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ABSTRACT

Millimeter-wave frequencies, which enable the usage of a greater spectrum than the
existing cellular microwave bands, have attracted the researchers' attention
significantly. However, the ever-increasing demand for higher data rates in the future
5G and 6G networks requires further improvement of spectral efficiency. Millimeter-
wave systems take advantage of the decrease in wavelength to employ antenna arrays
consisting of a large number of antennas on both transmitter and the receiver. Due to
the high hardware cost and high power consumption of the fully digital precoders used
in conventional MIMO systems, it is not feasible to employ fully digital baseband
precoders at the millimeter-wave MIMO systems. Hybrid analog/digital transceiver
architectures, which were made up of digital baseband and analog RF precoders were
recently proposed by many researchers to reduce the rather high power consumption.
Since analog RF precoders are much cheaper and consume much lower powers, the
cost of the system is also significantly reduced with the help of RF precoders while

achieving a comparable fully-digital precoder performance.

This thesis investigates the performance of the millimeter-wave massive MIMO
systems with hybrid analog/digital architecture for several aspects. We propose a novel
low-complexity alternating minimization algorithm based on the Barzilai-Borwein
(BB) gradient algorithm to maximize the spectral efficiency in single-user millimeter-
wave systems under Gaussian noise and impulsive noise. It is aimed to minimize the
Euclidean distance between the hybrid precoders and fully digital precoder using

alternating minimization techniques for both scenarios. In the impulsive noise



environment, a novel fuzzy logic-based decoder is also proposed to suppress the

effects of impulsive noise.

Simulation results demonstrate that the proposed BB method can achieve almost the
same spectral efficiency as the competing methods despite its lower computational
complexity. Furthermore, the proposed fuzzy logic-based filter successfully
suppresses the impulsive noise effects and achieves a better bit error rate performance

than the competing methods which also work efficiently in Gaussian noise.

Keywords: Millimeter-wave, massive MIMO, hybrid precoding, alternating

minimization, BB gradient algorithm



0z

Mevcut hicresel mikrodalga bantlarindan daha genis bir spektrumun kullanilmasini
saglayan milimetre-dalga frekanslari, arastirmacilarin dikkatini 6nemli dlgiide
¢cekmistir. Bununla birlikte, gelecekteki 5G ve 6G aglarinda daha yiiksek veri hizlarina
yonelik strekli artan talep, spektral verimliligin daha da iyilestirilmesini gerektiriyor.
Milimetre-dalga sistemleri hem verici hem de alict iizerinde ¢ok sayida antenden
olusan anten dizilerini kullanmak i¢in dalga boyundaki azalmadan yararlanir.
Geleneksel MIMO sistemlerinde kullanilan dijital 6n kodlayicilarin yiiksek donanim
maliyeti ve ylksek glc tuketimi nedeniyle, milimetre-dalga MIMO sistemlerinde
dijital 6n kodlayicilarin yalniz bagina kullanilmasi uygun degildir. Bu yuzden, dijital
ve analog RF 6n kodlayicilardan olusan hibrit analog/dijital alici-verici sistemleri, son
zamanlarda oldukga yukselen gii¢ tiiketimini azaltmak i¢in birgok aragtirmaci
tarafindan Onerildi. Analog RF 6n kodlayicilar sayesinde sistem maliyeti ve gugc

tiikketimi diisiiriiliirken, dijital 6n kodlayicilara yakin bir performans elde edilmistir.

Bu tez, hibrit analog/dijital yapiya sahip milimetre-dalga masif MIMO sistemlerinin
performansini gesitli agilardan incelemektedir. Tezde, tek kullanicili millimetre-dalga
sistemlerinin Gauss giiriiltiisii ve anlik giiriiltii etkisi altinda spektral verimliligini en
iist diizeye ¢ikarmak i¢in diisiik karmasikliga sahip Barzilai-Borwein (BB) gradyan
algoritmasina dayanan 6zgiin bir donilislimlii minimizasyon algoritmast Onerilmistir.
Doniisiimlii minimizasyon teknikleri kullanilarak hibrit 6n kodlayicilar ile tam dijital
on kodlayic1 arasindaki Oklid mesafesinin en aza indirilmesi amaclanmaktadir.
Ayrica, anlik giirtiltii ortamindan kaynaklanan etkileri bastirmak i¢in 6zgiin bir bulanik

mantik tabanl kod ¢6ziicli Onerilmistir.



Simiilasyon sonuglari, 6nerilen BB yonteminin daha diisiik hesaplama karmasikligina
sahip olmasma ragmen, yaristigi yontemlerle neredeyse ayni spektral verimlilige
ulasabildigini gostermektedir. Ayrica, Onerilen bulanik mantik tabanli filtre, anlik
guraltii etkilerini basartyla bastirirken kiyaslanan diger yontemlerden daha iyi bir hata
orani elde etmistir. Onerilen filtrenin, Gauss giiriiltiisii etkisi altinda da yiiksek

verimlilik ile ¢alistig1 gézlemlenmistir.

Anahtar Kelimeler: Milimetre-dalga, masif MIMO, hibrit 6n kodlayici, doniisiimlii

minimizasyon, BB gradyan algoritmasi
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Chapter 1

INTRODUCTION

1.1 Introduction

Mobile broadband communication requires a significant expansion in the existing
network capacity. Because of the dramatic growth in the number of users as a result of
the increased demand for smart system applications, the network capacity should be
increased to meet the demands of the users. According to the studies in this field, the
traffic load is expected to increase by 1000 times in the next decade, and the current
4th Generation (4G) network will be insufficient to meet the huge demand [1], [2].
Thus, a new generation network called the 5th Generation (5G) needs to be employed
for a new spectrum with much higher bandwidth. Millimeter-wave (mmWave)
communication with the available spectrum between 3 GHz (A=100 mm) and 300 GHz
(A=1 mm) is a promising candidate for achieving such higher bandwidths. The
available frequency band on mmWave is higher than all of the licensed spectrum used

by today’s wireless communication systems [3]-[5].

The capacity of the system can be increased further by employing advanced antenna
and diversity techniques, such as massive Multiple-Input-Multiple-Output (MIMO)
[6], [7]. In the conventional MIMO, precoding is implemented at baseband using fully
digital precoders. However, digital precoders require a dedicated Radio Frequency
(RF) chain with the signal mixers and analog-to-digital converters for each antenna

element, which enormously increases power consumption and system complexity.



Hence, the researchers proposed hybrid analog/digital precoding to reduce the power
consumption and hardware cost of the system, since the hybrid precoders require a
very small number of RF chains compared to the number of antenna elements used in

massive MIMO [8], [9].

Recent research findings state that minimizing the Euclidian distance between hybrid
precoders and the optimal precoder (fully digital precoder) will lead to maximize the
spectral efficiency [8]. This problem can be handled as an optimization problem and
the main goal is to optimize the hybrid precoders with low complexity and comparable
performance to fully digital precoders. Existing works in the literature are mostly
heavily complex or have constraints causing performance losses, making them
infeasible for practical use. This thesis focuses on finding a better way to optimize the
hybrid precoders considering a unit modulus constraint formed by analog phase

shifters.

Alternating minimization methods are investigated to design the hybrid precoders and
this approach performs very close to the full digital solution [10], [11]. However, there
are still some handicaps that should be pointed out such as the complexity and the
restriction of the methods. Therefore, in search of different optimization methods
without any restriction and with an acceptable complexity, it is discovered that the
Barzilai-Borwein (BB) gradient method based on manifold optimization can be a good
candidate to serve those needs [12]-[14]. However, besides the advantages of
mmWave, there are some handicaps in mmWave which is not well addressed, such as

the suppression of impulsive noise.



The conventional mmWave systems are mostly designed to operate only for the
Gaussian Noise (GN) model. In many physical channels, such as urban and indoor
radio channels, the ambient noise is known through experimental measurements to be
non-Gaussian. Hence, recent research findings state that a mixture noise model with
additive Impulsive Noise (IN) is a more realistic approximation for mmWave
channels. In this thesis, several mitigation techniques to suppress the IN are
investigated and a fuzzy-logic-based decoder is designed to minimize the effects of the

IN by ordering the samples based on fuzzy rank.
1.2 Thesis Aims and Objectives

In mmWave MIMO, optimizing the hybrid precoders to achieve a close performance
to the fully digital precoders with low complexity is the key point for the upgoing
research in this area. Power consumption and the hardware cost of the system can be
reduced substantially using hybrid precoders rather than the fully digital precoders
used in conventional MIMO systems. The main aim of this study is to maximize the
spectral efficiency performance of the hybrid precoders to approach the performance
of fully digital precoders while reducing the complexity of the system compared with
the existing methods in the literature. In this regard, alternating minimization

techniques are investigated and applied to the hybrid precoders for different setups.

In this study, an improved alternating minimization method is proposed to satisfy the
following objectives:
1) To optimize hybrid precoders in mmWave MIMO systems using alternating
minimization techniques for single user GN and IN environments.
2) To maximize spectral efficiency performance of the hybrid precoders to

maintain a close performance to fully digital precoders for each setup.



3) To reduce the computational complexity of the system without any restrictions.
4) To mitigate IN, while maximizing the spectral efficiency for single user

mmWave MIMO systems.
1.3 Thesis Contribution

This study mainly focuses on optimizing the hybrid precoders to achieve an
approximate performance to fully digital precoders while keeping the complexity of

the system at an acceptable level for practical implementation.

In this thesis, we first proposed an improved alternating minimization based on the BB
gradient method for a single-user mmWave MIMO system with hybrid transceiver
architecture, where the noise is distributed as GN. The hybrid precoders are optimized
by minimizing the Euclidian distance between the hybrid precoders and the digital
precoders. Simulation results demonstrate that the proposed method can achieve
identical spectral efficiency performance with the competing methods in the literature
with lower computational complexity. It should also be noted that this method has no

restrictions to degrade the performance of the system.

The main contributions of this study can be summarized as:

a) A novel BB gradient-based alternating minimization method is investigated and
compared with the existing methods concerning computational complexity and
spectral efficiency.

b) BB method is applied using manifold optimization and this allows us to use the

BB method without any restrictions causing performance losses.



c) It is shown that the proposed method has an identical spectral efficiency
performance with the competing methods in the literature with comparable
performance to fully digital precoders.

d) The time complexities of several algorithms are derived and observed that the
proposed algorithm requires less computational cost than the well-known

conjugate gradient algorithm.

