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ABSTRACT

In this thesis, a new family of discrete MOPs, namely ®-multiple Meixner
polynomials, where @ is a positive real number is introduced. For w-MOPs,
orthogonality conditions w.r.t » (with r > 1) different Pascal distributions (Negative
Binomial distributions) are used. Depending on the selection of the parameters in the
Negative Binomial distribution, two kinds of w-MMPs, namely 1st and 2nd kinds are
considered. Some structural properties of @-MMPs, such as raising operator,
Rodrigue’s type formula and explicit representation are derived. The generating
function for @-MMPs is obtained and by use of this generating function several
consequences for these polynomials are reached. A lowering operator for @-MMPs
which will be helpful for obtaining difference equation is also derived. By combining
the lowering operator with the raising operator the difference equation which has the
@®-MMPs as a solution are obtained. A third order difference equation for @-MMPs is
given . Also it is shown that for the special case @ = 1, the obtained results coincide
with the existing results for MMPs of both kinds. In the last part as an illustrated
example for the w-MMPs of the first kind the special case when @ = 1/2 is
considered and for the 1/2-MMPs of the first kind,the results obtained for the main
theorems are stated. For the w-MMPs of the second kind the special case when
® = 5/3 is studied and for the 5/3-MMPs of the second kind, the corresponding

result obtained for the main theorems are examined.

Keywords: Orthogonal polynomials, Multiple orthogonal polynomials, Rodrigue’s

type formula, Generating function, Difference equation
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Bu tezde, yeni bir kesikli ¢oklu ortogonal polinom ailesi, yani @-¢oklu Meixner
polinomlar1 calisilmistir. Burada @ pozitif bir gercel sayidir. ®-¢oklu Meixner
polinomlari i¢in r farkli negatif binom dagilimina gére (r > 1) ortogonallik kosulu
kullanilmigtir. Se¢imine bagl olarak negatif binom dagilimindaki parametreler, iki tiir
w-coklu Meixner polinomlari, yani 1. ve 2. tiirler dikkate alinmistir. ®-¢oklu
Meixner polinomlart i¢in bazi yapisal Ozellikler, Ornegin yiikseltme operatorii,
Rodrigue’nin tiir formiilii ve acik temsil tiiretilmistir. @-¢oklu Meixner polinomlari
icin olusturma fonksiyonu elde edilmis ve bu olusturma fonksiyonunun
kullanilmasiyla bu polinomlar i¢in bazi 6nemli sonuclara ulagilmistir.  ®-coklu
Meixner polinomlart i¢in Fark denkleminin elde edilmesine de yardimci olacak bir
indirme operatorii tliretilmistir. Indirme operatoriinii kaldirma operatorii ile
birlestirerek bu polinomlara ait ¢oziimii olacak fark denklemi elde edilmistir.@-¢oklu
Meixner polinomlari i¢in {i¢iincii mertebeden fark denklemi verilmistir. Ayrica @ = 1
0zel durumu icin elde edilen sonuglarin, her iki tiirden genel ¢oklu Meixner
polinomlarina ait mevcut sonuglarla ortiistiigi gosterilmistir. Son boliimde birinci
tirden w-¢oklu Meixner polinomlari i¢in @ = 1/2 durumu dikkate alinmig ve elde
edilen temel teoremler 1/2-¢coklu Meixner polinomlart i¢in uygulama olarak
gosterilmistir.  Benzer gosterim, ikinci tiirden @-coklu Meixner polinomlar: icin
® = 1/2 6zel durumu ele alinarak ikinci tiirden 5/3-¢oklu Meixner polinomlart i¢in

incelenmistir.

Anahtar Kelimeler: Ortogonal polinomlar, Coklu ortogonal polinomlar, Rodrigue’s

tip formiilii, Olusturma fonksiyonu, Fark denklemi
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Chapter 1

INTRODUCTION

In this thesis, after an elementary information, in which some important notions and
preliminaries for OP and MOP are mentioned, we will concentrate on some new results

on the study of @—MMPs of both kinds, namely @ —MMP-1 and o—MMP-2.

One feature in the theory of OP is to study them as special functions. The widely used
OP can be expressed as terminating hypergeometric series. During the twentieth
century researchers have been working on a classification of all such hypergeometric
OP and their properties. The very COPs are those which was named after Jacobi,
Laguerre, and Hermite. OPs developed in the 19th century from a study of continued
fractions by P. L. Chebyshev and was followd by A. A. Markov and T. J. Stieltjes.
They appear in many different areas such as Numerical Analysis, Approximation
theory, Probability theory, Representation theory of Lie groups, quantum groups, and
related subjects, Differential and Integral equations, Combinatorics, Mathematical
physics and Number theory. In recent years it has seen a great deal of progress in the
area of OPs, which are closely related to many important branches of analysis. They
are connected with trigonometric, hypergeometric, Bessel, and elliptic functions, are
related to the theory of continued fractions and to important problems of interpolation

and mechanical quadrature.

MOPs are generalizations of orthogonal polynomials, which originated from
Hermite-Padé approximation in the context of irrationality and transcendence proofs

1



in number theory and further developed in approximation theory. During the past few
years, MOPs have also arisen in a natural way in certain models from mathematical
physics, including random matrix theory, non-intersecting paths, etc. MOPs are
polynomials of one variable which are defined by orthogonality relations with respect
to r different weights. recently received renewed interest because tools have become
available to investigate their asymptotic behavior. = They appear in rational
approximation, number theory, random matrices, integrable systems, and geometric
function theory. Various families of special multiple orthogonal polynomials have
been found, extending the classical orthogonal polynomials but also giving
completely new special functions. This notion comes from simultaneous rational
approximation, in particular from Hermite-Padé approximation of a system of r

functions, and hence has its roots in the nineteenth century.
Let us start with the definition of orthogonality.

The generalisation of the idea of a scalar product of two finite dimensional vectors to

an infinite dimensional function space is given below.
b
[ gt
a

where w(x) > 0, for a < x < b. In the case when scalar product is zero, we say that the

functions /(x) and g(x) are orthogonal.

By use of the above integral definition we are ready to give the definition of orthogonal

polynomials. There are two types OPs namely, COPs and DOPs.

For the continuous OPs P,(x), of order n, the orthogonality relation written as,



where w(x) is weight function and [a, b] is interval of orthogonality.

For the COPs, w(x) is continuous or piecewise continuous or integrable function. The
Jacobi, Laguerre, and Hermite polynomials are examples for the COP. They form the
simplest class of special functions and the theory of these polynomials allows
important generalizations. By use of the Rodrigue’s formula for these COPs, the
integral representations for some important functions such as Bessel and

Hypergeometric functions can be obtained.

The polynomial set P,(x) ,(m = 1,2,...) form a classical orthogonal polynomials set
of a continuous variable if P, (x) (polynomial of degree m) satisfy the hypergeometric
type differential equation which has form 1 (x) P, (x) + p (x) P,,(x) + 0P (x) = O with

Pearson type equation % [n(x)w(x)] = p(x)w(x), where n(x) and p (x) are polynomials

of at most second and first degree respectively and ¢, is a constant.

The above examples for COPs form a classical orthogonal polynomials set of a

continuous variable .

For the DOPs, P,(x) of order n, the orthogonality relation can be written as,

Y Pu(xi) Pu(xi)wi(x) =0, m#n,
i=0
where weight function w(x) is a jump function, which means at the point x; the left and

right limit exists but they are not equal. The Hahn, Chebyshev, Meixner, Kravchuk,

and Charlier polynomials are examples for the DOP.



The relations for upward and backward difference operators will be given.

The upward difference operator is defined by Ag(z) = g(z+ 1) — g(z) and the backward

difference operator is defined by Vg(z) = g(z) —g(z—1).

The polynomial set P,(x), (m = 1,2,...) form a classical orthogonal polynomials set
of a discrete variable if P, (x) (polynomial of degree m) satisfy the hypergeometric type
difference equation which has form 1 (x)AVE,,(x) + p (x)APB,(x) + tuPn(x) = 0 with
equation A[n(x)w(x)] = p(x)w(x), where n(x) and p(x) are polynomials of at most

second and first degree respectively and o, is a constant.

The above examples for DOPs form a classical orthogonal polynomials set of a discrete

variable .

Discrete multiple orthogonal polynomials are useful extension of discrete orthogonal
polynomials. The theory of DOPs on a linear lattice were extended to MOP which
satisfy orthogonality conditions w.r.t r positive discrete measures, by J. Arvesu, J.

Coussement and W. Van Assche [3].

The type II discrete MOP P;; of degree < \7|, corresponding to multi-index =

(n1,...,n,) € N, is a polynomial which satisfies the orthogonality conditions [3]
Y Pr(x)(—x)jwi(x) =0, j=0,1,..m;—1, i=1,...r (1.1)
x=0

The orthogonality conditions give us a linear system of |ﬁ>| =n +ny+..+n,
homogenous equation for the |7\ + 1 unknown coefficients of polynomials which
—

always has a nontrivial solution. If the given multi-index 7" is normal, then the

corresponding polynomials will be unique polynomials. For the uniqueness of the



polynomials, E.M. Nikishin and V.N. Sorokin [15] have introduced a system which is

called an AT system.

Let us now give the definition of an AT system and Chebyshev system.

Definition 1.1: ( cf. [22]) A system of functions F = (fo, fi, ..., fn) of complex—valued
functions defined on a proper interval [ is called a Chebyshev system, or Tchebycheff

system, or T—system, if the determinant
D(fo,...f3t0,.-tn) :=det(fj(tx); 0<j, k<n)

does not vanish for any choice of points #;;0 < k <ninl.

