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ABSTRACT

The primary objective of this thesis work is the presentation of a new iterative
procedure to achieve both series approximate solution and analytical solution of
positive non-integer order partial differential equations. The order of the derivative is
considered according to Caputo’s assumption. This iterative procedure is called

Aboodh transform iterative method.

The Aboodh transform iterative method is a combination of the new iterative method
with the Aboodh transform. The new iterative method was introduce as important
tool to linearize all the associated nonlinear terms since the Aboodh transform cannot

handle the nonlinear terms.

Several examples and cases are examined. The solutions obtained were compared
with solutions obtained by other existing methods in literature. Also, the solutions
reveals that the Aboodh transform iterative procedure is less computational involving

and requires no restrictive assumption, Lagrange multipliers and Adomian polynomial.

The software used to implement the Aboodh transform iterative procedure are LaTex,

MATHEMATICA 10.0 and MATLAB R2021.

Keywords: Integral transform, Aboodh transform iterative method, New iterative

method, Fractional biological population model, Partial derivative.

11



0Y/

Bu tez calismasinin temel amaci, pozitif ve tamsayr olmayan mertebeden kismi
difernsiyel denklemlerin hem seri yaklasik ¢6ziimiinii hem de analitik ¢coziimiinii elde
etmek icin yeni bir iteratif prosediiriin sunulmasidir. Tiirevin mertebesini belirlemede
Caputo’nun varsayimi dikkate alinmigtir.  Bu yinelemeli prosediire “Aboodh

doniistimii yinelemeli yontemi” denmektedir.

Aboodh doniisiimii yinelemeli yontemi, Aboodh doniisiimii ile yeni yinelemeli
yontemin bir birlesimidir. Aboodh doniisiimiiniin dogrusal olmayan terimler i¢in
calismadigindan dolayi, yeni iteratif metod dogrusal olmayan terimlerin

dogrusallastirmasi 6zelligiyle onemli bir ara¢ olarak sunulmaktadir.

Bu tezde, baz1 ornekler ve cesitli vakalar degerlendirilmistir. Elde edilen sonuglar,
literatiirde kullanilan diger metodlar ile karsilagtirilmistir. Ayrica, elde edilen ¢oziimler
Adoodh doniigiimii yinelemeli metodun daha az hesap gerektirdigini ve daha kisith

varsayimlar kullanildigini ortaya koymustur.

Son olara, Aboodh doniisiimii yinelemeli prosediiriinii uygulamak icin LaTex,

MATHEMATICA 10.0 ve MATLAB R2021 yazilimlar1 kullanilmistir.

Anahtar Kelimeler: integral doniisiim, Aboodh doniisiimii yinelemeli yontemi, Yeni

yinelemeli yontem, Kesirli biyolojik popiilasyon modeli, Kismi tiirev.
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Chapter 1

INTRODUCTION

1.1 Motivation

Admittedly, large number of concrete occurrence in engineering and science are
generally modelled using positive non-integer order integral and differential
equations. Positive non-integer derivative attracts huge interest because it provides
better and more realistic models than the integer derivative [1-6]. However, obtaining
solutions for this class of differential equations is a major task. Several approaches
exists in literature for solving differential equations with fractional order, the defects
with most of these methods are that they are complex and they require lots of
computational effort.

1.2 Literature Review

Several methods have been proposed in numerious sphere of engineering and science
to realize the solutions of fractional differential equation. These methods often appear
in research literature. The discussion of some of these methods are presented in this

section.

George Adomian developed the Adomian decomposition method in the 1970’s [7]. The
Adomian decomposition method makes use of Adomian polynomials to decompose
the nonlinear term of the fractional differential equation [8]. This method is classified
as an iterative technique and provides solutions in a fast converging infinite series
form, it is straightforward in principle but requires difficult calculations of Adomian

polynomials [9-10].



Variational iteration method was introduced by Shou et al. [11]. This method is
capable of constructing correction functional (i.e., correction iteration formula) for the
fractional differential equation using the general Lagrange multiplier. This method

successfully remove the difficulty of calculating the Adomian polynomials [12].

Homotopy analysis method was introduced by Liao S.J. in his doctoral dissertation
[13]. This method utilizes the homotopy approach from topology to present a
convergence series form solution for fractional differential equation [14]. However,

the method requires an embedding parameter.

The integral transform is also an important tool used to analyze solution of fractional
differential equations [15-16]. The use of integral transform for providing solutions
of problems in science and engineering can be traced to the work of P.S. Laplace on
probability theory presented in the 1780’s and the treatise of J.B. Fourier published in
1822, titled " La Theorie Analytique de La Chaleur" [17]. Since then, various integral
transforms with modifications have been developed and established [18-23].

1.3 Fractional Calculus

Fractional calculus emerge as a field from mathematical analysis which consists of
partial and ordinary derivatives of non negative fractional order. It has drawn so much
interest and attention by virtue of its important application in engineering and science.
The development and history of fractional differential operators can be found in [24-

26], including most frequently used Riemann-Liouville and Caputo derivatives.



1.3.1 Riemann-Liouville Fractional Order Integral Operator

The Riemann-Liouville fractional order integral operator is defined as [27]:

(

fO )*=10(s)ds o > 0.
1%Q(7) = (1.1)

0(7), o=0.

\
Some important properties of Riemann-Liouville fractional order integral operator can
be found in [27].

1.3.2 Caputo Fractional Order Derivative Operator

The Caputo fractional order derivative operator is given in [27]:

dn
dth

D*Q(t)=1""% ( Q(T)) , n—l<a<n neN. (1.2)

Some important properties of Caputo fractional order derivative operator can be found
in [27].
1.3.3 Mittag Leffler Function

A special function called Mittag-Leffler function can be described as [28]:
o, A €C, Re(ax) >0. 1.3
Zm+1 , A eC, Re(a) > (1.3)

1.4 Outline of this Thesis
The Aboodh transform was conceived by modifying the Laplace transform while the

new iterative method was introduced by Daftardar-Gejji and Jafari [29-30].