In the literature, the noise is generally modeled as GN and the effects of the IN are
considered negligible. However, recent research findings state that the IN present at
the mmWave frequencies degrade the performance of the system and there is a need
for a more realistic model which includes the IN components. Therefore, we adapt a
mixture noise model and develop a filter to reduce the severe effects of the IN. In the
mmWave environment, there is limited research about the mixture noise model and
how to eliminate the IN to enhance the system's performance. In this regard, we
designed a hybrid decoder with a fuzzy logic filter to suppress the effects of IN.
Although fuzzy-logic-based filters are used in the microwave environment, there is no
implementation in the literature for the mmWave environment. Therefore, we adapt
the fuzzy logic filter using a novel threshold mechanism and the results are very

promising compared with the existing methods in the literature.

The main contributions of this study can be summarized as:
a) The mixture noise model is used to represent the noise in the mmWave
environment rather than the GN that is used in almost all the research papers.
b) A novel fuzzy-logic-based decoder is designed to minimize the effect of IN by

ordering the samples based on fuzzy rank.



c)

A novel threshold mechanism is developed to detect IN components and this
enables the system to suppress the IN components while also working efficiently

in the Gaussian environment under different scenarios.

1.4 Publications

This thesis is based on the following original publications:

M. Mulla, A. H. Ulusoy, A. Rizaner, and H. Amca, “Barzilai-Borwein Gradient
Algorithm Based Alternating Minimization for Single User Millimeter Wave
Systems,” |IEEE Wirel. Commun. Lett., 2020, doi:10.1109/LWC.2019.
2960691.

M. Mulla, M. Sohail, A. H. Ulusoy, R. Uyguroglu, A. Rizaner, and H. Amca,
“A Single User Millimeter Wave Massive MIMO System using Defected
Ground Structure and Metasurface Antenna Arrays,” in 2021 IEEE 29th Signal
Processing and Communications Applications Conference (SIU), 2021, pp. 1-
4, doi: 10.1109/S1U53274.2021.9477798.

M. Mulla, A. Rizaner, and A. H. Ulusoy, “Fuzzy Logic Based Decoder for
Single-User Millimeter Wave Systems Under Impulsive Noise,” Wirel. Pers.

Commun., 2021, doi: 10.1007/s11277-021-09435-7.

1.5 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 provides the preliminary and

necessary definitions for mmwWave MIMO systems and precoding schemes to

eliminate the interference. A hybrid precoding scheme is introduced for mmWave

systems and several optimization techniques are investigated to solve the hybrid

precoding problem. Besides, IN characteristics and mitigation techniques in the

literature are reviewed. Chapter 3 demonstrates the system model of the mmWave

massive MIMO system and presents the channel model for the designed mmWave



system. Noise model for the IN channels and the simplified architecture of decoder
with a fuzzy median filter to suppress IN are expressed. Moreover, the spectral
efficiency expression is derived for the hybrid precoding system and the hybrid

precoding problem is formulated.

In chapter 4, the proposed alternating minimization based on the Riemannian BB
method to solve the hybrid precoding problem is summarized and several gradient
methods are investigated to build the proposed algorithm. The computational cost of
the proposed method is analyzed and the complexity of the proposed method is shown
together with the competing methods. Chapter 5 presents the design of the proposed
fuzzy logic-based filter to reduce the effects of the IN before passing through the
hybrid decoders. Additionally, a novel threshold mechanism is developed to detect the
outlier amplitudes considered as the IN samples in which the fuzzy median filter is

only applied to the received signals with IN.

Chapter 6 illustrates the simulation results of the proposed Riemannian BB algorithm
under GN and the fuzzy median filter under IN. The simulations are conducted for
several setups and the results are discussed for different circumstances. Finally,
Chapter 7 draws a conclusion for the research and gives suggestions for future works

in this area.



Chapter 2

LITERATURE REVIEW

In this chapter, the preliminary and necessary definitions for mmwWave MIMO systems
are explained and the optimization techniques to solve the hybrid precoding problem
in the literature are also reviewed. Moreover, brief information about the IN channel

characteristics and IN mitigation techniques are given.
2.1 mmWave MIMO Systems

Multiple antenna techniques are well investigated by the researchers to apply in both
transmitter and receiver for the wireless systems. It is shown that the MIMO systems
enhance the transmission rate, link reliability, and coverage [6], [15], [16]. Therefore,
MIMO systems are the most popular candidates to deliver needed data rates for
mmWave communication [7]. This subsection reviews the MIMO architecture for
mmWave communication and emerging techniques of the mmWave MIMO
communication network.

2.1.1 MIMO Architectures for mmWave Communications

Although MIMO technology has been deployed and widely used in current
commercial systems such as the 3rd Generation (3G) and Long-Term Evolution (LTE),
these systems are considered as sub-6GHz and only support a small number of
antennas (maximum eight elements). MmWave communication systems are expected
to have much more antenna array elements due to the small wavelength characteristic.
Antenna arrays can be built from 32 to 256 elements with the advantage of small

physical size and this architecture is called massive MIMO [17]. Therefore, several



MIMO techniques are investigated in the literature to enhance the spectral efficiency
performance of the system with a lower number of RF chains compared to antenna
array size. One of the popular candidates for future wireless systems to achieve a
higher spectral efficiency using a lower order modulation is spatial modulation [18]—
[20] which is also taking attention for Visible Light Communication (VLC) that can
be used in the 6th Generation (6G) [21]. Another powerful approach is to build a
hybrid precoding scheme to handle a large number of antennas with lower power

consumption by reducing the number of RF chains connected to the antennas.

The architecture of the MIMO in mmWave and microwave frequencies is different
from each other. In conventional MIMO, fully digital precoders are used to apply
signal processing and this scheme is not feasible for a large number of antenna
elements. Thus, a better strategy is needed to employ precoding in mmWave massive
MIMO architecture. In the next subsection, we review the precoding techniques for
the conventional and massive MIMO systems.

2.1.1.1 Precoding Techniques

Precoders are designed to control the amplitude and phases of the transmitting signal
to cancel the interference in advance to optimize mobile networks' performance. The
use of precoding techniques has an important role in mmWave massive MIMO
systems. In the literature, precoding is also known as beamforming which aims to
transmit pencil-shaped beams to the selected terminals directly with no interference
[22], [23]. There are three primary architecture schemes for precoding: analog
beamforming, digital precoding, and hybrid analog/digital precoding. An overview of

these schemes will be introduced in the following subsections.



Figure 2.1: Analog beamforming architecture for single-user mmWave massive
MIMO.

2.1.1.1.1 Analog Beamforming

Analog beamforming is one of the most basic methods to implement for mmWave
MIMO systems, which can be used in both transmitter and receiver. Figure 2.1
illustrates the mmWave MIMO system using analog beamforming, where several
antenna elements are attached to a single RF chain using simple phase shifters. In this
approach, the phase of the signal is controlled with the network of digitally controlled
phase shifters to achieve an optimal array gain and effective Signal to Noise Ratio

(SNR) [17], [22].

Analog beamforming scheme requires a small number of RF chains compared with the
large number of antenna elements used in mmWave massive MIMO. However, despite
the simplicity of the hardware implementation, the performance of the analog
beamforming scheme is poor due to the constant amplitude constraint of the design.
Hence, fully digital precoding is preferable for low frequencies to eliminate the
interference effects since both the amplitude and the phase can be controlled by the

digital precoders for optimal performance [24].
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2.1.1.1.2 Digital Precoding

Digital precoding is a conventional design for low-frequency applications in MIMO
systems. It aims to eliminate interference in advance by controlling both the amplitude
and the phase of the transmitting signal. Digital precoding can be classified under two
categories as linear and nonlinear. Linear precoding schemes form the transmitted
signal using a linear combination of the original signals and nonlinear precoders do

this process in a nonlinear way.

Throughout this thesis, we will only focus on linear digital precoding schemes,
including Matched Filter, Zero Forcing, and the Wiener Filter precoder, ordered in
increasing depending on their complexities and performances. The system model for
single-user mmWave massive MIMO system using fully digital precoding is shown in

Figure 2.2, and to have a general understanding, the linear precoder models are derived

Dyr = M F,F = H¥
ME ™ ltr(FFH) '~

, M 2.1)
D,, = F.F = HY(HHH)"!
ZF tr(FFH) ( )
-1
_ M _ uH H , 0&AM
Dyr = /—tr(FFH) FF=H (HH + 2 1) ,

where M denotes the transmitted number of data streams, H represents the channel

respectively in (2.1) as:

matrix between the transmitter and receiver, B. and ¢;> denote the average received
power and the noise power, respectively, and the corresponding linear digital

precoders are referred as Dyr zr wr [22].
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Figure 2.2: Digital precoding architecture for single-user mmWave massive MIMO.

At mmWave frequencies, there are several hardware limitations for using the fully
digital precoding, and this makes the system infeasible in practice for a large number
of antenna elements that are used in massive MIMO. A dedicated Analog to Digital
Converter (ADC) / Digital to Analog Converter (DAC) and RF chain are required for
each antenna element in digital precoding. This will increase the energy consumption
and hardware cost enormously. Thus, hybrid analog/digital precoding technique is
proposed to solve this problem [8] and the required number of RF chains is reduced
while achieving a close performance to fully-digital precoders [22], [24].

2.1.1.1.3 Hybrid Analog/Digital Precoding

Hybrid analog/digital precoding scheme is a promising candidate for mmWave
massive MIMO systems to overcome the challenges that occurred in analog and digital
precoding schemes. This scheme is proposed to reduce the number of RF chains
needed to employ fully digital precoding, which will significantly reduce energy
consumption and hardware cost while achieving a near-optimal performance
compared to digital precoding schemes. In hybrid precoding, the precoding process is
divided into two domains as digital and analog domains. In the first step, a small-size

digital precoder with a small number of RF chains is applied to eliminate the effects

12



Figure 2.3: Hybrid analog/digital precoding architecture for single-user mmWave
massive MIMO systems.

of interference, and antenna array gain is increased by employing a large-size analog
beamformer using only phase shifters in the second step [7], [8], [17], [22], [24]. The
system model for the mmWave massive MIMO with hybrid precoding is illustrated in

Figure 2.3.