Definition 1.2: ( cf. [15]) A set of continuous real functions wi,ws,...,w, defined on

a,b| is called an AT system for the index n € Z', , n # 0, if
[ y

wi(2),72w1(2),- .-, 2" i (2),

ny—1

wr(z),z2wr(2),...,2 wr(2),

is a Chebyshev system of order |n| — 1 on [a,b].

In an AT system, all the multi-index 7 are normal. By using the following two
examples it will be easy to show that the weight functions for the DMOPs form an AT

system.

Example 1.1: (cf. [3]) The functions



w(2)a W (). 2 w2,
w(z)at, w(2)a, ..., " 'w(z)d},
with all the @; > 0,i = 1,...,r, different and w(z) a continuous function which has no

zeros on R, form a Cheybshev system on R™ for every index W eN.

Example 1.2: (cf. [3]) The functions

W@ (x+B1), aw(@)D(e+ B, "~ w(@)T(z+Br),

w(@)L(z+B),2w(@)0(z+ By, .. 2" w@)T(z+By),
with B; > 0 and B; — B; ¢ Z whenever i#j and w(z) a continuous function which
has no zeros on R, form a Cheybshev system on R" for every index W eN. If
Bi—B; ¢0,1,...,N — 1 whenever i# , this gives a Chebyshev system for every 7 for

whichn; <N+1,i=1,2,...r.

The proof of the above example can be found in [3] and the general form for Example
1.0.2 given in the following example. Before giving the example let check the definiton
of w-gamma function.

I'p is the w-gamma function given by,

L (x) :/ e o dr = a)%*lr(%).
0



Example 1.3: (cf. [4]) The functions

w(@)To(z4 B1),w@)y(@)Toz+B1)....,w@)y(@)" 'Tolz+Bi),

w(@)To(z+ Br), w@)y(@)Tolz+Br), .., w@)y(@)" 'Tolz+Br),

with B; > 0 and fB; — B; ¢ Z whenever i#j and w(z) a continuous function which
has no zeros on R™, form a Cheybshev system on R" for every index W eN. If
Bi—B; ¢0,1,...,N —1 whenever i , which gives a Chebyshev system for every i

for whichn; < N+1,i=1,2,...r.

The proof of the above example is given in [4].

MMPs are discrete MOPs. There are two kinds of MMP. They are polynomials of one
variable satisfying orthogonality conditions w.r.t more than one Negative Binomial

distributions.

In [3], J. Arvesu, J. Coussement and W. Van Assche investigated raising operator and
Rodrigues formula for the MMP. Also, via Rodrigues formula an explicit formula for
these polynomials are obtained by these authors. They investigated these properties

for MOPs of discrete variables by extending the COPs of discrete variables.

W. Van Assche in [20] obtained a lowering operator for MMP for the case r = 2 and
then by combining lowering and raising operator he gave the third order difference
equation for these polynomials. Later, D.W. Lee in [10] obtained a lowering operator

for the case r and then by combining lowering and raising operator D.W. Lee gave the



(r+ 1)th order difference equation for these polynomials.

F. Ndayiragije and Walter Van Assche in [6] gave generating functions and explicit
expressions for the coefficients in the nearest neighbor recurrence relation for MMP.
1.1 Multiple Meixner Polynomials of the First Kind

MMPs of the first kind M'P @) (x), of degree | 7|, are orthogonal polynomials for the

Negative Binomial distributions when r > 1. That is,

Y MED @l =0, j=0Lm—1, i=l..n (12
x=0

where B > 0 is the fixed parameter and different values for the
parameter7 = (ai,...,ar), (a;#a; whenever i#j) where 0 < a < 1 with multi-index
W = (ny,...,n,) and (x)y = x(x+1)(x+2)...(x+k— 1) is the Pochhammer symbol

with (x)o = 1.

The functions

r x)ak .
e Y ER/(-1 -2 U{=B B L]

wf (x) =
0 ifxe{-1,-2,..}

are weight functions of the MMP-1 where I'(x) is the gamma function.

By using Example 1.0.1 it will be easy to see that the weight functions for the MMP-1

form an AT system.

The raising operator for the MMP-1 is given as follows(see [3, equation 4.6, p. 33]),

i—1 - _ .
Vg 0] = ST e =

where a repeated application of these operators gives Rodrigues formula as [3, equation



47, p. 331,

MBD (x) = (B)7

r( @ \'TB)TE+1)
ap—1 I'(B+x)

(B +x+]|7|)al

T(x+DO(B+|7])

k=
Tl

[TV

i=1 %

The explicit form for MMP-1 is given as [6, equation 3, p. 3],

AP <k1)<’£§>-~(’£:)<—x>m

XH[ v

(B3 7,

The generating function for MMP-1 is [6, equation 7, p. 4],

SR SR 5 uﬁ) o h v\
Z ZZ (X)F—(l—al_l—.“—ar_l)
—(B+x)
ha tra,
x|1-— —. = .
( al—l ar—l>

The lowering operator for MMP-1 has the following form [10, equation 2.5, p. 138],

Z MB+17

(r+ 1)th order difference equation for MMP-1 is given as [10, Theorem 2.5, p.139],
[(B+2=r (B+3-r) .Ly,3+1)AM(7ﬁ’7)( )

aj a X +

LB B B B840y B )

Nila) ~baiy Qjt1 ~ta, La;

-

1

~.

The third order difference equation for MMP-1 is [10, Corollary 2.6, p.139],



x(x — 1)V2Ay +x[B(a; +a2) + (x— 1) (ay +az — 2)]VAy+

[(a1B —x(1 —a1))(azp —x(1 —a)(1 — az) — a1a2B|Ay+

n(1—ay)+n(l —ap)|xVy+

(B —1)[[naz +nay —ajaz(ny +n)] — (1 —ar) (1 — az)(ny +n2)x]y =0.
1.2 Multiple Meixner Polynomials of the Second Kind
The orthogonality conditions for the second kind of MMPs, of degree |7|, were
defined in (see [3]) by keeping parameter 0 < a < 1 fixed and by changing the
parameter E) = (B1,B2,---,Br) , Bi > 0 (Bi — Bj ¢ Z for all i#j) with multi-index

7 = (ni,...,n,) as follows,

o —
E)M%}’a)(x)(—x)jwﬁi(x)zo, i=01, =1, i=1,...n (13

The functions

% ifxeR/({—1,-2,..YU{=B;,—Bi—1,..})

wﬁ"(x) =
0 ifxe{—1,-2,...}

are weight functions of the MMP-2 where I'(x) is the gamma function.

From Example 1.0.2, it is obvious that the weight functions of the second kind MMPs

form an AT system.

The raising operator for MMP-2 is given as [3, equation 4.9, p. 35],

_>a . a—1 _>7?,->a — .
V[ W] = M el ) =L

and a repeated application of these operators gives the Rodrigues formula for MMP-

10



2 [3, equat10n4 10, p. 35],

7| r
(x—|—1)
(a— 1) pali (Be)n a® |
T T(B) o |[TBimitn)| (o
i1 D(Bi+x) C(Bit+n) |\Tx+1) )

The explicit form for MMP-2 is [6, equation 5, p. 3],

i nom ne|7|-|%|

(p.a) a ni\ (n2 ny
- § 5 () () () o

K klz—’o kzz—'o k,z—’o m ki k> k, 1% |

fi(se 50)

Jj=1 nj—kj

The generating function for MMP-2 is [6, equation 9, p. 5],

Z y . ZM —’, (1_1 - TI0+ a,)Dx

=0n,=0 n,= Ny a j=l1

, —(x+p;)
[T+ S
i=1 I-a" .

The lowering operator for MMP-2 [10, equation 2.11, p. 142] and [10, equation 2.12,

p. 142],
M) = Y il ),
where,
_ _1(np+Bp—Bi)
’ qm#wlﬁw 1By — B
i (=) 1=y (nj+ B — By)

j=1 (nj+B;j—Bi) g= 1q7é]( nj"‘ﬁq_ﬁj)H;:jH(nj_”p+ﬁj_ﬁp).

(r+ 1)th order difference equation for MMP-2 is given as [10, theorem 2.10, p.145],

%1+1 Bo+1-- /3+1[ +ZdLﬁ +1° ﬁl 1+1 ﬁz+1+1 %ﬁl %hLl
-
M ) =0,

11



where the 3rd order difference equation for MMP-2 is given as follows [10, corollary
2.11, p.145],
x(x—1)V2Ay+[(1 —a)(2 —2x) +a(1 + B + B2)]xVAy
+[(api — (1 —a)x)(aPy — (1 —a)x) —x(1 —a)|Ay
+ (n1 +n2)(1 —a)xVy

+ (1 —a)la(niny + Bany + Pinz) —x(1 —a)(ny +nz)]y = 0.

12



Chapter 2

@-CLASSICAL OP OF A DISCRETE VARIABLE

The theory considered this chapter is based on [14]. The properties of classical
orthogonal polynomials of a continuous and discrete variable is given. We extend the
theory for the classical orthogonal polynomials of a discrete variable to the -

classical orthogonal polynomials of a discrete variable.

For give the main definition firstly the relations for w-upward and ®-backward
difference operators will be given.

2.1 The w—Difference Equation

Definition 2.1: The w-upward difference operator is defined by

Awg(z) = g(z+ o) — g(z) and the w-backward difference operator is defined by

Vwg(z) = g(z) —g(z— ).

Definition 2.2: The polynomial set P,(x), (m = 1,2,...) form a m-classical
orthogonal polynomials set of a discrete variable if P, (x) (polynomial of degree m)
satisfy the hypergeometric type difference equation which has form
N(xX)AwVePn(x) + p(X)ApPn(x) + auPu(x) = 0 with equation
Ap[N(x)w(x)] = p(x)w(x), where n(x) and p(x) are polynomials of at most second

and first degree respectively and o, is a constant.

