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ABSTRACT

In this thesis, a new family of discrete MOPs, namely ω-multiple Meixner

polynomials, where ω is a positive real number is introduced. For ω-MOPs,

orthogonality conditions w.r.t r (with r > 1) different Pascal distributions (Negative

Binomial distributions) are used. Depending on the selection of the parameters in the

Negative Binomial distribution, two kinds of ω-MMPs, namely 1st and 2nd kinds are

considered. Some structural properties of ω-MMPs, such as raising operator,

Rodrigue’s type formula and explicit representation are derived. The generating

function for ω-MMPs is obtained and by use of this generating function several

consequences for these polynomials are reached. A lowering operator for ω-MMPs

which will be helpful for obtaining difference equation is also derived. By combining

the lowering operator with the raising operator the difference equation which has the

ω-MMPs as a solution are obtained. A third order difference equation for ω-MMPs is

given . Also it is shown that for the special case ω = 1, the obtained results coincide

with the existing results for MMPs of both kinds. In the last part as an illustrated

example for the ω-MMPs of the first kind the special case when ω = 1/2 is

considered and for the 1/2-MMPs of the first kind,the results obtained for the main

theorems are stated. For the ω-MMPs of the second kind the special case when

ω = 5/3 is studied and for the 5/3-MMPs of the second kind, the corresponding

result obtained for the main theorems are examined.

Keywords: Orthogonal polynomials, Multiple orthogonal polynomials, Rodrigue’s

type formula, Generating function, Difference equation
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ÖZ

Bu tezde, yeni bir kesikli çoklu ortogonal polinom ailesi, yani ω-çoklu Meixner

polinomları çalışılmıştır. Burada ω pozitif bir gerçel sayıdır. ω-çoklu Meixner

polinomları için r farklı negatif binom dağılımına göre (r > 1) ortogonallik koşulu

kullanılmıştır. Seçimine bağlı olarak negatif binom dağılımındaki parametreler, iki tür

ω-çoklu Meixner polinomları, yani 1. ve 2. türler dikkate alınmıştır. ω-çoklu

Meixner polinomları için bazı yapısal özellikler, örneğin yükseltme operatörü,

Rodrigue’nin tür formülü ve açık temsil türetilmiştir. ω-çoklu Meixner polinomları

için oluşturma fonksiyonu elde edilmiş ve bu oluşturma fonksiyonunun

kullanılmasıyla bu polinomlar için bazı önemli sonuçlara ulaşılmıştır. ω-çoklu

Meixner polinomları için Fark denkleminin elde edilmesine de yardımcı olacak bir

indirme operatörü türetilmiştir. İndirme operatörünü kaldırma operatörü ile

birleştirerek bu polinomlara ait çözümü olacak fark denklemi elde edilmiştir.ω-çoklu

Meixner polinomları için üçüncü mertebeden fark denklemi verilmiştir. Ayrıca ω = 1

özel durumu için elde edilen sonuçların, her iki türden genel çoklu Meixner

polinomlarına ait mevcut sonuçlarla örtüştüğü gösterilmiştir. Son bölümde birinci

türden ω-çoklu Meixner polinomları için ω = 1/2 durumu dikkate alınmış ve elde

edilen temel teoremler 1/2-çoklu Meixner polinomları için uygulama olarak

gösterilmiştir. Benzer gösterim, ikinci türden ω-çoklu Meixner polinomları için

ω = 1/2 özel durumu ele alınarak ikinci türden 5/3-çoklu Meixner polinomları için

incelenmiştir.

Anahtar Kelimeler: Ortogonal polinomlar, Çoklu ortogonal polinomlar, Rodrigue’s

tip formülü, Oluşturma fonksiyonu, Fark denklemi
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Chapter 1

INTRODUCTION

In this thesis, after an elementary information, in which some important notions and

preliminaries for OP and MOP are mentioned, we will concentrate on some new results

on the study of ω−MMPs of both kinds, namely ω−MMP-1 and ω−MMP-2.

One feature in the theory of OP is to study them as special functions. The widely used

OP can be expressed as terminating hypergeometric series. During the twentieth

century researchers have been working on a classification of all such hypergeometric

OP and their properties. The very COPs are those which was named after Jacobi,

Laguerre, and Hermite. OPs developed in the 19th century from a study of continued

fractions by P. L. Chebyshev and was followd by A. A. Markov and T. J. Stieltjes.

They appear in many different areas such as Numerical Analysis, Approximation

theory, Probability theory, Representation theory of Lie groups, quantum groups, and

related subjects, Differential and Integral equations, Combinatorics, Mathematical

physics and Number theory. In recent years it has seen a great deal of progress in the

area of OPs, which are closely related to many important branches of analysis. They

are connected with trigonometric, hypergeometric, Bessel, and elliptic functions, are

related to the theory of continued fractions and to important problems of interpolation

and mechanical quadrature.

MOPs are generalizations of orthogonal polynomials, which originated from

Hermite-Padé approximation in the context of irrationality and transcendence proofs
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in number theory and further developed in approximation theory. During the past few

years, MOPs have also arisen in a natural way in certain models from mathematical

physics, including random matrix theory, non-intersecting paths, etc. MOPs are

polynomials of one variable which are defined by orthogonality relations with respect

to r different weights. recently received renewed interest because tools have become

available to investigate their asymptotic behavior. They appear in rational

approximation, number theory, random matrices, integrable systems, and geometric

function theory. Various families of special multiple orthogonal polynomials have

been found, extending the classical orthogonal polynomials but also giving

completely new special functions. This notion comes from simultaneous rational

approximation, in particular from Hermite-Padé approximation of a system of r

functions, and hence has its roots in the nineteenth century.

Let us start with the definition of orthogonality.

The generalisation of the idea of a scalar product of two finite dimensional vectors to

an infinite dimensional function space is given below.
� b

a
h(x)g(x)w(x)dx,

where w(x)≥ 0, for a≤ x≤ b. In the case when scalar product is zero, we say that the

functions h(x) and g(x) are orthogonal.

By use of the above integral definition we are ready to give the definition of orthogonal

polynomials. There are two types OPs namely, COPs and DOPs.

For the continuous OPs Pn(x), of order n, the orthogonality relation written as,

2



� b

a
Pn(x)Pm(x)w(x)dx = 0, m 6= n,

where w(x) is weight function and [a,b] is interval of orthogonality.

For the COPs, w(x) is continuous or piecewise continuous or integrable function. The

Jacobi, Laguerre, and Hermite polynomials are examples for the COP. They form the

simplest class of special functions and the theory of these polynomials allows

important generalizations. By use of the Rodrigue’s formula for these COPs, the

integral representations for some important functions such as Bessel and

Hypergeometric functions can be obtained.

The polynomial set Pm(x) ,(m = 1,2, . . .) form a classical orthogonal polynomials set

of a continuous variable if Pm(x) (polynomial of degree m) satisfy the hypergeometric

type differential equation which has form η(x)P
′′
m(x)+ρ(x)P

′
m(x)+αmPm(x) = 0 with

Pearson type equation d
dx [η(x)w(x)] = ρ(x)w(x), where η(x) and ρ(x) are polynomials

of at most second and first degree respectively and αm is a constant.

The above examples for COPs form a classical orthogonal polynomials set of a

continuous variable .

For the DOPs, Pn(x) of order n, the orthogonality relation can be written as,

∞

∑
i=0

Pn(xi)Pm(xi)wi(x) = 0, m 6= n,

where weight function w(x) is a jump function, which means at the point xi the left and

right limit exists but they are not equal. The Hahn, Chebyshev, Meixner, Kravchuk,

and Charlier polynomials are examples for the DOP.

3



The relations for upward and backward difference operators will be given.

The upward difference operator is defined by ∆g(z) = g(z+1)−g(z) and the backward

difference operator is defined by ∇g(z) = g(z)−g(z−1).

The polynomial set Pm(x), (m = 1,2, . . .) form a classical orthogonal polynomials set

of a discrete variable if Pm(x) (polynomial of degree m) satisfy the hypergeometric type

difference equation which has form η(x)∆∇Pm(x)+ρ(x)∆Pm(x)+αmPm(x) = 0 with

equation ∆[η(x)w(x)] = ρ(x)w(x), where η(x) and ρ(x) are polynomials of at most

second and first degree respectively and αm is a constant.

The above examples for DOPs form a classical orthogonal polynomials set of a discrete

variable .

Discrete multiple orthogonal polynomials are useful extension of discrete orthogonal

polynomials. The theory of DOPs on a linear lattice were extended to MOP which

satisfy orthogonality conditions w.r.t r positive discrete measures, by J. Arvesu, J.

Coussement and W. Van Assche [3].

The type II discrete MOP P−→n of degree ≤ |−→n |, corresponding to multi-index −→n =

(n1, ...,nr) ∈ Nr, is a polynomial which satisfies the orthogonality conditions [3]

∞

∑
x=0

P−→n (x)(−x) jwi(x) = 0, j = 0,1, . . .ni−1, i = 1, . . . ,r. (1.1)

The orthogonality conditions give us a linear system of |−→n | = n1 + n2 + ...+ nr

homogenous equation for the |−→n |+ 1 unknown coefficients of polynomials which

always has a nontrivial solution. If the given multi-index −→n is normal, then the

corresponding polynomials will be unique polynomials. For the uniqueness of the

4



called an AT system.

Let us now give the definition of an AT system and Chebyshev system.

Definition 1.1: ( cf. [22]) A system of functions F = ( f0, f1, ..., fn) of complex–valued

functions defined on a proper interval I is called a Chebyshev system, or Tchebycheff

system, or T–system, if the determinant

D( f0, ... fn; t0, ...tn) := det( f j(tk); 0≤ j, k ≤ n)

does not vanish for any choice of points tk;0≤ k ≤ n in I.

Definition 1.2: ( cf. [15]) A set of continuous real functions w1,w2, ...,wr defined on

[a,b] is called an AT system for the index n ∈ Zr
+, n 6= 0, if

w1(z),zw1(z), . . . ,zn1−1w1(z),

.

.

.

wr(z),zwr(z), . . . ,znr−1wr(z),

is a Chebyshev system of order |n|−1 on [a,b].

In an AT system, all the multi-index −→n are normal. By using the following two

examples it will be easy to show that the weight functions for the DMOPs form an AT

system.

Example 1.1: (cf. [3]) The functions

5
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w(z)az
1,zw(z)az

1, . . . ,z
n1−1w(z)az

1,

.

.

.

w(z)az
r,zw(z)az

r, . . . ,z
nr−1w(z)az

r,

with all the ai > 0, i = 1, ...,r, different and w(z) a continuous function which has no

zeros on R+, form a Cheybshev system on R+ for every index −→n ∈ Nr.

Example 1.2: (cf. [3]) The functions

w(z)Γ(x+β1),zw(z)Γ(z+β1), . . . ,zn1−1w(z)Γ(z+β1),

.

.

.

w(z)Γ(z+βr),zw(z)Γ(z+βr), . . . ,znr−1w(z)Γ(z+βr),

with βi > 0 and βi − β j /∈ Z whenever i6= j and w(z) a continuous function which

has no zeros on R+, form a Cheybshev system on R+ for every index −→n ∈ Nr. If

βi−β j /∈ 0,1, ...,N−1 whenever i6= j , this gives a Chebyshev system for every −→n for

which ni < N +1, i = 1,2, ...r.

The proof of the above example can be found in [3] and the general form for Example

1.0.2 given in the following example. Before giving the example let check the definiton

of ω-gamma function.

Γω is the ω-gamma function given by,

Γω(x) =
�

∞

0
tx−1e−

tω
ω dt = ω

x
ω
−1

Γ
( x

ω

)
.

6



Example 1.3: (cf. [4]) The functions

w(z)Γω(z+β1),w(z)y(z)Γω(z+β1), . . . ,w(z)y(z)n1−1
Γω(z+β1),

.

.

.

w(z)Γω(z+βr),w(z)y(z)Γω(z+βr), . . . ,w(z)y(z)nr−1
Γω(z+βr),

with βi > 0 and βi − β j /∈ Z whenever i6= j and w(z) a continuous function which

has no zeros on R+, form a Cheybshev system on R+ for every index −→n ∈ Nr. If

βi−β j /∈ 0,1, ...,N−1 whenever i6= j , which gives a Chebyshev system for every −→n

for which ni < N +1, i = 1,2, ...r.

The proof of the above example is given in [4].

MMPs are discrete MOPs. There are two kinds of MMP. They are polynomials of one

variable satisfying orthogonality conditions w.r.t more than one Negative Binomial

distributions.

In [3], J. Arvesu, J. Coussement and W. Van Assche investigated raising operator and

Rodrigues formula for the MMP. Also, via Rodrigues formula an explicit formula for

these polynomials are obtained by these authors. They investigated these properties

for MOPs of discrete variables by extending the COPs of discrete variables.

W. Van Assche in [20] obtained a lowering operator for MMP for the case r = 2 and

then by combining lowering and raising operator he gave the third order difference

equation for these polynomials. Later, D.W. Lee in [10] obtained a lowering operator

for the case r and then by combining lowering and raising operator D.W. Lee gave the

7



(r+1)th order difference equation for these polynomials.