Hybrid precoders can be divided into two groups depending on their analog
beamforming structure. Analog beamforming can be employed using different
techniques such as phase shifters and switches. There are two main hybrid
architectures: fully connected architecture, also known as spatially sparse precoding,
and sub-connected architecture. In the first approach, all the antennas are connected to
each RF chain using phase shifters, and in the second approach, antennas are divided
into subgroups and all subgroups are connected to each RF chain [8], [17], [22], [24]—
[26]. Two architectures for analog beamforming using phase shifters are shown in

Figure 2.4.

13
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Figure 2.4: Analog beamforming schemes for hybrid precoding (a) fully connected
structure (b) sub-connected structure.

In this thesis, we investigated hybrid precoding with a fully connected structure based
on phase shifters, and the mathematical models for this structure are expressed in
Chapter 3.

2.2 Minimization Methods for Hybrid Precoding

In recent years, research interest is growing rapidly on optimizing the hybrid precoders
using minimization methods. Significant amounts of efforts have been invested in
solving the hybrid precoding problem in mmWave massive MIMO systems to achieve
a near-optimal spectral efficiency performance with low complexity compared with
fully digital precoding. It is stated that minimizing the Euclidian distance between the
hybrid precoders and optimal precoder (fully digital precoder) results in maximizing
the spectral efficiency performance of the system [8]. In this subsection, the
minimization techniques and alternating minimization methods in the literature will be

investigated.
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2.2.1 Orthogonal Matching Pursuit

In the literature, hybrid precoders are mostly designed using a fully connected structure
and most of the works are based on Orthogonal Matching Pursuit (OMP), which
achieves near-optimal performance. It is pointed out that the spectral efficiency can be
maximized by optimizing the hybrid precoders using an algorithmic precoding
solution based on OMP [8]. Optimal precoders are given as input to this algorithm and
beam steering vectors are approximated to apply at RF. The columns of the RF
precoding matrix are picked from the channel's array response vector and thus, hybrid
precoding based on OMP can be considered a sparse matrix approximation problem.
Although the complexity of the problem is reduced, there will be performance losses

for feasible RF precoding solutions [8], [10], [27], [28].

An algorithmic solution based on OMP is presented in [8] and the hybrid precoder
problem is solved using an optimization approach. The given algorithm first finds the
channel’s array response vector SO that the optimal precoder achieves a maximum
projection. After that, it aims to attach the selected array response vector onto the
analog precoder and once the dominant vector is obtained, the digital precoder is
computed using a direct least square approach. Finally, the residual precoding matrix
is found by removing the selected vector and the digital precoder is normalized at the

end of the algorithm to ensure the transmit power constraint.

In addition to performance losses, extra overhead is needed to obtain the information
of array response vectors, and researchers are focused on reducing the computational
cost of the OMP algorithm. Therefore, alternating minimization based hybrid
precoding algorithms are proposed by the researchers and we review the alternating

minimization methods for fully-connected structure in the next subsection.
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2.2.2 Alternating Minimization
In mmWave MIMO, there is still a search to find a sophisticated method for solving
the hybrid precoding problem with the unit modulus constraint. In this regard,
alternating minimization algorithms are taking attention from the researchers, and
several alternating minimization based algorithms are proposed. The main principle of
alternating minimization is to divide the hybrid precoding problem into two
subproblems, which are the analog and digital precoder design. It is aimed to optimize
the digital precoder and analog precoder alternately to achieve near-optimal
performance with an acceptable complexity [10], [11], [29]. In this subsection, several
alternating minimization algorithms are investigated and the drawbacks and
limitations of these algorithms are discussed to present a guideline for selecting the
suitable alternating minimization method for the hybrid precoding problem.
2.2.2.1 Orthogonal Procrustes Problem based Alternating Minimization
Authors in [10] and [11] proposed an alternating minimization algorithm based on
Orthogonal Procrustes Problem (OPP) to solve the hybrid precoding problem. The
motivation of this algorithm is to acquire a low computational complexity with a slight
performance loss compared with the algorithms in the literature. The Procrustes
problem aims to approximate a matrix A € R™*™ from a matrix B € RP*™ multiplied
by a matrix that has orthogonal columns U € R™*P. Thus, the problem can be written
using the Frobenius norm as

min||A — UB||% subject to UTU = L,. (2.2)
The matrix U has orthonormal columns, therefore the Frobenius part of the equation
(2.2) can be written as

IIA — UB||2 = Tr(ATA) — 2Tr(ABTUT) + Tr(B"B), (2.3)
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where minimizing (2.2) is equivalent to maximizing Tr(AB7UT) and U can be

maximized using the Singular Value Decomposition (SVD) of ABT [30], [31].

Since the digital precoder satisfies the orthogonal property, the OPP algorithm can be
applied to the hybrid precoding problem to determine the phases of the analog precoder
with unit constraint from the equivalent precoder formed by the digital precoder and
the optimal precoder [10], [11]. Although the OPP-based hybrid precoding algorithm
requires low computational cost, this algorithm is not practical because of the
restrictions. In the OPP algorithm, the number of transmitted symbols and RF chains
should be equal to each other to achieve comparable spectral efficiency performance
with the competing methods. Hence, in search of different optimization methods
without any restrictions and with an acceptable complexity, it is discovered that the
Manifold Optimation (MO) based alternating minimization can be a strong candidate
to solve the hybrid precoding problem. In the next subsection, the fundamentals of the
MO are reviewed to have a general understanding of the proposed BB alternating
minimization algorithm based on MO, which will be discussed in detail in Chapter 4.
2.2.2.2 Manifold Optimization-based Alternating Minimization

The essential idea of this study is to find a method to solve the hybrid precoding
problem without any restrictions and reduce the complexity of the competing methods
in the literature. Thus, the MO-based algorithms are investigated and the authors in
[10] proposed a MO-based alternating minimization algorithm for hybrid precoding.
This method optimizes the analog precoders and digital precoders alternately while
fixing the other. Since jointly optimizing these two matrices are highly complex due
to the unit modulus constraint of the analog precoder, the solution requires two steps.

In the first step, the digital precoder is solved with a fixed analog precoder using a
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single least-square solution. In the second step, the analog precoder is optimized using

Conjugate Gradient (CG) algorithm based on MO for fixed digital precoder.

In this subsection, the fundamentals and terminologies about the MO will be provided
and our proposed Riemannian BB algorithm for analog precoding given in Chapter 4

will be built on this ground.

Manifold can be considered as a topological space that is locally similar to some
Euclidean space with certain properties. The illustration of manifold M is shown in
Figure 2.5, where T, M denotes the tangent space at a given point x on the manifold
M, and &, and y represent the tangent vector at a point x and the curves through x,

respectively [10], [32], [33].

Riemannian Manifold (RM) is a special type of topological manifold that can be used
for most applications. In this manifold, tangent space T, M is equipped with a
smoothly varying inner product that can be considered as Riemannian metric and this
allows to use of calculus on the RM. Besides, the gradients of cost functions can be
defined using the rich geometry of RM, and optimization techniques can be applied on
the manifold over a Euclidian space without any constraints or smooth constraints [32].
In the hybrid precoding design, analog precoding vector deploys a complex circle
manifold in which the complex plane C with Euclidian metric can be represented as
(x1,X;) = Re{x¥x,}, (2.4)
and the complex circle can be expressed as
M., ={x€eC: x'x=1} (2.5)
Tangent vectors are used to characterize the directions of the movement for a given

point x on the manifold M. and thus, the tangent space can be specified as
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Figure 2.5: The illustration of manifold M with the tangent space and tangent vector
[32].

T, M. ={z€C: zFix +xz = 2(x,z) = 0}, (2.6)
where the analog precoding vector x on the complex circle manifold is in the form

Mee ={x€C: |xq] = [X2] = -+ =[x = 1}, (2.7)
such that m is equal to the number of transmitting antennas times the number of RF
chains. Hence, the optimization problem for analog precoding can be considered as a
Riemannian submanifold of C™ which has product geometry over m circles in the
complex plane and the tangent space at x € M/ can be defined as

T M ={z € C": Re{zox"}=0,}, (2.8)
where o denotes the elementwise multiplication. The direction of the maximum
decrease of a function can be found using negative Riemannian gradient and the
Riemannian gradient at x is the orthogonal projection of the Euclidean gradient Vf(x)
along the tangent space T,,M /7 in which can be derived as
gradf(x) = Proj,Vf(x)

2.9)
= Vf(x) — Re{Vf(x) o x"} o x,
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where Vf(x) is expressed in Chapter 4 [10], [32]. Based on the above terminology, the
Riemannian BB algorithm [14] can be used to solve analog precoding problem and the

details about this algorithm can be found in Chapter 4.
2.3 Impulsive Noise and Mitigation Techniques

Noise is commonly modeled using Gaussian distribution in the literature. On the other
hand, the noise at the mmWave frequencies appears to be non-Gaussian and a mixed
noise model with GN and IN can be used to express this noise model. The main source
of IN is thought to be man-made and neighboring equipment frequently causes additive
IN to the receivers. Since 5G technology needs an ultra-dense cellular network and the
use of machine-to-machine communication is increasing day by day, the receivers are
predicted to be impacted by a mixed noise rather than the traditional white GN defined
in most of the studies. Furthermore, IN can be used to represent the atmospheric and
solar static signals caused by the sunspots, which are likely to decrease the
communication quality in mmWave bands [34], [35]. The Middleton class A model
[36] is a widely accepted and realistic model to evaluate the mixture noise model for
wireless communication channels [37]-[40], and it has been demonstrated that the
presence of IN has a negative impact on systems performance for applications
operating at mmWave frequencies [41]-[45]. Besides, the authors in [46] investigate
the degradation of the performance of massive MIMO systems under IN. Thus, a
sophisticated method should be developed to detect and mitigate the effects of IN in

mmWave massive MIMO systems.

Several detectors have been designed to improve the performance of the systems under
the effects of IN, and the majority of the works are based on clipping and blanking

[47]-[49]. Although these methods are straightforward to apply, the Bit Error Rate
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(BER) performances of the systems are insufficient for practical use in mmWave. The
authors in [50] proposed a threshold mechanism is for detecting impulses, and the
performance of the system is improved by using an optimal threshold. The system's
performance, however, is still poor for practical use, and a more sophisticated method
Is required. Additionally, to increase the performance of IN filters, neural networks

and deep learning algorithms are expressed [51]-[53].

