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ABSTRACT 

Millimeter-wave frequencies, which enable the usage of a greater spectrum than the 

existing cellular microwave bands, have attracted the researchers' attention 

significantly. However, the ever-increasing demand for higher data rates in the future 

5G and 6G networks requires further improvement of spectral efficiency. Millimeter-

wave systems take advantage of the decrease in wavelength to employ antenna arrays 

consisting of a large number of antennas on both transmitter and the receiver. Due to 

the high hardware cost and high power consumption of the fully digital precoders used 

in conventional MIMO systems, it is not feasible to employ fully digital baseband 

precoders at the millimeter-wave MIMO systems. Hybrid analog/digital transceiver 

architectures, which were made up of digital baseband and analog RF precoders were 

recently proposed by many researchers to reduce the rather high power consumption. 

Since analog RF precoders are much cheaper and consume much lower powers, the 

cost of the system is also significantly reduced with the help of RF precoders while 

achieving a comparable fully-digital precoder performance.  

This thesis investigates the performance of the millimeter-wave massive MIMO 

systems with hybrid analog/digital architecture for several aspects. We propose a novel 

low-complexity alternating minimization algorithm based on the Barzilai-Borwein 

(BB) gradient algorithm to maximize the spectral efficiency in single-user millimeter-

wave systems under Gaussian noise and impulsive noise. It is aimed to minimize the 

Euclidean distance between the hybrid precoders and fully digital precoder using 

alternating minimization techniques for both scenarios. In the impulsive noise 
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environment, a novel fuzzy logic-based decoder is also proposed to suppress the 

effects of impulsive noise.  

Simulation results demonstrate that the proposed BB method can achieve almost the 

same spectral efficiency as the competing methods despite its lower computational 

complexity. Furthermore, the proposed fuzzy logic-based filter successfully 

suppresses the impulsive noise effects and achieves a better bit error rate performance 

than the competing methods which also work efficiently in Gaussian noise.  

Keywords: Millimeter-wave, massive MIMO, hybrid precoding, alternating 

minimization, BB gradient algorithm 
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ÖZ 

Mevcut hücresel mikrodalga bantlarından daha geniş bir spektrumun kullanılmasını 

sağlayan milimetre-dalga frekansları, araştırmacıların dikkatini önemli ölçüde 

çekmiştir. Bununla birlikte, gelecekteki 5G ve 6G ağlarında daha yüksek veri hızlarına 

yönelik sürekli artan talep, spektral verimliliğin daha da iyileştirilmesini gerektiriyor. 

Milimetre-dalga sistemleri hem verici hem de alıcı üzerinde çok sayıda antenden 

oluşan anten dizilerini kullanmak için dalga boyundaki azalmadan yararlanır. 

Geleneksel MIMO sistemlerinde kullanılan dijital ön kodlayıcıların yüksek donanım 

maliyeti ve yüksek güç tüketimi nedeniyle, milimetre-dalga MIMO sistemlerinde 

dijital ön kodlayıcıların yalnız başına kullanılması uygun değildir. Bu yüzden, dijital 

ve analog RF ön kodlayıcılardan oluşan hibrit analog/dijital alıcı-verici sistemleri, son 

zamanlarda oldukça yükselen güç tüketimini azaltmak için birçok araştırmacı 

tarafından önerildi. Analog RF ön kodlayıcılar sayesinde sistem maliyeti ve güç 

tüketimi düşürülürken, dijital ön kodlayıcılara yakın bir performans elde edilmiştir.  

Bu tez, hibrit analog/dijital yapıya sahip milimetre-dalga masif MIMO sistemlerinin 

performansını çeşitli açılardan incelemektedir. Tezde, tek kullanıcılı millimetre-dalga 

sistemlerinin Gauss gürültüsü ve anlık gürültü etkisi altında spektral verimliliğini en 

üst düzeye çıkarmak için düşük karmaşıklığa sahip Barzilai-Borwein (BB) gradyan 

algoritmasına dayanan özgün bir dönüşümlü minimizasyon algoritması önerilmiştir. 

Dönüşümlü minimizasyon teknikleri kullanılarak hibrit ön kodlayıcılar ile tam dijital 

ön kodlayıcı arasındaki Öklid mesafesinin en aza indirilmesi amaçlanmaktadır. 

Ayrıca, anlık gürültü ortamından kaynaklanan etkileri bastırmak için özgün bir bulanık 

mantık tabanlı kod çözücü önerilmiştir. 
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Simülasyon sonuçları, önerilen BB yönteminin daha düşük hesaplama karmaşıklığına 

sahip olmasına rağmen, yarıştığı yöntemlerle neredeyse aynı spektral verimliliğe 

ulaşabildiğini göstermektedir. Ayrıca, önerilen bulanık mantık tabanlı filtre, anlık 

gürültü etkilerini başarıyla bastırırken kıyaslanan diğer yöntemlerden daha iyi bir hata 

oranı elde etmiştir. Önerilen filtrenin, Gauss gürültüsü etkisi altında da yüksek 

verimlilik ile çalıştığı gözlemlenmiştir.  