F. Ndayiragije and Walter Van Assche in [6] gave generating functions and explicit

expressions for the coefficients in the nearest neighbor recurrence relation for MMP.

1.1 Multiple Meixner Polynomials of the First Kind

MMPs of the first kind M(β ,−→a )
−→n (x), of degree |−→n |, are orthogonal polynomials for the

Negative Binomial distributions when r > 1. That is,

∞

∑
x=0

M(β ,−→a )
−→n (x)(−x) jw

β

i (x) = 0, j = 0,1, . . .ni−1, i = 1, . . . ,r, (1.2)

where β > 0 is the fixed parameter and different values for the

parameter−→a = (a1, ...,ar), (ai 6=a j whenever i6= j) where 0 < a < 1 with multi-index

−→n = (n1, ...,nr) and (x)k = x(x+ 1)(x+ 2) . . .(x+ k− 1) is the Pochhammer symbol

with (x)0 = 1.

The functions

wβ

i (x) =


Γ(β+x)ak

i
Γ(β )Γ(x+1) if x ∈ R/({−1,−2, ...}∪{−β ,−β −1, ...})

0 if x ∈ {−1,−2, ...}

are weight functions of the MMP-1 where Γ(x) is the gamma function.

By using Example 1.0.1 it will be easy to see that the weight functions for the MMP-1

form an AT system.

The raising operator for the MMP-1 is given as follows(see [3, equation 4.6, p. 33]),

∇
[
M(β ,−→a )
−→n (x)wβ

i (x)
]
=

ai−1
ai(β −1)

M(β−1,−→a )
−→n +−→ei

(x)wβ−1
i (x) i = 1, . . . ,r,

where a repeated application of these operators gives Rodrigues formula as [3, equation

8



4.7, p. 33],

M(β ,−→a )
−→n (x) = (β )|−→n |

[
r

∏
k=1

(
ak

ak−1

)nk
Γ(β )Γ(x+1)

Γ(β + x)

]

×
r

∏
i=1

1
ax

i
∇

ni

[
Γ(β + x+ |−→n |)ax

i
Γ(x+1)Γ(β + |−→n |)

]
.

The explicit form for MMP-1 is given as [6, equation 3, p. 3],

M(β ,−→a )
−→n (x) =

n1

∑
k1=0

n2

∑
k2=0

...
nr

∑
kr=0

(
n1

k1

)(
n2

k2

)
...

(
nr

kr

)
(−x)|−→k |

×
r

∏
j=1

[
(ak)

n j−k j

(ak−1)n j
(β + x)|−→n |−|−→k |

]
.

The generating function for MMP-1 is [6, equation 7, p. 4],
∞

∑
n1=0

∞

∑
n2=0

...
∞

∑
nr=0

M(β ,−→a )
−→n (x)

tn1
1 ...tnr

r

n1!...nr!
=

(
1− t1

a1−1
− ...− tr

ar−1

)x

×

(
1− t1a1

a1−1
− ...− trar

ar−1

)−(β+x)

.

The lowering operator for MMP-1 has the following form [10, equation 2.5, p. 138],

∆M(β ,−→a )
−→n =

r

∑
i=1

niM
(β+1,−→a )
−→n −ei

,

(r+1)th order difference equation for MMP-1 is given as [10, Theorem 2.5, p.139],

L(β+2−r
a1 L(β+3−r)

a2 . . .L(β+1)
ar ∆M(β ,−→a )

−→n (x)+
r

∑
i=1

niL
(β+2−r)
a1 . . .L(β+i−r)

ai−1 L(β+(i+1)−r)
ai+1 . . .L(β )

ar L(β+1)
ai M(β ,−→a )

−→n (x) = 0.

The third order difference equation for MMP-1 is [10, Corollary 2.6, p.139],
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x(x−1)∇2
∆y+ x[β (a1 +a2)+(x−1)(a1 +a2−2)]∇∆y+

[(a1β − x(1−a1))(a2β − x(1−a1)(1−a2)−a1a2β ]∆y+

[n1(1−a1)+n2(1−a2)]x∇y+

(β −1)
[
[n1a2 +n2a1−a1a2(n1 +n2)]− (1−a1)(1−a2)(n1 +n2)x

]
y = 0.

1.2 Multiple Meixner Polynomials of the Second Kind

The orthogonality conditions for the second kind of MMPs, of degree |−→n |, were

defined in (see [3]) by keeping parameter 0 < a < 1 fixed and by changing the

parameter
−→
β = (β1,β2, . . . ,βr) , βi > 0 (βi− β j /∈ Z for all i 6= j) with multi-index

−→n = (n1, ...,nr) as follows,

∞

∑
x=0

M(
−→
β ;a)
−→n (x)(−x) jwβi(x) = 0, j = 0,1, . . .ni−1, i = 1, . . . ,r. (1.3)

The functions

wβi(x) =


Γ(βi+x)ax

Γ(βi)Γ(x+1) if x ∈ R/({−1,−2, ...}∪{−βi,−βi−1, ...})

0 if x ∈ {−1,−2, ...}

are weight functions of the MMP-2 where Γ(x) is the gamma function.

From Example 1.0.2, it is obvious that the weight functions of the second kind MMPs

form an AT system.

The raising operator for MMP-2 is given as [3, equation 4.9, p. 35],

∇
[
M(
−→
β ,a)
−→n wβi(x)

]
=

a−1
a(βi−1)

M(
−→
β −−→ei ,a)−→n +−→ei

(x)wβ−1
i (x) i = 1, . . . ,r,

and a repeated application of these operators gives the Rodrigues formula for MMP-
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2 [3, equation 4.10, p. 35],

M(
−→
β ,a)
−→n (x) =

(
a

a−1

)|−→n | r

∏
k=1

(βk)nk

[
Γ(x+1)

ax

]
r

∏
i=1

Γ(βi)

Γ(βi + x)
∇

ni

[
Γ(βi +ni + x)

Γ(βi +ni)

](
ax

Γ(x+1)

)
.

The explicit form for MMP-2 is [6, equation 5, p. 3],

M(
−→
β ,a)
−→n (x) =

n1

∑
k1=0

n2

∑
k2=0

...
nr

∑
kr=0

a|
−→n |−|

−→
k |

(a−1)|
−→n |

(
n1

k1

)(
n2

k2

)
...

(
nr

kr

)
(−x)|−→k |

r

∏
j=1

(
β j + x−

j−1

∑
i=1

ki

)
n j−k j

.

The generating function for MMP-2 is [6, equation 9, p. 5],
∞

∑
n1=0

∞

∑
n2=0

...
∞

∑
nr=0

M(
−→
β ;a)
−→n (x)

tn1
1 ...tnr

r

n1!...nr!
=

(
1− 1

a

[
1−

r

∏
j=1

(1+
a

1−a
t j)

])x

r

∏
i=1

(
1+

a
1−a

ti

)−(x+βi)

.

The lowering operator for MMP-2 [10, equation 2.11, p. 142] and [10, equation 2.12,

p. 142],

∆M(
−→
β ;a)
−→n (x) =

r

∑
i=1

diM
(
−→
β +ei;a)−→n −ei

(x),

where,

di =
∏

r
p=1(np +βp−βi)

∏
r−1
q=1,q6=i(βi−βq)∏

r
p=i+1(βp−βi)

×
r

∑
j=1

(−1)i+ j
∏

r
q=1(n j +β j−βq)

(n j +β j−βi)∏
r−1
q=1,q6= j(nq−n j +βq−β j)∏

r
p= j+1(n j−np +β j−βp)

.

(r+1)th order difference equation for MMP-2 is given as [10, theorem 2.10, p.145],

La
β1+1La

β2+1 . . .L
a
βr+1[∆M(

−→
β ;a)
−→n (x)]+

r

∑
i=1

diLa
β1+1 . . .L

a
βi−1+1La

βi+1+1 . . .L
a
βr+1La

βi+1

× [M(
−→
β ;a)
−→n (x)] = 0,

11



where the 3rd order difference equation for MMP-2 is given as follows [10, corollary

2.11, p.145],

x(x−1)∇2
∆y+[(1−a)(2−2x)+a(1+β1 +β2)]x∇∆y

+[(aβ1− (1−a)x)(aβ2− (1−a)x)− x(1−a)]∆y

+(n1 +n2)(1−a)x∇y

+(1−a)[a(n1n2 +β2n1 +β1n2)− x(1−a)(n1 +n2)]y = 0.
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Chapter 2

ω-CLASSICAL OP OF A DISCRETE VARIABLE

The theory considered this chapter is based on [14]. The properties of classical

orthogonal polynomials of a continuous and discrete variable is given. We extend the

theory for the classical orthogonal polynomials of a discrete variable to the ω-

classical orthogonal polynomials of a discrete variable.

For give the main definition firstly the relations for ω-upward and ω-backward

difference operators will be given.

2.1 The ω−Difference Equation

Definition 2.1: The ω-upward difference operator is defined by

∆ωg(z) = g(z + ω)− g(z) and the ω-backward difference operator is defined by

∇ωg(z) = g(z)−g(z−ω).

Definition 2.2: The polynomial set Pm(x), (m = 1,2, . . .) form a ω-classical

orthogonal polynomials set of a discrete variable if Pm(x) (polynomial of degree m)

satisfy the hypergeometric type difference equation which has form

η(x)∆ω∇ωPm(x) + ρ(x)∆ωPm(x) + αmPm(x) = 0 with equation

∆ω [η(x)w(x)] = ρ(x)w(x), where η(x) and ρ(x) are polynomials of at most second

and first degree respectively and αm is a constant.

Theorem 2.1: The ω-upward and the ω-backward difference operator have the

following properties:

13



1. ∆ωg(z) = ∇ωg(z+ω),

2. ∆ω∇ωg(z) = g(z+ω)−2g(z)+g(z−ω),

3. ∆ω [g(z)h(z)] = g(z)∆ωh(z)+h(z+ω)∆ωg(z)

4. ∇ω [g(z)h(z)] = g(z)∇ωh(z)+h(z−ω)∇ωg(z).

Proof. To give the proof for 1 , start with RHS ,

∇ωg(z+ω) = g(z+ω)−g(z)

= ∆ωg(z).

To give the proof for 2 , start with LHS ,

∆ω∇ωg(z) = ∆ω [g(z)−g(z−ω)]

= g(z+ω)−g(z)−g(z)+g(z−ω)

= g(z+ω)−2g(z)+g(z−ω).

To give the proof for 3 , start with LHS ,

∆ω [g(z)h(z)] = g(z+ω)h(z+ω)−g(z)h(z).

Let add and subtract the term g(z)h(z+ω) for RHS of the above equation,

∆ω [g(z)h(z)] = g(z+ω)h(z+ω)−g(z)h(z)+g(z)h(z+ω)−g(z)h(z+ω)

= g(z+ω)[h(z+ω)−h(z)]+h(z)[g(z+ω)−g(z)]

= g(z)∆ωh(z)+h(z+ω)∆ωg(z).

To give the proof for 4 , start with LHS ,

∇ω [g(z)h(z)] = g(z)h(z)−g(z−ω)h(z−ω).

Let add and subtract the term g(z)h(z−ω) for RHS of the above equation,
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∇ω [g(z)h(z)] = g(z)h(z)−g(z−ω)h(z−ω)+g(z)h(z−ω)−g(z)h(z−ω)

= g(z)[h(z)−h(z−ω)]+h(z−ω)[g(z)−g(z−ω)]

= g(z)∇ωh(z)+h(z−ω)∇ωg(z).

Theorem 2.2: The ω-summation by parts formula is given by,

∞

∑
k=0
4ω [ f (ωk)]g(ωk) =−

∞

∑
k=0

∇ω [g(ωk)] f (ωk) (2.1)

where g(−ω) = 0.

Proof. To give the proof for ω-summation by parts formula start with the following

expression,

l

∑
k=m

[
4ω [ f (ωk)]g(ωk)+∇ω [g(ωk)] f (ωk)

]
.

From the definitions of the ω-upward and the ω-backward difference operators the

above equation get the following form,

l

∑
k=m

[
4ω [ f (ωk)]g(ωk)+∇ω [g(ωk)] f (ωk)

]
=

l

∑
k=m

[
f (ωk+ω)g(ωk)− f (ωk)g(ωk−ω)

]
.

Let write the terms for the RHS,
l

∑
k=m

[
4ω [ f (ωk)]g(ωk)+∇ω [g(ωk)] f (ωk)

]
=

[
f
(
ω(m+1)

)
g(ωm)− f (ωm)g

(
ω(m−1)

)]
+

[
f
(
ω(m+2)

)
g(ω(m+1))− f

(
ω(m+1)

)
g(ωm)

]
+

[
f
(
ω(m+3)

)
g(ω(m+2))− f

(
ω(m+2)

)
g
(
ω(m+1)

)]
. . .