We derived the series approximate solution and the analytical solution for different
types of fractional differential equations that include the spatial diffusion biological
population fractional model, fractional gas dynamics equation, fractional Fokker
Planck equation, nonhomogenous fractional Kolmogorov equation and the

Klein-Gordon type fractional model.



The thesis is arranged in the following format: In Chapter 2, some known results and
Aboodh transform iterative method are presented. In Chapter 3, fractional models
of some popular equations are evaluated. In Chapter 4, three cases of positive non
integer order spatial diffusion biological population equations are considered. Finally,

in Chapter 5, some concluding remarks are given.



Chapter 2

ABOODH TRANSFORM ITERATIVE METHOD

2.1 Chapter Overview
This chapter presents the description of Aboodh transform, Aboodh transform iterative

method and its convergence analysis.

2.2 Aboodh Transform
The Aboodh transform was defined in 2013 by K.S. Aboodh [21] as a modification of

the Laplace transform, which was defined in the time domain 7 > 0.

Definition 2.1 (Aboodh Transform): Aboodh transform for function Q(7) of

exponential order over the group of function described as [21]:
o = {Q 1 0(t) |< MM if T e (—1) x [0,%0), j = 1,2; (M, ky, k> > 0)} @1
where the Aboodh transform of Q(7) is denoted by
A1) =H(y), (2.2)
and defined as:

.
7100 = /O O(t)e Vidt = H(¥), T<0, ki <w<ks.  (23)

Definition 2.2 (Inverse Aboodh transform of function Q(7)): If

then the inverse Aboodh transform of a function Q(7), T € (0,) is defined as [21]:

(1) = '[A(y)] . (2.4)



Theorem 2.1 ([33]): If 77 (y) is the Aboodh transform of Q(7) then,

s [d@] =wrw- L2, @s5)
o [0'(0)] = v () - QT“’) ~0(0), 2.6)
n—1 (s)
o [0 )] =y -y 0. @)
s=0 Y

Proof. Using Equation (2.3),
| e@erar—ry)

applying integration by part, we have:

L= 0(0)
— Vidt =y (y) — =——=.
w/o Q (e Vdr=yA(y)— =/
AlSO, o |:Q//(T)i| _ %/Ow Q//(T)e_WTdT;
applying integration by part, we have:
U 0
5| g e var =y - 22 - o0

For the n-th derivative we show the proof by mathematical induction. Given

n—1 ~(s) 0
(o) =y - L ST n

Consider when n = 1, we have:
/ Q(0)
o =y (v)—=——.
O] =y =

It holds for n = 1. Consider when n = .4, we get:

A =1 (s)
o [0 (@) =y o (w) - ;O V,Qz_ﬁ)s

It holds for n = .#". Now, we show that it equally holds for.4" + 1,

o [Q(JVH)(T)} — () — Z{)II,Z—Q(T(H))H ,

note that:



Therefore

4 $)(0
- WJVH%(W) - Z 2Q(,/V(+1))+s
s=0 y
whenn=_4"+1,
n—1 (s) 0
o [00@)] =y - L LY
s=0 L4

Lemma 2.1: Aboodh transformation of Caputo fractional derivative of order o is [31]:

n—1 ~(s) 0
AP = Vo[- T L -t <asmneN.  (8)
s=0

Lemma 2.2: (Linearity property of Aboodh transform) Assume the Aboodh transform

of Q1(7) and Q»(71) are Z(y) and () respectively [32]:

A [101(7) +1002(7)] = Z[1n01(7)] + 2 [0(7)]

=n2\y)+nHA(y), (2.9)

where y; and ), are arbitrary constants.

See the Aboodh transform Table 2.1 for Aboodh transform of some functions.



Table 2.1: Aboodh Transform Table [31].

Q)  [Q(7)]=2(y)
. 1
)
" n! v
T s n=0,12,
y M(a+1)
II/OC+2

2.3 New Iterative Method

New Iterative Method is a decomposition method introduce by Daftardar-Gejji and
Jafari in 2005 [30]. The prominent advantage of the new iterative method is that it can
be applied directly with no restrictive assumptions imposed on the problem which
make the solution obtained to be more realistic. Also, it conserve computer power,
time and memory making it economical without tedious calculations of Adomian
polynomials.

2.3.1 Concept of New Iterative Method

Examine the functional equation:
Q=f+4(0), (2.10)

with f as a familiar function and ./ is the nonlinear operator from a Banach space

X — X. Assume the solution of Equation (2.10) is given in series from as:
Q=) 0. (2.11)
s=0
Here, the nonlinear operator .4 is decomposed as:
oo [eS] S s—1
N LQ | =AM Q)+ AL |- L), (2.12)
s=0 s=1 i=0 i=0
using Equations (2.12), (2.11) and (2.10), we have:

o0 oo s s—1
Z&=fhﬂww+2{/<2@>ﬂW<ZQJ}7 (2.13)
s=0 s=1 i=0 i=0



we define here the following recurrence relation:

Qo= f,
Q1= A4 (Qo),
(2.14)
OQu1 = A (Qo+ 014+ Q) —A(Qo+ Q1+ +0s-1), s =1,2,... ]
Then
N(Q+01+ - +0511) =N (Qo+ Q1+ +0s), s=1,2,... (2.15)

Q = Z Qs .
s=0
2.4 Basic Idea of Aboodh Transform Iterative Method
Examine the initial value problem of the pattern [33]:
D*Q(x,y,7) = Z(Q(x,,7)) + A (Q(x,,7)) + 9 (x,y,7), n—1 < <n, (2.16)
as well as the initial condition:
09 (x,y,0) = Qs(x,y), s=0,1,2,....n—1. (2.17)