Theorem 2.1: The w-upward and the w-backward difference operator have the

following properties:

13



L. Awg(z) = Vag(z+ 0),
2. ApVog(z) = g(z+ o) —28(2) +g(z — ),
3. Ap(g(2)h(2)] = &(2)Awh(z) + h(z+ ©)Awg(2)
4. Volg(2)h(z)] = g(2)Voh(z) + h(z — ©) Vg (2).
Proof. To give the proof for 1, start with RHS
Vog(z+ 0) = g(z+ 0) —g(z)
= Awg(2).
To give the proof for 2, start with LHS ,
AoVog(z) = Aolg(z) —g(z— 0)]
=gzt o) —g(z) —8(z) +g(z— )
=8(z+ ) —2g(z) +8(z— 0).
To give the proof for 3 , start with LHS ,
Awlg(2)h(z)] = g(z+ ©)h(z+ ©) = g(2)A(z).
Let add and subtract the term g(z)h(z + @) for RHS of the above equation,
Aw[g(2)h(2)] = g(z+ @)h(z+ ©) — g(2)h(z) + 8(2)h(z+ ©) — g(2)h(z + @)
= 8(z+ 0)[h(z+ ©) — h(2)] + h(z)[g(z + @) — g(2)]
= 8(2)Aph(z) +h(z+ ©)Apg(2).
To give the proof for 4, start with LHS ,
Volg(2)h(2)] = g(2)h(z) — 8(z — @)h(z - @).

Let add and subtract the term g(z)h(z — @) for RHS of the above equation,

14



Volg(2)h(z)] = g(2)h(z) — g(z — @)h(z — @) + g(2)h(z — ©) — g(2)h(z — ©)
= 8(2)[h(z) — h(z — )]+ h(z — ©)[g(z) — 8(z — ®)]

= 8(2)Voh(z) + h(z— ®)Vug(z).

Theorem 2.2: The w-summation by parts formula is given by,
Z Aolf(wk)]g Z Volg(0k)]f(wk) (2.1)

where g(—) = 0.
Proof. To give the proof for @-summation by parts formula start with the following

expression,

l

Y. | Solr(@bls(@i) + Vals(ob](on)]

k=m

From the definitions of the w-upward and the @w-backward difference operators the

above equation get the following form,

l

y {Awmwkng(wk)+vw[g<wk>]f<wk>] _y [f(wk+w>g<wk>—f<wk>g<wk—w>}.

k=m k=m

Let write the terms for the RHS,
l

¥ | Solf(@blsoh) + Vals(@0](08)| = |(@0n+D)e(om) - foms(oin-1)]
+ _f(a)(m+2))g(w(m+ 1) - f(o(m+ 1))g(a)m)}
+ _f(a)(m+3))g(a)(m—|—2)) —f(w(m+2))g(a)(m+1))}

1 | Feng(@t— 1)) - f(al - 1>>g<w<z—2>)}

T A0+ 1) s(0)) - fons(ol - 1>)]

At the end we obtain that,

l

Y. | Lolf(@k)]g(wk)+Vo[g(wk)f(wk) | = f(a(l+1))g(ol) - f(om)g(o(m—1)).

k=m

By choosing m — 0, [ — o where g(—®) = 0 we get the desired result for the

15



theorem.

For a polynomial g,(z) of degree n the expressions Agpgn(z) and Vpg,(z) are

polynomials of degree n — 1. Thus ,

Vi gn(x) = Al g (x) = g (x).

Theorem 2.3: Let Vi (x) = Aypy(x) and @ be a positive real number. V; (x) satisfies the

following w—difference equation,
N(xX)AeVey(x) +p(x)Apy(x) + 0ty(x) = 0.
Proof. Since Vi(x) = Apy(x), we can rewrite (2.2) again as,
NX)VeVi(x) +p(x)Vi(x) + oy(x) = 0.
By applying Ay to both sides of above equation we obtain,
Ao [N(X)VoVi(x)] +Ap [p (x)Vi (x)] + dApy(x) = 0.

By using property 3 from the Theorem 2.0.1 we get,

10980V Vi () + AaVi (x) [0 (x) +p (r+ )] + V1 () [Aap (x) +

By getting,
p1’(x) = Ao (x) +p(x+ ®)
and
af =App(x) + .

We desired the result,

N80 VaVi (x) + PP () A0V (x) + 0PV (x) = 0.
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Theorem 2.4: Let V,(x) = A’ y(x) and @ be a positive real number. V, (x) satisfies the

following w-difference equation of hypergeometric type,

N(X)A0VaVa(x) + Py’ (X) A0 Va(x) + 0’ Va(x) = 0, (2.6)

where
Py (x) = A (x) + P, (x + ©), 2.7)
af =App  (x)+af . (2.8)

Proof. In a similar way with the Theorem 2.0.3, by setting V5 (x) = Ay V) (x) in (2.5)

we get,
N(x)VoVa(x) +pi (x)Va(x) + 0’V (x) = 0.
By applying Ay to both sides of the above equation we obtain,
Ao [N(X)VoVa(x)] +Aw [pf (x)Va(x)] + a’Ae Vi (x) = 0.
By using property 3 from the Theorem 2.0.1 we get,
N(xX)AxVoV2(x) +ApVa(x) [Awn (x) + p’(x+ ©)] + Va(x) [Awp(’(x) + o’ ] = 0.
By getting,
Py’ (x) = Ao (x) + P (x + ),
and
oy’ =Aepi’(x) +af’,

we get the result for V,(x) = AV (x). By iterating n times we desired the result for

the theorem. O]

Theorem 2.5: The explicit expression for p/’(x) is given by,
Py’ (x) = p(x+@n)+n(x) +1(x+ on). (2.9)
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Proof. From (2.7) by using the definition of the w-upward difference operator we get,
Py’ (x)+n(x) =nx+o)+p, . (x+ ). (2.10)

By iterating above equation we desired the result for the theorem. [

Theorem 2.6: The explicit expression for o is given by,

a? = a®+np'(x)+ %n(n —1)n"(x). (2.11)

Proof. For give the proof of the theorem first let show that Agyp (x) and AZn(x) are

independent of x.

By applying Ay to eguation (2.7) we obtain,

Aop? (x) = AGN (X) + Aop? | (x+ 0).
The above equation get the following form by iterating n times.

Awpy’ (x) = nbgn (x) + Awp (%),
which is equivalent with,
Awp,’ (x) =nn" (x) +p'(x). (2.12)

For equation (2.8) we use (2.12) for Ayp.” | (x) and we obtain,

0 = 0" |+ AwpPp—1(x) +Appp—2(x).
After iterating above equation n times we get,

o = 0y +ApPn—1(x) +ApPr—2(x) + - +App1(x) +App (x),

where o’ = ot. For the above equation we use (2.12)to obtain the result of the theorem.

]

Theorem 2.7: For the difference equation,

N(x)A0Vey(x) +p(x)Apy(x) + oy(x) = 0,

18



the self-adjoint form is given by,

Ap [0(x)N(x)Vey(x)] + ao(x)y(x) =0. (2.13)
Where o (x) satisfies the following w-Pearson equation,

Aplo(x)n(x)] = o(x)p(x). (2.14)
Proof. Start with multiplying (2.2) with o (x) to obtain,
o (x)N(x)A6Voy(x) + 0 (x)p (x)Apy(x) + 000 (x)y(x) = 0.
By use of w-Pearson equation (2.14) in the above equation we get,
o ()N (x)A6Voy(x) +Aa [0(x)N(x)]|p (x)Awy(x) + 0 (x)y(x) = 0.

From Theorem 2.0.1 we use the properties 1. and 3. to obtain the self-adjoint form

(2.13). ]

Theorem 2.8: For the difference equation,
N(x)A0VoVi(x) + py (X) A Va(x) + 04 Vi (x) = 0,

the self-adjoint form is given by,

Ao [0(X)N (X)VoVa(x)] + 0 0, (x) Vi (x) = 0. (2.15)
Where o, (x) satisfies the following @-Pearson equation,

Ao [04(x)N(x)] = 0u(x)p; (x). (2.16)
Proof. Start with multiplying (2.6) with o, (x) to obtain,
0, (X)N (X)) AV o Vi (%) + 03(x)pL (x) Ay Vi (x) + 0P 6, (x)Vyu (x) = 0.
By use of w-Pearson equation (2.16) in the above equation we get,
0,(X)N (X) A0V Vi (x) + A [0 (x) N (x)] A Vi (x) + 04 G (x) Vi (x) = 0.

From Theorem 2.0.1 we use the properties 1. and 3. to obtain the self-adjoint form
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(2.15). ]

Theorem 2.9: The connection formula between the functions o (x) and o,(x) is given

by,

on(x) = G(x—i—na))ﬁr[(x—i—ka)) (2.17)
k=1

Proof. For give the proof of the theorem start with the equation (2.16) and write in the

form,
O (x+ 0)N (x+ @) — 6,(x)N (x) = ou(x)p,’ (%),

which is equivalent with,

o,(x+o)n(x+ o)

oy =R () (2.18)

By use of the equation (2.10) and iterating the above equation we obtain,

On(x+ @) B G (x) -
O 1(x+20)N(x+20) 01 (x+0)N(x+ o) = cn(x), (2.19)

where ¢, (x) is any function of period 1. By taking c¢,(x) = 1 we get,
On(X) = Op—1 (x+ @)1 (x+ ). (2.20)

Since op(x) = o(x), iterating above equation n times we get the equation (2.17). [

2.2 Finite ow—Difference  Analogs of  Polynomials of
o—Hypergeometric Type and of Their Derivatives and the
®—Rodrigues Formula

We are ready to construct a theory of w—classical orthogonal polynomials of a discrete
variable. By getting n = m in the w—difference equation of hyprergeometric type we

obtain that,
N(X) A0V Vin(x) + P (X) A Vin (x) + 0 Vin(x) = 0,

has a particular solution V,, (x) = constant if o, = 0.
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Since Vj,(x) = Aby(x), this means that if

m

a=0a?=—-mp'(x)— %m(m— D" (x) (2.21)

there is a particular solution y = y,(x) of the -—difference equation of
hyprergeometric type, which is a polynomial of degree m, provided that o # 0 for

n=0,2,....m—1.