+

[
f (ωl)g(ω(l−1))− f

(
ω(l−1)

)
g
(
ω(l−2)

)]
+

[
f
(
ω(l +1)

)
g(ωl)− f (ωl)g

(
ω(l−1)

)]
At the end we obtain that,

l

∑
k=m

[
4ω [ f (ωk)]g(ωk)+∇ω [g(ωk)] f (ωk)

]
= f
(
ω(l+1)

)
g(ωl)− f (ωm)g

(
ω(m−1)

)
.

By choosing m → 0, l → ∞ where g(−ω) = 0 we get the desired result for the
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theorem.

For a polynomial gn(z) of degree n the expressions ∆ωgn(z) and ∇ωgn(z) are

polynomials of degree n−1. Thus ,

∇
n
ωgn(x) = ∆

n
ωgn(x) = g(n)n (x).

Theorem 2.3: Let V1(x) = ∆ωy(x) and ω be a positive real number. V1(x) satisfies the

following ω−difference equation,

η(x)∆ω∇ωy(x)+ρ(x)∆ωy(x)+αy(x) = 0. (2.2)

Proof. Since V1(x) = ∆ωy(x), we can rewrite (2.2) again as,

η(x)∇ωV1(x)+ρ(x)V1(x)+αy(x) = 0.

By applying ∆ω to both sides of above equation we obtain,

∆ω

[
η(x)∇ωV1(x)

]
+∆ω

[
ρ(x)V1(x)

]
+α∆ωy(x) = 0.

By using property 3 from the Theorem 2.0.1 we get,

η(x)∆ω∇ωV1(x)+∆ωV1(x)
[
∆ωη(x)+ρ(x+ω)

]
+V1(x)

[
∆ωρ(x)+α

]
= 0.

By getting,

ρ
ω
1 (x) = ∆ωη(x)+ρ(x+ω) (2.3)

and

α
ω
1 = ∆ωρ(x)+α. (2.4)

We desired the result,

η(x)∆ω∇ωV1(x)+ρ
ω
1 (x)∆ωV1(x)+α

ω
1 V1(x) = 0. (2.5)
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Theorem 2.4: Let Vn(x) = ∆n
ωy(x) and ω be a positive real number. Vn(x) satisfies the

following ω-difference equation of hypergeometric type,

η(x)∆ω∇ωVn(x)+ρ
ω
n (x)∆ωVn(x)+α

ω
n Vn(x) = 0, (2.6)

where

ρ
ω
n (x) = ∆ωη(x)+ρ

ω
n−1(x+ω), (2.7)

α
ω
n = ∆ωρ

ω
n−1(x)+α

ω
n−1. (2.8)

Proof. In a similar way with the Theorem 2.0.3, by setting V2(x) = ∆ωV1(x) in (2.5)

we get,

η(x)∇ωV2(x)+ρ
ω
1 (x)V2(x)+α

ω
1 V1(x) = 0.

By applying ∆ω to both sides of the above equation we obtain,

∆ω

[
η(x)∇ωV2(x)

]
+∆ω

[
ρ

ω
1 (x)V2(x)

]
+α

ω
1 ∆ωV1(x) = 0.

By using property 3 from the Theorem 2.0.1 we get,

η(x)∆ω∇ωV2(x)+∆ωV2(x)
[
∆ωη(x)+ρ

ω
1 (x+ω)

]
+V2(x)

[
∆ωρ

ω
1 (x)+α

ω
1
]
= 0.

By getting,

ρ
ω
2 (x) = ∆ωη(x)+ρ

ω
1 (x+ω),

and

α
ω
2 = ∆ωρ

ω
1 (x)+α

ω
1 ,

we get the result for V2(x) = ∆ωV1(x). By iterating n times we desired the result for

the theorem.

Theorem 2.5: The explicit expression for ρω
n (x) is given by,

ρ
ω
n (x) = ρ(x+ωn)+η(x)+η(x+ωn). (2.9)
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Proof. From (2.7) by using the definition of the ω-upward difference operator we get,

ρ
ω
n (x)+η(x) = η(x+ω)+ρ

ω
n−1(x+ω). (2.10)

By iterating above equation we desired the result for the theorem.

Theorem 2.6: The explicit expression for αω
n is given by,

α
ω
n = α

ω +nρ
′(x)+

1
2

n(n−1)η ′′(x). (2.11)

Proof. For give the proof of the theorem first let show that ∆ωρ(x) and ∆2
ωη(x) are

independent of x.

By applying ∆ω to eguation (2.7) we obtain,

∆ωρ
ω
n (x) = ∆

2
ωη(x)+∆ωρ

ω
n−1(x+ω).

The above equation get the following form by iterating n times.

∆ωρ
ω
n (x) = n∆

2
ωη(x)+∆ωρ(x),

which is equivalent with,

∆ωρ
ω
n (x) = nη

′′(x)+ρ
′(x). (2.12)

For equation (2.8) we use (2.12) for ∆ωρω
n−1(x) and we obtain,

α
ω
n = α

ω
n−1 +∆ωρn−1(x)+∆ωρn−2(x).

After iterating above equation n times we get,

α
ω
n = α

ω
0 +∆ωρn−1(x)+∆ωρn−2(x)+ · · ·+∆ωρ1(x)+∆ωρ(x),

where αω
0 =α . For the above equation we use (2.12)to obtain the result of the theorem.

Theorem 2.7: For the difference equation,

η(x)∆ω∇ωy(x)+ρ(x)∆ωy(x)+αy(x) = 0,
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the self-adjoint form is given by,

∆ω

[
σ(x)η(x)∇ωy(x)

]
+ασ(x)y(x) = 0. (2.13)

Where σ(x) satisfies the following ω-Pearson equation,

∆ω

[
σ(x)η(x)

]
= σ(x)ρ(x). (2.14)

Proof. Start with multiplying (2.2) with σ(x) to obtain,

σ(x)η(x)∆ω∇ωy(x)+σ(x)ρ(x)∆ωy(x)+ασ(x)y(x) = 0.

By use of ω-Pearson equation (2.14) in the above equation we get,

σ(x)η(x)∆ω∇ωy(x)+∆ω

[
σ(x)η(x)

]
ρ(x)∆ωy(x)+ασ(x)y(x) = 0.

From Theorem 2.0.1 we use the properties 1. and 3. to obtain the self-adjoint form

(2.13).

Theorem 2.8: For the difference equation,

η(x)∆ω∇ωVn(x)+ρ
ω
n (x)∆ωVn(x)+α

ω
n Vn(x) = 0,

the self-adjoint form is given by,

∆ω

[
σn(x)η(x)∇ωVn(x)

]
+α

ω
n σn(x)Vn(x) = 0. (2.15)

Where σn(x) satisfies the following ω-Pearson equation,

∆ω

[
σn(x)η(x)

]
= σn(x)ρω

n (x). (2.16)

Proof. Start with multiplying (2.6) with σn(x) to obtain,

σn(x)η(x)∆ω∇ωVn(x)+σn(x)ρω
n (x)∆ωVn(x)+α

ω
n σn(x)Vn(x) = 0.

By use of ω-Pearson equation (2.16) in the above equation we get,

σn(x)η(x)∆ω∇ωVn(x)+∆ω

[
σn(x)η(x)

]
∆ωVn(x)+α

ω
n σn(x)Vn(x) = 0.

From Theorem 2.0.1 we use the properties 1. and 3. to obtain the self-adjoint form
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(2.15).

Theorem 2.9: The connection formula between the functions σ(x) and σn(x) is given

by,

σn(x) = σ(x+nω)
n

∏
k=1

η(x+ kω) (2.17)

Proof. For give the proof of the theorem start with the equation (2.16) and write in the

form,

σn(x+ω)η(x+ω)−σn(x)η(x) = σn(x)ρω
n (x),

which is equivalent with,

σn(x+ω)η(x+ω)

σn(x)
= ρ

ω
n (x)+η(x). (2.18)

By use of the equation (2.10) and iterating the above equation we obtain,

σn(x+ω)

σn−1(x+2ω)η(x+2ω)
=

σn(x)
σn−1(x+ω)η(x+ω)

= cn(x), (2.19)

where cn(x) is any function of period 1. By taking cn(x) = 1 we get,

σn(x) = σn−1(x+ω)η(x+ω). (2.20)

Since σ0(x) = σ(x), iterating above equation n times we get the equation (2.17).

2.2 Finite ω−Difference Analogs of Polynomials of

ω−Hypergeometric Type and of Their Derivatives and the

ω−Rodrigues Formula

We are ready to construct a theory of ω−classical orthogonal polynomials of a discrete

variable. By getting n = m in the ω−difference equation of hyprergeometric type we

obtain that,

η(x)∆ω∇ωVm(x)+ρ
ω
m (x)∆ωVm(x)+α

ω
m Vm(x) = 0,

has a particular solution Vm(x) = constant if αω
m = 0.
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Since Vm(x) = ∆m
ωy(x), this means that if

α = α
ω
m =−mρ

′(x)− 1
2

m(m−1)η ′′(x) (2.21)

there is a particular solution y = ym(x) of the ω−difference equation of

hyprergeometric type, which is a polynomial of degree m, provided that αω
n 6= 0 for

n = 0,2, . . . ,m−1.

We can rewrite the equation (2.6) for Vn(x) in the following form,

Vn(x) =
−1
αω

n

[
η(x)∇ωVn+1(x)+ρ

ω
n (x)Vn+1(x)

]
.

From the above equation it is clear that if Vn+1(x) is a polynomial, then Vn(x) is also

polynomial if αω
n 6= 0 .

Theorem 2.10: The ω−Rodrigues formula for the ω−discrete polynomials is given

by,

σn(x)Vn(x) =
Am

An
∇

n−m
ω

[
σm(x)Vm(x)

]
, (2.22)

where

An = (−1)n
n−1

∏
k=0

α
ω
k , A0 = 1. (2.23)

Proof. The self-adjoint form (2.15) written in the following form,

σn(x)Vn(x) =
−1
αω

n
∆ω

[
σn(x)η(x)∇ωVn(x)

]
.

From Theorem 2.0.1 by use of propety 1 and ∆Vn(x) =Vn+1(x) we obtain,

σn(x)Vn(x) =
−1
αω

n
∇ω

[
σn(x+ω)η(x+ω)Vn+1(x)

]
.

By use of equation (2.20) the above equation get the following form,

σn(x)Vn(x) =
−1
αω

n
∇ω

[
σn+1(x)Vn+1(x)

]
.

For n < m we obtain,

21



σn(x)Vn(x) =
−1
αω

n
∇ω

[
σn+1(x)Vn+1(x)

]
=

(
−1
αω

n

)(
−1

αω
n+1

)
∇

2
ω

[
σn+2(x)Vn+2(x)

]
= . . .

=
Am

An
∇

n−m
ω

[
σm(x)Vm(x)

]
.

Theorem 2.11: The second ω−Rodrigues formula for the ω−discrete polynomials is

given by,

∆
m
ωyn(x) =

AmnBn

σm(x)
∇

n−m
ω

[
σn(x)

]
, (2.24)

where

Amn =
n!

(n−m)!

n−1

∏
k=0

[
ρ
′(x)− n+ k−1

2
η
′′(x)

]
A0n = 1, n≤ m, (2.25)

Bn =
∆n

ωyn(x)
σ(x)

=
y(n)n (x)
σ(x)

∇
n
ω

[
σn(x)

]
. (2.26)

Proof. The self-adjoint form (2.15) written for the ∆m
ωyn(x) as,

σm(x)∆m
ωyn(x) =

−1
αω

mn
∆ω

[
σm(x)η(x)∇ω∆

m
ωyn(x)

]
.

From Theorem 2.0.1 by use of propety 1 and ∇ω∆m
ωyn(x) = ∆m+1

ω yn(x) we obtain,

σm(x)∆m
ωyn(x) =

−1
αω

mn
∇ω

[
σm(x+ω)η(x+ω)∆m+1

ω yn(x)
]
.

By use of equation (2.20) the above equation get the following form,

σm(x)∆m
ωyn(x) =

−1
αω

mn
∇ω

[
σm+1(x)∆m+1

ω yn(x)
]
.

After iterating the above equation we obtain the following form,

σm(x)∆m
ωyn(x) =

−1
αω

mn
∇ω

[
σm+1(x)∆m+1

ω yn(x)
]

=

(
−1
αω

mn

)(
−1

αω

(m+1)n

)
∇

2
ω

[
σm+2(x)∆m+2

ω yn(x)
]
= . . .

=

(
−1
αω

mn

)(
−1

αω

(m+1)n

)
. . .

(
−1

αω

(n−1)n

)
∇

n−m
ω

[
σn(x)∆n

ωyn(x)
]
,

where ∆n
ωyn(x) = constant whence we obtain the equation (2.24).
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Corollary 2.1: The explicit expression for yn(x) is,

yn(x) =
Bn

σ(x)
∇

n
ω

[
σn(x)

]
. (2.27)

Proof. By setting m = 0 in equation (2.24) we get the result.

Corollary 2.2: The explicit expression for yn(x) is also given by,

yn(x) =
Bn

σ(x)
∇

n
ω

[
σ(x)

n−1

∏
k=0

η(x− kω)
]
. (2.28)

Proof. For the equation (2.27) from Theorem 2.0.1 by use of property 1and relation

(2.17) we obtain the result for yn(x).