9 (x,y,7) is the source function, while the operator % and operator./” are the linear
and nonlinear operators respectively. Applying Aboodh transform on each side of

Equation (2.16) and using the initial condition, we get:

105, 7) =
n=10s)(y
- (g%w%,y, r>1> o (6 [0 7)) + N (00 )

(2.18)

Simplifying and applying the inverse Aboodh transform of each side of Equation

(2.18), we get:



+

n=10(s)(x
O(x,y,7) = o/ [L (;}% + .o [ (x,y, r)])

o [wi (o [(Q(x3,7)) + A (Q(x., rmﬂ @19

The operator .4/ is decomposed as [30]:

N (Q(x,y,7)) = (ZQN%)

K s—1
= N (Qo(x,y,T Z {JV (Z Qi(x,y, r)) — N (Z Qi(x,y, r)) } . (220
i=0 =0

Also, the operator Z can also be decomposed in similar manner. Next, we define the

m-th order approximate series as:

Q(m) (x7ya T) = Z QK(x7y7 1)
k=0
= QO(-x7y7 T) + Ql(x7y7 T) + QZ(x7y7 T) +eoeet Qm(xvya ) meN (2.21)
Envisage that the solution of Equation (2.16) is given as
m
Q<x7y7 T) = lim Q(m) ()C,y, T) - Z QK(x7y7 T)' (222)
e k=0

Substituting Equations (2.20) and (2.21) into (2.19) with the application of the linearity
property, we get:

n—l
zsty, - [%( ) ij;?) W[%(x,y,r)]]
Wa B(Qolx.37 >>+</V<Qo<x,y7rm>}
1 1 -
+ [l]/a ( Ll (Qs(-xa)@ﬂc))) )
K s—1
(o) (g )]
i=0 i=0

+

10



Now, we create the following iterations

n=1 o)
Qo(x,,7) = /™! % (Z %) + d[%(x,y,r)]] ,n—l<a<n
y —_ Vv
(2.24)
1
01(t.ynt) = ! [W (o [9(Q0(x,9. 7)) + A Qo3 7))] J} (2.25)

_I_

SO SN
e (o) o)

2.5 Convergence of Aboodh Transform Iterative Method

||M8

This section presents some known definitions and theorems to establish the

convergence of Aboodh transform iterative method.

Definition 2.3 (Normed Space ): If X is a vector space, A norm on X over the scalar
field F (R or C) is a function [34], ||.|| : X — [0,¢] C R, which satisfied the following
axiom:

lp+all < llpll+Il4ll, p,qeX.

1Bpll =Bl 1lpll, VB €F, peX. (2.27)

Ipll =0, [[p[[=0 = p=0.

Definition 2.4 (Metric Space): A metric space is said to be an ordered pair (X, d)

where X is a set and d is the distance function known as the metric function on X [34],

11



i.e., function d: X x X — R such that Vp,q,r € X, the following axioms holds:
)
d(p,q) =0 < p=gq,

d(p,q) =d(p,q), (2.28)

d(p,r) <d(p,q)+d(q,r)

Vs

The space X is complete if every sequence {x,} is a cauchy sequences in X,
||Xn — xm|| — O as n,m — oo, then there exist x € X such that ||x, — x,,|| = 0 as n — oo,

that is {x, } is convergent sequence in X.

Definition 2.5 (Banach Space): A complete normed vector space (X, ||.||) is called a

Banach Space [34].

Definition 2.6 (Contraction): Assume X be a metric space, 7 : X — X is said to be a

contraction on X. If a nonnegative real number p (0 < p <1):V p,ge X, d(1,,T,)

< pd(p,q), [34].

Theorem 2.2 ([17]): If &/ [Q(7)] and <7[||Q(7)||] exist where .o [Q(7)] is the Aboodh

transform for any function Q in the Banach space X, then:

|l [Q(0)]l] < #[[|Q(7)|]]-

Proof. Given that the Aboodh transform of Q(7) is:

A10(1)] = % /O " o(1)e Vidr,

we have

7[00 = H% /O " Q(1)e i1l

< | llewe e

12



=$4ﬂ@mwwwa

= le()]l];

= |l eIl < «[llQ(7)]]]. O

Theorem 2.3 ( [29]): Given the fractional initial value problem below:
D7 Q(x,y,7) = Z(Q(x,y,7)) + A (Q(x,,7)) + ¥ (x,,7), n—1 < <n,
as well as the initial condition:
0¥ (x,,0) = Os(x,y), s=0,1,2,...,n—1.

where ¥ (x,y, T) is the source function, operator % and operator .4 are the linear and
nonlinear operators form the Banach space X to itself. Q(x,y,T) is analytic about T,

the solution of the initial value problem can be written in series pattern:
O(x,y,7) = ) Os(x,y,7),
s=0

with the consecutive recurrence relation:

1 <”1 0¥ (x,y,0)

QO(x7ya T) = Q{il wa W2,a+s

>+,527[€4(x,y,7:)]] ,n—l<a<n,
s=0

Qmmw;w*ﬁﬂdw@w%m+W@mmmﬂ,

13



If the operators Z and .4 are contractions, then the series:

i 0s(x,y,7)
s=0
INo+1)

converges absolutely if 7% < ——=.

Proof. From Equation (2.16)
Q(xayu T) = Z Q57
s=0

the operator .4 is decomposed as:

o s s—1
N (Qx,3,7) = A (Q0)+ Y {w (z Q,-) e (z Q,-> } |
s=1 i=0 i=0

Similarly, the operator Z can be decomposed in like manner. Let Q be an operator, we

set:

s=1

aossor-oer+£ fo(£e) a(Ee))|
i=0 i=0

we generate the following recurrence relation:

QO(x7y7 T) = QO 3
!
01(n.8) =/ | (s @)
Qs—H(-xvy?T) =
(7[5 ({o(Be) (%))
v s=1 i=0 i—0
s=1,2,....

