + [a 1 aa (B2 +

1 m-—1

]+1+k ! A(Ak 1f1+1)]

0 1)+ (- ] ()

-1

=[5 (=) + (=) 2] + [ (G5) + 2549
= (1-L) kg + Ak,
From the differences and derivatives, we have;
ASfy = 0 fors > k

and

ANf; = k'

From Lemma (4.2.2) with f(x)=«X and m — 1 > k that
ASA, = 0fors >k
and

lilAkfl = (1+

kK )k!

Ky, = Ak
A%y fo + - 1) mk

Especially from f(3)=»% and m — 1 > k that
Tn,a(#5 %) = a@® + a2 + -+ aj + a,

where
a=(1-0a) (ml; 1) Ay + a (rlzl) Af,.

Write in the place AKA, and A%f,, we have;

w=fa-o (" () Wl

ForkisOand 1, ayis 1. Then;
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a = 1+r§$__ 1))(0(—1)](1—%)(1—3>...(1—u), fork > 2.

Lemma 4.2.2: Following identities hold for o —Bernstein operators.

m+2(1 o)

i Tma(k%0) = 2% + #(1—x)

i Tk = o + 22000201 ) 4 BECD50 (1 — 50y (1 - 250)

m?2

i, T (k) = o 4 TEEEZD03 (1 g 4 2A0Dy201 (1 -

[Bm(m-2)+12(m—-6)(1—a)]»#(1—x)+[m+14(1—a)]

2) + — #(1 =)
Proof:
I We know;
Tino (35 2) = aa + a1+ -+ agx + a,
where
ax=(01-a (ml; 1) A¥A + a (Ilr:) AKf,
So,

Tma (2% %) = agu® + a;x + a,
[(1—a)( )Azxo+a( ) 42f,] % +[(1—a)( )A17\0+
«(7) Aol + [ = (™ ) 2% + a (g) %]
=[a-0 (" DEER) (D) ml a-o ("R EE) +
(7)) el
where
1 2
Aofo =0, Afy = m2’ Azfo = m2
And
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0 1 /m+2 ) 2 m+1
=0 M= (05) = ()

Then;

(m+1)(m-2) m(m-1) (m+2) m
=[(1—oc) - +a———s ]%2+[(1—a) +aﬁ]%

2 m2
_ [mz_m—22(1—a)] }—fz n [m+2(;—a)] ”
m m

= }«(2 + —m+i§1—(x)%(1 - J'().

We can similarly proof Ty, o (k3; %) and Ty, o (k*; ).

Theorem 4.2.2: The a-Bernstein operators for a € [0,1], converge uniformly to f ()
that is a continuous function in [0,1].

Proof: Using lemma (4.1.2) and (4.2.3), this theorem can be easily proved.

Lemma 4.2.3: Let

m
K, () = Z(j — m)*PE, (), s=0,1,234.
i=0

Then followings hold for K (x):
i Ki()=0.
ii. Ky()=[m+2(1—-w)]x(1l—x)
iii. K300 =[m+6(1—a)]x(l—x»)(1—2x)
iv. Ky(x) ={[Bm(m—-2)+12(m — 6)(1 — a)]x(1 — ») +
m+ 14(1 — ) }x(1 — %)
Proof: Let’s use binomial expansion of (j — m)3, s=0,1,2,3,4 and Lemma (4.1.2)

and (4.2.3) we have;

m
D R0 =1
=1
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m

Z jPrf‘Lj (%) = mxu

j=1

m

Z j?Pmj(0) = m?%? + [m + 2(1 — )] (1 — x)
=1

2]‘3133,,.(%) = m3%® + 3m[m + 2(1 — )2 (1 — ») + [m + 6(1 — QJr(1 — ) (1
=1

—2x)
m
Z j*Pm; () = m*x* + 6m*[m + 2(1 — a)]»*(1 — x)
=1

+4m[m + 6(1 — a)]x?(1 — %) (1 — 2x)
+{[3m(m—2)+12(m - 6)(1 — «)]#(1 — %) + m
+ 141 — o) }ae(1 — »)
Then;
KyG) = ) (= mi) Bk 00
=0
= ]'Pr?l,j () — mKPr(rxl,j (%)
= mx — mx