Thus the polynomial solutions of ω-difference equation (2.2) are determined by (2.27)

up to the normalizing factor Bn. These solutions correspond to the values α =αω
n from

(2.21).

Theorem 2.12: For the polynomials yn(x) and their differences ∆ωyn(x) the relation

given as,

∆ωyn(x) =−
αω

n Bn

Bn−1(x)
yn−1(x). (2.29)

Proof. According to (2.17) we have,

[σ1(x)]n−1 = σ1 (x+(n−1)ω)
n−1

∏
k=1

η (x+ kω)

= σ (x+nω)
n−1

∏
k=1

η (x+ kω)

= σn (x) .

By getting m = 1 in the equation (2.24) we obtain,
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∆ωyn (x) =−
αω

n Bn

σ1 (x)
∇

n−1
ω [σ1 (x)]n−1

=−αω
n BnBn−1

Bn−1σ1 (x)
∇

n−1
ω [σ1 (x)]n−1

∆ωyn (x) =−
αω

n Bn

Bn−1 (x)
yn−1 (x) . (2.30)

Here yn(x) is the polynomial obtained by replacing σ(x) with σ1(x) in the equation for

yn(x) and Bn is the normalizing constant in the ω−Rodrigues formula for yn(x). Hence

we obtain the result of the theorem.

Theorem 2.13: The linear relation that connects the difference ∇ωyn(x) with yn(x)

and yn+1(x) is given by,

η (x)∇ωyn (x) =
1

nαω
n ρ

′
n

[
ρn (x)yn (x)−

Bn

Bn+1
yn+1 (x)

]
. (2.31)

Proof. From ω−Rodrigues formula we have,

yn+1 (x) =
Bn+1

σ (x)
∇

n+1
ω [σn+1 (x)]

=
Bn+1

σ (x)
∇

n
ω [∆ωσn+1 (x−ω)] .

By using the equality,

∆ωσn+1 (x−ω) = ∆ω [σn (x)η (x)]

= ρn (x)σn (x) ,

and by using the properties from Theorem 2.0.1 we get,

yn+1 (x) =
Bn+1

σ (x)
∇

n
ω [ρn (x)σn (x)]

=
Bn+1

σ (x)

[
ρn (x)∇

n
ωσn (x)+nρ

′
n (x)∇

n−1
ω σn (x−ω)

]
.

Since

∇ωyn (x) =
−αω

n Bn

σ (x)η (x)
∇

n−1
ω [σn (x−ω)] ,

we get the result of the theorem.
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2.3 Orthogonality Propety

The polynomial solutions yn(x) have the orthogonality property under certain

restrictions of ω− difference equation (2.2). The polynomials yn(x) is called

ω−classical orthogoal polynomials of a discrete variable.

Theorem 2.14: For the polynomial yn(x) there is a following orthogonality relation,

b−1

∑
xi=a

yn(ωxi)ym(ωxi)σ(ωxi) = δmnd2
n , (2.32)

under the boundary conditions

σ(ωx)η(ωx)xk|x=a,b = 0 (k = 0,1,2 . . .). (2.33)

The function δmn is kronocker delta and d2
n is the norm.

Proof. Write the ω− difference equation in the self-adjoint form for the polynomials

yn(x) and ym(x).

∆ω

[
σ(ωx)η(ωx)∇ωyn(ωx)

]
+αnσ(ωx)yn(ωx) = 0,

∆ω

[
σ(ωx)η(ωx)∇ωym(ωx)

]
+αmσ(ωx)ym(ωx) = 0.

After multiplying the first equation with ym(x) and the second equation with yn(x) and

subtracting them we obtain,

∆ω

[
σ(ωx)η(ωx)∇ωyn(ωx)

]
ym(x)−∆ω

[
σ(ωx)η(ωx)∇ωym(ωx)

]
yn(x) =

(αn−αm)σ(ωx)ym(ωx).

For the LHS of the above equation from the Theorem 2.0.1 by using property 3 we get,

∆ω

[[
σ(ωx)η(ωx)

][
ym(ωx)∇ωyn(ωx)−yn(ωx)∇ωym(ωx)

]]
=(αn−αm)σ(ωx)ym(ωx).

Let x = xi, xi+1 = xi+1 and take sum over for the values a≤ xi ≤ b−1 we get,
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b−1

∑
xi=a

∆ω

[[
σ(ωxi)η(ωxi)

][
ym(ωxi)∇ωyn(ωxi)− yn(ωxi)∇ωym(ωxi)

]]
=

b−1

∑
xi=a

(αn−αm)σ(ωxi)ym(ωxi).

For the LHS after applying the ω−forward operator the equation get the following

form,

σ(ωxi)η(ωxi)
[
ym(ωxi)∇ωyn(ωxi)− yn(ωxi)∇ωym(ωxi)

]
|ba

=
b−1

∑
xi=a

(αn−αm)σ(ωxi)ym(ωxi).

Since the expression ym(ωxi)∇ωyn(ωxi)− yn(ωxi)∇ωym(ωxi) is a polynomial in x,

the polynomial solutions of ω−difference equation on [a,b−1] with weight function

σ(x).

By applying the same procedure the orthogonality realtion for the polynomials

∆k
ωyn(x) =Vkn(x) can be given.

Theorem 2.15: For the polynomial ∆k
ωyn(x) = Vkn(x) there is a following

orthogonality relation,

b−k−1

∑
xi=a

Vkn(ωxi)Vkm(ωxi)σk(ωxi) = δmnd2
kn, (2.34)

under the boundary conditions

σl(ωx)η(ωx)xk|x=a,b−l = 0 (k = 0,1,2 . . .). (2.35)
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Chapter 3

ON SOME FAMILIES ω-MULTIPLE ORTHOGONAL

POLYNOMIALS

3.1 ω−Multiple Orthogonal Polynomials

This chapter is based on [3], we extend the theory of multiple orthogonal polynomials

to the ω-MOPs.

Definition 3.1: The polynomial P−→n of degree |−→n | which satisfies the following

orthogonality conditions called as ω-MOP.

∞

∑
x=0

P−→n (ωx)(−ωx) j,ωwi(ωx) = 0, j = 0,1, . . .ni−1, i = 1, . . . ,r, (3.1)

where (c)n,ω = c(c+ω)(c+ 2ω)...(c+(n− 1)ω) is the Pochhammer ω symbol for

c ∈ C and n ∈ N and ω > 0.

From the properties of the Pochhammer ω symbol we know that, (c)n,ω = ωn
(

c
ω

)
n
,

which imply that (3.1) is equivalent with (1.1).

3.1.1 ω-Multiple Meixner Polynomials of the First Kind

Definition 3.2: The monic discrete ω−MMP of the first kind, corresponding to the

multi-index −→n = (n1, ...,nr), the fixed parameter β > 0 and the parameter

−→a = (a1, ...,ar), (ai 6=a j whenever i6= j), is the unique polynomial of degree |−→n |

which satisfies the orthogonality conditions,

∞

∑
x=0

M(ω;β ;−→a )
−→n (ωx)(−ωx) j,ωw(ω;β )

i (ωx) = 0, j = 0,1, . . .ni−1, i = 1,2, . . . ,r.

(3.2)
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The functions,

w(ω;β )
i (x) =


Γω (β+x)ax

i
Γω (β )Γω (x+ω) if x ∈ R/({−1,−2, ...}∪{−β ,−β −1, ...})

0 if x ∈ {−1,−2, ...} .
(3.3)

are weight functions for ω-MMP-1 where 0 < ai < 1, for i =,1,2 . . . ,r, with all a′is

different.

It can easily be seen from Example 1.0.1 that the weight functions form an AT system

thus the corresponding polynomials are unique. When ω = 1, the given orthogonality

conditions coincide with the orthogonality conditions in (1.2).

3.1.2 ω-Multiple Meixner Polynomials of the Second Kind

Definition 3.3: The monic discrete ω−MMP of the second kind, corresponding to the

multi-index −→n = (n1, ...,nr) and the parameters
−→
β = (β1, ...,βr), βi > 0, (βi−β j /∈ Z

for all i 6= j),0 < a < 1, is the unique polynomial of degree |−→n | which satisfies the

orthogonality conditions,

∞

∑
x=0

M(ω;
−→
β ,a)

−→n (ωx)(−ωx) j,ωw(ω;βi)(ωx) = 0, j = 0,1, . . .ni−1, i = 1,2, . . . ,r.

(3.4)

The functions,

w(ω;βi)(x) =


Γω (βi+x)ax

Γω (βi)Γω (x+ω) if x ∈ R/({−1,−2, ...}∪{−βi,−βi−1, ...})

0 if x ∈ {−1,−2, ...} .
(3.5)

are weight functions for ω-MMP-2 for i = 1,2, . . . ,r and Γω is the ω-gamma function.

From Example 1.0.3 by choosing z(x) = x, the corresponding polynomials are unique

since the weight functions form an AT system. When ω = 1 the given orthogonality

conditions coincide with the conditions given in (1.3).
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3.2 ω-Rodrigues Formula for ω-Multiple Meixner Polynomials

In this section, the raising operators will be obtained and by use of raising operators ω-

Rodrigues formulas and explicit expressions will be derived for both types ω-MMPs.

3.2.1 ω-Multiple Meixner Polynomials of the First Kind

Theorem 3.1: ω-MMPs of the first kind have the following raising operator ,

∇ω

[
M(ω;β ;−→a )
−→n (x)w(ω;β )

i (x)
]
=

aω
i −1

aω
i (β −ω)

M(ω;β−ω;−→a )
−→n +−→ei

(x)w(ω;β−ω)
i (x). (3.6)

Proof. By using the product rule for the ω-bacward operator

∇ω [ f (x)g(x)] = f (x)∇ωg(x)+g(x−ω)∇ω f (x) , we obtain

∇ω

[
M(ω;β ;−→a )
−→n (x)w(ω;β )

i (x)
]
=

aω
i −1

aω
i (β −ω)

(x)w(ω;β−ω)
i (x)P−→n +−→ei

.

Using ω- summation by parts formula,

∞

∑
k=0
4ω [ f (ωk)]g(ωk) =−

∞

∑
k=0

∇ω [g(ωk)] f (ωk)where g(−ω) = 0,

and the orthogonality conditions

∞

∑
k=0

P−→n +−→ei
(ωx)(−ωx) j,ωw(ω;β−ω)

i (ωx) = 0,

we reach the result with P−→n +−→ei
= M(ω;β−ω;−→a )

−→n +−→ei
, which was guaranteed from the

uniqness of the orthogonal polynomials.

Theorem 3.2: Rodrigues formula for ω−MMPs of the first kind is given by,

M(ω;β ;−→a )
−→n (x) = (β )|−→n |,ω

[
r

∏
k=1

(
aω

k
aω

k −1

)nk
Γω(β )Γω(x+ω)

Γω(β + x)

]
r

∏
i=1

1
ax

i
∇

ni
ω

[
Γω(β + x+ |−→n |ω)ax

i
Γω(x+ω)Γω(β + |−→n |ω)

]
.

(3.7)

Proof. Replacing −→n by −→n −−→ei and β by β +ω in the raising operator formula, we

obtain

w(ω;β )
i (x)M(ω;β ;−→a )

−→n (x) =
βaω

i
aω

i −1
∇ω

[
w(ω;β+ω)

i (x)M(ω;β+ω;−→a )
−→n −−→ei

(x)
]
.

Then for r = 2 the multi-index will be −→n = (n1,n2). For i = 1 we have,
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w(ω;β )
1 (x)M(ω;β ;a1,a2)

n1,n2 (x) =
βaω

1
aω

1 −1
∇ω

[
w(ω;β+ω)

1 (x)M(ω;β+ω;a1,a2)
n1−1,n2

(x)
]
,

and iterating it n1 times we get,

w((ω;β )
1 (x)M(ω;β ;a1,a2)

n1,n2 (x) = (β )n1,ω

(
aω

1
aω

1 −1

)n1

∇
n1
ω

[
w(ω;β+n1ω)

1 (x)M(ω;β+n1ω;a1,a2)
0,n2

(x)
]
.

For i = 2 we have,

w(ω;β )
2 (x)M(ω;β ;a1,a2)

n1,n2 (x) =
βaω

2
aω

2 −1
∇ω

[
w(ω;β+ω)

2 (x)M(ω;β+ω;a1,a2)
n1,n2−1 (x)

]
.

and iterating it n2 times we get,

w(ω;β )
2 (x)M(ω;β ;a1,a2)

n1,n2 (x) = (β )n2,ω

(
aω

2
aω

2 −1

)n2

∇
n2
ω

[
w(ω;β+n2ω)

1 (x)M(ω;β+n2ω;a1,a2)
n1,0 (x)

]
.

By combining these two equations, we obtain the expression for M(ω;β ;a1,a2)
n1,n2 (x) and if

we continue the iteration for r, we derive the Rodrigues formula for ω−MMP-1.

Theorem 3.3: The explicit form for ω−MMPs of the first kind is given by

M(ω;β ;−→a )
−→n (x) =

n1

∑
k1=0

n2

∑
k2=0

...
nr

∑
kr=0

(
n1

k1

)(
n2

k2

)
...