Since the operator % and .4 are contractions, Q is also contraction and there is a

constant 0 < p < 1, such that:
12(wi) — Q(w))[| < ploi — ojl|, Yo, 0; € X

IIl.I is a norm on X. Finally, we give the estimate of Q1

14



s e () (o))

~ (o [ @ @t o+ 0 -0@+ 0+ on] ) |

D]
D)

< [‘VL( [H( (Qo+ 014 +05) —Q(Qo+ 01+ + 04

Sﬂl{—a< {PH( (Qo+ Q1+ +05) —Q(Qo+ Q1+ + Qs 1))

ot (e ll@) )]

1

AT

S ().

Then ||Q; 1051,

wll = r(a+1)

1951l . _pT°
= < s=1,2,...
R CED)

By the ratio test, the series is ergent if:

Q51|
105
P

<1,

= <1,
INa+1)

I 1
=1% < (ap+ ).

15



Chapter 3

ABOODH TRANSFORM ITERATIVE METHOD FOR
APPROXIMATE SERIES ANALYTICAL SOLUTION OF

FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

3.1 Chapter Overview

The present chapter is concerned with the application of Aboodh transform iterative
method described in [35]. This method utilized the new iterative method discussed in
Chapter 2 to decompose the nonlinear term. The solutions shows that Aboodh
transform iterative method gives comparable solutions to the existing methods with
less computational effort.

3.2 Problem Statement

This particular chapter consider closely the following type problems:
DYQ(x,7) = Z(Q(x,7)) + A (Q(x,7)) +¥9(x,T), n—1<a<n,
as well as the initial condition:
0" (x,0) = 0,(x), r=0,1,2,...

D% symbolizes the Caputo derivative while ., .#" and ¢ (x,7) denotes the linear
operator, nonlinear operator and known function. For the existence and uniqueness
for this problem see [36].

3.3 Descriptive Examples

The current section examine four descriptive examples to demonstrate the efficiency

of Aboodh transform Iterative method.

16



3.3.1 Example 1

The fractional gas dynamics equation is described as [37]:
1
DEQ+5(0%):~0(1-0) =0, 0<a<l, (3.1

as well as the initial condition considered as:

Qo(x) =e™, (3.2)
using Equation (3.1), we set:
2(0x,7)) = 0. ‘
Q1) = 5(02)+ (3
0(x,0) = e+,

Vs

Now, using the iterative procedure described in Chapter 2, we have:

B 1 n—1 Q(r) ,0
oma [ (5250

r=0
- [ 5
v
=e . (3.4)
01 = o/ | (/2o ) + 4 (@5 D)D)
e fo- ()]
- rio:an' (5-5)
0 =1 | e (1213, 7) + (H (Qulw )+ 01(x.2) = H (Qulx. D).
= {% (szf [Ql - { (%((Qo +01)%)x+(Qo+ Ql)z) + (%(Qox% + Q%) H )} ,
efx,L.ZOt
TTR2a+1) (3:6)

17



efx,rK'OC
=" i
INxo+1) 3-7)

We get the k-th order approximate series as:

K

2W(x,7) = Y Oulx,7)

m=0

= Q()(X,T)+Q|(X,T)+Q2(X,T)+"'+Qk(x,f), KeN.

e 1% e—x,L.ZOc e Xk

p— _x PRI —
¢ s TTearn T Tikat 1)

T« T2oc ko
—o (1 e
¢ ( "o+ "Tear © +r(m+1))

TmOC

= L Mar 1y @9

The approximate series solution come near to the exact solution as Kk — oo,

0(x,7) = lim 2% (x, 1)

K—roo
K mo
T

— e i —
€ Kl—rgomz‘ol—‘(ma—i—l)

= ¢ Eq(1%). (3.9)

If o = 1, then the exact solution of Equation (3.1) is :

Qe(x7 T) = e_xEl (T)a
= et (3.10)

which is same solution obtained in [38] using the homotopy analysis method merged
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with the Laplace transform method. Also by applying the fractional reduced
differential transform in [39]. The solution realized grows exponentially with time.
We compare the absolute difference Ey;r = |0(0.25,7) — 2010)(0.25, 7)| between the
series approximate solution and the close form solution for various values of o and
obtained the absolute error E,, = |Q,(0.25,7) — 2(19(0.25,7)| at @ = 1, and 7 =
0.25, 0.50, 0.75, 1.00 when x = 0.25 as display in Table 3.1, while Figure 3.1 is

surface plot for ¢ = 0.5,0.7,0.9 and 1. with the choice of Qy unchanged.

Table 3.1: Comparison of error difference for diverse values of o

T a=0.5 a=0.7 a=0.9 E. s when a = 1.0
025 ]15%x10°[92%x10710|3.1x10°13 4.8 x 1015
050 | 8.3x107° | 2.0x1077 | 3.0x 10710 9.9x 10712
075 | 8.4x107* | 49x107°% | 1.7x10°8 8.8 x 10710
1.00 | 44%x1073 | 47x107° | 3.1x 1077 2.1x1078

(©)a=0.9
Figure 3.1: The surface plot for various values of o

da=1

19



3.3.2 Example 2

Fractional Fokker-Planck equation is expressed as [40]:

D?‘Q+GQ2) -(50) —(@)u=0, 0<a<1,

X

and the initial condition described as:
2
QO ()C) =X,

using Equation (3.11), we set:

0(x,0) = x°.