=0 (4.2.2)

Ky(0 = ) (= m)?Pg;00)
=0

m
= Z:(j2 — 2mj + m*»#?) Py ()
=0

m
= ) 7B = 2me PGO) + 2B, (60
i=0
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m
= Z m?x2 + [m+ 2(1 — ) ]2(1 — 3) — 2m?x? + m?»?
j=0

=[m+2(1 - )] (1 —x) (4.2.3)

Ky(00 = ) (= m)*P;(0)
=0

m
= Z(f’ — 3j%mu + 3jm*x? — m®%>)PL ()
j=0

)
= Z J° P (0) — 3maj? P s (o6) + 3mPx?jPy  (3) — m3 3Py ()
=0

=m3x%3 +3mm+2(1 — a)]#?(1 — ) + [m+ 6(1 — a)]x(1 —3)(1 —
2x) — 3mue{m?x%? + [m + 2(1 — ) ]2(1 — 30)} + 3m333 — m35x3
=m3»#3 +3mu?m+2(1 —a)](1 =) + [m+ 6(1 — a)]ae(1 —3)(1 —
2%) —3m3»% — 3ma?[m + 2(1 — )] (1 — %) + 3m333 — m3x3
= [m + 6(1 — o)]2¢(1 — %) (1 — 2x) (4.2.4)
Ky(o) = i(i — m2)*Py (o)
j=0
= (j* — 4°mx + 6j*m?x? + 4)*m?»* + m*x*)Pg; ;(20)
= j*Pq;(20) — 4maj®Pg ;o) + 6m?x %Py (o) — 4m>x®jPg ()
+m*x2*Pg ()
=m*»* + 6m?[m + 2(1 — a)]»3(1 — %) + 4m[m + 6(1 — a)]»?(1 —
—5)(1 = 22) + {[3m(m — 2) + 12(m — 6)(1 — o) ](1 — 3) + m
+14(1 — a)}e(1 — 3) — 4mr{m333 + 3m[m + 2(1 — «)]22(1 — )
+[m + 6(1 — a)]se(1 — »#)(1 — 23) + 6m?»#2{m?»x? + [m + 2(1 — a)]
#(1 = 3)} — 4m*x* + m*x
={Bm(m—-2)+12(m—6)(1 —a)]#(1 —3x) + m + 14(1 — a)}»(1 — x)
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(4.2.5)

Lemma 4.2.4: 3 a constant G that is independent on m such that v » on [0,1] and

any real § € (0, i)

P i(30) < Gm3(25-1),

J_|om-5
m %‘_m

Proof: From Lemma (4.2.4) for constant G, |S,(»)| < Gm?.

Seeing that;

] _
——x|>m™®
m

(] - m%)4 > m_48

m#

(]- _ m%)zl > m*(1-8)

G — mx)*m*@-D > 1,

Then we have,

m
D B 00 SmtE D Y (- mi) B 60 = mHEDK, (o) < G5,
j j=0

Theorem 4.2.3: Assume f(») is bounded on the [0,1]. In any » € [0,1] where f'(x)

isdefinedat 0 < a < 1 as;
. 1 a4
Jim m( T (f; ) = f00] = 5x(1 = 20" (x)
Proof: For j < m, using Taylor’s formula such that;
1
f0) = fGo) + (k= 20f () + 5 (k= 1)*f" () + g(R) (k — #)?
where lim g(k) = 0.
k—x
Take k = i then;
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1) =500+ ()@ + 35 #) re0+a 3) ().