(
nr

kr

)
(−x)|−→k |,ω

r

∏
j=1

[
(aω

j )
n j−k j

(aω
j −1)n j

(β + x)|−→n |−|−→k |,ω

]
.

(3.8)

Proof. The explicit form obtained from the Rodrigues formula by using the Leibniz

rule for the ω−backward operator,

∇
n
ω f (x) =

n

∑
i=1

(−1)i
(

n
i

)
f (x− iω).

3.2.2 ω-Multiple Meixner Polynomials of the Second Kind

Theorem 3.4: ω-MMPs of the second kind have the following raising operator ,

∇ω

[
M(ω;

−→
β ,a)

−→n w(ω;βi)(x)
]
=

aω −1
aω(βi−ω)

M(ω;
−→
β −ω

−→ei ,a)−→n +−→ei
(x)w(ω;βi−ω)(x). (3.9)
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Proof. By using the product rule for the ω-backward operator,

∇ω [ f (x)g(x)] = f (x)∇ωg(x)+g(x−ω)∇ω f (x), we get,

∇ω

[
M(ω;

−→
β ,a)

−→n w(ω;βi)(x)
]
=

aω −1
aω(βi−ω)

w(ω;βi−ω)(x)P−→n +−→ei
(x)

is given in the following equation.

∞

∑
k=0
4ω [ f (ωk)]g(ωk) =−

∞

∑
k=0

∇ω [g(ωk)] f (ωk) where g(−ω) = 0,

By using ω- summation by parts and the orthogonality conditions we obtain,

∞

∑
k=0

P−→n +−→ei
(ωx)(−ωx) j,ωwβi−ω(ωx) = 0,

whence we obtain the result since we are guaranteed that

P−→n +−→ei
(ωx) = M(ω;

−→
β −ω

−→ei ,a)−→n +−→ei
(ωx) from the uniqness of the ω−MMP-2.

Theorem 3.5: Rodrigues formula for ω−MMPs of the second kind is given by

M(ω;
−→
β ,a)

−→n (x) =
(

aω

aω −1

)|−→n | r

∏
k=1

(βk)nk,ω

[
Γω(x+ω)

ax

]
r

∏
i=1

Γω(βi)

Γω(βi + x)

×∇
ni
ω

[
Γω(βi +niω + x)

Γω(βi +niω)

](
ax

Γω(x+ω)

)
.

(3.10)

Proof. In the case when r = 2, we have i = 1,2.

For i = 1, The raising operator have the following form,

M(ω;β1,β2;a)
n1,n2 (x) =

1
w(ω;β1)(x)

[
aωβ1

aω −1

]
∇ω [w(ω;β1+ω)(x)M(ω;β1+ω,β2;a)

n1−1,n2
(x)].

If we iterate the above equation n1 times with changing β1 we obtain,

M(ω;β1,β2;a)
n1,n2 (x) =

(β1)n1,ω

ω(ω;β1)

[
aω

aω −1

]n1

∇
n1
ω [w(ω;β1+n1ω)(x)M(ω;β1+n1ω,β2;a)

0,n2
(x)].

For i = 2 the raising operator have the following form,

M(ω;β1,β2;a)
n1,n2 (x) =

1
w(ω;β2)(x)

[
aωβ2

aω −1

]
∇ω [w(ω;β2+ω)(x)M(ω;β1,β2+ω;a)

n1,n2−1 (x)].

If we iterate that equation n2 times with changing β2 we obtain,

M(ω;β1,β2;a)
n1,n2 (x) =

(β2)n2,ω

ω(ω;β2)

[
aω

aω −1

]n2

∇
n2
ω [w(ω;β2+n2ω)(x)M(ω;β1,β2+n2ω;a)

n1,0 (x)].
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Now, by combining these two equations we derive the Rodrigues formula for

M(ω;β1,β2;a)
n1,n2 (x) and if we continue to the iteration for r we obtain the Rodrigues

formula for ω−MMP-2.

Theorem 3.6: The explicit form for ω−MMPs of the second kind is given by,

M(ω;
−→
β ,a)

−→n (x) =
n1

∑
k1=0

n2

∑
k2=0

...
nr

∑
kr=0

aω|−→n |−ω|
−→
k |

(aω −1)|
−→n |

(
n1

k1

)(
n2

k2

)
...

(
nr

kr

)
(−x)|−→k |,ω

×
r

∏
j=1

(
β j + x−

j−1

∑
i=1

kiω

)
n j−k j,ω

.

(3.11)

Proof. By use of the Rodrigues formula and the Leibniz rule for the ω−backward

operator, we obtain the explicit form.by using

∇
n
ω f (x) =

n

∑
i=1

(−1)i
(

n
i

)
f (x− iω).
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Chapter 4

SOME PROPERTIES OF ω-MULTIPLE MEIXNER

POLYNOMIALS

4.1 Generating Functions

ω-MMPs have a multivariate generating function with r variables.The following

Lemma will be useful for the proof of the theorem given for the generating function.

Lemma 4.1: [6, lemma 1, p. 4] The generating function for the multinomial

coefficients is given as follows,

∞

∑
m1=0

...
∞

∑
mr=0

(−x)|−→m |
m1!...mr!

tm1
1 ...tmr

r = (1− t1...− tr)x.

This series converges absolutely and uniformly for |t1|+ ...+ |tr|< 1 when x /∈ N and

contains a finite number of terms if x ∈ N.

4.1.1 ω-Multiple Meixner Polynomials of the First Kind

Theorem 4.1: Let ω be a positive real number. The generating function for the ω-

MMPs of the first kind is given as follows,

∞

∑
n1=0

∞

∑
n2=0

...
∞

∑
nr=0

M(ω;β ;−→a )
−→n (x)

tn1
1 ...tnr

r

n1!...nr!
=

(
1− ωt1

aω
1 −1

− ...− ωtr
aω

r −1

) x
ω

×

(
1−

ωt1aω
1

aω
1 −1

− ...− ωtraω
r

aω
r −1

)−(β+x)
ω

.

(4.1)

Proof. Replacing M(ω;β ;−→a )
−→n (x) with the explicit form in LHS of (4.1) we obtain,
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∞

∑
n1=0

...
∞

∑
nr=0

n1

∑
k1=0

...
nr

∑
kr=0

(
n1

k1

)(
n2

k2

)
...

(
nr

kr

)
(−x)|−→k |,ω

×
r

∏
j=1

[
(aω

k )
n j−k j

(aω
k −1)n j

(β + x)|−→n |−|−→k |,ω

]
tn1
1 ...tnr

r

n1!...nr!
.

We now change the order of summation to get,
∞

∑
k1=0

...
∞

∑
kr=0

∞

∑
n1=k1

...
∞

∑
nr=kr

(−x)|−→k |,ω
k1!(n1− k1)!...kr!(nr− kr)!

aω(n1−k1)
1 ...aω(nr−kr)

r

(aω
1 −1)n1...(aω

r −1)nr

× xtn1
1 ...tnr

r (β + x)|−→n |−|−→k |,ω .

Bext, we set mi = ni− ki and put the factors in mi and ki together to obtain ,
∞

∑
k1=0

...
∞

∑
kr=0

(−x)|−→k |,ω
k1!...kr!

(
t1

aω
1 −1

)k1

...

(
tr

aω
r −1

)kr

×
∞

∑
m1=0

...
∞

∑
mr=0

(β + x)|−→m |,ω
m1!...mr!

(
t1aω

1
aω

1 −1

)m1

...

(
traω

r
aω

r −1

)mr

.

Using the relation between pochhammer symbol and ω-pochhammer symbol , the

above equation becomes,

∞

∑
k1=0

...
∞

∑
kr=0

(−x
ω

)
|
−→
k |

k1!...kr!

(
ωt1

aω
1 −1

)k1

...

(
ωtr

aω
r −1

)kr

×
∞

∑
m1=0

...
∞

∑
mr=0

(
β+x

ω

)
|−→m |

m1!...mr!

(
ωt1aω

1
aω

1 −1

)m1

...

(
ωtraω

r
aω

r −1

)mr

.

Finally, using Lemma 3.1.1, we obtain the generating function for ω-MMP-1, which

is the desired result.

4.1.2 ω-Multiple Meixner Polynomials of the Second Kind

Theorem 4.2: Let ω be a positive real number. The generating function for the ω-

MMPs of the second kind is given as,

∞

∑
n1=0

∞

∑
n2=0

...
∞

∑
nr=0

M(ω;
−→
β ;a)

−→n (x)
tn1
1 ...tnr

r

n1!...nr!
=

(
1− 1

ωaω

[
1−

r

∏
j=1

(1+
ωaω

1−aω
t j)

]) x
ω

×
r

∏
i=1

(
1+

ωaω

1−aω
ti

)− x+βi
ω

.

(4.2)

Proof. Let us denote the LHS of (4.2) by H, then by replacing M(ω;
−→
β ;a)

−→n (x) with

explicit form (3.11) we obtain,
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H =
∞

∑
n1=0
· · ·

∞

∑
nr=0

n1

∑
k1=0
· · ·

nr

∑
kr=0

a(|
−→n |−|

−→
k |)ω

(aω −1)|
−→n |

(
n1

k1

)
. . .

(
nr

kr

)
(−x)|−→k |,ω(β1 + x)n1−k1,ω

× (β2 + x− k1ω)n2−k2,ω . . .(βr + x− k1ω− . . .kr−1ω)nr−kr,ω
tn1
1 ...tnr

r

n1!...nr!
.

Changing the order of the summation in the above equation gives us,

H =
∞

∑
n1=0
· · ·

∞

∑
nr=0

∞

∑
n1=k1

· · ·
∞

∑
nr=kr

a(|
−→n |−|

−→
k |)ω

(aω −1)|
−→n |

(
n1

k1

)
. . .

(
nr

kr

)
(−x)|−→k |,ω(β1 + x)n1−k1,ω

× (β2 + x− k1ω)n2−k2,ω . . .(βr + x− k1ω− . . .kr−1ω)nr−kr,ω
tn1
1 ...tnr

r

n1!...nr!
.

Now, by setting mi = ni−ki, putting the factors in mi and ki together and then using the

relation between pochhammer symbol and ω-pochhammer symbol the above equation

reaches the following form,

H =
∞

∑
k1=0
· · ·

∞

∑
kr=0

(−x
ω
)|
−→
k |

k1!..kr!

(
ωt1

aω −1

)k1

. . .

(
ωtr

aω −1

)kr
∞

∑
m1=0

(β1+x
ω

)m1

m1!

(
ωaωt1
aω −1

)m1

×
∞

∑
m2=0

(β2+x
ω
− k1)m2

m2!

(
ωaωt2
aω −1

)m2

· · ·
∞

∑
mr=0

(βr+x
ω
− k1 . . .kr−1)mr

mr!

(
ωaωtr
aω −1

)mr

.

Let us now use the Binomial theorem for each sum over mi

∞

∑
k

(a)k

k!
xk = (1− x)−a, |x|< 1,

to obtain

H =
∞

∑
k1=0
· · ·

∞

∑
kr=0

(−x
ω
)|
−→
k |

k1!..kr!

(
ωt1

aω −1

(
1+

ωt2aω

1−aω

)
. . .

(
1+

ωtraω

1−aω

))k1

×

(
ωt2

aω −1

(
1+

ωt3aω

1−aω

)
. . .

(
1+

ωtraω

1−aω

))k2
(

ωtr−1

aω −1

(
1+

ωtraω

1−aω

))kr−1

×

(
ωtr

aω −1

)kr r

∏
i=1

(
1+

ωtiaω

1−aω

)− βi+x
ω

.

Letting c = ωaω

1−aω and

s j = t j(1+ ct j+1) . . .(1+ ctt), 1≤ j ≤ r,

implies the following,

H =
∞

∑
k1=0
· · ·

∞

∑
kr=0

(−x
ω
)|
−→
k |

k1!..kr!
sk1

1 . . .skr
r

(
−c

ωaω

)|−→k | r

∏
i=1

(
1+

ωaωti
1−aω

)− βi+x
ω

.

In the next step, we use Lemma 3.1.1 to reach
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H =

[
1+

c
ωaω

(s1 + · · ·+ sr)

]x/ω r

∏
i=1

(
1+

ωaωti
1−aω

)− βi+x
ω

.

Finally, after some simple calculations it easy to see that,

1+
c

ωaω
(s1 + · · ·+ sr) = 1− 1

ωaω

[
1−

r

∏
j=1

(
1+

ωaω

1−aω
t j

)]
,

whence we obtain the desired proof for the generating function of ω-MMP-2.

4.2 Connection and Addition Formulas

Generating function will be used to establish the connection formula and the addition

formula for ω-MMPs.

4.2.1 ω-Multiple Meixner Polynomials of the First Kind

Theorem 4.3: Let ω be a positive real number. ω-MMPs of the first kind M(ω;β ;−→a )
−→n (x)

and M(ω;β+γ;−→a )
−→n −
−→
k

(x) satisfy the following connection formula,

M(ω;β ;−→a )
−→n (x) =

n1

∑
k1=0

...
nr

∑
kr=0

(
n1

k1

)
...