We can rewrite the equation (2.6) for V,(x) in the following form,

-1

Vi) = =5 M) Vo Vi1 () +py (1) Var1 (1) |

From the above equation it is clear that if V,.(x) is a polynomial, then V,(x) is also

polynomial if ot # 0 .

Theorem 2.10: The w—Rodrigues formula for the w—discrete polynomials is given

by,
Amon
6, (0Vala) = SV [om<x>vm<x>] | 222)
where
n—1
Ap=(=1)"T] o, Ao=1. (2.23)
k=0

Proof. The self-adjoint form (2.15) written in the following form,

From Theorem 2.0.1 by use of propety 1 and AV, (x) = V,.1(x) we obtain,
Vo (3) = 25V 00+ @) (x+ @)Vi ()]
By use of equation (2.20) the above equation get the following form,
G (Va(0) = Voo [ (1) Vi1 0]

n

For n < m we obtain,
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G (0) = Voo Gt (Va1 (0]

n

= <;—;)) (O‘_Tl> Vo [Oni2(0)Vaga ()] = ...

n+1
A
= yn-m Gm(x)Vm(x)] .
Ap

]

Theorem 2.11: The second @—Rodrigues formula for the w—discrete polynomials is

given by,
Npynle) = LV o)
where
A = s kri @ -" )| Aw=1. n<m
B, =S y’;:)(f)‘) Vi [0 ().

Proof. The self-adjoint form (2.15) written for the A}y, (x) as,

G (A(3) = —o B[ ()T A (5]

mn

(2.24)

(2.25)

(2.26)

From Theorem 2.0.1 by use of propety 1 and V oAy, (x) = A1y, (x) we obtain,

O (X)A%yn(x) = e Vo |[On(x+ 0)n(x+ w)A%Hyn(x)].

mn

By use of equation (2.20) the above equation get the following form,

O ()AL (3) = Vo [Gt ()AL 3 ()]
(04

mn

After iterating the above equation we obtain the following form,

O (NG (0) = 3 Vo [ (A v ()]

mn

~ (52 ) (o ) Vhlom 2t 25 (0)] =...

[
Qinn (m+1)n

—1 —1 —1 n—m n
- (ar%)n> (a((zH_l)n) (a((z_l)n)va) |:Gn(x)Aa)yn<x):|7

where A}y, (x) = constant whence we obtain the equation (2.24).
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Corollary 2.1: The explicit expression for y,(x) is,

B,
o(x)

Ya(¥) = =75V [0a(x) ] (2.27)

Proof. By setting m = 0 in equation (2.24) we get the result. 0

Corollary 2.2: The explicit expression for y,(x) is also given by,

n—1
yu(x) = Glz’; ) Vi [o(x) kr:[O n(x—kw)]. (2.28)

Proof. For the equation (2.27) from Theorem 2.0.1 by use of property land relation

(2.17) we obtain the result for y,(x). ]

Thus the polynomial solutions of w-difference equation (2.2) are determined by (2.27)
up to the normalizing factor B,,. These solutions correspond to the values o = @, from

(2.21).

Theorem 2.12: For the polynomials y,(x) and their differences Agyn(x) the relation

given as,
o’B
Apyn(x) = —=""""3, (x). 2.29
Proof. According to (2.17) we have,
n—1
[o1(0)]a-1=01(x+ (n—1) o) [ n (x+ko)
k=1
n—1
=0 (x+nw) H N (x+kw)
k=1

=0, (x).

By getting m = 1 in the equation (2.24) we obtain,
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A(Dyn( ) = _Gl (x) 161071 [Gl (x)]nfl
~ P o (9,
Ay (%) = —%yn_l (x). (2.30)

Here y,(x) is the polynomial obtained by replacing &(x) with oy (x) in the equation for
yn(x) and B, is the normalizing constant in the @ —Rodrigues formula for y,,(x). Hence

we obtain the result of the theorem. O]

Theorem 2.13: The linear relation that connects the difference V gy, (x) with y,(x)

and y,1(x) is given by,

1 B,

n (x) Voyn (x) = noc,‘;)p,; Pn (x) Yn (x) - Bni1

Va1 (0)] 2.31)

Proof. From w—Rodrigues formula we have,

et () = SV e ()

Bn 1
= LV [AwOntt (x— 0)].

o (x)

By using the equality,
ApOnt1 (x— @) = Ay [0, (x) 1 (x)]
= Pn (x) On (x),

and by using the properties from Theorem 2.0.1 we get,

Bn 1 won
i (0= 5 Vislon () 0 (2]
= B [ )V 6 () + Pl (1) V6 (x-0)].

o (X) w n (0]

Since
—o®B
Voyn (x) = —22 vl (x— 0)],

. ( ) o (X) n (X) 0] [ ( )]

we get the result of the theorem. [

24



2.3 Orthogonality Propety
The polynomial solutions y,(x) have the orthogonality property under certain
restrictions of w— difference equation (2.2). The polynomials y,(x) is called

w—classical orthogoal polynomials of a discrete variable.

Theorem 2.14: For the polynomial y,(x) there is a following orthogonality relation,

b—1
Y vu(0x:)ym(0xi) 0 (0x;) = Sundy, (2.32)

xi=a
under the boundary conditions

o(ox)n(wx)x | —ep =0 (k=0,1,2...). (2.33)
The function 0, is kronocker delta and d,% is the norm.
Proof. Write the w— difference equation in the self-adjoint form for the polynomials

yn(x) and yy, (x).

Ap [0 (0x)N (0x)V pya(@x)] + 04,0 (0x)y,(wx) =0,

Ap [0(0x)N (0x)V o ym(0x)] + 04,0 (0x)ym(@x) = 0.

After multiplying the first equation with y,,(x) and the second equation with y,(x) and

subtracting them we obtain,
Ao [0(@X)1 (@) 034 (02)] i (x) — Ao [0(02)7 (02)V oy (02)] i (x) =

(0 — Q) O (0x)y(©x).

For the LHS of the above equation from the Theorem 2.0.1 by using property 3 we get,
Ao | [0(@2)1/(@2)] [y @2)V 3 (0x) (@) V oy ©2)] | = (0 — ) 5 () (@02).

Let x = x;, x;+-1 = x;3-1 and take sum over for the values a < x; < b — 1 we get,
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b—1
Y. Ao | [0(@xi)N(0x:)] [ym(@x:)V 0Yn(0xi) = yu(0x)V oym(@x;)] | =
Xi=a
b—1
Z (0w — ) O (@x;)ym (Ox;).
Xi=a
For the LHS after applying the w—forward operator the equation get the following

form,

6 ()1 (0x7) [y (©x;) Vo0 (037) — yn(0x:)V oym(©0x;)] [

b—1
=Y (o — o) o(0x;)ym(@x;).
Xi=da
Since the expression y,,(@x;)V oy, (@x;) — y,(0x;)V oym(®x;) is a polynomial in x,
the polynomial solutions of w—difference equation on [a,b — 1] with weight function
o(x). O

By applying the same procedure the orthogonality realtion for the polynomials

Ay, (x) = Vi (x) can be given.

Theorem 2.15: For the polynomial AXy,(x) = Vi,(x) there is a following

orthogonality relation,

b—k—1
Z an(a)x,-)Vkm(a)x,-)Gk(a)xi) = 6mnd]%n7 (234)

Xi=a

under the boundary conditions

o1(0x)N(0x)x | szap =0 (k=0,1,2...). (2.35)
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Chapter 3

ON SOME FAMILIES o-MULTIPLE ORTHOGONAL

POLYNOMIALS

3.1 w—Multiple Orthogonal Polynomials
This chapter is based on [3], we extend the theory of multiple orthogonal polynomials

to the w-MOPs.

Definition 3.1: The polynomial P of degree |7| which satisfies the following

orthogonality conditions called as @-MOP.
Y Pi(ox)(—ox)jowi(0x) =0, j=0,1,...n;—1, i=1,...n (3.1
x=0

where (¢)p,0 = c(c+ ®)(c+20)...(c+ (n — 1)) is the Pochhammer @ symbol for

ceCandneNand o > 0.

From the properties of the Pochhammer @ symbol we know that, (¢),.o = ©" <%> :
which imply that (3.1) is equivalent with (1.1). '
3.1.1 w-Multiple Meixner Polynomials of the First Kind

Definition 3.2: The monic discrete @—MMP of the first kind, corresponding to the
multi-index 7 = (ni,...,n,), the fixed parameter B > 0 and the parameter

a = (a1,....ar), (ai#a ; whenever i#j), is the unique polynomial of degree 7|

which satisfies the orthogonality conditions,

ZOM%"*"%(wx)(—wx),,wwl(“’;ﬁ)(wx) —0, j=01,..om—1, i=12,...,r
(3.2)

27



The functions,

T'o(B+x)al .
—re—rr— ifxeR/({-1,-2,..}U{-B,—B—1,...})
. T'o(B)Te 1 ) ) ’ )
W(w’ﬁ)(X) _ (BT o(x+o) (3.3)
0 ifxe{-1,-2,..}.
are weight functions for ®-MMP-1 where 0 < a; < 1, for i =,1,2...,r, with all a’s

different.