Then,

[T o 20 — 60)] = mZ o0 [F() - 60

=m§: P30
0

]:

2

o+ (52160 435 rr+ a(2) (-

2

= K GOf () + % K00 0 +m D B ,00a (L) ()
j=0

Then using (4.2.2) and (4.3.3) we get;

1 1-
m[Tm,a(f; ) — f(}—f)] = (E + — O() 1(1 —2)f"(x) + mSy, ()

where

w0 = o () () o

For 0 < a < 1, we can get the following inequality;

2

S e N R
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: 1
Let’s give any € > 0. sufficiently large m can be found as |$ - %| > m s implies

o (2) <

So that,

RnGOl S KGO+ M > PSiG0

j L
——x(2m 8

where M= sup g(k)(k — »)?2. From lemma (4.2.5) for § = % ;
0<ks<1
2(1-0) MG
m|R,,(x)| <€ 1+—m (1 —»n)+— .
m2

This completes the proof as € is arbitrary.

Theorem 4.2.4: If f is bounded on [0,1],and 0 < a < 1, then

3 (Jm +2(1-— a)).

GO — T (i 20) || < s -

Proof:

Foro<a<l,

100 = T )| = i P00 [f00 — £()]
=0

< Ylreo-1(L)
j=0

m
=0

Pt%,j ()

<

< w<|x—é|) P (7).

—

By the properties of modulus of continuity, we get;

i m j| Im+2(1-a)
(|”_E)“° m|”_a| m



hence

00~ a5 ) (1 s = Jo J_m+z<1—a) R 00
= m+2(1 — ) m m
m+2(1—0() E a
Sw<1IT>< m+2(1—0( | m Pm](%)>'

Using the Cauchy-Schwarz’s inequality;

i|x % (o) = Z|x——| J G0 \/P,:;ﬁj(u)

j=0

1
2

<Li(%—;) P“J(u)] lz ,(x)]l

1
2

i [z -1 prg,,.@] |

Moreover,

Z(H——) ](H) KZ(M)_m+2n(11—0()%(1_%)Sm+2(1—oc).

2 4m?2
j=0

In the seem of (4.2.3);

_ . Jm+2(1-a) m Jm+2(1-a)
IfGO) = T (i 20| < w( m I emae m

3 2(1 -
|fG0) = Trmo (Fi 30| = S0 (\/m + 2( OO).

m
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4.3 Shape Preserving Properties

In the last section, we investigate the shape preserving properties by monotonicity and

convex properties of a —Bernstein operators.

Theorem 4.3.1: Assume that feC[0, 1]. If f is monotonically increasing or decreasing
on [0, 1] for 0 < a < 1 then it realizes samely for all a — Bernstein operators.
Proof:

We can write;

m+1

Tns1a(f5) = (1 - ) Z f; (m ]_ 1) W (1 — w)m

-1\ . ,
+ z i (r]n_ 2 )xl‘l(l — )™ 4 B 1 (%)
j=0

vV m = 0 where f; = (#)

m+1
Follow (4.1.5), then;

Tmera(52) = (1 — @) i)\j (I]n) A1 — )™+ amz f] (m ]+ 1) W(1 — )it
i=0

j=0
_ j j

where & = (1-2)f+L1g ..

Calculating the derivative of Ty, ;1 o (f; %), then it gives;

T1;1+1,a(fi %) = (1—a)D; + aD,

where
= m . . . .
D, = > () 07 (1 = 30m T = (m = Dad (1 = s
j=0

and
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m+1

d
Dy = D fioPne 00,
j=0

In other words D; can be written as follows;

i 7\}{1 11 =)™ J—Z(m ]) )l%](l w)mi-1,

=1 J

m-1
Z(]+1)]+1) A2 (1 =077t — Z(m J) )7\%’(1—%)“”1

j=

m-—1

G+ ()3 1) A z<m (5 )n[#a—somi,
j=

i=0

Insomuch as;

G+ 1) =m (") = -n (D)

we get

D, = Z mAJ (m ]_ 1) W(1 =)™t

where A is the forward difference operator. Subsequently;

m-1 1

: : m — - m—ij—
= 2 16+ D+ m—pag] (M )@ —somI

j=0

Similarly if proved in D,;
D, = (m+ 1)2Af] (1 — )1,

j=

is obtained. Therefore Ty, o(f; x) is given below;

T2 = (1 — ) Z [G + DAfj41 + (m — j)Af] (m ]‘ 1) W (1 — y)m-i-1

j=0
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+a§: Af(m + 1) (r]n) W(1 —»)™,
=0

]

We can determine the sign of derivative of Ty, (f; ) by forward difference. If
function f is monotonically increasing, f's forward differences are not negative. So
m+1,« (5 %) is not negative on [0,1]. Therefore it is monotonically increasing. This is

also true for the opposite. Hence, this completes the proof.