(
nr

kr

)
(−γ)|

−→
k |,ω

×

(
aω

1

aω−1
1

)k1

...

(
aω

r

aω−1
r

)kr

M(ω;β+γ;−→a )
−→n −
−→
k

(x).

(4.3)

Proof. Replacing β by β − γ + γ in the generating function (4.1) we obtain,

∞

∑
n1=0

...
∞

∑
nr=0

M(ω;β ;−→a )
−→n (x)

tn1
1 ...tnr

r

n1!...nr!
=

(
1− ωt1

aω
1 −1

− ...− ωtr
aω

r −1

) x
ω

×

(
1−

ωt1aω
1

aω
1 −1

− ...− ωtraω
r

aω
r −1

)−(β+γ+x)
ω

×

(
1−

ωt1aω
1

aω
1 −1

− ...− ωtraω
r

aω
r −1

) γ

ω

.

From generating function (4.1) and Lemma 3.1.1, the above equation gets the

following form,
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∞

∑
n1=0

...
∞

∑
nr=0

M(ω;β ;−→a )
−→n (x)

tn1
1 ...tnr

r

n1!...nr!
=

∞

∑
n1=0

...
∞

∑
nr=0

M(β+γ,−→a )
−→n (x)

tn1
1 ...tnr

r

n1!...nr!

×
∞

∑
k1=0

...
∞

∑
kr=0

(−γ

ω

)
|
−→
k |

k1!...kr!

(
ωaω

1
aω

1 −1

)k1

...

(
ωaω

r
aω

r −1

)kr

× tk1
1 ...tkr

r .

Changing the order of summations and using the relation between pochhammer symbol

and ω-pochhammer symbol we get,
∞

∑
n1=0

...
∞

∑
nr=0

M(ω;β ;−→a )
−→n (x)

tn1
1 ...tnr

r

n1!...nr!
=

∞

∑
n1=0

...
∞

∑
nr=0

n1

∑
k1=0

...
nr

∑
kr=0

(
n1

k1

)
...

(
nr

kr

)

×M(ω;β+γ;−→a )
−→n −
−→
k

(x)(−γ)|
−→
k |,ω

(
aω

1

aω−1
1

)k1

...

×

(
aω

r

aω−1
r

)kr
tn1
1 ...tnr

r

n1!...nr!
.

Finally, comparing the coefficients of tn1
1 ...tnr

r
n1!...nr! , appearing on both sides of the above

equation,we obtained the desired result.

Theorem 4.4: Let ω be a positive real number. The addition fomula for ω-MMPs of

the first kind is given by,

M(ω;β+γ;−→a )
−→n (x+ y) =

n1

∑
k1=0

...
nr

∑
kr=0

(
n1

k1

)
...

(
nr

kr

)
M(ω;β ;−→a )
−→n −
−→
k

(x)M(ω;γ;−→a )
−→
k

(y). (4.4)

Proof. Firstly, we change x with x+ y and β with β + γ in the generating function

(4.1), and then change the order of summations we obtain,
∞

∑
n1=0

...
∞

∑
nr=0

M(β+γ,−→a )
−→n (x+ y)

tn1
1 ...tnr

r

n1!...nr!
=

∞

∑
n1=0

...
∞

∑
nr=0

n1

∑
k1=0

...
nr

∑
kr=0

tk1
1 ...tkr

r

k1!...kr!
M(γ,−→a )
−→
k

(y)

∗
tn1−k1
1 ...tnr−kr

r

(n1− k1)!...(nr− kr)!
M(β ,−→a )
−→n −
−→
k
(x).

Finally, comparing the coefficients of tn1
1 ...tnr

r
n1!...nr! , appearing on both sides of the above

equation we get the result.

37



Corollary 4.1: MMPs of the first kind satisfy the following connection and addition

formulas respectively,

M(β ,−→a )
−→n (x) =

n1

∑
k1=0

...
nr

∑
kr=0

(
n1

k1

)
...

(
nr

kr

)
ak1

1 . . .akr
r (−γ)|

−→
k |M

(β+γ,−→a )
−→n −
−→
k

(x),

M(β+γ,−→a )
−→n (x+ y) =

n1

∑
k1=0

...
nr

∑
kr=0

(
n1

k1

)
...

(
nr

kr

)
M(β ,−→a )
−→n −
−→
k
(x)M(γ,−→a )

−→
k

(y).

4.2.2 ω-Multiple Meixner Polynomials of the Second Kind

Theorem 4.5: Let ω be a positive real number. ω-MMPs of the second kind

M(ω;
−→
β ;a)

−→n (x) and M(ω;
−→
β +−→γ ;a)

−→n −
−→
k

(x) satisfy the following connection formula,

M(ω;
−→
β ;a)

−→n (x) =
n1

∑
k1=0

...
nr

∑
kr=0

(
n1

k1

)
...

(
nr

kr

)
(−γ1)k1,ω . . .(−γr)kr,ω

(
aω

aω −1

)|−→k |
M(ω;

−→
β +−→γ ;a)

−→n −
−→
k

(x).

(4.5)

Proof. Let us replace
−→
β with

−→
β +−→γ −−→γ in the generating function given by (4.2)

to obtain,

∞

∑
n1=0
· · ·

∞

∑
nr=0

M(ω;
−→
β ;a)

−→n (x)
tn1
1 ...tnr

r

n1!...nr!
=

(
1− 1

ωaω

[
1−

r

∏
j=1

(1+
ωaω

1−aω
t j)

]) x
ω

×
r

∏
i=1

(
1+

ωaω

1−aω
ti

)− x
ω r

∏
i=1

(
1+

ωaω

1−aω
ti

)−−→β +−→γ
ω

×
r

∏
i=1

(
1+

ωaω

1−aω
ti

)−→γ
ω

.

From the generating function (4.2) and Lemma 3.1.1 the above equation get the

following form,
∞

∑
n1=0
· · ·

∞

∑
nr=0

M(ω;
−→
β ;a)

−→n (x)
tn1
1 ...tnr

r

n1!...nr!
=

∞

∑
n1=0
· · ·

∞

∑
nr=0

M(ω;
−→
β +−→γ ;a)

−→n (x)
tn1
1 ...tnr

r

n1!...nr!

×
∞

∑
k1=0

(−γ1
ω

)k1(
ωaω

aω−1)
k1

k1!
tk1
1 . . .

(−γr
ω
)kr(

ωaω

aω−1)
kr

kr!
tkr
r .

By changing the order of summations, then using the relation between pochhammer

symbol and ω−pochhammer symbol we obtain,
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∞

∑
n1=0
· · ·

∞

∑
nr=0

M(ω;
−→
β ;a)

−→n (x)
tn1
1 ...tnr

r

n1!...nr!
=

∞

∑
n1=0
· · ·

∞

∑
nr=0

n1

∑
k1=0
· · ·

nr

∑
kr=0

(
n1

k1

)
. . .

(
nr

kr

)
×M(ω;

−→
β +−→γ ;a)

−→n −
−→
k

(x)(−γ1)k1,ω . . .(−γr)kr,ω

×

(
aω

aω −1

)|−→k |
tn1
1 ...tnr

r

n1!...nr!
.

Finally, comparing the coefficients of tn1
1 ...tnr

r
n1!...nr! appearing on both sides of the above

equation, the result for the connection formula for the ω-MMP-2 is obtained.

Theorem 4.6: Let ω be a positive real number. The addition formula for ω-MMPs of

the second kind is,

M(ω;
−→
β +−→γ ;a)

−→n (x+ y) =
n1

∑
k1=0

...
nr

∑
kr=0

(
n1

k1

)
...

(
nr

kr

)
M(ω;

−→
β ;a)

−→n −
−→
k

(x)M(ω;−→γ ;a)
−→
k

(y). (4.6)

Proof. By changing x with x+ y and
−→
β with

−→
β +−→γ in the generating function (4.2)

and then changing the order of summations we get,
∞

∑
n1=0
· · ·

∞

∑
nr=0

M(ω;
−→
β +−→γ ;a)

−→n (x+ y)
tn1
1 ...tnr

r

n1!...nr!
=

∞

∑
n1=0
· · ·

∞

∑
nr=0

n1

∑
k1=0
· · ·

nr

∑
kr=0

(
n1

k1

)
. . .

(
nr

kr

)
×M(ω;

−→
β ;a)

−→n −
−→
k

(x)M(ω;−→γ ;a)
−→
k

(y)
tn1
1 ...tnr

r

n1!...nr!
.

Finally, comparing the coefficients of tn1
1 ...tnr

r
n1!...nr! appearing on both sides of the equation

the result is obtained for the addition formula.

Corollary 4.2: MMPs of the second kind satisfy the following connection and

addition formulas respectively,

M(
−→
β ;a)
−→n (x) =

n1

∑
k1=0

...
nr

∑
kr=0

(
n1

k1

)
...

(
nr

kr

)
(−γ1)k1 . . .(−γr)kra

|
−→
k |M(

−→
β +−→γ ;a)
−→n −
−→
k

(x),

M(
−→
β +−→γ ;a)
−→n (x+ y) =

n1

∑
k1=0

...
nr

∑
kr=0

(
n1

k1

)
...

(
nr

kr

)
M(
−→
β ;a)
−→n −
−→
k
(x)M(−→γ ;a)

−→
k

(y).

4.3 Limit Relations

By use of (3.1) the ω- MCPs is defined in [17], which has the following explicit form.
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C
−→c−→n (x) = (−cω

1 )
n1 . . .(−cω

r )
nr

n1

∑
k1=0

...
nr

∑
kr=0

(−n1)k1 . . .(−nr)kr

k1! . . .kr!

(
−x
ω

)
k1+k2+···+kr[(

−1
c1

)ω

ω

]k1

. . .

[(
−1
cr

)ω

ω

]kr
(4.7)

In this section, the limit relations between ω-MMPs and ω- MCPs is given.

4.3.1 ω-Multiple Meixner Polynomials of the First Kind

Theorem 4.7: The ω- MCPs are a limit case of ω-MMPs of the first kind,

lim
β→∞

M(ω,β ,−→a )
−→n (x) =C

−→c−→n (x). (4.8)

Proof. By use of relation between pochammer symbol with ω-pochammer symbol,

the explicit equation of ω-MMP-1 (3.8) get the following form,

M(ω,β ,−→a )
−→n (x) =

n1

∑
k1=0

...
nr

∑
kr=0

(
n1

k1

)
...

(
nr

kr

)(
ωaω

1
aω

1 −1

)n1

. . .

(
ωaω

r
aω

r −1

)nr

×
(

1
aω

1

)k1

. . .

(
1

aω
r

)kr

×
(
−x
ω

)
|
−→
k |

(
β + x

ω

)
|−→n |−|

−→
k |

Setting aω
1 =

cω
1
β
. . .aω

r = cω
r
β

and getting limit when β →∞ we obtain the desired result.

4.3.2 ω-Multiple Meixner Polynomials of the Second Kind

Theorem 4.8: The ω- MCPs are a limit case of ω-MMPs of the second kind,

lim
β→∞

M(ω,
−→
β ;a)

−→n (x) =C
−→c−→n (x). (4.9)

Proof. By use of relation between pochammer symbol with ω-pochammer symbol,

the explicit equation of ω-MMP-2 (3.11) get the following form,

M(ω,
−→
β ;a)

−→n (x) =
n1

∑
k1=0

...
nr

∑
kr=0

(
n1

k1

)
...

(
nr

kr

)[
aωn1

aωk1
. . .

aωnr

aωkr

][
1

(aω −1)n1
. . .

1
(aω −1)nr

]
×ω

n1+n2···+nr

(
−x
ω

)
|
−→
k |

(
β1 + x

ω

)
|−→n1|−|

−→
k1 |

(
β2 + x− k1ω

ω

)
|−→n2|−|

−→
k2 |

. . .

×
(

βr + x− k1ω · · ·− kr−1ω

ω

)
|−→nr |−|

−→
kr |

Setting aω = 1
β
, β1 = cω

1 β , β2 = cω
2 β , . . . ,βr = cω

r β and getting limit when
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β → ∞ we obtain the desired result.
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Chapter 5

ALGEBRAIC PROPERTIES OF ω-MULTIPLE

MEIXNER POLYNOMIALS

5.1 Raising and Lowering Operators

5.1.1 ω-Multiple Meixner Polynomials of the First Kind

Theorem 5.1: Let ω be a positive real number. The raising operator for ω-MMPs of

the first kind is given as,

L(β )
ai [M(ω;β ;−→a )

−→n ] =−M(ω;β−ω;−→a )
−→n +ei

(5.1)

where L(β )
ai [.] is defined by

L(β )
ai [y] =

x
1−aω

i
∇ωy−

[
aω

i (β −ω)

1−aω
i
− x
]

y.

Proof. Proof follows directly from the Rodrigues formula (3.7) for the ω-MMP-1.