Anahtar Kelimeler: Milimetre-dalga, masif MIMO, hibrit ön kodlayıcı, dönüşümlü 

minimizasyon, BB gradyan algoritması 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Mobile broadband communication requires a significant expansion in the existing 

network capacity. Because of the dramatic growth in the number of users as a result of 

the increased demand for smart system applications, the network capacity should be 

increased to meet the demands of the users. According to the studies in this field, the 

traffic load is expected to increase by 1000 times in the next decade, and the current 

4th Generation (4G) network will be insufficient to meet the huge demand [1], [2]. 

Thus, a new generation network called the 5th Generation (5G) needs to be employed 

for a new spectrum with much higher bandwidth. Millimeter-wave (mmWave) 

communication with the available spectrum between 3 GHz (λ=100 mm) and 300 GHz 

(λ=1 mm) is a promising candidate for achieving such higher bandwidths. The 

available frequency band on mmWave is higher than all of the licensed spectrum used 

by today’s wireless communication systems [3]–[5].  

The capacity of the system can be increased further by employing advanced antenna 

and diversity techniques, such as massive Multiple-Input-Multiple-Output (MIMO) 

[6], [7]. In the conventional MIMO, precoding is implemented at baseband using fully 

digital precoders. However, digital precoders require a dedicated Radio Frequency 

(RF) chain with the signal mixers and analog-to-digital converters for each antenna 

element, which enormously increases power consumption and system complexity. 
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Hence, the researchers proposed hybrid analog/digital precoding to reduce the power 

consumption and hardware cost of the system, since the hybrid precoders require a 

very small number of RF chains compared to the number of antenna elements used in 

massive MIMO [8], [9]. 

Recent research findings state that minimizing the Euclidian distance between hybrid 

precoders and the optimal precoder (fully digital precoder) will lead to maximize the 

spectral efficiency [8]. This problem can be handled as an optimization problem and 

the main goal is to optimize the hybrid precoders with low complexity and comparable 

performance to fully digital precoders. Existing works in the literature are mostly 

heavily complex or have constraints causing performance losses, making them 

infeasible for practical use. This thesis focuses on finding a better way to optimize the 

hybrid precoders considering a unit modulus constraint formed by analog phase 

shifters.  

Alternating minimization methods are investigated to design the hybrid precoders and 

this approach performs very close to the full digital solution [10], [11]. However, there 

are still some handicaps that should be pointed out such as the complexity and the 

restriction of the methods. Therefore, in search of different optimization methods 

without any restriction and with an acceptable complexity, it is discovered that the 

Barzilai-Borwein (BB) gradient method based on manifold optimization can be a good 

candidate to serve those needs [12]–[14]. However, besides the advantages of 

mmWave, there are some handicaps in mmWave which is not well addressed, such as 

the suppression of impulsive noise. 
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The conventional mmWave systems are mostly designed to operate only for the 

Gaussian Noise (GN) model. In many physical channels, such as urban and indoor 

radio channels, the ambient noise is known through experimental measurements to be 

non-Gaussian. Hence, recent research findings state that a mixture noise model with 

additive Impulsive Noise (IN) is a more realistic approximation for mmWave 

channels. In this thesis, several mitigation techniques to suppress the IN are 

investigated and a fuzzy-logic-based decoder is designed to minimize the effects of the 

IN by ordering the samples based on fuzzy rank. 

1.2 Thesis Aims and Objectives 

In mmWave MIMO, optimizing the hybrid precoders to achieve a close performance 

to the fully digital precoders with low complexity is the key point for the upgoing 

research in this area. Power consumption and the hardware cost of the system can be 

reduced substantially using hybrid precoders rather than the fully digital precoders 

used in conventional MIMO systems. The main aim of this study is to maximize the 

spectral efficiency performance of the hybrid precoders to approach the performance 

of fully digital precoders while reducing the complexity of the system compared with 

the existing methods in the literature. In this regard, alternating minimization 

techniques are investigated and applied to the hybrid precoders for different setups. 

In this study, an improved alternating minimization method is proposed to satisfy the 

following objectives: 

1) To optimize hybrid precoders in mmWave MIMO systems using alternating 

minimization techniques for single user GN and IN environments. 

2) To maximize spectral efficiency performance of the hybrid precoders to 

maintain a close performance to fully digital precoders for each setup. 
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3) To reduce the computational complexity of the system without any restrictions. 

4) To mitigate IN, while maximizing the spectral efficiency for single user 

mmWave MIMO systems. 