(3.11)

(3.12)

(3.13)

Now, with the use of iterative method illustrated in the previous chapter, we have:

B 1 n—1 Q(r)(x’o)
Q=" [W (Z i

r=0
x,0
fe
:.Xz.
0= [Wi (o [2(0o(x.7)) +</V<Qo<x,r>>1>} ,

i) b () )]

(3.14)

(3.15)

X2t
T T(at1)
01— [Wi (o [L(01(x.7)) + LA (Qo(x, ) + Q1 (x,7)) — N (Qol. r))}])} ,
—ar [ (| Gen, ~{ (@00, - Glorrer), - @)+ (3a3) }])].
X2T2a
TTQa+1)

20
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XZTK’OC
== 3.17
INxa+1) -17)

We get the k-th order approximate series as:

K

20 (x,7) =Y Oulx,7)

m=0

= QO(X7T)+Q1(X7T)+Q2(x7f)+"'+Qk(xvf)7 KkeN.

_x2+ xzfcx N xzfza N N XZTK'OC
B [(a+1) TRa+1) [(ka+1)

5 T ,L.Za ko
! ( "ot "TRarD) +r(m+1))
K ,L.ma

=2 Y e T1)

m=0

(3.18)

The approximate series solution get close to the exact solution as K — oo,

Q(x,7) = lim 2% (x, 1)

K—>00
K
na

2 1
—x* 1 -
= HZ’OF(ma+ 1)

= x?Eq(1%). (3.19)

If o = 1, then the exact solution of Equation (3.11) is :

Q.(x,7) :szl(’L‘),
=x%e". (3.20)

which is same solution obtained in [40] using homotopy perturbation Sumudu
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transform method.

We compare the absolute difference Ey;r = |Q(0.25,7) — 2010)(0.25,1)| between the

series approximate solution and the close form solution for various values of a and

obtained the absolute error Eg s = |Q,(0.25,7) — 2(19(0.25,7)| at & = 1, and T =

0.25, 0.50, 0.75, 1.00 with x = 0.25 in Table 3.2. Also, Figure 3.2 displays the surface

plot for @ = 0.5, 0.7, 0.9 and 1 with the choice of Qg unchanged.

Table 3.2: Comparison of error difference for different o

T a=0.5 a=0.7 a=0.9 Eups when a = 1.0
025 13%x1077 | 74x10711 | 25x 10714 3.9x 1016
050 | 6.7x107°%| 1.6x10°8 | 24x 10710 8.0x 10713
075 | 6.8x107° | 39x10°7 | 1.4x107° 7.1x 10711
1.00 | 3.6x107% | 38x10°°% | 25x 108 1.7x107°

Vi 8 A S O 4 Y A,
i £ 2
e B i Wi

() o =0.7
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e s 5
A ]
AL
o

(a) = 0.9 b a=1
Figure 3.3: The surface plot with diverse values of &

3.3.3 Example 3

The non-homogeneous time-fractional Kolmogorov equation represented as [41]:

DEQ+x*e" Qi — (x—1)0r=x1, 0 < a < 1, (3.21)

as well as the initial condition express as:

Qo(x) = x+1, (3.22)

from Equation (3.21), we set:
3\

Z(0(x,7)) = —x*"Que + (x +1) Q4

N (Q(x,7)) =0, (3.23)

9G(0(x, 1)) =xt1.

/
Now, using the iterative procedure described in the previous chapter, we have:

1 n—1 Q(r) (X, O)

W E) WZfaJrr

S1[Q0)  x
= 1{ V,z +W3+a}

Q=" + 19 (0(x,7))]

x‘L’aH

1

e 2@t )+ H (o)D)

Q1=@7_1{
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:ﬁl{ !

W (% [_XZeT(QO)xx—|— (x—|— 1)(Q0)x]):| )

a+1 200+1
i ’ ) . (3.25)

=&+ 1) (F(a+2) " TRat2)

L L2015 1)) + { N (Qolx,7) + 1 (5,7)) — A (o, r))}n} ,
- {— (o [2€H () + (x + 1><Q1>x]>] |

(3.26)

Tza 73a+1
= +1) (F(2a+ 0 F(3a+2)> ‘

0= [ (o [2(@ustwmn + o (zrbeinn) - (T o) })

—or | (@ [ D).

Ko (k+1)o+1
i t ) . (3.27)

=& +1) <r(m+1) TN (crDa12)

We get the k-th order approximate series as:

209(x,7) = ¥ Qu(x.)
m=0

=Qo(x,T)+01(x,7)+ Qa2(x,T) + -+ Q(x,7), kK EN.

atl e ,L.(Za-i-l
= (e D+ () = Dy + 6 D) (r<a+1> +r<w+2>) "

2o 3o+l ke r(ktl)a+l
(+1) (F(2a+ 0 F(3a+2)) oot (r(m+ D T+ 1)oc+2)>

o+l K mo K r(m+l)a+l
“tar2) T L far ) T B N asy) ) O

The approximate series solution approaches to the exact solution as Kk — oo,

0(x,7) = lim 2 (x, 1)

K—o0
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_ o+l

Ty T (Er(mwl)

mo K (m+1)o+1
)
T((m+1)a+2)

m=0

_ o+l K imt+1)o+1
= 1) | Eq(7% li . 3.29
Flag2) T+ D | Ealr )+K5rion;0r((m+1)a+2) (3-29)
If o = 1, then the exact solution of Equation (3.21) is :
—7:2 K ,«L-(m-i-l)-i-l
= — 1) E li -
Celiy®) = =+ (4 D B+ lim Y ey )
_ 12

=—+(x+1)2eF—1-1). (3.30)

2
We compare the absolute difference Ez;y = [Q(0.25,7) — 2010)(0.25, 7)| between the
series approximate solution and the close form solution for various values of ¢ and
obtain the absolute error Eg, = |0.(0.25,7) — 2119(0.25,7)| at ¢ = 1, and 7 = 0.25,
0.50, 0.75, 1.00 when x = 0.25 in Table 3.3. Figure 3.3 displays the surface plot when

a =0.5,0.7,0.9 and 1. with the choice of Qp unchanged.

Table 3.3: Comparison of error difference for distinct values of a.