The fuzzy logic-based algorithm presented in [54] is another effective strategy to
mitigate IN and it has been discovered that this statistical method can meet our
objectives. This method aims to organize the samples with fuzzy order and then reduce
the effects of IN using a fuzzy median filter. For IN channels, this approach works
well, but the performance is expected to degrade when the noise is distributed as
Gaussian. Therefore, to detect the impulses, a threshold mechanism is designed in [55]
and a fixed threshold is set to ensure the system to work in both impulsive and

Gaussian scenarios.

An adaptive threshold mechanism is implemented in [56] to enhance the system’s
performance further and the filter is only applied to the identified impulses. Statistical
metrics, median, and standard deviation are used to choose the optimal threshold
adaptively for each received signal. It is indicated here that the threshold applied
performance of the system in the Gaussian environment is much better than the system

without any threshold.
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Chapter 3

SYSTEM MODEL AND PROBLEM FORMULATION

In this chapter, first, the system model for single-user mmWave massive MIMO and
channel model for the considered system are presented. Then, IN characteristics and
simplified architecture of fuzzy logic-based decoder to mitigate IN are introduced.
Finally, the hybrid precoding problem is formulated, and mathematical formulations
are expressed.

3.1 System Model for Single-User mmWave Hybrid Massive MIMO

The system model for a single-user mmWave hybrid massive MIMO system is shown
in Figure 3.1. This research focused on the downlink model, where Ng symbols are
transmitted by the Base Station (BS) using Ngs transmit antennas and received by a
single Mobile Station (MS) operating with Ny receive antennas. The number of RF
chains are denoted as Ny and for simplicity, it is assumed that both the BS and MS

have the same number of Nz with the constraint Ny < Ngg < Ngs, Nys.

The transmitted signal vector m € CV8s*1 can be written as
m = FrpFpps, (3.1)

where s € CNs*1 denotes the transmitted symbol vector normalized by

E[ss?] = NLINS. (3.2)

The hybrid precoders are the combination of digital baseband precoder Fgg € CVRF>Ns
and analog RF precoder Fgg € CVBs*NRF in which normalized to satisfy the power

constraint as
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Figure 3.1: System model for hybrid analog/digital architecture in single-user
mmWave massive MIMO system.
|FreFagll7 = Ns. (3.3)

Hence the received signal vector r € C¥Ms*1 observed by the MS can be formulated
as

r = \/pHFggFgps + n, (3.4)
where p denotes the average received power, H € CNMs*Nes refers to the channel
matrix between the BS and the MS, and n € C¥Ms*? represents the noise vector. The
noise vector is expressed using two different models. In the first model, the noise
vector n is distributed using circularly symmetric complex Gaussian definition with
zero mean and covariance matrix o*lIy,, . in the form:

n~CN(0,0%Iy,,.), (3.5)

and in the second model, n is defined using the Gaussian mixture model that is

explained in the next subsection [8], [10], [11], [29], [57], [58].

At the receiver, the received signal r is decoded using the hybrid decoders, which
consist digital baseband decoder Wgg € CNRF*Ns and analog RF decoder Wgg €
CNms*NRrF Thus, the received signal after decoding operation can be expressed as
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y = /pWhHs WHrHFpeFps + WEE WEn, (3.6)
where the RF precoders and decoders are designed to perform only using phase shifters
and they can only manipulate the phase of the signals. Therefore, the magnitude of all
nonzero elements are equal and have unit modulus constraint shown as [10], [11], [29]

|(Frp)ire| = [(Wrp) i | = 1. (3.7)

3.1.1 Channel Model

Multipath models for lower frequency can be used to express mmWave channels [59];
however, the highly directional nature of propagation at mmWave makes the
beamspace representation more suitable [60]. Besides, mmWave channels have sparse
channel characteristics due to the high space path loss and limited scattering [61], [62].
Thus, in this thesis, Saleh-Valenzuela [63] clustered channel model is used to express
the representation of narrowband mmWave channels [64]-[66], and the channel matrix

H can be evaluated as

N¢j Nray

NgsN
BTN aus (4 61%) ans (01 0)"] (39

NclNray =1 =1

where N and N, represent the number of clusters and number of rays respectively,
a;; denotes the complex channel gain of the [th ray in the ith cluster. It is assumed that

the a;; has independent and identical (i.i.d) distribution that is given by

a;~CN(0,c?I), (3.9)
in which normalized by a factor
N¢
Z o2 = 6§ (3.10)
i=1

to ensure the channel power constraint

E[|IH||7] = NgsNus. (3.11)
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In addition, ays(¢}®, 04"°) and ags(¢h°, 67°) represent the antenna array response
vectors in the MS and BS, respectively, while the azimuth (elevation) angles of arrival
and departures are denoted as the coefficients ¢M°(8)°) and ¢55(05%). The array
geometry is assumed as a uniform square planar array and under this consideration,

the array response vector at the BS can be defined as

2 . . T
1 817”(1 (psin(¢55) sin(685)+qcos(625
) e

JNgs ej(JNBS—l)zTnd(sin(d)iBls) sin(955)+cos(955)) ’

ags(¢i°, 0;°) = (3.12)

where A and d represent the wavelength of the signal and the space between antenna

elements respectively, and p and q indicate the indices of the antennas such that, 0 <
p < /Ngs and 0 < q < \/Ngg. The array response vector at the MS ays(¢NS, o}
can be defined using the same definition [10], [11], [57], [58], [66].

3.2 Fuzzy Logic based Receiver for IN Mitigation

Figure 3.2 illustrates the simplified hybrid receiver architecture with a fuzzy median
filter to mitigate the IN in mmWave channels. In conventional mmWave hybrid
decoding systems, the ambient noise is assumed to be AWGN and the effect of the
noise is reduced using only the hybrid decoders as shown in Figure 3.1. However, for
the IN environment, the IN components should be suppressed before passing the
received signal through the decoder to avoid the enhancement of the IN level.
Therefore, a fuzzy median filter is designed and attached to the hybrid decoder to
minimize the effects of outlier amplitudes which is considered as IN. More information
about the fuzzy median filter and the detailed schematic of the fuzzy algorithm is given
in Chapter 5. Besides, the IN characteristics and the Gaussian mixture model based on
Middleton Class A noise to express the IN behavior are introduced in the next

subsection.
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Figure 3.2: Simplified hybrid receiver architecture with a fuzzy medlan filter for
single user mmWave massive MIMO system.

3.2.1 Impulsive Noise

In wireless communication, noise can affect the system in various ways depending on
the source. In general, Gaussian distribution has been used to model the noise at the
receiver of communication systems which is supported by the central limit theorem.
On the other hand, it is shown that the ambient noise in various physical channels may

have non-Gaussian behavior such as IN.

IN is made up of sudden sharp bursts which is a “on/off” sequence of random pulses
in the time domain. The main source of IN is considered man-made and nearby devices
often cause additive IN to the receivers. Since 5G technology requires an ultra-dense
cellular network and machine-to-machine communication is growing rapidly, the
receivers are expected to be affected by a mixed noise rather than the classical white
GN expressed in most research papers. In addition, atmospheric and solar static signals
caused by the sunspots and thunderstorms can also be represented by IN, and it is
expected to degrade the communication quality in mmWave bands [34], [35], [67],

[68].
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3.2.1.1 Gaussian Mixture Model based on Middleton Class A

The nonlinearity of the electromagnetic interference is expressed by D. Middleton,
considering the Gaussian component to represent the thermal noise at the receiver of
communication systems. To evaluate the canonical description of several non-
Gaussian behaviors in different environments, Middleton Class A, B, and C statistical
noise models are presented [69], [70]. Middleton Class A model has been widely used
in communication systems to represent the electromagnetic interference and the power

density function (pdf) of this model can be shown as

2
—x
Al 7

fa(x) = e X0, '\/ﬁemn, (3.13)

where A > 0 denotes the impulsive index, o2 > 0 represents the power of the noise
that can be derived as G + F)/(l + I'), such that I' > 0 is the ratio of the powers of

background Gaussian and non-Gaussian noise components [71], [72].

The Gaussian mixture model is a two-term model to illustrate the behavior of non-
Gaussian environments with the noise density function

f&) =QA=e)fe(x) +efi(x) (3.14)
where 0 < &€ < 1 denotes the mixture parameter, adjusting the occurrence probabilities
of the two zero-mean Gaussian distributed probability density functions, f;(x) and

f;(x), with different variance values [73], [74].

In this thesis, the behavior of IN is characterized using the Gaussian mixture model
given by (3.14), which is an approximation of Middleton Class A noise. The Gaussian
distributed noise components in the mixture are defined as f;(x)~N(0,02) and

fi(x)~N(0,kc?), where o2 and ko2 represent the variances of the mixture
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components in (3.14), with k > 1. Note that the variance of the IN depends on the
level of Signal to Impulsive Noise Ratio (SINR) [36], [55], [56], [75]. Consequently,
it is expected that the IN has severe impacts on mmWave channels and the mixture
model adapted in (3.14) will be more realistic to indicate the behavior of the noise
signal in the system [50].

3.3 Problem Formulation for Hybrid Precoding

The main goal of this thesis is to design the hybrid precoders, Frr and Fgg, and the
hybrid decoders, Wrr and Wgg, to maximize the achievable spectral efficiency. The
spectral efficiency R for the hybrid precoding system given in Figure 3.1 can be

derived as [8], [10], [11], [76]
R = log, det <IN5 + NﬂsRﬁlwé{BWﬁIFHFRFFBBFgBFgFHH(WRFWBB)), (3.15)

where R,, denotes the noise covariance matrix after decoding that can be defined as
R, = 0y Wiy Wz WrpWpg. (3.16)
Since optimizing the problem as a joint problem with hybrid precoder and decoder
together is too complex, the design of transmitter and receiver are handled separately
as proposed in [8]. To simplify the maximizing problem of the spectral efficiency, the
main problem is decoupled into two subproblems, and it is shown that the decoupled
solution performs almost identical with the performance of a fully digital
precoder/decoder that can be considered as the optimal solution. Both precoding and
decoding problems have similar constraints and can be derived using the same
mathematical expressions. Therefore, throughout this thesis, we will focus on the
precoder design and the same approach will be applied to the decoder [8], [10], [11],

[27].
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After some mathematical approximations shown in [8], the hybrid precoding problem
can be approached as an optimization problem and the problem is translated to design

Frr and Fgp that can be formulated as

ngFféBllFopt - FRFFBB”IZ:

SUbjeCt to ((FRF)i,l) € {aBs((piBlS, 955), for all i, l},
|FrpFggllF = Ns,

(3.17)

where F, is referred for the optimal fully digital precoder. It has been pointed out

that, minimizing the objective function (3.17) results to maximize the spectral

efficiency [8], [10], [77].