Theorem 4.3.2: Assume that f € C[0,1]. @ —Bernstein operators to be convex for 0 <
a < 1if f(») is convex on [0,1].
Proof:

Follow (4.1.5), then;

m+1

Thtza(G7) = (1 — ) z A (m +1
j=0

)J—fj(l — y)m+i-
)

m+2

(" m

where f; = f(ﬁ) and A; = (1 - i)fl + éfjﬂ.

Calculating the first derivative of Theorem (4.3.1), we get;

m-1
Tirrza(f20 = (1= m(m + 1) Y 424 (™ 7 1) wes(1 —som-s-
s=0

+a(m + 1)(m + 2) i AZf, (r;l) #5(1 — )™,
s=0

Replace m by m+2, hence;

A% = (1- m;-l-l) A2f +

s+ 2
m+1

A%fs4q
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2 S s+1 s+2
_(m+2)2f m+2'm+2 m+2

A%f

Tht2a(#) = 0.

43



REFERENCES

Acar, T., & Kajla, A. (2018). Degree of approximation for bivariate generalized

Bernstein type operators. Results in Mathematics, 73(2), 1-20.

Andag, G. (2015), Bernstein Polinomlar: ve Linear Pozitif Fonksiyoneller, Yuksek

Lisans Tezi, Ankara Universitesi.

Aktas, M. (2016). Genellestirilmis Sasz Operatorii. Celal Bayar Universitesi Fen

Bilimleri Dergisi, 12(2).

Cai, Q. B., Cheng, W. T., & Cekim, B. (2019). Bivariate o, g-Bernstein—Kantorovich
Operators and GBS Operators of Bivariate o, q-Bernstein—Kantorovich
Type. Mathematics, 7(12), 1161.

Chen, X., Tan, J., Liu, Z., & Xie, J. (2017). Approximation of functions by a new
family of generalized Bernstein operators. Journal of Mathematical Analysis

and Applications, 450(1), 244-261.

De Souza G. S., Abebe A. & E. Kwessi (2011), Mini-Course On Functional Analysis,
https://cws.auburn.edu/shared/files?id=217&filename=ConMan_FileDownlo

ad_Functional AnalysisNotes.pdf (June 10,2021)

Demirturk, B. (2015), Balasz Operatorleri ve Bazi Genellesmeleri icin Korovkin Tipli

Hata Tahminleri, Yiiksek Lisans Tezi, Ankara Universitesi.

44



Giirel Yilmaz, O. (2019), King Tipli Operatérlerin Yaklasim Ozellikleri, Yiksek

Lisans Tezi, Ankara Universitesi.

Kajla, A., & Acar, T. (2018). Blending type approximation by generalized Bernstein-

Durrmeyer type operators. Miskolc Mathematical Notes, 19(1), 319-336.

Kaya, S. (2011), Korovkin Sartlarini Gergekleyen Genel Bir Lineer Pozitif

Operatorler Dizisi, Yiksek Lisans Tezi, Ankara Universitesi.

Oksiizer Y1ilik, O. (2019), Bazi Lineer Pozitif Operatérlerin Varyasyon Yarmnormunda

Yakinsakligi, Doktora Tezi, Ankara Universitesi.

Okten, S. (2010), 2-Normlu Uzaylar, Yiiksek Lisans Tezi, Cukurova Universitesi

Ural, A. (2012), Bernstein Polinomlari ve Bazi Modifikasyonlarimin Yaklasimlarinin

Grafik ve Niimerik Tablolar ile Karsilastirilmalar:, Harran Universitesi.

Unliiyol, E. (2006), Hiponormal Diferansiyel Operatérler, Yiiksek Lisans Tezi,

Karadeniz Teknik Universitesi.

45