Theorem 5.2: Let ω be a positive real number. The lowering operator for ω-MMPs

of the first kind is,

∆ωM(ω;β ;−→a )
−→n =

r

∑
i=1

ωniM
(ω;β+ω;−→a )
−→n −ei

. (5.2)

In particular, for r = 2

∆ωM(ω;β ;a1,a2)
n1,n2 = ωn1M(ω;β+ω;a1,a2)

n1−1,n2
+ωn2M(ω;β+ω;a1,a2)

n1,n2−1 .

Proof. Replacing β with β − ω and applying operator ∆ω to both sides of the

generating function (4.1) for the case r = 2 we obtain,
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∞

∑
n1=0

∞

∑
n2=0

∆ωM(ω;β−ω;a1,a2)
n1,n2

tn1
1 tn2

2
n1!n2!

= (ωt1 +ωt2)

(
1− ωt1

aω
1 −1

− ωt2
aω

2 −1

) x
ω

×

(
1−

ωt1aω
1

aω
1 −1

−
ωt2aω

2
aω

2 −1

)−(β+x)
ω

.

By use of the generating function (4.1), the above equation get the following form,
∞

∑
n1=0

∞

∑
n2=0

∆ωM(ω;β−ω;a1,a2)
n1,n2

tn1
1 tn2

2
n1!n2!

= ω

∞

∑
n1=0

∞

∑
n2=0

M(β ,a1,a2)
n1,n2

tn1+1
1 tn2

2
n1!n2!

+ω

∞

∑
n1=0

∞

∑
n2=0

M(β ,a1,a2)
n1,n2

tn1
1 tn2+1

2
n1!n2!

.

Changing β with β +ω and then replacing n1 with n1− 1 and n2 with n2− 1 in the

right side of equation we obtain,
∞

∑
n1=0

∞

∑
n2=0

∆ωM(ω;β ;a1,a2)
n1,n2

tn1
1 tn2

2
n1!n2!

=
∞

∑
n1=0

∞

∑
n2=0

[
ωn1M(ω;β+ω;a1,a2)

n1−1,n2

+ωn2M(ω;β+ω;a1,a2)
n1,n2−1

]
tn1
1 tn2

2
n1!n2!

.

Finally, comparing the coefficients of tn1
1 tn2

2
n1!n2! , appearing on both sides of the above

equation the desired result is obtained for the case r = 2.

Remark 5.1: In the case ω = 1, the lowering operator for the ω-MMPs of the first

kind coincides with the lowering operator for the MMPs of the first kind which is

given in [10]. For the proof of the ω type we consider a different approach, where

the generating function plays an important role and the proof becomes simpler when

compared with the corresponding proof when ω = 1. [10, Theorem 2.4, p. 138]

5.1.2 ω-Multiple Meixner Polynomials of the Second Kind

Theorem 5.3: Let ω be a positive real number.The raising operator for ω-MMPs of

the second kind is given as

La
βi
[M(ω;

−→
β a)

−→n (x)] =−M(ω;
−→
β −ωei;a)−→n +ei

(x), (5.3)

where La
βi
[.] is defined by
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La
βi
[y] =

x
1−aω

∇ωy−
[

aω(βi−ω)

1−aω
− x
]

y.

Proof. The proof follows from the Rodrigues formula (3.10) for the ω-MMP-2.

We now need to give the following three lemmas before the proof of the main theorem.

Lemma 5.1: Let ω be a positive real number. We have the folowing relation for ω-

MMPs M(ω;
−→
β ;a)

−→n (x)
∞

|−→n |=0
of the second kind ,

∞

∑
x=0

M(ω;
−→
β ;a)

−→n (x)∇ω [(−x)nk−1,ωWω,k(x)] =
aω −1

aω

∞

∑
x=0

M(
−→
β ;a)
−→n (x)(−x)nk−1,ωWω,k(x),

(5.4)

and for i = 1,2 . . . ,r,
∞

∑
x=0

M(ω;
−→
β ;a)

−→n (x)(−x)nk−1,ωWω,k(x) =
aω(βk +ωnk−βi)

1−aω

×
∞

∑
x=0

M(ω;
−→
β +ωei;a)−→n −ei

(x)(−x)nk−1,ωWω,k(x),

(5.5)

where Wω,k(x) := w(ω;βk+ω)(x).

Proof. By using the product rule for the ω-backward operator it can easily be seen

that,

∇ω [(−x)nk−1,ωWω,k(x)] = ∇ω [(−x)nk−1,ω ]Wω,k(x)+(−x+ω)nk−1,ω∇ω [Wω,k(x)]

= δ (x)w(ω;βk)(x),

where δ (x) = 1−aω

aω (−x)nk,ω + . . . .

From the orthogonality conditions, it is known that,

∑
∞
x=0 M(ω;

−→
β ;a)

−→n (x)(−x)nk−1,ωw(ω;βk)(x) = 0. Thus we obtain the result for (5.4) as ,
∞

∑
x=0

M(ω;
−→
β ;a)

−→n (x)∇ω [(−x)nk−1,ωWω,k(x)] =
1−aω

aω

∞

∑
x=0

M(ω;
−→
β ;a)

−→n (x)(−x)nk,ωw(ω;βk)(x)

=
1−aω

aω

∞

∑
x=0

M(ω;
−→
β ;a)

−→n (x)(−x)nk−1,ω(−x−βk)

×w(ω;βk)(x)

=
aω −1

aω

∞

∑
x=0

M(ω;
−→
β ;a)

−→n (x)(−x)nk−1,ωWω,k(x).
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To prove (5.5), we use the relation M(ω;
−→
β ;a)

−→n (x) =−La
βi+ω

[M(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x)] to obtain,

∞

∑
x=0

M(ω;
−→
β ;a)

−→n (x)(−x)nk−1,ωWω,k(x)

=−
∞

∑
x=0

La
βi+ω

[M(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x)](−x)nk−1,ωWω,k(x)

=
∞

∑
x=0

M(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x)

[
1

1−aω
∆ω [x(−x)nk−1Wω,k(x)−

×
(

aωβi

1−aω
− x
)
(−x)nk−1Wω,k(x)

]

=
aω(βk +ωnk−βi)

1−aω

∞

∑
x=0

M(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x)(−x)nk−1Wω,k(x)

− ωaω(nk−1)(ω(nk−1)+βk)

1−aω

∞

∑
x=0

M(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x)(−x)nk−2(βk + x)w(ω;βk)(x).

From the orthogonality conditions we have,

∞

∑
x=0

M(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x)(−x)nk−2(βk + x)w(ω;βk)(x) = 0.

This gives the desired result (5.5).

Lemma 5.2: [10, lemma 2.8, p. 141] Let C = [ci j]
r
i, j=1 be a r×r matrix. If cip−ciq =

εpqcipciq and

cpi− cqi = δpqcpicqi, i, p,q = 1, . . . ,r, then the determinant |C| of C is

|C|=

(
r

∏
i=1

r

∏
j=1

ci j

)(
r−1

∏
q=1

r

∏
p=q+1

εpqδpq

)
. (5.6)

Proof. See [10] for the proof of lemma.

Lemma 5.3: Let ω be a positive real number. For the ω-MMP M(ω;
−→
β ;a)

−→n (x)
∞

|−→n |=0
of

the second kind, we have

∞

∑
x=0

M(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x)(−x)nk−1,ωWω,k(x) = cki

∞

∑
x=0

M(ω;
−→
β +−→e ;a)

−→n −−→e (x)(−x)nk−1,ωWω,k(x),

(5.7)

where,
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cki =

(
aω

1−aω

)r−1(
1

ωnk +βk−βi

)
r

∏
j=1

(ωnk +βk−β j). (5.8)

Proof. If we apply Lemma 4.1.1 on the indices βk + 1, a and −→n −−→ei , we can obtain

inductively the proof of the relation.

Theorem 5.4: Let ω be a positive real number. For the ω-MMP M(ω;
−→
β ;a)

−→n (x)
∞

|−→n |=0
of

the second kind, we have the following lowering operator,

∆ωM(ω;
−→
β ;a)

−→n (x) =
r

∑
i=1

diM
(ω;
−→
β +ωei;a)−→n −ei

(x), (5.9)

where,

di =
∏

r
p=1(ωnp +βp−βi)

∏
r−1
q=1,q6=i(βi−βq)∏

r
p=i+1(βp−βi)

×
r

∑
j=1

(−1)i+ j
∏

r
q=1(ωn j +β j−βq)

(ωn j +β j−βi)∏
r−1
q=1,q 6= j(ωnq−ωn j +βq−β j)∏

r
p= j+1(ωn−ωnp +β j−βp)

.

(5.10)

Proof. Let V be the space of polynomial Θ such that deg(Θ)≤ |n|−1 and

∞

∑
x=0

Θ(ωx)(−ωx)k,ωw(ω;β j+ω)(ωx) = 0 0≤ k ≤ n j−2 j = 1,2, . . . ,r.

By use of orthogonality conditions and

∇ωw(ω;β j+ω) =

(
β j−

1−aω

aω
x
)

w(ω;β j),

it is obvious that ∆ωM(ω;
−→
β ;a)

−→n (x) ∈V and M(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x) ∈V. Let us assume that,

r

∑
i=1

diM
(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x) = 0,

where d′is are constants.

Multiplying above equation with (−x)nk−1,ωw(ω;βk+ω)(x) and then taking summation

over x we get,

r

∑
i=1

di

∞

∑
x=0

M(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x)(−x)nk−1,ωw(ω;βk+ω)(x) = 0.

Using the equivalent relation given in Lemma 4.1.3, the above equation becomes,
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r

∑
i=1

ckidi

∞

∑
x0

M(ω;
−→
β +−→e ;a)

−→n −−→e (x)(−x)nk−1,ωWω,k(x) = 0.

Since, ∑
∞
x0

M(ω;
−→
β +ω

−→e ;a)
−→n −−→e (x)(−x)nk−1,ωWω,k(x) 6= 0 we obtain,

r

∑
i=1

ckidi = 0,

which is equivalent to

Cd = 0,

where cki’s are given in equation (5.8), d = [d1,d2, . . . ,dr]
T and C = [cr

ki]
r
k,i=1. From

Lemma 4.1.4 we know that |C| 6= 0 so that di = 0 for i = 1,2, . . . ,r. Hence

{M(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x)}r
i=1 is linearly independent in V . ∆ωM(ω;

−→
β ;a)

−→n (x) can be

represented as a linear combination of {M(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x)}r
i=1 since the dimension of

V is at most r. This is clear from the information that any polynomial can be written

with n coefficients and (|n|− r) linear conditions are imposed on V

Let

∆ωM(ω;
−→
β ;a)

−→n (x) =
r

∑
i=1

diM
(ω;
−→
β +ω

−→ei ;a)
−→n −−→ei

(x).

After mutiplying the above equation with (−x)nk−1,ωw(ω;βk+ω)(x) , taking summation

on x and then using equation (5.7) we get,
∞

∑
x=0

∆ωM(ω;
−→
β ;a)

−→n (x)(−x)nk−1,ωw(ω;βk+ω)(x) =
r

∑
i=1

ckidi

∞

∑
x=0

M(ω;
−→
β +ω

−→e ;a)
−→n −−→e (x)

× (−x)nk−1,ωw(ω;βk+ω)(x).

This equation can easily be rearranged as follows,

r

∑
i=1

ckidi =
∑

∞
x=0 ∆ωM(ω;

−→
β ;a)

−→n (x)(−x)nk−1,ωw(ω;βk+ω)(x)

∑
∞
x=0 M(ω;

−→
β +ω

−→e ;a)
−→n −−→e (x)(−x)nk−1,ωw(ω;βk+ω)(x)

.

The above equation can also be represented in the form,

Cd = (y1,y2, . . . ,yr)
T , (5.11)

where
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yk =
∑

∞
x=0 ∆ωM(ω;

−→
β ;a)

−→n (x)(−x)nk−1,ωw(ω;βk+ω)(x)

∑
∞
x=0 M(ω;

−→
β +ω

−→e ;a)
−→n −−→e (x)(−x)nk−1,ωw(ω;βk+ω)(x)

.

Using summation by part and the properties given in Lemma 4.1.1, the numerator of

the above expression be written as,
∞

∑
x=0

∆ωM(ω;
−→
β ;a)

−→n (x)(−x)nk−1,ωWω,k(x) =−
∞

∑
x=0

M(ω;
−→
β ;a)

−→n (x)∇ω [(−x)nk−1,ωWω,k(x)]

=
1−aω

aω

∞

∑
x=0

M(ω;
−→
β ;a)

−→n (x)(−x)nk−1,ωWω,k(x)

= ωnk

∞

∑
x=0

M(ω;
−→
β +ω

−→ek ;a)
−→n −−→ek

(x)(−x)nk−1,ωWω,k(x)

= ωnkckk

∞

∑
x=0

M(ω;
−→
β +ω

−→e ;a)
−→n −−→e (x)(−x)nk−1,ωWω,k(x).

Thus we obtain,

yk =
ωnkckk ∑

∞
x=0 M(ω;

−→
β +ω

−→e ;a)
−→n −−→e (x)(−x)nk−1,ωWω,k(x)

∑
∞
x=0 M(ω;

−→
β +ω

−→e ;a)
−→n −−→e (x)(−x)nk−1,ωWω,k(x)

= ωnkckk.