Furthermore, the optimal precoder F,,. and optimal decoder W,,  can be
approximated from the singular value decomposition of the channel matrix
H = UY VX, (3.18)
By considering, there are no hardware limitations and all the streams have equal
power allocations, the first Ny columns of U and V maximize the data rates which are
related with the highest singular values in ;. Thus, the optimal precoder F,,; and
optimal decoder W, can be obtained by the first Ny columns of the V and U,
respectively [8], [11]. Hence, F,, € CVes*Ns  and W, € CVMs*Ns can be
approximated as [77], [78]
Fopt 2 V(, 1: Ng) and Wy, 2 U(:, 1: Ny), (3.19)
which also satisfy the following constraints similar to (3.17)
[Fopel|”: = Ny and [[Wope||” = N (3.20)

Besides, optimal precoders and decoders have a semi-unitary structure that can be

justified as [11]
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Fi Fope = Iy, and W, W, = Iy (3.21)
In this thesis, we propose a low complexity alternating minimization algorithm to solve
the objective function (3.17). It is aimed to maximize the spectral efficiency and
achieve a near-optimal performance that is close to a fully digital precoder which is

defined as F, . The problem will be considered as a matrix factorization problem with

matrix variables Frr and Fgg, and alternating minimization will be applied to this
problem. Many researchers get attention to alternating minimization since this method
can be applied for several optimization problems and achieves a near-optimal

performance with different subsets of variables [79]-[83].

In [9] and [10], several alternating minimization algorithms for hybrid precoding
problem are investigated and the results are very promising. Therefore, our research
mainly focuses on solving the (3.17) using an alternating minimization method to
achieve low computational cost with a very close spectral efficiency performance
compared with the competing methods in the literature. The proposed method based
on Riemannian BB is discussed in Chapter 4, and since jointly optimizing the hybrid
precoders Fgrp and Fgg is heavily complex, the problem is decoupled into two
subproblems. Two matrices are optimized alternately while fixing the other, and this

will be the main idea throughout this thesis.
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Chapter 4

PROPOSED BARZILAI-BORWEIN ALGORITHM FOR

HYBRID PRECODING

The work presented in this chapter is inspired by the alternating minimization methods
to solve the hybrid precoding problem given in (3.17). In the first stage, the digital
precoder Fgg is solved using a direct least square approach by fixing the analog
precoder Fgg and in the second stage, analog precoder Fgrg is calculated using
optimization techniques by fixing Fgg. To find a nearly optimal solution for Fgg,
several gradient algorithms are investigated, and it is discovered that the BB gradient
algorithm [12] can be applied to reduce the computational cost of the well-known CG

algorithm.

In this chapter, first brief information about the gradient algorithms and conjugate
gradient algorithm are given. After that, the conventional Euclidian BB [12] gradient
algorithm is discussed, and to ensure the global convergence, Riemannian BB [14]
algorithm is presented. Finally, the two-staged proposed alternating minimization
algorithm for the hybrid precoder design is illustrated and the complexity of the

proposed algorithm is analyzed.
4.1 Gradient Algorithms

This section summarizes the gradient algorithms to solve the analog precoder problem

of the alternating minimization algorithm for hybrid precoder design. Several
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algorithms are developed and their performances are compared to give us a direction
to built our proposed algorithm. Consider a system of linear equations

Ax = b, 4.1)
where A € C™™ is a positive definite complex symmetric matrix, vector b € C", and
x denotes the solution that we want to achieve. Thus, the problem given in (4.1) is the

same as solving the unconstrainted optimization problem [84]

where f(x) can be written as
f(x) = %XTAX —xTb. (4.3)
The f(x) is convex and the gradient of the cost function can be expressed as
Vf(x) = Ax — b. (4.4)

We will investigate the gradient algorithms to solve (4.2) in the following subsections.
First, Gradient Descent (GD) and Steepest Descent (SD) algorithms are evaluated.
However, these algorithms converge very slow and have high computational
complexity for real-time implementation of hybrid precoder design. Besides, these
algorithms have no global convergence guarantee and it is highly possible to get stuck
in a local minimum while searching for a solution set. This leads us to find a better
algorithm and we found out that the CG algorithm can serve better for our needs.
Research findings prove that the CG has a higher convergence speed when compared
with the competing gradient algorithms. However, the CG algorithm is still highly
complex for practical use since it requires finding the search direction for every
iteration. Therefore, the BB gradient algorithm is examined in the next section to

reduce the computational cost of the well-known CG algorithm.
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4.1.1 Gradient Descent Method
In the GD method, a negative gradient is selected as the search direction and the
approximate minimizer is updated iteratively by the following equation
Xiv1 = X; — Qi 8i, (4.5)
where «; represents the step size, and g; denotes the gradient of the cost function
8 = Vi(xy), (4.6)
The negative gradient is used to move toward the local minimum that is stated as
fxi41) < f(xy). (4.7)
Besides, the step size «; is selected in every iteration using a backtracking line search
[85]. In the backtracking line search, the «; starts with unit step size and then will be
reduced by a factor 0.5 until it satisfies the following Armijo-Goldstein condition
f(x; — a;g;) < f(x;) — 7a; VE(x;)"g;, (4.8)
where t is chosen as 0.5 [84]-[87]. The summary for the GD method is given in

Algorithm 1 [85] and n represents the termination criterion in all the algorithms.

Algorithm 1 Gradient Descent Method
Input: A,bandx, =b

1. Seti = 0, and calculate g, = Vf(x,)

2. while ||g; 2>

3. Using the backtracking line search to find the step size «; satisfying (4.8).
4. Update the solution x; ., = X; — @;8;.

5. Calculate the gradient g;,; = Vf(X;41).

6.i=i+1

7.end
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4.1.2 Steepest Descent Method

Although the GD method is a straightforward algorithm, the convergence rate is not
good enough. Therefore, the SD method with an exact line search can be used to solve
(4.2) to speed up the convergence rate. Since this is also a gradient method, the same
approximate minimizer as shown in (4.5) is used in this algorithm. The step size «;

can be chosen using an exact line search as

o — BB
‘ glAg

(4.9)

The SD method is summarized in Algorithm 2 [84], and a slight improvement in the

convergence speed is observed compared to GD.

Algorithm 2 Steepest Descent Method
Input: A,bandx, =b

1. Seti = 0, and calculate g, = Vf(x,)
2. while ||g;|l.>n

gl 8

gl Ag;’

3. Find the step size using an exact line search as a; =

4. Update the solution x;,; = X; — a;8;.
5. Calculate the gradient g;,; = Vf(X;41).
6.i=i+1

7. end

In both Algorithm 1 and Algorithm 2, the matrix A should be extremely well-
conditioned to have a reasonable convergence rate and to ensure global convergence.
However, these algorithms are not preferable for practical use due to the slow
convergence and there is a probability of converging into a local minimum rather than

the global minimum [84], [85]. Thus, CG as a more sophisticated method is
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investigated and it is proven that the convergence rate is much better than the other
two gradient algorithms and it is known as global convergent [84], [86], [87].
4.1.3 Conjugate Gradient Method
The CG is a very efficient method since it requires much fewer iterations than the other
descent algorithms to converge a critical point that can be considered the global
minimum. In this section, the CG algorithm developed by Hestenes and Stieffel [88]
is discussed to solve the optimization problem given in (4.2). The method starts with
an initialization phase to compute the residual ry, and direction vector p, which can
be obtained by the formula

pPo = Iy = b — Ax,,. (4.10)
Then, the direction vector can be computed as

Pi+1 = Tis1 + 6;Ps, (4.11)
where

T
Iiy1=1I; — al-Apl- and 6i = % (412)

Besides, the step size a; is given by

T
| 3 ¥
a; = : (4.13)
‘' plAp;
Finally, the approximate solution can be estimated as
Xi+1 = X; + a;p;. (4.14)

It should be noted that the residuals are mutually orthogonal and direction vectors are
mutually conjugate, such that

(r,rj) =0and (p;,Ap; ) = 0 fori # j. (4.15)
The summary of the CG is given in Algorithm 3 [84] and the computational cost of

this algorithm will be presented in section 4.4.
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Algorithm 3 Conjugate Gradient Method
Input: A,bandx, =b

1.p0=l'0=b—AX0

2. while |Ir;|1,>n

T

3. Determine the step size a; = .
p; Ap;

T
4. Compute the residual r;,; = r; — a;Ap; and then the coefficient §; = rl“Tﬁ

rr;
5. Compute the direction vector p; ;1 = riz1 + 6;p;.

6. Update the solution x;,; = X; + a;p;.

l.i=i+1

8. end

The CG method is a very efficient and robust tool to solve the optimization problem
defined in (4.2). However, it is still highly complex for practical implementation due
to the computation of search direction for each iteration. Therefore, the conventional
Euclidain BB gradient algorithm presented in [12] is investigated to reduce the
computational cost. Research findings state that the conventional BB algorithm is not
global convergent and the global convergence of the BB algorithm is proved for the
Riemannian optimization on the special case of Stiefel manifolds [89]. The authors in
[14] proposed a BB algorithm defined over RM and this algorithm can be used to solve
the optimization problem of analog precoder by ensuring the global convergence while

reducing the complexity of CG.

In the next section, the conventional Euclidean BB gradient algorithm is discussed to
have a general understanding of the BB gradient method and then the Riemannian BB

method is illustrated to solve the analog part of the alternating minimization problem.
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4.2 Euclidean Barzilai-Borwein Gradient Algorithm

From the above discussions, it is known that the GD and SD methods have poor
performance, slow convergence and conditioning plays an important role in their
performance. Besides, CG performs almost perfectly with the help of a good
convergence rate, but also this method is still highly complex and it is required to
reduce the computation cost of the CG algorithm. In this regard, Barzilai and Borwein
[12] developed a two-step size gradient method which is known as the BB gradient

method and in this thesis, we called this method the Euclidean BB method.

Euclidean BB method is also a gradient method and aims to solve the problem in (4.2)
considering the quadratic function (4.3). Therefore, the approximate minimizer has the
same form as the GD as shown in (4.5) and the gradient of the cost function can be

denoted as g;, same as (4.6).