It can easily be seen from Example 1.0.1 that the weight functions form an AT system
thus the corresponding polynomials are unique. When w = 1, the given orthogonality
conditions coincide with the orthogonality conditions in (1.2).

3.1.2 w-Multiple Meixner Polynomials of the Second Kind

Definition 3.3: The monic discrete @ —MMP of the second kind, corresponding to the
multi-index 77 = (ny,...,n,) and the parameters E) =(B1,--Br), Bi>0,Bi—B; ¢ Z
7|

for all i#j),0 < a < 1, is the unique polynomial of degree which satisfies the

orthogonality conditions,

=) —
Y M PO (@x)(—0x) 0w @B (@x) =0, j=0,1,.m—1, i=12..r
x=0

(3.4)
The functions,
LB e R/({—1,-2,. }U{-Bi,—Bi—1,...})
. Fa) il"w ) ) 1y 1 9
(@) () — | TelPITolte) (3.5)
0 ifxe{-1,-2,..}.
are weight functions for ©-MMP-2 fori=1,2,...,rand I'y is the w-gamma function.

From Example 1.0.3 by choosing z(x) = x, the corresponding polynomials are unique
since the weight functions form an AT system. When @ = 1 the given orthogonality

conditions coincide with the conditions given in (1.3).
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3.2 w-Rodrigues Formula for w-Multiple Meixner Polynomials

In this section, the raising operators will be obtained and by use of raising operators ®-
Rodrigues formulas and explicit expressions will be derived for both types w-MMPs.
3.2.1 w-Multiple Meixner Polynomials of the First Kind

Theorem 3.1: ®w-MMPs of the first kind have the following raising operator ,

0]
B . ©_1 _ B
Vo [MUFD) (), 0P) ()] = mmﬁ B0 ow@P ). 36

Proof. By using the product rule for the @-bacward operator
Volf(x)g(x)] = f(x)Vog(x) +8(x — ©) Vo f(x) , we obtain

Vo [MOPD ()P ()] = 1 ﬁ_ 1@) (P )Py

Using - summation by parts formula,
Y Aolf(wk)]g( Z Volg(@k)|f(wk)where g(—m) =0,
k=0

and the orthogonality conditions

Y. Py o (0x)(—0x) ow! P (0x) = 0,
k=0

we reach the result with Py 5 = M(ﬁw +ﬁ wﬁ), which was guaranteed from the

uniqness of the orthogonal polynomials. U

Theorem 3.2: Rodrigues formula for @ —MMPs of the first kind is given by,

(@Bd) r o a? \"To(B)To(x+ o)
M (x) = (B) it g(alcgk_1> I'o(B+x)

N (3.7)
[ Loy [ _ToB+x+ 7o
ra ? To(x+0)To(B+|7|0)
%

Proof. Replacing e by 7 — el and B by B + o in the raising operator formula, we

obtain

W
! al- —1

()
(©B) () OB () = P vw[ (wﬁ’Lw)(x)M(—(f;ﬁ—wa;?)(x)}

Then for r = 2 the multi-index will be 7 = (n,n). For i = 1 we have,
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v

()
w;ﬁ) (X)M(w;ﬁ;al,az) (.X) — Bal Vw lwgw;ﬁ+w) (x)M(G);ﬁ+CO;a1,a2) (.X):| ’

ny,ny a? 1 ni—1,np
and iterating it n times we get,
) A a® m
WE((D,:B) (X)Mr(l?;g,al ,Ll2) (_x) = (B)nl NO)J ((lw—l_l)
1
VZ)I {W(lw;ﬁ+”1w) (X)M(()z;ﬁ'i‘nlw;al,az)(x)} )

For i = 2 we have,

®
w(w;ﬁ)(x)M(w;ﬁ;al’aZ)(x) _ 5“2 Ve [W(a);BJra)) (X)M(wéﬁ-i-@;al,az)(x)] ‘

2 ny,ny ag)_ 1 2 ni,no—1

and iterating it n, times we get,
. R. a% m
P M (3) = (B (—_ 1>
2
v {Wgw;ﬁ-i-nzw) (X)M’S?E)ﬁ-i-nzw;al,az)(x)} ‘

By combining these two equations, we obtain the expression for M,Sj‘f;,’j;“““” (x) and if

we continue the iteration for r, we derive the Rodrigues formula for o—MMP-1. [

Theorem 3.3: The explicit form for @ —MMPs of the first kind is given by

TR W) <n1> ("2> (n’)
M= (x) = (—x) =
k1Z—OkQZ—’O k§0 ki) \k2 kr %)

r | (@)l
1131 (a?’—l)"f(ﬁ“)mﬁ\,w '

Proof. The explicit form obtained from the Rodrigues formula by using the Leibniz

rule for the w—backward operator,

Vi () = f(—l)"(’j)ﬂx— o).

i=1

O
3.2.2 w-Multiple Meixner Polynomials of the Second Kind
Theorem 3.4: w-MMPs of the second kind have the following raising operator ,
= ® -
(waﬁ ,Ll) w;ﬁi — a”— 1 (w’ﬁ _w?l?va) a),ﬁ,—a))
Va) |:M7 W( )(X)] = mMﬁJFZ (X)W( ()C) (39)
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Proof. By using the product rule for the @-backward operator,

Volf()g(¥)] = f()Veg(x) +g(x — @)V f(x), we get,

VoM Fyem) ] = Ol @by
7 a®(B; — o) e
is given in the following equation.
Z Nolf(ok)|g(wk) = Z Volg f(wk) where g(—w)=0,

By using @- summation by parts and the orthogonality conditions we obtain,
Y Pirsat (03)(—0x)jowP ™~ (0x) =0,
k=0

whence we obtain the result since we are guaranteed that

B0z
Py o(0x) = M%t%ﬁwe’ ’a)(a)x) from the unigness of the @ —MMP-2. O

Theorem 3.5: Rodrigues formula for @ —MMPs of the second kind is given by

— (0] |7\ r r
(0:B.a) ) _ (2 Fo(x+ o) Lo(Bi)
MW ( ) (a“’ — 1) kI;Il(Bk)nkm a 2t To(Bi+x)
o (Bi -+ nio + x) & 10
Vo LCo(Bi+nio) (Fw(x-i- w))'

Proof. In the case when r =2, we have i = 1,2.

For i = 1, The raising operator have the following form,

. a 1 ; Bosa
M,Sf‘f;ﬁ"ﬁz’ )(x) = e ){ Bll]v [w wB1+w)( )Mr(:o—ql,:zw B> )(x)].

If we iterate the above equation n; times with changing 3; we obtain,

;B1,B2sa (ﬁlru a® nln Bi+n Br+no,pa
i) () = Bl || g i smvo) gl o )

For i = 2 the raising operator have the following form,

o
M\ @:Br.Baia) (x) = 1 [aa B> }Vw[w(w;ﬁfrw) (X)M(W;ﬁlﬁﬁwﬂ) (x)].

ny,ny w(w;ﬁ2)(x) 0 _] ny,np—1

If we iterate that equation n, times with changing 3, we obtain,

iB1.B2sa B2)n,, a® 1" :Batn B, Prtnrwia
M,(Z?n@ B> )(x) _ (w(z);;};; e sz[w(w,ﬁz+ zw)(x)Mr(l?TOﬁl Botmr )(x)].
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Now, by combining these two equations we derive the Rodrigues formula for

M,(,?figl’ﬁ 2:6) (x) and if we continue to the iteration for r we obtain the Rodrigues
formula for ®—MMP-2. O

Theorem 3.6: The explicit form for @ —MMPs of the second kind is given by,

n n

S no|7|-o|K|
(w; B ,a) . a ni np nry,
M = klz—:obz—'omk;o (a® — 1)1 (kl) (kz)m (k,)( Vi¥la

ijfIl (Bj—kx—j:zilkico)

Proof. By use of the Rodrigues formula and the Leibniz rule for the w—backward

(3.11)

njfkj,ﬂ)
operator, we obtain the explicit form.by using

Va0 = Y1 (1) o)

i=1
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Chapter 4

SOME PROPERTIES OF o-MULTIPLE MEIXNER

POLYNOMIALS

4.1 Generating Functions
®-MMPs have a multivariate generating function with r variables.The following

Lemma will be useful for the proof of the theorem given for the generating function.

Lemma 4.1: [6, lemma 1, p. 4] The generating function for the multinomial

coefficients is given as follows,

i i Sl — = (1=t — 1)

im0 meo M l..m,!
This series converges absolutely and uniformly for |¢;|+ ...+ |t,| < 1 when x ¢ N and
contains a finite number of terms if x € N.
4.1.1 w-Multiple Meixner Polynomials of the First Kind
Theorem 4.1: Let w be a positive real number. The generating function for the -

MMPs of the first kind is given as follows,

7 L ot ot, \°
D i (i

=0n=0 n,=0

Bid)

Proof. Replacing M%O %7 (x) with the explicit form in LHS of (4.1) we obtain,
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mi:'o nri()k:ll ki: (Z:)( ) ( ) )I7\,w

nj—k;
XH[ ﬁ+x>m |k(o]

J

ny
tl l‘
n1 ‘

We now change the order of summation to get,

STy e e
420 KZon T wmk, RiMm = k)L ke (= Ke)(a = 1) (a = 1)

xxt'..1 (B +x>\?\—|7\,w'

Bext, we set m; = n; — k; and put the factors in m; and k; together to obtain ,

i i <_x>|7|.,a) 1 ky . b
klzo..-kr:O kll.kr! a?_l aw_l

= > B+x mﬂw tla?’ " traf) r
) (w ) ...(aw_l) |
m;=0 r

~ mp!...m,;! ai —1
Using the relation between pochhammer symbol and w-pochhammer symbol , the

above equation becomes,

i i(%)ﬁ) on \" ot,
kl:o...kr:()kl!,..k! @—1) “\ao—1

o —~ aP —1 a? —1
=0 m—

Finally, using Lemma 3.1.1, we obtain the generating function for @-MMP-1, which

is the desired result. [
4.1.2 ®-Multiple Meixner Polynomials of the Second Kind
Theorem 4.2: Let @ be a positive real number. The generating function for the ®-