We can represent (5.11) in the matrix form as follows,



c11 c12 . . . c1r

c21 c22 . . . c2r

...
... . . . ...

cr1 cr2 . . . crr


×



d1

d2

...

dr


=



ωn1c11

ωn2c22

...

ωnrcrr


.

Let us multiply the above system from left with the matrix,



1
ωn1c11

0 . . . 0

0 1
ωn2c22

. . . 0

...
... . . . ...

0 0 . . . 1
ωnrcrr


,

to obtain,
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

1
ωn1

c12
ωn1c11

. . . c1r
ωn1c11

c21
ωn2c22

1
ωn2

. . . c2r
ωn2c22

...
... . . . ...

cr1
ωnrcrr

cr2
ωnrcrr

. . . 1
ωnr


×



d1

d2

...

dr


=



1

1

...

1


.

Now denote the coefficient matrix as C and use (5.8) for cki’s.To find the unknowns we

use the Cramer’s rule where di =
detCi
detC

for i = 1,2, . . . ,r.

From Lemma 4.1.2 , we have

detC =
∏

r−1
q=1 ∏

r
p=q+1(βp−βq)(ωnq−ωnp +βq−βp)

∏
r
q=1 ∏

r
p=1(ωnp +βp−βq)

.

The determinant of the augmented matrix is,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
ωn1

1
ωn1+β1−β2

. . . 1 . . . 1
ωn1+β1−βr

1
ωn2+β2−β1

1
ωn2

. . . 1 . . . 1
ωn2+β2−βr

...
... . . . ... . . . ...

1
ωnr+βr−β1

1
ωnr+βr−β2

. . . 1 . . . 1
ωnr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

r

∑
j=1

(−1)i+ j|M ji|,

where M ji is the ( j, i)-minor of C and from Lemma 4.1.2 we have,

|M ji|=
∏

r−1
q=1,q6=i ∏

r
p=q+1,p6=i(βp−βq)∏

r−1
q=1,q6= j ∏

r
p=q+1,p6= j(ωnq−ωnp +βq−βp)

∏
r
q=1,q6=i ∏

r
p=1,p6= j(ωnp +βp−βq)

.

Thus we obtain di =
1
|C|∑

r
j=1(−1)i+ j|M ji|, which is equation (5.10).

5.2 Difference Equations

5.2.1 ω-Multiple Meixner Polynomials of the First Kind

Theorem 5.5: Let ω be a positive real number.The difference equation for the ω-

Multiple Meixner Polynomials M(ω;β ;−→a )
−→n (x)

∞

|−→n |=0
is given by ,

L(β+2ω−rω)
a1 L(β+3ω−rω)

a2 . . .L(β+ω)
ar ∆ωM(ω;β ;−→a )

−→n (x)

+
r

∑
i=1

ωniL
(β+2ω−rω)
a1 . . .L(β+iω−rω)

ai−1 L(β+(i+1)ω−rω)
ai+1 . . .

∗L(β )
ar L(β+ω)

ai M(ω;β ;−→a )
−→n (x) = 0.

(5.12)
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Proof. Since L(n)
ak L(n+ω)

am = L(n)
am L(n+ω)

ak for n,ak,am ∈ R, we obtain that

L(β+2ω−rω)
a1 L(β+3ω−rω)

a2 . . .L(β+ω)
ar = L(β+2ω−rω)

a1 . . .L(β+iω−rω)
ai−1

×L(β+(i+1)ω−rω)
ai+1 . . .L(β )

ar L(β+ω)
ai ,

for i = 1 . . .r.

Now applying L(β+2ω−rω)
a1 L(β+3ω−rω)

a2 . . .L(β+ω)
ar to the lowering operator (5.2) and

using the raising operator (5.1), we get the result.

Theorem 5.6: Let ω be a positive real number.The third order difference equation for

the ω-MMPs M(ω;β ;−→a )
−→n (x)

∞

n1+n2=0
of the first kind is given as,

x(x−ω)∇2
ω∆ωy+ x[β (aω

1 +aω
2 )+(x−ω)(aω

1 +aω
2 −2)]∇ω∆ωy

+[aω
1 β − x(1−aω

1 )(a2ωβ − xω(1−aω
1 )(1−aω

2 )−aω
1 aω

2 βω]∆ωy+

[n1(1−aω
1 )+n2(1−aω

2 )]ωx∇ωy+

ω(β −ω)
[
[n1aω

2 +n2aω
1 −aω

1 aω
2 (n1 +n2)]− (1−aω

1 )(1−aω
2 )(n1 +n2)x

]
y = 0

(5.13)

Proof. Considering the case for r = 2 in Theorem 4.2.1, we have

L(β )
a1 L(β+ω)

a2 ∆ωy+ωn1L(β )
a2 y+ωn2L(β )

a1 y = 0,

where y = M(ω;β ;a1,a2)
n1,n2 (x), which gives the proof.

5.2.2 ω-Multiple Meixner Polynomials of the Second Kind

Theorem 5.7: Let ω be a positive real number.The difference equation for the ω-

MMPs M(ω;
−→
β ;a)

−→n (x)
∞

|−→n |=0
of the second kind is given as,

La
β1+ω

La
β2+ω

. . .La
βr+ω

[∆ωM(ω;
−→
β ;a)

−→n (x)]

+
r

∑
i=1

diLa
β1+ω

. . .La
βi−1+ω

La
βi+1+ω

. . .La
βr+ω

La
βi+ω

[M(ω;
−→
β ;a)

−→n (x)] = 0,

(5.14)

where di’s are the constants in equation (5.10).
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Proof. Since La
βl+ω

La
βk+ω

= La
βk+ω

La
βl+ω

for βl,βk ∈ R, we obtain that,

La
β1+ω

La
β2+ω

. . .La
βr+ω

=La
β1+ω

. . .La
βi−1+ω

La
βi+1+ω

. . .La
βr+ω

La
βi+ω

f or i= 1,2 . . . ,r.

Now applying La
β1+ω

La
β2+ω

. . .La
βr+ω

to lowering operator (5.9) and using raising

operator (5.3), we obtain the result.

Theorem 5.8: Let ω be a positive real number. The third order difference equation

for the ω-MMPs M(ω;
−→
β ;a)

−→n (x)
∞

n1+n2=0
of the second kind is given as,

x(x−ω)∇2
ω∆ωy+[(1−aω)(1+ω−2x)+aω(1+β1 +β2)]x∇ω∆ωy

+[(aω
β1− (1−aω)x)(aω

β2− (1−aω)x)− xω(1−aω)]∆ωy

+(1−aω)[ωaω(ωn1n2 +β2n1 +β1n2)− x(1−aω)(ωn1 +ωn2)]y

+ω(n1 +n2)(1−aω)x∇ωy = 0.
(5.15)

Proof. From Theorem 4.2.3 we consider the case for r = 2,

Lβ1+ωLβ2+ω∆ωy+d1Lβ2+ωy+d2Lβ1+ωy = 0,

where y = M(ω;β1,β2;a)
n1,n2 (x) which gives the proof of the theorem.
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Chapter 6

SOME RESULTS ON ω−MULTIPLE MEIXNER

POLYNOMIALS

1/2-MMPs of the first kind have the following weight functions,

w(1/2;β )
i (x) =

Γ1/2(β + x)ax
i

Γ1/2(β )Γ1/2(x+1/2)
=

Γ(2(β + x))ax
i

Γ(2β )Γ(2(x+1/2))
i = 1,2, . . . ,r.

By using these weight functions in (3.2), the orthogonality conditions for 1/2-MMP-1

can be written as,

∞

∑
x=0

M(1/2;β ;−→a )
−→n

(
x
2

)
(−x) j

Γ(2β + x)ax/2
i

Γ(2β )Γ(x+1)
= 0, j = 0,1, . . .ni−1.

The explicit form for 1/2-MMP-1 can easily be obtained from (3.8) as follows:

M(1/2;β ;−→a )
−→n (x) =

n1

∑
k1=0
· · ·

nr

∑
kr=0

(
n1

k1

)
. . .

(
nr

kr

)

×
r

∏
j=1

[
(a1/2

j )n j−k j

(2a1/2
j −2)n j

(−2x)|−→k |(2β +2x)|−→n |−|−→k |

]
.
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As  we  mentioned  before  for  the  case  when  ω  =  1,  ω−  MMPs  reduces  the  known

MMPs.  For  the  other  values  of  ω  we  have  new  classes  for  MMPs  where  ω  is  positive

real  number.

6.1  1/2-Multiple  Meixner  Polynomials  of  the  first  Kind

In  this  section  we  exhibit  the  case  ω  =  1/2  and  state  some  relations  for  1/2-MMPs  of

the  first  kind  such  as  weight  functions,  orthogonality  conditions,  explicit  form,

generating  function  and  third  order  difference  equation.



1/2-MMP-1 have the following generating function,

∞

∑
n1=0
· · ·

∞

∑
nr=0

M(1/2;β ;−→a )
−→n (x)

tn1
1 ...tnr

r

n1!...nr!
=

(
1− t1

2(a1/2
1 −1)

−·· ·− tr

2(a1/2
r −1)

)2x

×

(
1−

t1a1/2
1

2(a1/2
1 −1)

−·· ·− tra
1/2
r

2(a1/2
r −1)

)−2(β+x)

.

1/2-MMP-1 satisfy the following third order difference equation,

x(x−1/2)∇2
1/2∆1/2y+ x[β (a1/2

1 +a1/2
2 )+(x−1/2)(a1/2

1 +a1/2
2 −2)]∇1/2∆1/2y+

[a1/2
1 β − x(1−a1/2

1 )((a2β )/2− [x(1−a1/2
1 )(1−a1/2

2 )]/2− [a1/2
1 a1/2

1 β ]/2]∆1/2y+

[n1(1−a1/2
1 )+n2(1−a1/2

2 )]x/2∇1/2y+

(β −1/2)/2
[
[n1a1/2

2 +n2a1/2
1 −a1/2

1 a1/2
2 (n1 +n2)]−

(1−a1/2
1 )(1−a1/2

2 )(n1 +n2)x
]
y = 0,

where ∆1/2 f (x) = f (x+1/2)− f (x) and ∇1/2 f (x) = f (x)− f (x−1/2).

5/3−MMPs of the second kind have the following weight functions,

w(5/3;βi)(x) =
Γ5/3(βi + x)ax

Γ5/3(βi)Γ5/3(x+5/3)
=

Γ
(
3/5(βi + x)

)
ax

Γ(3βi/5)Γ(3x/5+1)
f or i = 1,2, . . . ,r.

By using these weight functions in (3.4) we get the orthogonality conditions for

5/3−MMP-2,

∞

∑
x=0

M(5/3;
−→
β ,a)

−→n (3x/5)(−x) j
Γ(3βi/5+ x)a5x/3

Γ(3βi/5)Γ(x+1)
= 0, j = 0,1, . . .ni−1.

The explicit form for 5/3−MMP-2 easily seen from (3.11),
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6.2  5/3-Multiple  Meixner  Polynomials  of  the  Second  Kind

In  this  section,  we  get  ω  =  5/3  and  we  obtain  some  relations  for  5/3−MMPs  of  the

second  kind  such  as  weight  function,  orthogonality  conditions,  explicit  form,

generating  function  and  third  order  difference  equation.



M(5/3;
−→
β ,a)

−→n (x) =
n1

∑
k1=0

n2

∑
k2=0

...
nr

∑
kr=0

(
n1

k1

)
. . .

(
nr

kr

)(
5a5/3

3(a5/3−1)

)|−→n |(
1

a5|
−→
k |/3

)

× (−3x/5)|−→k |

r

∏
j=1

(
3(β j + x)/5−

j−1

∑
i=1

ki

)
n j−k j

.

5/3−MMP-2 have the following generating function,

∞

∑
n1=0
· · ·

∞

∑
nr=0

M(5/3;
−→
β ;a)

−→n (x)
tn1
1 ...tnr

r

n1!...nr!
=

(
1− 3

5a5/3

[
1−

r

∏
j=1

(
1+

5a3/5

3(1−a3/5)
t j

)])3x/5

×
r

∏
i=1

(
1+

5a3/5

3(1−a3/5)
ti

)− 3(x+βi)
5

.

5/3−MMP-2 satisfy the following third order difference equation,

x(x−5/3)∇2
5/3∆5/3y+

[
(1−a5/3)(1+5/3−2x)+a5/3(1+β1 +β2)

]
x∇5/3∆5/3y+[

(a5/3
β1− (1−a5/3)x)(a5/3

β2− (1−a5/3)x)−5x(1−a5/3)/3
]

∆5/3y+

(1−a5/3)

[
5a5/3(5n1n2/3+β2n1 +β1n2)/3− x(1−a5/3)(5(n1 +n2)/3)

]
y+

5(n1 +n2)(1−a5/3)

3
x∇5/3y = 0,

where ∆5/3 f (x) = f (x+5/3)− f (x) and ∇5/3 f (x) = f (x)− f (x−5/3).
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