In this method, the step size a; is approximated using the secant equation in quasi-
Newton methods. The Hessian approximation of f at x; is denoted as the matrix
D; = a ', (4.16)
to satisfy the quasi-Newton property, such that
min||D;4s; — yill. (4.17)

Hence, the step size «; is chosen as

(4.18)

Aiv1 = 7

The «; is derived from the information obtained at the points x; and x;,, and thus,
the s; and y; can be expressed as [12], [13], [90]-[92]

Si = Xjp —X;andy; = giy1 — 8- (4.19)
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Based on the above descriptions, the Euclidian BB algorithm can be summarized as

shown in Algorithm 4 [12].

As it can be seen in Algorithm 4, there are no matrix calculations in the BB method,
and the line search is only required for the initial condition i = 0. Since there is no
need to find search directions for every iteration like the other gradient methods, this
reduces the computational cost and greatly speeds up the convergence speed of the
algorithm [13], [91]. However, there is no guarantee for the global convergence of the
Euclidian BB method and there is a possibility to converge into a local minimum point.
Therefore, the researchers in [14] have adapted a RM optimization to the problem, and
the BB method's global convergence is ensured. In the next section, the background
information about the Riemannian BB method will be given and the analog precoder
part of the proposed alternating minimization algorithm will be optimized based on

this adaptation.

Algorithm 4 Euclidian Barzilai-Borwein Gradient Method
Input: A,bandx, =b

1. Set i =0, and calculate g, = Vf(x,) and find the step size a, by Armijo
backtracking line search that satisfies (4.8).

2. while [|g; 2>

3. Update the solution x;,; = x; — a;8;.
4. Calculate g; .1 = Vf(X;11).

5. Calculate s; and y; using (4.19)

6. Set a;,, using (4.18)

7T.i=i+1

8. end
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4.3 Riemannian Barzilai-Borwein Algorithm

Globally convergent BB methods are taking attention from the researchers to solve the
optimization problem in (4.2), which is defined in Euclidian space. Euclidean BB
algorithms are mostly preferred for their simplicity and low computational cost for
each iteration. Besides, the performance of the practical implementation is nearly
optimal for a good choice of step size [14], [91], [93]. However, the global
convergence of the BB methods for different setups has always been a problem for

researchers.

The authors in [94] proved the global convergence of the BB method for strictly
convex quadratic functions, on the other hand, the property is not guaranteed for the
nonquadratic case if there is no globalization strategy [95]. Since the cost function has
a nonmonotone behavior due to the BB steps, the decrease condition for the cost
function is generally not efficient at each step and the strategy becomes to set the cost
functions to repeat maximum N steps. Research findings state that the convergence
rate of the BB method does not change for large N values, which will make the BB

method a good candidate to compete with CG [95], [96].

To generalize the global convergence of the BB method defined in the Euclidian space,
a more general setting is considered in [14] and RM optimization is adapted to the
problem. Thus, the cost function is defined over the RM M/ in which x € M/ and
the optimization problem can be stated as

min f(x)

e M (4.20)

In numerical optimization, iterative algorithms aim to compute a descent direction

using the negative gradient of the objective function f(x) for a given point x and move
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in the direction of the negative gradient until found a moderate decrease in f. In
manifold optimization, the concept of moving along a tangent vector without leaving
the manifold is called retraction and retraction can be used to map a vector from the
tangent space to the manifold [32]. Therefore, the approximate minimizer on the
manifold is modified as

X;+1 = Retry,(—a;8;), (4.21)
where Retr denotes the retraction on M/ and can be defined as [10]

(x; — a;8;)

4.22
|x; — a;g;l |’ ( )

Retry (—a;g;) = vec

where vec( .) represents the vectorization. Besides, the vectors s; and y; are modified
for the adaptation of the RM. The increment x;,, — X; is updated as
T = —a;8i (4.23)
that belongs to the tangent space Ty, M¢¢ and it is transported to Ty, M/7 [14]. The
vectors s; and y; require the operations from different tangent spaces which can be
handled by mapping two tangent vectors from different tangent spaces. In this regard,
the transport of gradient from x; to x;,; can be stated as [10]
Ty ox;,, (8) = 8i — Re{g; o X[\ } o x4, (4.24)
and the modified s; can be specified as
s; = Ty, () = Tyxox,,, (—ai8)) = —a;Tx o, , (80)- (4.25)
Then y; is computed by subtracting two gradients from two different tangent spaces

and the updated equation can be written as
Vi = Bivt — Ty (8 = Biva + L T, (1. (4.26)
Finally, the step size for the Riemannian BB method is chosen as [14]

(sil si)XH_l

. 4.27
(Si' Yi>xi+1 ( )

diy1 =
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Based on the above descriptions, the summary for the Riemannian BB algorithm to
solve the analog precoding problem is given in Algorithm 5 [14]. Brief information
about the matrix manifolds can be found in Chapter 2, and more details about the

manifold optimization can be found in [32].

This section summarizes the Riemannian BB method that will be used to solve the
second stage of the proposed alternating minimization algorithm. In the second
stage, Fgr Will be optimized using Algorithm 5 and the following section will
introduce the proposed two-staged alternating minimization method to solve the

objective function (3.17).

Algorithm 5 Riemannian Barzilai-Borwein Gradient Method [14]
FBB and Xp € Mgg

Input: Fyp,

1. Set i = 0, and calculate g, = grad f(x,) and find the step size a, by Armijo
backtracking line search that satisfies (4.8).

2. while ||g;l2>n

3. Calculate x;,; = Retry,(—a;g;) and g;,; = grad f(x;,1) using (2.9).
4. Calculate s; and y; using (4.25) and (4.26), respectively.

5. Set a;,4 using (4.27)

6.i=i+1

7. end

4.4 Proposed Alternating Minizimiation Algorithm

The proposed algorithm is made up of two stages to solve (3.17), where digital
precoder Fgg and analog precoder Fgrp are alternately achieved with the principle of
alternating minimization by fixing the other. Digital precoder Fgg is obtained with a
direct least square approach, while the Riemannian BB algorithm is used to optimize

the analog precoder Fgg.

41



4.4.1 Digital Baseband Precoder Design
In the first stage, the digital precoder Fgg is obtained with a fixed analog precoder Fgg.

Hence, the problem (3.17) for the Fgg design can be rewritten as
. 2
I;}algl”Fopt - FRFFBB”F' (428)
This equation can be solved by using a well-known least square solution as
Fgg = FpFgg, (4.29)

where the term F; denotes the pseudo-inverse of the analog precoder that can be

expressed as [10]
Fip = (F&rFrr) " FREFopt. (4.30)

4.4.2 Analog Precoder Design based on Riemannian BB Method

In the second stage, analog precoder Frr can be optimized similarly with a fixed
Fgg considering the unit modulus constraint |(FRF)i_k| = 1. Thus, the analog precoder

can be optimized using the following problem
. 2
min||Fop. — FreFas||, (4.31)
RF

where Algorithm 5 is applied to the problem to find a nearly optimal solution of the

Fgrr. In the algorithm, the desired solution vector x is denoted as [10], [11]
x = vec(Frp). (4.32)
Besides, the Euclidian gradient of the cost function in (4.31) can be derived as
Vi(x) = -2(Fis®Iy,, ) [vec(Fopt) — (FEs®1Iy,¢ )X, (4.33)

where ® denotes the Kronecker product which is used to vectorize the second term of

(4.31), vec(xFgp) [97].
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4.4.3 Two-Staged Hyrbid Precoder Design
The proposed alternating minimization algorithm is developed with the help of the

above descriptions, and the Riemannian BB method shown in Algorithm 5. Hybrid
precoder is designed to solve the problems (4.28) and (4.31) in two stages iteratively.
The digital precoder Fgg is normalized at the end of the algorithm to satisfy the power

constraint of (3.17) and the normalization can be shown as

VNs (4.34)

F=—Y" g
BB | FreFagllr o

The proposed alternating minimization algorithm based on the Riemannian BB

method is shown in Algorithm 6.

Algorithm 6 Riemannian BB Based Alternating Minimization Algorithm for
Hybrid Precoding

Input: Fyp,

1. Set i = 0, and initialize Fyp(0) with random phases.

2. while (termination criterion > n)

3. Calculate Fgg (i) = Fip(i)Fgg (i) for a fixed Fgp(i).

4. For a fixed Fpp(i), optimize Frp(i + 1) by using Algorithm 5.
S.i=i+1

6. end

7. Normalize the digital baseband precoder at the transmitter end as shown in (4.34).

To avoid the increase in each iteration, the objective function (3.17) is minimized at
Step 3 and Step 4, and it is known that the objective functions are non-negative.
Therefore, the proposed algorithm is guaranteed to converge in a critical point to solve
the hybrid precoding problem [10]. The complexity of the proposed algorithm is
analyzed in the next subsection and the simulation results in Chapter 6 demonstrate
that the proposed algorithm achieves nearly optimal performance with a less

computational cost compared with the CG-based algorithm given in [10].
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4.4.4 Complexity Analysis

In this section, the complexity of the proposed algorithm is analyzed and compared
with the other alternating minimization algorithms. The number of operations required
to compute the hybrid precoders (or decoders) for the proposed alternating
minimization algorithm based on Riemannian BB and the competing methods are
illustrated in Table 4.1. For a given number of transmitter (or receiver) antennas, RF
chains, and transmitted symbols, Table 4.1 displays the computational cost of the
proposed algorithm and competing methods. Since the complexity provided by the
number of additions and subtractions has minor effects, the computations are focused
on the number of multiplications and divisions (no. of mult. & div.). As it can be
observed, Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [86], [98] has the
highest complexity with O(Ngs®Ngg®) and it cannot be applied for practical use. As
previously stated, the OPP algorithm has the lowest computational complexity given

by O(NgsNggNg). Although both CG and BB methods have the same complexity

O(NBSNRFZNS), simulation results in Chapter 6 demonstrate that the computational

Table 4.1: Computational Cost of the Proposed and Competing Methods

Number of Multiplications & Divisions

1
BB Ngp <4NBS(NRFNS +Ng+ 1)+ 3 (Ngp® + 3Ngp — 1))
BFGS Ngs(2Ngs*Ngg” + T/BSNRF + 2NggNs + 2Ngg + 3Ns + 3)
RF + 5 (Nrs” + 3Ngs — 1)
1
CG Ngp <4NBS(NRFNS + Ngg + Ny +4) + 3 (Ngp® + 3Ngp — 1))
OPP Ngr(2NgsNg + NgpNg + 2Ngg” + N2)
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cost of BB is much less than CG. The dominant terms to approximate the time
complexities of different algorithms are chosen considering the fact that Ngg > Ngp

and Ngs > Ng in the hybrid precoding system.
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Chapter 5