MMPs of the second kind is given as,

o ettt ([ ea TN
£ E - Lttt (1l Tl 2 |)

4.2)
.%.
Proof. Let us denote the LHS of (4.2) by H, then by replacing M%} :fa) (x) with

explicit form (3.11) we obtain,
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oo [sS] ni

H=Y Y ¥ .. nZ %(2) (Z:)(—x)?|7w(ﬁ1+X)n1—k1,w

0]
=0 n=0k=0 k=0\4
ni ny
A o

X (Bz +x_klw)n27k2,(x)'(Br+x_k1w_ "'krflw)nr*krawnl| n 1’
I (T

Changing the order of the summation in the above equation gives us,

= m = = K e n,
:mZ—O.“an—Om;kl ; aw—l <k1).“(kr><_x)|7,w(ﬁl+x)n1_k1’w

ny ny
l‘1 ...tr

X (ﬁz _I_.x - kl a))nszz?w “ e (ﬁr +x - klw ... krila))nrikhwnl | n | .
l...n,!
Now, by setting m; = n; — k;, putting the factors in m; and k; together and then using the

relation between pochhammer symbol and w-pochhammer symbol the above equation

reaches the following form,

- o (=X ki ky - m
H— Z Z ( w )|7| w1t i, Z (Ble)ml a)a‘”tl 1
K=o kl!..kr! a®—1 a®—1 0 my! a®—1
m ) my
a® —1 m,! a® —1 '
Let us now use the Binomial theorem for each sum over m;

Z(a—?kxk =(1—-x)" |x| <1,
~ k!

to obtain
ky
x| w1 wta® ota
H= 1
klz: Zkﬂk‘(a —1(+1—a“’ +1—a“’
® k2 r—1
v (0]5) 14 wza 14 wt.a Wt 1 wt.a
—1 1—a® 1—a® a® —1 1—a®
o\ t e
ot, ot ®
X 1
( _1) (1 25)
Lettmgc—

Sj:lj(1+C[j+1)...(1+Cl‘,), 1<;<r

implies the following,

In the next step, we use Lemma 3.1.1 to reach
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x/o Bi+x

111 1+wa‘°t,~ e
1—a® ’

i=1

H =

w(sl+"'+sr>

Finally, after some simple calculations it easy to see that,

1 r wa®
1+_(Sl+ "‘Sr)—l—wll—n(l—f—mtj>],

j=1

whence we obtain the desired proof for the generating function of w-MMP-2. 0
4.2 Connection and Addition Formulas

Generating function will be used to establish the connection formula and the addition
formula for -MMPs.

4.2.1 w-Multiple Meixner Polynomials of the First Kind

Theorem 4.3: Let o be a positive real number. 0-MMPs of the first kind M (w i 7)( )
and M;Df3 17 7)( ) satisfy the following connection formula,
a) :B: 7 “s
0 b B (0)- ()
1 4.3)

Proof. Replacing 8 by B — 7+ 7 in the generating function (4.1) we obtain,

Z ZM&,ﬁﬁ .t;lf: | [ °
nl' ;! a -1 = a®—1

n=0
—(B+7y+x)

(0]
y (1 B ot af o a)traf’>
61 T e ]
af at

v
(0]
y (1 B ot af o wtmf’)
61 e )
af at

From generating function (4.1) and Lemma 3.1.1, the above equation gets the

following form,
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ﬁ7 t”r 7 i
Y. ZM(” -Y. ZMW ol
n=0 n=0 n=0 n,=0 I’l]
g g V()
K=o o kil k! aP —1 a? —1
STANLS

Changing the order of summations and using the relation between pochhammer symbol

and w-pochhammer symbol we get

7 oy - e < (M ny
Y. Z i oY XX
m=0 =0 ”1' ! M0 m0ki=0 k=0 \KI kr
2 a@ \"
B+ 1
x M S >(x)(_y)|7‘ w<a 1)
1
kr
a® AR
X -1 n! |
ar 1:...1p
”1 ny
Finally, comparing the coefficients of 1,—;’, appearing on both sides of the above
equation,we obtained the desired result. 0

Theorem 4.4: Let @ be a positive real number. The addition fomula for @-MMPs of

the first kind is given by,
(0:p+7:d) v v (m nr\ o (@Bd) (0:7:)
M (x+y)_k§0...k§0 (kl)...(k)M M), (44)

Proof. Firstly, we change x with x+y and 8 with B+ ¥ in the generating function

(4.1), and then change the order of summations we obtain,

oo - -k k
(B+v.@ A ¢ v bt )
Z ZM x+y) =YY .Y Y. 09 (y)
m=0  n=0 oy m=0 n=0k=0 k= —o kil kel k
n k rikr
k tll 1 t::l M(ﬁ77)

( kl)!...(nr_kr)! 7_?()6)

nr

m
Finally, comparing the coefficients of fy el

FIRTHE appearing on both sides of the above

equation we get the result. 0
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Corollary 4.1: MMPs of the first kind satisfy the following connection and addition

formulas respectively,

By v\ (m AN (B+7,2)
M (X)_klz—o‘ k,z_' <k1> (kr)al A R ME )

, 2 2
METD (ypy) = Z Z() (kr)M(;’_%(x)M(_g’ ().

4.2.2 w-Multiple Meixner Polynomials of the Second Kind
Theorem 4.5: Let w be a positive real number. ®-MMPs of the second kind

%
M%’ fra )( ) and M(; BT ( ) satisfy the following connection formula,

._>.a il o (n ny
MOPI =y Y (k:> .(k (Yo (V.o

k=0 k=0
w \" (0:B+7a)
w;p+7sa
(aw—1> 1\4_> ? ()C)

Proof. Let us replace f with B + _}7 — 7 in the generating function given by (4.2)

(4.5)

to obtain,

> d g S 1 r wa® o
Y - Y MEPO (T (1 —at))
=0 0 ni!...n,! wa ey —a

From the generating function (4.2) and Lemma 3.1.1 the above equation get the

following form,
tn, o tn,

Z ZM i Z wﬁ+7 )

1
ny =0 n,: = nl

- k(%al)k' v (7 %)k((g)al)k’ x
X Z a e rk;; 1.

By changing the order of summations, then using the relation between pochhammer

symbol and w—pochhammer symbol we obtain,
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o =) — ni ny =) [=S] ni ny
(@ :a) o1, ni ny
£ e et L () ()
4
=0  n,—=0 mlon = 200 ko \Ki kr
_)
MO ETD )y (Wi
]
o AR '
a® —1 n!...n;!
"1 nr
Finally, comparing the coefficients of 1—[’, appearing on both sides of the above
equation, the result for the connection formula for the @-MMP-2 is obtained. O]

Theorem 4.6: Let w be a positive real number. The addition formula for ®-MMPs of

the second kind is,

_>
Proof. By changing x with x+y and [3 with B + 7 in the generating function (4.2)

and then changing the order of summations we get,

(@:8+7:a) ety ¢ v (m ny
Yo Y MO T Ty Ly Y .z(k)...(k)
nm=0  n=0 m=0  n=0k;=0 k=0 \"1 r
M(w;?;a) (@7 ) o'y
XM MY )

Finally, comparing the coefficients of al ,;’ ; appearing on both sides of the equation

the result is obtained for the addition formula. O]

Corollary 4.2: MMPs of the second kind satisfy the following connection and

addition formulas respectively,

— —

M%”7 (x+y) = Z Z( ) (Z:)M(ﬁﬁ_’%(x)M%_y’a)(y),
l

4.3 Limit Relations

By use of (3.1) the w- MCPs is defined in [17], which has the following explicit form.

39



In this section, the limit relations between @-MMPs and w- MCPs is given.
4.3.1 ®w-Multiple Meixner Polynomials of the First Kind

Theorem 4.7: The w- MCPs are a limit case of @w-MMPs of the first kind,

lim M@ (x) = CZ (). 4.8)

B—reo
Proof. By use of relation between pochammer symbol with @-pochammer symbol,

the explicit equation of w-MMP-1 (3.8) get the following form,

(0.8,) ¢ v (m n\ ( waP \" wa® \"
M = .
" ®) klz_’() k; (kl) (kr) (a(ID - 1) ap —1
1\" 1\* —x B+x
X a—w . a—w X E - o .
1 r | k| 7| K|
a® —

(O
Setting af’ = Fl a’ [3 2 and getting limit when 8 — oo we obtain the desired result.