T a=0.5 a=0.7 a=09 E. s when a =1.0
025 [26%x107°|1.5x107° | 49x10°13 8.0x 10715
050 | 1.3x107% | 33x10°7 | 49x 10710 1.6x 101!
075 1.4x1073 | 7.7x107°% | 2.8x 108 1.4x107°
1.00 | 79%x1073 | 75%x 1075 | 4.9x 1077 3.4%x 1078
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c©)a=09 da=1
Figure 3.4: The surface plot with distinctive values of «.

3.3.4 Example 4

Time-fractional Klein Gordon type equation is represented as [35]:
D%0Q = 0y — Q+2cos(x), 1 <o <2,
and the initial conditions given as:
Qo(x) = cos(x), Q;) =1,

from Equation (3.31), we set:

\

Z(0(x,7)) = O —Q

A (Q(x,7)) =0,

G(0(x,7)) =2cos(x).
Now, using the iterative procedure described in the previous chapter, we have:

1 n—1 Q(r) (x, 0)

)

—1
QO = (Q{ W = ll/2—(x+r

+A[4(Qx, 7)) || ,n=2

26
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_ %71 [Q/(X,O) + Q(O) (x70) I 2COS(X)]

II/Z ‘/’3 W2+oc
= cos(x) + T+ 2cos(x) F(a(—x}— s (3.34)
01 = o/ | (/2o ) + 4 (@u(x D))
_ | L _
— o | (@ (@) 00D,
T 7(2e) 7o+l
= —2cos(x)m _4COS(X)F(20£ 1) et (3.35)
Q="' %(W[X(Ql(xaf))Jr{a/V(Qo(X,T)+Q1(X7T))—JV(QO(X,T))}]) :
| SE @ @)
2o 1(305) 2o+l
= 4C0S(X)F(2a+ ) —l—8€0s(x)r(3a+ D + r2a+2) (3.36)
Ox= e (12 (@ o) +

_ ] [# (w[(QKl)xx—QK1]>} ,

TK'(X

INka+1)

r(k+1o rko+l
+ (=D :
I'(xk+1a+1) INxa+2)
(3.37)

= (—1)*2%cos(x) (—1)%2Kr!

We get the k-th order approximate series as:

209(x,7) = ¥ Qu(x.)

m=0

=Qo(x,T)+01(x,T)+ Q2(x,T) + -+ Qk(x,7), KEN.

27



,L.OH—I T2a+1 T3a+1 ,L.KOH—I
=cos(x)+ 17— + - +-+(=DF

INa+2) T'Ra+2) T'Ba+2) INxa+2)
K moi+1
—cos(x)+ ¥ (—1)"@. (3.38)

m=0

The approximate series solution come near to the exact solution as Kk — oo,

0(x,7) = lim 2% (x, 1)

K—o0
. K K ,L.ma+1
:COS(X)‘{’KI'I_IBOH;O(—l) m

If o = 2, then the exact solution of Equation (3.31) is :
Q,(x,7) = cos(x) + sin(7). (3.39)

We compare the absolute difference between the obtained solutions for various values
of o and obtained the absolute error Ep, = |Q.(0.1,7) — 2119(0.1,7)| at T = 0.01,
0.02, 0.03, 0.04 when o = 2, with x = 0.1 in Table 3.4. Figure 3.4 displays the surface

plot when o = 1.4,1.6,1.8 and 2. with the choice of Q¢ unchanged.

Table 3.4: Comparison of error difference for various «.
T a=195 | «a=197 | a=199 | E;s when o =2.00

0.01 | 5.7x10°% | 32x1078| 1.0x10®
0.02 13.9x1077 | 22x10°7 | 7.1x10°8
0.03|14x1073]69%x1077|2.1x1077
0.04 | 27x107° | 1.5x107° | 49x 1077

S O OO
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© a=138 Da=2
Figure 3.5: The surface plot for distinct values of «.
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Chapter 4

ABOODH TRANSFORM ITERATIVE TECHNIQUE FOR
SOLVING SPATTAL DIFFUSION BIOLOGICAL

POPULATION MODEL WITH FRACTIONAL ORDER

4.1 Chapter Overview

The significant objective here is to solve the time fractional biological population
model with fractional order using the Aboodh transform iterative method [42]. The
solution is given in a fast convergent series form. Three descriptive cases are
examined, the numerical solutions are closely observed with distinctive values of
alpha in comparison with the exact solution. The leverage of Aboodh transform
iterative method over other methods is the elegant style of implementation couple
with ease.

4.2 Problem Statement

Spatial diffusion biological population model with fractional order is of the form:

D0 = (0 +(0%)yy +9(Q), t>0, x,yeR, 0<a <1, 4.1)

9(Q) = foU(1-rQ"), (4.2)
as well as the initial condition:
Q(xayvo) = QO(xvy) ) (43)

where Q imply the population density and ¢(Q) denote the supply of population by

reason of deaths and births, f,q,p,r are real numbers, D% denotes the differential
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operator in Caputo sense, for Holder estimates and its solution see [43], the constitutive

equations are given as
9(0)=C0, (4.4)
C is a constant, Malthusian Law [44]:
4(0)=C10-C0, 4.5)
for positive constant C; and C,, Verhulst Law [43].
4(Q)=c0% (C>0,0<0<1), (4.6)

C is a constant, Porous media [45, 46].

4.3 Descriptive Cases

In this section, we considered three cases to demonstrate the efficiency of Aboodh
transform Iterative method.