PROPOSED ADAPTIVE FUZZY LOGIC-BASED

FILTER

In mmWave systems, the noise is generally modeled using the GN model. On the other
hand, research findings state that the ambient noise may act non-Gaussian in many
physical channels, and the Gaussian mixture model with additive IN as shown in (3.14)
is @ more realistic approach to express the noise in mmWave channels. Furthermore,
although the effects of GN can be reduced by applying the hybrid decoders to the
received signal, the IN component should be removed before passing the signal
through the decoders. Therefore, in this thesis, a fuzzy logic-based filter is proposed

to mitigate the effects of IN and the filter design is introduced in this chapter.
5.1 Receiver Model for Impulsive Noise Environment

The receiver model for the IN environment is shown before in Figure 3.2, where the
proposed adaptive fuzzy median filter is added to the hybrid decoder to minimize the
effects of the outlier amplitudes. The outlier amplitudes can be considered as the IN
and it is aimed to minimize the effects of IN by ordering the samples based on the
fuzzy rank. The filter alone is working very well for the IN environment. However, it
is observed that the filter is suppressing the information while reducing the effects of
the noise for the GN environment. Thus, a novel threshold mechanism is adapted to
the design to detect the received packages with IN. A modified Z-score as suggested

in [99] is applied to the received signal to detect the outlier amplitudes and it is
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Figure 5.1: Block diagram of the fuzzy median filter at the receiver.

observed that the proposed decoder with the filter that selects a proper threshold is
suitable for GN and IN environments. The proposed fuzzy median filter design with
the threshold mechanism is explained in the next subsection.

5.1.1 Fuzzy Median Filter Design

The fuzzy median filter is added in front of the receiver and the received signal r =
[r(1),7(2),...,r(Nys)] denoted in (3.4) is passed through the filter to reduce the
effects of the IN. It should be noted that the noise term of the r is represented as the
Gaussian mixture model as shown in (3.14). Thus, the block diagram of the proposed
fuzzy median filter with the threshold mechanism is shown in Figure 5.1 and the
effects of the outlier amplitudes are minimized, which will lead to suppressing IN

components.

The filtering process starts with the threshold mechanism to detect the received

packages with IN and the details about the threshold mechanism will be explained in
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the following subsection. The outlier amplitudes will be detected by the threshold and
the signals with the IN components will pass through the fuzzy median filter. Firstly,
the received signal is divided into real and imaginary parts, and then the statistical
measures of both parts of the received signal are computed as
medR = med(|Re{r}|), med’ = med(|Im{r}|) (5.1)
std® = std(|Re{r}|), std’ = std(|]Im{r}|), (5.2)
where the median of the real and imaginary parts of the r is denoted as med® and
med!, respectively, and the standard deviation of the real and imaginary parts of the r
is represented as std® and std’, respectively. The real and imaginary parts of the r (k)
and the statistic components are then used in the fuzzifier to calculate the Gaussian
membership degrees. Thus, the fuzzifier for real and imaginary parts can be derived

separately as

2
—|IRe{r(k)}|-med®
FR(k) = exp( | T | ) (5.3)
; —‘llm{r(k)}|—medl|2
F'(k) = exp Sl , (5.4)

where FR(k) and F'(k) denote the real and imaginary parts of the fuzzifier which give
the membership degrees of the received signals r(k) by checking their distances with
the median. The fuzzifiers are distributed between 0 and 1 based on the membership
degrees of r(k) and then they are applied to the received signal elementwise to order
each received signal based on the fuzzy rank. Hence, the elements of the received
vectors after applying the fuzzy filter can be shown as

rR(k) = Re{r(k)} o FR(k) (5.5)

ri(k) = Im{r(k)} o F!(k), (5.6)
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where R (k) and r!(k) represent the elements of the real and imaginary parts of the
fuzzy median filter output, respectively [54]-[56], [100]. Finally, v (k) and (k) are

combined in the last stage as
rf(k) = rR(k) + jri(k), (5.7)

where rf (k) denotes the output of the fuzzy median filter that can be shown in the

vector form as
rf = [rF(1),rF(2),...,7F (Nys)]. (5.8)

After passing the received signal vector through the fuzzy median filter, the output of
the filter is fed into the hybrid decoders, Wgrr and Wgg, to obtain the vector y as shown
in (3.6).

5.1.2 Threshold Mechanism to Detect Outlier Amplitudes

A threshold mechanism is designed to detect the outlier amplitudes considered as the
IN, and the fuzzy filter is only applied to the received signals with IN samples. The
optimal threshold value is selected to enable the proposed filter to perform adaptively
in both GN and IN environments. Thus, the Z-score method and the modified Z-score
are tested to detect outlier amplitudes in mmWave systems. It is observed that the
performance of the simple Z score is poor and the modified Z score can detect the
outlier amplitudes with very high precision. In this section, both methods are
introduced and the proposed threshold mechanism based on the modified Z-score is
given.

5.1.2.1 Z-Score Method to detect Outlier Amplitudes

The Z-Score method is a well-known and commonly used method to detect outlier
amplitudes. In this method, the fundamental property of the normal distribution is

used, such that if the distribution of r is N(u, 62), then the vector z = (r — u)/o can
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be distributed as N(0,1). Thus, the Z-score for each received signal (k) can be
expressed as

20k) = (r(k) — rsnean(r)) (5.9)

where the denominator coefficient s can be considered as the standard deviation of r

that is denoted as

_ jZfo(r(k) ~ mean(r))? 510

The amplitudes will be labeled as outliers if the absolute value of Z (k) is greater than
3 [99]. Although this method is very simple to implement, the performance is poor in
detecting the outliers for small data sets. Besides, this method only uses the mean and
standard deviation as estimators, which can be affected by a few outliers (even one
outlier). Therefore, alternative Z-score methods are developed to ensure resistant
estimators, and the modified Z-score with better estimators is proposed to identify
outlier amplitudes [99].

5.1.2.2 Modified Z-Score to Detect Outlier Amplitudes

To detect the outliers with high precision, the estimators should be selected carefully
and they need to be stable for minor changes in the samples. This kind of estimator has
a high breakdown point. The breakdown point of an estimator is the largest set of
samples that can be substituted with the random values by not causing an infinite
estimated value. Since the mean and standard deviation have high breakdown points,
they are replaced with the median and Median Absolute Deviation (MAD),
respectively [99]. Thus, the modified Z-score to detect IN samples is given by

0.6745(r(k) — med(r))
MAD '

M(k) = (5.11)

where MAD can be calculated as
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Nms

MAD = i |r(k) — med(r)]. (5.12)
Nus &

1
In this method, the constant 0.6745 is used in (5.11) since E[MAD] = 0.6745¢, and the
potential outlier amplitudes can be detected when the absolute value of M (k) is higher

than 3.5 [99].

This method is still not too complex and performs very accurately to label the outlier
amplitudes. Based on the study in [99], the optimal threshold is selected as 3.5 and the
samples are considered as IN for |M (k)| > 3.5. Simulation results demonstrate that
the optimal threshold is selected properly, and the proposed fuzzy median filter with
threshold mechanism mitigates the IN better than the competing methods in both IN

and GN environments.
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Chapter 6

SIMULATION RESULTS

In this chapter, the performance of the proposed Riemannian BB-based algorithm is
evaluated with different aspects and compared with the existing algorithms. Besides,
numerical simulation results of the proposed decoder with the fuzzy median filter are

demonstrated for different scenarios in IN environment.

Throughout the simulations, channel parameters in (3.8) are selected as N, = 5
clusters, and Ny,, = 10 rays and it is assumed that the perfect channel information is
known. The arrival and departure angles are distributed randomly which follows the
uniform distribution in [0, 27t] and the angular spread is set as 10. Furthermore, each
cluster is organized to have unit average power as af,i =1, and the SNR in the receiver
side is defined as SNR = p/g2. The system is assumed to operate at 28 GHz carrier
frequency with a bandwidth of 100 MHz, and all the simulation results are executed
in MATLAB 2018b while each simulation point is averaged over 1000 independent
realizations. The antenna elements are placed with a half wavelength distance and the
number of BS antennas and MS antennas is assumed to be Ngs = 144 and Ny = 36,
respectively. Besides, the phases of the analog precoder Fgg is initialized to follow a

uniform distribution in [0, 27] for the alternating minimization algorithms.
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6.1 Simulation Results for GN Environment

In this section, simulations are performed to find out the spectral efficiency, BER,
coverage probability, and no. of mult. & div. of the proposed Riemannain BB method

under GN defined in (3.5) together with the competing methods.

Firstly, the spectral efficiency performance is evaluated using (3.15) for various SNR
values, where the number of transmitted symbols and RF chains are chosen as Ny =
Ngrr = 3. Based on that assumption, Figure 6.1 illustrates the spectral efficiency versus
SNR under GN for the proposed Riemannian BB method and the competing methods.
It can be seen that the spectral efficiency performances of the CG, BFGS, OPP, GP
[101], and the proposed BB algorithms are almost identical. On the other hand, the
Penalty Function (PF) and Sequential Quadratic Programming (SQP) [86] algorithms
have poorer performance, and there is a gap between the rest of the algorithms. It
should be also noted that the Optimal Precoder (OP) is serving as a benchmark that
represents the performance of the fully digital precoding, and all the algorithms except
PF and SQP are performing very close to the optimal scenario. In addition, Figure 6.2
demonstrates the spectral efficiency performance of the proposed and competing
methods with respect to the different number of RF chains. In this figure, the number
of transmitted symbols and SNR value are set to be N; = 6 and SNR = 0, respectively.
The GP algorithm is not included since the authors in [101] simulate their results for
the settings presented in Figure 6.1. Here, although the CG, BFGS, OPP, and the
proposed BB method have a very close spectral efficiency performance for the equal
case scenario of the number of transmitted symbols and RF chains, Ny = Ngg, the

performance of the OPP algorithm is not improving like the other algorithms while
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increasing the number of RF chains. It is observed that the performance of the CG,
BFGS, and the proposed BB algorithm is approaching the performance of the OP when

the difference between the Ngg and Ng is increased, and based on this result, we can
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claim that the performances of these algorithms are same as the OP for Nggp = 2N;.
Moreover, PF and SQP algorithms still have poor performances, and it is shown that

these algorithms perform better than the OPP algorithm for N > 10.