O]
4.3.2 ®-Multiple Meixner Polynomials of the Second Kind
Theorem 4.8: The @w- MCPs are a limit case of @-MMPs of the second kind,
hmM(FR@:C%@. (4.9)

B—reo
Proof. By use of relation between pochammer symbol with @w-pochammer symbol,

the explicit equation of @-MMP-2 (3.11) get the following form,

= ny ny wny wn, 1 1
((D7B ,(1) nl I’lr a a
i ®) klz—’o kzo (k1> (kr> {awkl awkr} {(aa) —1)m (a® — l)nr}
y wnﬁnzl..ﬂr(—x) ([31 +x> <Bz +x—k1w>
AV VAT (S © 3]~

5¢ (ﬁr+x_klw"'_kr—lw)
@ 22|~

Setting a® = é, Bi=cB, Br=cPB,....B-=cPB and getting limit when
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B — oo we obtain the desired result.
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Chapter 5

ALGEBRAIC PROPERTIES OF o-MULTIPLE

MEIXNER POLYNOMIALS

5.1 Raising and Lowering Operators
5.1.1 o-Multiple Meixner Polynomials of the First Kind
Theorem 5.1: Let @ be a positive real number. The raising operator for w-MMPs of

the first kind is given as,

= M 5.1)

Proof. Proof follows directly from the Rodrigues formula (3.7) for the o-MMP-1. [

Theorem 5.2: Let @ be a positive real number. The lowering operator for @-MMPs

of the first kind is,

AMEFD = 3 o 9B D) (5.2)
i=1

In particular, for r =2

AwM’gw;ﬁﬂl-fQ) — wnlM(w;B"‘w;alvaZ) + wnzM(w;ﬁ+w§al7a2)

1,12 ny—1,np ni,np—1

Proof. Replacing B with B — @ and applying operator Ay, to both sides of the

generating function (4.1) for the case r = 2 we obtain,
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171> ot on \°
o:f—wiaraz) 1 2 1 2
Z Z Aa)Mnl nlz 1,42) ((Dt] -+ (1)12) 1— @ -

ni'ny! a® —1 —1
n1=0n=0 1

—(B+x)
(O] [ @
o (O]

By use of the generating function (4.1), the above equation get the following form,

- - A M wﬁ walvaz tl t2 _ Mﬁaluaz l?1+lt§2
Z Z 0] ni,ny n ']’l Z ni,ny n ‘n
1=0m=0 -2 =0n=0 1272
ny np+1
Z Z 1y Bara) yhh o
ny,ny | )
—017—0 np-ny:

Changing  with 8 + @ and then replacing n; with n; — 1 and n, with n, — 1 in the

right side of equation we obtain,

(@:Ba1,a2) tl t2 (0;B+m;ar,a2)
Z Z ACOM}’II Nik) n 'n Z Z wn Mnl 1}’!2
=0n,=0 1:12- =0n,=0

ny.np
+wn2M(wﬁ+wal,a2)] tl t2

npny—1 nplny!’

2

Finally, comparing the coefficients of hbo

PITL appearing on both sides of the above

equation the desired result is obtained for the case r = 2. [

Remark 5.1: In the case @ = 1, the lowering operator for the w-MMPs of the first
kind coincides with the lowering operator for the MMPs of the first kind which is
given in [10]. For the proof of the w type we consider a different approach, where
the generating function plays an important role and the proof becomes simpler when
compared with the corresponding proof when @ = 1. [10, Theorem 2.4, p. 138]

5.1.2 o-Multiple Meixner Polynomials of the Second Kind

Theorem 5.3: Let @ be a positive real number.The raising operator for @-MMPs of
the second kind is given as

— —
G P ()] = —plgE 0 ), (53)

where L [.] is defined by

43



a X aw(ﬁi - a))
Lg ] = T g0 oY~ {W —X} Y.

Proof. The proof follows from the Rodrigues formula (3.10) for the 0o-MMP-2. [

We now need to give the following three lemmas before the proof of the main theorem.

Lemma 5.1: Let @ be a positive real number. We have the folowing relation for -

o)

MMPs M(w B )(x)|7\=0 of the second kind ,

=) '—>'a —1
Y M V()10 Wari)] = ZM Xn—1.0Wo £(2).
5.4

and fori=1,2...,r,

ZM(—,,(;)’ﬁ’ )(x)(_x)nk—l,wWw,k(x) _ a®(Br+ on— i)
x=0

1—a®

=) —
< LM e oW (),
B (5.5)

where W (x) 1= w(@Bt®) (x),
Proof. By using the product rule for the @w-backward operator it can easily be seen
that,
Vol (—0)n-1.0Woi(2)] = Vol(~2)n,—1.0Wak(x) + (~x+ 0)n 1.0V Wo i ()
= 8wl (x),
where 8(x) = 4% (—x) 0+
From the orthogonality conditions, it is known that,

Yo M(ﬁ 0B ) (%) (—X)n,—1.0W P (x) = 0. Thus we obtain the result for (5.4) as,

LM TVl () W)= i T M P )P
— 1;5 X;)M(ﬁ“’;ﬁ ;a)(X)(—x)nk—l,w(_x_Bk)
w(@Bo) (x)
— o R T o



%
To prove (5.5), we use the relation M%) By = —pa ) (%)] to obtain,

0o —
Z M%D’ B ,a) (x)(_x)nk_17a)Wa),k(‘x>

x=0 1—
(1a_§la) —)C)( >"k Ika( )]
(Bkl-i-_a;lzf—ﬁz xi)M%o E:;l—(l) ; a) () ()1 Wer i (%)

wa®(n—1)(@(me — 1)+ Br) v B+weha :
- P 2 (058 0T (1) ()2 (B X)W O ()

From the orthogonality conditions we have,

Z ﬁ(;) lil+coe, () (=) —2 (B +x)w( @B (x) = 0.

This gives the desired result (5.5). L]

Lemma 5.2: [10,lemma?2.8,p. 141] LetC = [Cij]{.jzl be a r x rmatrix. If ¢;), —cijg =

€pyCipCig and

Cpi — Cqi = OpgCpiCqir i, p,q =1,...,r, then the determinant |C| of C is
r—1 r
IC| = HHC,, IT I1 €464 )- (5.6)
i=1j= q=1p=q+1
Proof. See [10] for the proof of lemma. [

(oo}

Lemma 5.3: Let @ be a positive real number. For the ®-MMP M~ (0:F )( )|7\20 of

the second kind, we have

= 2ha) B+
Y Mm M ﬁ—>+w ’ X)(—x)nkfl,a)WaLk(x) = Cii ZM(—,,(SOL%JF ’ )(x)(_x)nkfl,www,k(x);

nfel

x=0 x=0
5.7

where,
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r—1
Cri = (1 iaw> <m> U (ony + B — ) (5.8)

Proof. 1f we apply Lemma 4.1.1 on the indices B + 1, a and 7 — ¢, we can obtain

inductively the proof of the relation. [
Theorem 5.4: Let o be a positive real number. For the ®-MMP M-, (0:F s )( >I7\:0 of
the second kind, we have the following lowering operator,
AoM Z M ff‘”e’ 9 (x), (5.9)
where,
g [1,—1(on, + B, — i)
=

:l ¢i(ﬁi_ﬁq) ;:H—l(ﬁp_ﬁi)
i (= 1) Ty (@n; + B; — By)

j=1 (onj+Bj—Bi) 15— 1q;é](w”q_m”j"'ﬁq_ﬁj)H;:jJrl(w”—w”p"‘ﬁj_ﬁp).
(5.10)

Proof. LetV be the space of polynomial ® such that deg(®) < |n| — 1 and

(o)

Y O(0x)(—ox) oW PP (wx) =0 0<k<n;j—2 j=12,..,r
x=0

By use of orthogonality conditions and
1 (0]

—a x) W(w;ﬁj),

a®

wa(w;ﬁjJra)) _ (ﬁ] _

it is obvious that A, (7 Bia )( ) €V and Mﬁ(i’i? ) (x) € V. Let us assume that,

where d/s are constants.
Multiplying above equation with (—x),, 1 oW(?P+®)(x) and then taking summation

over x we get,

€;

r oo —
Yd Z (0B 0T (1) (), 10w @B (2) = 0.

Using the equivalent relation given in Lemma 4.1.3, the above equation becomes,
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—

chzd Z (o [3?+ ) x)(_x)nk—l,a)Wa),k(x) =0.

Since, Y5 M. (7(” ﬁ;—w?;a) () (—=X)n—1,0Wao k(x) # O we obtain,

,
Y cuidi =0,
i=1

which is equivalent to
Cd =0,

where cy;’s are given in equation (5.8), d = [d},d>,...,d,]T and C = [c}ilk i—- From
Lemma 4.1.4 we know that |C| # 0 so that d; = 0 for i = 1,2,...,r. Hence

{ wﬁﬂ)el )(x) '_, is linearly independent in V.  AupM ( o: B )(x) can be

w; B +wel;
represented as a linear combination of {M B "
l

( x)}i_, since the dimension of
V is at most r. This is clear from the information that any polynomial can be written

with n coefficients and (|n| — r) linear conditions are imposed on V

Let

After mutiplying the above equation with (—x)nk,l,ww(“’;ﬁ“w) (x) , taking summation

on x and then using equation (5.7) we get,
i AwM%‘;":F;a) (X)(_’%fl,ww (@t ) ( chzd Z (o; ﬁ+w 71a) )
x=0
X (‘x)nk—l,ww(w;ﬁ”w) (x).
This equation can easily be rearranged as follows,
Xr" ) Yo AwM%) B () (—X) 1w OB+ (x)
(0: B +07¢:a)

i=1 YoM S0 Y () (—2) - 1,0W (PO (x)

The above equation can also be represented in the form,

Cd = (y1,y2,--,yr) ", (5.11)

where
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B}
L0 Ao P () ()1 o @) (2)

Yo M%)iﬁ?mza) () (=) 1,0W(@PH ) (x)

Using summation by part and the properties given in Lemma 4.1.1, the numerator of

Yk =

the above expression be written as,

oo — oo —
Y AoME P () (<x) 51 0Wor(x) = = ¥ M P (Vo [(—2) i 1,0 Wk (3)]
x=0 x=0

1—a® & B
T a0 Z M(Ww’ﬁ @ () (=X~ 1,0Wa k()
x=0
> (0. + 08 a
= 0ng M%sz_gw . )(x)(—x)nk—l,www.,k(x)
x=0
- (a);?+w?> a)
= OniCrj Z M=~ () (=) —1,0Weo 1 (x)
x=0
Thus we obtain,
-y
OnCrr Yo M%oiﬁ?+w S (x) (=) n-1,0Wor k(%)
Ve = B oo
L oM E T () (<) 1,0 Wk (¥)

= N Crk-

We can represent (5.11) in the matrix form as follows,

cir €12 ... Ciy d wnicy

€1 €2 ... Co dy Ny
X e

Cr1 G2 ... Cyr dy On,Crr

Let us multiply the above system from left with the matrix,

1
G0 .0
1
0 i .. 0
’
1
B 0 0 n;Crr |

to obtain,
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1 c12 Clr
wn wniciy T wnpcqg dl 1
€21 1 Cor
[015Y%) wny I ())/5Ye)) d2 1
X =
Crl Cr2 1
| onyc,r  Onyey on, | L d’ ] | 1 ]

Now denote the coefficient matrix as C and use (5.8) for ¢;’s.To find the unknowns we

det@

use the Cramer’s rule where d; = e

fori=1,2,...,r.