4.3.1 Casel

If f= %, g =1, r = 0, (Malthusian Law [44] ) and Qy(x) = x!/2 one dimensional

time-fractional biological population model is derived and Equation (4.1) becomes:

Q

DIQ= ()t T>0,0<a<l, 4.7)
from Case (1) we set:
20 e) =2,
A (Qx,7)) = (Q)ax, (4.8)
0(x,0) =x'/2 . )

Using the iterative procedure described in Chapter 2,

B 1 n—1 Q(S‘)(X7O)
Q="' [W (): i

s=0

4.9)

o [20)

2
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12,

01— | L (1% (00 r>>+w<Qo<x,r>>]>}

Yo
= {% (ﬂf {% + (Q%m] )} (4.10)
_ 12 R
Cla+1)
0= ! [WL (o [B(Q1(x,7)) + {N (Qo(x,7) + 01 (x,7)) —w<Qo<x,r>>}1>}

1

—1
= [W

@y{%%+{«Qw+Qo%m—mQ®m}])} 4.11)

2
x1/2 (lra)
4

Ta+1) -

I(mo+1) °

The m-th order approximate series is derived as:

m

2 (x,7) = ¥ 0x(x,7) = Qo(x,T) + Q1 (x,7) + Q2 (x,T) + -+ + Op(x, 7)

k=0
1 / 1 2 / 1 m
t 4 4 e\ )

Tla+l) = Teatl) 7 Tmatl)

2
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2 m
e () )
S C [ — NEDPRTNA N AN (4.13)

So, the m-th order approximate series solution come closer to the exact solution as

m — oo,

0(x,7) = lim 2" (x, 1)

m—soo
1 K
12 S (Zra)
=elm Y Tt ) 9
1/2 1 o
= x2Eg (37%) (4.15)

taking ¢ = 1, the exact solution to Equation (4.7) is:
120 (1
Qe(x,7) =x"'"E| d

—x2exp (2) . (4.16)

We compare the absolute difference Eyir = |Q(x,7) — 2U0)(x, 7)| between the series
approximate solution and the close form solution for various values of o and obtained
the absolute error E s = |Q,(x,T) — 2(10) (x,7)| when o = 1 in Table 4.1. Figure 4.1
unveil the comparison plot of the exact solution with the approximate solution while
Figure 4.2 displays the shape of the population density when o = 0.25,0.5,0.75 and

1. with the choice of Qg unchanged.
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Table 4.1: Comparison of error difference for Case 1 when 7 = 0.2.

Xx | 0=025 ] a=050 | o=0.75 | E,, when ot = 1.00
01 54x10362%x1077 | 2.7x 10! 4.4 % 10716
05162x103|7.1x1077|3.1x10° 1! 6.7 x 10710
09]7.1x1073|82x10*|35x10! 6.7 x 10710

45 T T T T T T
a=0.25
a=0.5 |4

4r a=0.75 |
a=1
—— Exact

35 ]

2>

‘B

5 3 i

©

S

3 25} ]

[oX

[e]

[a
2+ i

K
K
1.5F i
E
3
1 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 09

27T
"’%&%"g

Spatial Varable

Figure 4.1: Comparison plot for Case (1).

(a) ¢ =0.25
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(a) & =0.75 b o=1
Figure 4.3: 3-D plot for Case (1) with distinct values of .

4.3.2 Case 2
If f =1, r = 0 (Porous media [47]) and Qq(x,y) = (Sinx x Sinhy)'/2, Equation (4.1)

becomes:
DIQ=(0")u+(Q)y+0Q, 1>0,0<a<l, (4.17)

from Case (2), we set:
Z(Q(x,y,7)) = 0,

‘/V(Q(xay? T)) = (Qz)xx+ (Qz)yy, (418)

Q(x,y,0) = (Sin (x) x Sinh(y))"/?.

Using the Aboodh transform iterative procedure,
1 n—1 Q(v) (x y 0)
—1 » )
Qo= [W <Z<’) Rt
§=
_ M—l 1
=/ | 5 000) (4.19)

= (Sin (x) x Sinh(y))'/? .

0= ! [— (ot [%’(Qo(x,y,o))+=/V(Qo(x7y,0))])}
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1
= (7 [0+ (@) + (GD)n]) (420)

,L.Ot
Cla+1)

= (Sin(x) x Sinh (y))1/2

1%

o [La (7 [2(Q0(x,y, 7)) +{A(Qo(x,y,T) + Q1 (x,5,7)) = A (Qo(x,, T))}])}

— ! {% (o [01+{((Qo+Q1)*)ax+ ((Qo+ Q1)%)yy — ((QF)rx + (Q‘z))yy)}])}
421

,L.Z(x

= (Sin (x) x Si”h(y»l/zm '

(A [R(Qm—1(x,Y, f))])} +

el o)+ (g

1
ot | (@ 10na (57| @)
VA
‘ ' 12 ma
= (Sll’l ()C) X Sinh (y)) m .
The m-th order approximate series is derived as:
20 (x,3,7) =}, Q(x.y,7) = Qo(x,3,7) +Q1(x,3,7) + 25,3, T) -+ Qu(x,7,7)
k=0
o 20 o

= (Sin (x) x Sinh(y))"/? <1 + ) (4.23)

Mla+1) ' T2a+1) +”'+m

—(Si Sinh (y))'/?
(Sin (x) x Sin Z Ka+1

So, the m-th order approximate series solution come close to the exact solution as
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0(x,y,7) = lim 2" (x,y, 1)

= (Sin (x) x Sinh(y))"/* lim f

m—soo

= (Sin(x) x Sinh(y))'/? Eq(1%).

m-—oo

k=0

Taking o = 1, the exact solution of Equation (4.17) is:

Qc(x,y,7) = (Sin (x) x Sinh (y))'/? E\ (1)

— (Sin (x) x Sinh(y))"/? exp(7) ,

TK‘OC

T(ka+1)

(4.24)

(4.25)

which tally with the solution in [47]. We compare the absolute difference between

the series approximate solution and close form solution for o = 0.5 and obtained the

absolute error similarity of the present method with the method in [48] when 7 = 0.2

and o = 1. The similarity plot of the exact and approximate solutions is presented

in Figure 4.3 while Figure 4.4 is the surface shape of the population density when

o =0.25,0.5,0.75 and 1.