Since BFGS is too complex for practical implementation and PF and SQP methods
performing very poorly compared to the other algorithms, these algorithms are not
included in the rest of the figures. To have a better understanding of the performances
of the competing methods, additional performance parameters such as BER, coverage
probability, and no. of mult. & div. are evaluated. In this regard, Figure 6.3 plots the
coverage probability defined as P(R > Th) for SNR =0, Ng = 4, and Nxg = 5, where
R denotes the achievable rate and Th represents the arbitrary threshold value. It can be
seen that the coverage probability of the proposed BB method is almost identical with
the CG with a close performance to OP, while OPP achieves slightly poorer
performance. Besides, Figure 6.4 shows the BER performance of the BB method with
the competing methods for various SNR values. The same setup is used as the Figure
6.3 and it is observed that the CG method is performing better than the other alternating
minimization methods with the lowest BER. Additionally, the proposed BB method

has a close performance to CG and achieves nearly optimal performance.

Figure 6.5 depicts the spectral efficiency performance for different numbers of
transmitter and receiver antennas. In Figure 6.5 (a), the number of MS antennas is
fixed to be 36, and the same setup is used as Figure 6.3 and Figure 6.4. It is shown that
the spectral efficiency performance of all the algorithms is improving, while the
transmitter antennas are increasing. Furthermore, Figure 6.5 (b) has the same setup

except for the number of BS antennas which is fixed to be 144, and it is observed that
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the spectral efficiency is also increasing for the higher number of receiver antennas.

Both figures show that the BB and CG methods have equivalent performance, but OPP

has a lower performance. Based on the outcomes from Figure 6.5, it can be said that
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the implementation of massive MIMO systems can improve spectral efficiency
performance, and increasing the antennas has a direct effect on the performance. Also,
it can be seen that the OPP algorithm only achieves a close performance to the other
algorithms and the OP for the equal number of transmitted symbols and RF chains.
Therefore, the OPP method has an unrealistic restriction for the real-time practical
implementation, and we focus on the CG and BB algorithms to find the optimal

solution for hybrid precoding problem in terms of complexity.

Figure 6.6 displays the no. of mult. & div. required for the proposed BB algorithm and
the competing CG method for several Ngg, and Nig in which the numerical results are
calculated with the help of Table 4.1. Both methods are simulated considering that the
number of MS antennas are assumed to be Nys = 36, and the number of transmitted
symbols is selected as Ng = 4. In this regard, Figure 6.6 (a) plots the no. of mult. &
div. versus the Ngg for Ngg =5, and Figure 6.6 (b) plots no. of mult. & div. versus the
Ngp for Ngg = 144. It is remarked that to provide the almost same performance with
CG, the proposed BB method requires less computational cost. Besides, the
computational gap between the two algorithms is increasing for the higher number of
Ngs and Nyg. For a better understanding of the dramatic difference between the two
algorithms, the improvement of the no. of. mult. & div. of the proposed BB algorithm
over the CG under several scenarios, and the numerical representation of the no. of.
mult. & div. for both algorithms are illustrated in Table 6.1 and Table 6.2, respectively.
It is indicated that the improvement in the computational cost is constant for the
different number of BS antennas, while it is slightly decreasing for the higher number

of RF chains.
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Table 6.1: Improvement of Computational Cost of BB over CG

Ngg  Ngg Improvement (%)° Ngg  Ngp Improvement (%)’
121 24.22 4 24.98
> 144 24.22 1446 23.66
169 24.22 8 22.89

Table 6.2: Numerical Representation of the Computational Costs

7.207 7.502 9.511 6.190
x 10% x 108 x 10* x 10°

no. of mult. & div.(CG)— no. of mult. & div.(BB)
no. of mult. & div.(CG)

No. of Mult. & Div.

X 100.

* Improvement =

6.2 Simulation Results for IN Environment

In this section, the numerical simulation results of the proposed decoder with the fuzzy
median filter to mitigate IN under different scenarios are demonstrated, and the results
are compared with the methods proposed in [50]. BER and the spectral efficiency
performances of the system are calculated under the IN using the Gaussian mixture
noise model expressed in (3.14), where the proposed BB algorithm is applied to solve
the hybrid precoders and decoders. It is assumed that the Ny = 1 symbol with 256
packets are transmitted through Ngxg = 6 RF chains, and the transmitted signal is

modulated using 16-QAM, besides, the SINR is set to be -10 dB.

Figure 6.7 shows the BER performance of the system with a fuzzy median filter for

different SNR values in the Gaussian channel (¢ = 0). It is observed that the
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performance of the system is very poor when there is no threshold used in the filter
and the system without the fuzzy filter is served as a benchmark. Thus, a threshold
mechanism is developed as suggested in Chapter 5 and applied together with the fuzzy
median filter to identify the IN samples. In Figure 6.8, the BER performance of the
system with fuzzy median filter is tested for different threshold values at 6 dB and 20
dB SNR values to select the optimal threshold. To achieve a maximum gain in GN and
minimum loss in IN with € = 0.02, the threshold can be chosen between 2 and 4.
Therefore, we have decided to choose the optimal threshold as 3.5 considering the
theoretical proofs given in [99]. After threshold implementation, the fuzzy median

filter performs almost the same as the benchmark as illustrated in Figure 6.7.

Figure 6.9 demonstrates the SNR versus BER of the system with different IN
mitigation filters in IN channel for e = 0.02 and € = 0.04. It is indicated that the fuzzy
median filter with an optimal threshold performs much better than the blanking and
clipping filters for both IN channels. Besides, the clipping filter achieves the worst
performance among the competing methods, and the system without any IN filter has
a very deficient performance. Furthermore, the BER performance of the competing
filters in IN channel for various epsilon (€) values are investigated. In this regard, BER
versus epsilon at SNR values 5 dB, 10 dB, and 20 dB are presented in Figure 6.10. The
results show that the proposed fuzzy median filter has the best performance for each
epsilon and SNR value while the gap with the competing methods is increasing for

low epsilon values at 20 dB.

The main aim of this thesis is to maximize the spectral efficiency of the mmWave

hybrid massive MIMO system. Hence, the spectral efficiency of the proposed fuzzy
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median filter with hybrid precoding based on the Riemannian BB algorithm is

evaluated using (3.15) and compared with the competing IN filters. Figure 6.11 plots
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the spectral efficiency performance of the system with fuzzy median filter in the
receiver for various SNR values under IN, where € = 0.02 and € = 0.04, and the
simulation results are compared with the competing algorithms. It is shown that the
spectral efficiency results are parallel to the previous BER results in which the
proposed fuzzy median filter achieves a better performance than the competing
methods, and the performance is improved enormously compared with the system

without any IN filter implementation.

The simulation results clearly show that the fuzzy median filter with the optimal
threshold successfully reduces the IN effects and achieves a better BER and spectral
efficiency than the existing algorithms. It is also observed that the IN samples distort
the received signal extremely and should be suppressed before passing through the

hybrid decoders with the help of IN filters. Additionally, outlier amplitudes are
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detected using the optimal threshold and this allows the system to work in both GN

and IN environments.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This thesis mainly focuses on maximizing the spectral efficiency of the mmWave
hybrid massive MIMO systems using alternating minimization techniques. The
alternating minimization method is made up of two stages, where the digital baseband
precoder is obtained in the first stage using a least-square solution, and in the second
stage, the Riemannian BB method is proposed to solve the analog RF precoder
problem. Additionally, the Gaussian mixture model with additive IN is employed to
express the noise in mmWave systems and a fuzzy median filter is designed to mitigate

the IN.

In this thesis, a new approach is built for hybrid precoding design in mmWave MIMO
systems under GN and it is aimed to achieve nearly optimal performance with less
computational cost than the competing methods. In this regard, the two-staged
alternating minimization algorithm based on the Riemannian BB method is proposed.
Simulations are performed to calculate the spectral efficiency, BER, and the coverage
probability of the proposed method together with the existing methods in the literature.
It is shown that the proposed method requires less computational cost than the well-
known CG algorithm to achieve almost the same performance. Besides, in spite of
higher complexity than the OPP method, the proposed method performs much better

than the OPP method when the number of transmitted symbols and RF chains are not
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equal to each other. The restrictions that occurred in the OPP algorithm is avoided and
it is observed that the spectral efficiency performance of the proposed algorithm is
approaching the fully digital precoders defined as OP for Ngg = 2N,. Moreover, the
performance of the BB method is much better than the PF and SQP while obtaining an
identical performance with CG, BFGS, and GP algorithms. Since the proposed BB
method has less complexity than the CG and BFGS, this method can be preferred for

practical implementation.

The mmWave hybrid MIMO system is also investigated under a different noise model
considering the IN effects. Additive IN is added to the received signal using the
Gaussian mixture model and the Riemannian BB algorithm is applied to solve the
hybrid precoders and decoders under IN. It is indicated that the IN should be
suppressed before passing through the decoders. Therefore, a fuzzy median filter with
a novel threshold mechanism is designed to reduce the effects of the IN in mmWave
massive MIMO systems. The proposed filter is attached at the receiver before the
hybrid decoders to detect the outlier amplitudes considered as the IN. The proposed
filter detects the received signals with IN with the help of the threshold mechanism
and it is illustrated that the system is working for both GN and IN environments. The
optimal threshold is selected by testing the filter for various threshold values and it is
observed that the threshold is selected properly considering the theoretical proofs. BER
and spectral efficiency of the fuzzy median filter are evaluated and compared with the
clipping and blanking filters. The simulation results demonstrate that the fuzzy median
filter performs better than the clipping and blanking filters in terms of detection and
mitigation of IN samples. In addition, the performance of the system is improved

enormously when it is compared with the results without any IN filter.
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7.2 Future Work

In the literature, the mmWave MIMO systems are mostly investigated for single-user
scenario and there is a need for further investigation in multi-user environment. The
multi-user interference effects can be taken into consideration and the alternating
minimization methods can be applied to cancel the interference. It will be interesting
to adapt the proposed Riemannian BB algorithm to the multi-user and a similar
approach as shown in [102] can be used to solve the multi-user hybrid precoding
problem with the help of alternating minimization techniques. Besides, convergence
analysis of different alternating minimization techniques can be evaluated and the
hybrid precoder can be designed considering the channel training and feedback.
Finally, more IN mitigation filters can be examined and compared with the proposed

fuzzy logic-based filter to improve the performance of the mmWave system under IN.
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