From Lemma 4.1.2 , we have

Hg;ll [1—g+1(Bp — Bg)(@ng — wnp + By — Bp)
g=11Tp=1(0np+ By —By)

The determinant of the augmented matrix is,

detC =

1 1 1 _
on| on+B1—p> on+B1—;
1 1 1 1 .
wny+Pr—P wny o T om+B—py Z ( 1)i+j|
— Y (= 1) M|
jils
. . ) =
1 1 1 1
wnr*HSr*ﬁl wnr+ﬁr*ﬁ2 U e wn;

where M; is the (j,i)-minor of C and from Lemma 4.1.2 we have,

—1 r -1 r

M| = a=1g41 lp—g1,p2iBp = Ba) T2 gt i TTp— g1 pj(@1g — 01y + By — By)
1=
’ [Mg=1,g2:1Tp=1,p2 j(@ORp + By = By)

Thus we obtain d; = %‘ Yoo (=D My

, which is equation (5.10). L]
5.2 Difference Equations
5.2.1 w-Multiple Meixner Polynomials of the First Kind

Theorem 5.5: Let w be a positive real number.The difference equation for the ®-

Multiple Meixner Polynomials M(ﬁw Bid) (x)rmzo is given by,

ajy az

L(ﬁ+2w—rw) L(ﬁ+3w—ra)) N Lfff“") Ay %»;[3;7) (x)

aml_Lc(llli—i-zw—rw) L(B+iw—rw)L(B+(i+1)a)—rw) o (5.12)

s A ai+]
1

,
_|_
i=

LPLPO OB ()
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Proof. Since Lgk)Lﬂ(ffner) LE(IZ)LC(,TQ)) for n,ay,a,, € R, we obtain that

Lg[13+2w7rw)L££+3a)frw) N .LEEJF(D) _ Lg[13+2w7rw) N L(B+ia)7rw)

c a1

[ BHiEDe—r0) () (Bra)

Ait | -La, La; )

fori=1...r.

Now applying L(ﬁ o= rw)LL(fj Hio-re) Lc(f ) {5 the lowering operator (5.2) and

using the raising operator (5.1), we get the result. ]

Theorem 5.6: Let w be a positive real number.The third order difference equation for

the -MMPs M(ﬁw Bd) (x)oo of the first kind is given as,

ny1+ny=0
x(x — @)V2Apy +x[B(a? +af) + (x — ©) (a? 4+ af —2)|VpApy
+[aP B —x(1 —a?) (a0 —xw(1 —aP)(1 —af’) — afay Bo]Ayy+

[n1(1—af) +n(1—af)]oxVey+

o(B — o) [[mal +naf —aad (n +n)] - (1—af’)(1—a3) (i +m)x]y =0

(5.13)
Proof. Considering the case for r = 2 in Theorem 4.2.1, we have
LELE D apy+ om LEy + ony Ly = 0,

where y = M,(,fo,g C”’“2)( ), which gives the proof. O

5.2.2 o-Multiple Meixner Polynomials of the Second Kind

Theorem 5.7: Let w be a positive real number.The difference equation for the w-

MMPs M- (03550 (x)|7\=0 of the second kind is given as,
BaM &P (x)

%ﬁw ?32+a> Br +w[

N
a a (03B ;a) B
ZdLB to- ﬁz 1+ ﬁ+1+w Br+o /3,-+w[M7 (x)] =0,

where d;’s are the constants in equation (5.10).
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Proof. Since L¢

Bi+o [3+w_La

B+ ol o fOT B1, Bx € R, we obtain that,
L%I—FCOL%THO o 'L%H‘(D - L731+(D te %i,1+a)l%i+1+w e 'L%r+a)L%i+a) fOV i= 172 YL

Now applying Lﬁ ‘o [iz ‘o ﬁr Lo to lowering operator (5.9) and using raising

operator (5.3), we obtain the result. L]

Theorem 5.8: Let @ be a positive real number. The third order difference equation

o)

for the @-MMPs M(ﬁw B (x)n1+n2:0 of the second kind is given as,
x(x— @)V Aey + [(1—a®) (1 + @ — 2x) +a®(1 + Bi + B2)|xV Ay
+1(@®Br — (1 —a®)x)(a”Br — (1-a”)x) —xo(1 —a®)|Awy
+ (1 =a®)[wa® (oniny + Bong + Pinz) — x(1 —a®)(on; + ony)ly

+o(n +n2)(1—a®)xVyy=0.

(5.15)
Proof. From Theorem 4.2.3 we consider the case for r = 2,
Lg +olp,+0loy +diLlg, oy +d2Lg oy =0,
where y = M,S?,[j‘ P a)( ) which gives the proof of the theorem. O
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Chapter 6

SOME RESULTS ON o— MULTIPLE MEIXNER

POLYNOMIALS

As we mentioned before for the case when w = 1, w— MMPs reduces the known
MMPs. For the other values of @ we have new classes for MMPs where  is positive
real number.

6.1 1/2-Multiple Meixner Polynomials of the first Kind

In this section we exhibit the case @ = 1/2 and state some relations for 1/2-MMPs of
the first kind such as weight functions, orthogonality conditions, explicit form,

generating function and third order difference equation.

1/2-MMPs of the first kind have the following weight functions,

wl/2P) () — Typ(B+x)a; L2(B +x))a;
Ty o(B)L12(x+1/2) ~ T2B)I(2(x+1/2))

i=1,2,...,r.

By using these weight functions in (3.2), the orthogonality conditions for 1/2-MMP-1

can be written as,

= 1/2pi7) (X rep+xq” |
);)Mﬁ (5)(_)() W 0, j=0,1,...n;—1.

The explicit form for 1/2-MMP-1 can easily be obtained from (3.8) as follows:

ni ny
M%/z;ﬁ;ﬁ)(x) _ Z Z (nl) (nr)
k=0 kl kr

(a}/ Pk

M|

J

(— 2x)‘?|(2[3+2x)|7|_‘?| :

—2)
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1/2-MMP-1 have the following generating function,

2x
= > @ 1 t t,
) - ZM%/M )(x>—,: - PV R
n=0  n=0 ny! 2(‘11 —1) 2(a,""—1)
e wat? N
2(a)* — 1) 2(a)? — 1)

1/2-MMP-1 satisfy the following third order difference equation,
x(x=1/2)V3 oAy +aB(ay” +ay) + (= 1/2) (@ +aY* = 2019, oA py+
(a2 —x(1—a)*)((@2B) /2~ [x(1 — a2 (1 = @) %)) /2= [} %}/ * B /2] Ay oy+
1 (1-a)?) + (1 - ay*)e/29, oyt
(B—1/2)/2[may? +may* ;%> (n +m))—
(1—a;)(1 =a*)(m +n2)x]y =0,

where Ay o/ (x) = f(x+1/2) = f(x) and V) o f(x) = f(x) — f(x—1/2).

6.2 5/3-Multiple Meixner Polynomials of the Second Kind

In this section, we get @ = 5/3 and we obtain some relations for 5/3—MMPs of the

second kind such as weight function, orthogonality conditions, explicit form,

generating function and third order difference equation.

5/3—MMPs of the second kind have the following weight functions,

W58y - LspBitx)at  T(3/5(Bitx))a"
Us;3(Bi)ls/a(x+5/3)  T(3Bi/5)I(3x/5+1)

By using these weight functions in (3.4) we get the orthogonality conditions for
5/3—MMP-2,

- y(5/3:B ) T(3B:/5 +x)a>/3
);)Mﬁ (3x/5)(—x); T(38,/5) (o + 1)

=0, j=01,...n—1.

The explicit form for 5/3—MMP-2 easily seen from (3.11),
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(5/3ﬁ a) R (m) (nr) 5a>/3 !
= /qZOkzZO k,Zo ki k) \ 3@ =1) @K1

r Jj—1
x (=3x/5) 2 3(Bj+x)/5— ) ki .
| |j:1 nj—kj

i=1

5/3—MMP-2 have the following generating function,

3x/5
(5/3:B a Lt 3 r 543/3 )
MY S [ PR S | (R —
nlzo Z ”1' ! ( 5a5/3 [ s < +3(1_a3/5)t1

ny=
_3(x+Bp)

r 5a3/5 5
gt <1+3<1—a3/5>”)

5/3—MMP-2 satisfy the following third order difference equation,

x(x— 5/3)V§/3A5/3y + [(1 —a(1+5/3-2x)+a3(1+ B + ﬁz)] xVs ;305 3y+
[(a“ﬁl —(1=a*P)x)(@* By~ (1= a*)x) — 5x(1 - a5/3>/3} Asjay+

(1—a?) [5a5/3(5n1n2/3 + Boni + Pina) /3 —x(1 — a3 (5(nm +n2)/3)}y+

5(n1+ny)(1 —a5/3)
3

where As3f(x) = f(x+5/3) — f(x) and V53 f(x) = f(x) — f(x—5/3).

xVs;3y =0,
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