Table 4.2: Similarity of the error investigation for Case (2).

X y a=0.5 a=1.0 a=0.5in[48] | ¢ =1.01n [48]
0.1 02]86x108|56x107"7| 86x10°8 5.6 x 10717
0.106]15x1077 | 1.1x1071° 1.5x 1077 1.1x 10716
01] 1 [21x1077 | 1.1x10716 2.1x 1077 1.1x 10716
05/0219%x1077 | 1.7x 10716 1.9% 1077 1.7 x 10716
05]06|33x107%|22x107"7 | 33x10°8 2.2x 1017
05| 1 [45%x1077|33x10710| 45%x1077 3.3x 10716
09]02]24x1077 | 1.7x1071% | 24x1077 1.7x 10716
09]0.6|43x1077 | 33x1071%| 43x1077 3.3x 10716
09| 1 |58x1077 |44x1071%] 58x1077 4.4 x 10716
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a=0.25[T
a=0.5
25 a=0.75 |/
a=1
—*— Exact
2+ i

Population density
o

=N
T
|

G 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Spatial Varable
Figure 4.4: Similarity plot of Case (2).

(¢) o0 =0.75 o=l
Figure 4.5: 3-D plot for Case (2) with distinct values for o.
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4.3.3 Case 3

2\ 2

fractional biological population model Equation (4.1) becomes:

1
1 2
If g = p =1, ( Verhulst Law [44] ) and Qy(x,y) = exp (— (ﬁ> (x-l—y)) , the time-

D0 = (0% +(0*)yy +fO(1—r0), T>0,0<a <1, (4.26)
from case 3, we set:
Z(0(x,y,7)) = f0O,

N (0(x,,7T)) = (QF)xx + (Q%)yy — frO?, (4.27)

Using the Aboodh transform iterative procedure ,

a1 (5 eYy0)
Q= llw <ZW

s=0

= ! [—Q(’;’g’ 0)] (4.28)

= [ 100+ (@t (@)~ 570 4.29)

ceof3(5) )

0r— /! [wi (o [(Q1 (£.,0)) + {H (Qolr.3,7) + Q1 (v.3, 7)) — N(Qolx.. r))}])]

=/ {% (< [£O1+ ((Qo+ Q1) )xx + ((Qo+ Q1)) yy — fr(Qo + 01)?] )}
— /! % (o [((Q)xx — (Q0)yy +er%>})] (4.30)
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(o [ (O (1, r>>]>} n

) )

o] [Wi ( [ O (.. rm] 431
1/ fr\? (FTo)m
= exp (5 (?) (x+y)> Tomat 1)

The m-th order approximate series is derived as:

Q(m)(x7y7 T) = Z QK(XJ’, T) = QO(xayv T)+Ql (X,)’a T)+Q2(x7ya T>+ : '+Qm(x7y7 T)
k=0

fr\2 1/ fr\? f1o

7) (x+y) | +exp <§ <?> (x+y)> F(OC+1)+

: (7% L(fr\ (79"
(x+y)> F2a+1) +...+exp (5 (?) (x+y)) T(ma+1)

_ 1/fr\? fr* (f1%)? ()"
—exp (E (7> (”y)) <1+ Mla+1)  Ta+D " F<ma+1>>

(4.32)
_ 1L(fr)? o ()"
P (5 ( 2 ) (x+y)> L Fxat1)

k=0

So, the m-th order series approximate solution come near to the exact solution as m —

00’

Q(x,y,7) = lim 2 (x,y,7)

1 1 m ank
oo (3(5) o) mE L

k=0
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Taking o = 1, the exact solution to Equation (4.26) is:

Qe (x,y,T) =exp (% (g) 2 (x+y)) Ei(fT1)

= exp (% (g)é (x+y)+fr> ,

which is the exact solution to the biological population model in [15] when f = 1. We

(4.34)

compare the absolute difference Eyir = |Q(x,y,T) — 2(10) (x,y,7)| between the series
approximate solution and the close form solution for various values of o and obtained
the absolution error Eup, = |Qc(x,y,7) — 219 (x,y,7)| when a = 1 in Table 4.3.
Figure 4.5 reveals the comparison of the exact solution with the approximate solution
while Figure 4.6 displays the surface shape of the population density when

o =0.25,0.5,0.75 and 1. with T = 46, f = 0.02, r = 0.2.

Table 4.3: Comparison of error difference for Case (3) when 7 =0.2.

X y a=0.25 a=050 | =075 a=1.0
0102 64x10" | 1.1x10714 0 0
0.1106]69x1071 | 1.2x10°14 0 0
01 1 |73x1071 | 1.3x10°14 0 0
05102]69x1071 | 1.2x10°14 0 0
05106]73x1071 | 1.3x10714 0 0
05 1 |78x10°1 | 14x10714 0 0
09]02]73x107"|1.2x10714 0 0
09106|7.8x1071" | 14x10714 0 0
09| 1 |83x1071 | 14x10°14 0 0
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Figure 4.7: 3-D plot for Case (3) with various values of «.
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Chapter 5

CONCLUSION

In this thesis work, we have presented and applied the Aboodh transform iterative
method to achieve series approximate analytical solution of gas dynamics equation
with fractional order, time-fractional Fokker-Planck equation, fractional Kolmogorov
equation, Klein-Gordon type equation with fractional order and spatial diffusion
biological population model with the positive non-integer order. We decompose the
nonlinear terms using the new iterative method. The method is easy to implement
without the requirement for restrictive assumptions, Largrange multipliers and
Adomian’s polynomials, we have provided several examples to support these claim. It
is possible to apply Aboodh transform iterative method to obtain series approximate
analytical solution of some fluid dynamics problems and further expand the method to

solve boundary value problems.
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