1.3 Thesis Contribution 

This study mainly focuses on optimizing the hybrid precoders to achieve an 

approximate performance to fully digital precoders while keeping the complexity of 

the system at an acceptable level for practical implementation.  

In this thesis, we first proposed an improved alternating minimization based on the BB 

gradient method for a single-user mmWave MIMO system with hybrid transceiver 

architecture, where the noise is distributed as GN. The hybrid precoders are optimized 

by minimizing the Euclidian distance between the hybrid precoders and the digital 

precoders. Simulation results demonstrate that the proposed method can achieve 

identical spectral efficiency performance with the competing methods in the literature 

with lower computational complexity. It should also be noted that this method has no 

restrictions to degrade the performance of the system.   

The main contributions of this study can be summarized as: 

a) A novel BB gradient-based alternating minimization method is investigated and 

compared with the existing methods concerning computational complexity and 

spectral efficiency.  

b) BB method is applied using manifold optimization and this allows us to use the 

BB method without any restrictions causing performance losses. 
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c)  It is shown that the proposed method has an identical spectral efficiency 

performance with the competing methods in the literature with comparable 

performance to fully digital precoders. 

d) The time complexities of several algorithms are derived and observed that the 

proposed algorithm requires less computational cost than the well-known 

conjugate gradient algorithm.  

 

In the literature, the noise is generally modeled as GN and the effects of the IN are 

considered negligible. However, recent research findings state that the IN present at 

the mmWave frequencies degrade the performance of the system and there is a need 

for a more realistic model which includes the IN components. Therefore, we adapt a 

mixture noise model and develop a filter to reduce the severe effects of the IN. In the 

mmWave environment, there is limited research about the mixture noise model and 

how to eliminate the IN to enhance the system's performance. In this regard, we 

designed a hybrid decoder with a fuzzy logic filter to suppress the effects of IN. 

Although fuzzy-logic-based filters are used in the microwave environment, there is no 

implementation in the literature for the mmWave environment. Therefore, we adapt 

the fuzzy logic filter using a novel threshold mechanism and the results are very 

promising compared with the existing methods in the literature. 

The main contributions of this study can be summarized as: 

a) The mixture noise model is used to represent the noise in the mmWave 

environment rather than the GN that is used in almost all the research papers.  

b) A novel fuzzy-logic-based decoder is designed to minimize the effect of IN by 

ordering the samples based on fuzzy rank. 
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c) A novel threshold mechanism is developed to detect IN components and this 

enables the system to suppress the IN components while also working efficiently 

in the Gaussian environment under different scenarios. 

1.4 Publications 

This thesis is based on the following original publications: 

 M. Mulla, A. H. Ulusoy, A. Rizaner, and H. Amca, “Barzilai-Borwein Gradient 

Algorithm Based Alternating Minimization for Single User Millimeter Wave 

Systems,” IEEE Wirel. Commun. Lett., 2020, doi:10.1109/LWC.2019. 

2960691. 

 M. Mulla, M. Sohail, A. H. Ulusoy, R. Uyguroğlu, A. Rizaner, and H. Amca, 

“A Single User Millimeter Wave Massive MIMO System using Defected 
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1.5 Thesis Outline 

The rest of the thesis is organized as follows: Chapter 2 provides the preliminary and 

necessary definitions for mmWave MIMO systems and precoding schemes to 

eliminate the interference. A hybrid precoding scheme is introduced for mmWave 

systems and several optimization techniques are investigated to solve the hybrid 

precoding problem. Besides, IN characteristics and mitigation techniques in the 

literature are reviewed. Chapter 3 demonstrates the system model of the mmWave 

massive MIMO system and presents the channel model for the designed mmWave 
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system. Noise model for the IN channels and the simplified architecture of decoder 

with a fuzzy median filter to suppress IN are expressed. Moreover, the spectral 

efficiency expression is derived for the hybrid precoding system and the hybrid 

precoding problem is formulated. 

In chapter 4, the proposed alternating minimization based on the Riemannian BB 

method to solve the hybrid precoding problem is summarized and several gradient 

methods are investigated to build the proposed algorithm. The computational cost of 

the proposed method is analyzed and the complexity of the proposed method is shown 

together with the competing methods. Chapter 5 presents the design of the proposed 

fuzzy logic-based filter to reduce the effects of the IN before passing through the 

hybrid decoders. Additionally, a novel threshold mechanism is developed to detect the 

outlier amplitudes considered as the IN samples in which the fuzzy median filter is 

only applied to the received signals with IN. 

Chapter 6 illustrates the simulation results of the proposed Riemannian BB algorithm 

under GN and the fuzzy median filter under IN. The simulations are conducted for 

several setups and the results are discussed for different circumstances. Finally, 

Chapter 7 draws a conclusion for the research and gives suggestions for future works 

in this area. 
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Chapter 2 

LITERATURE REVIEW 

In this chapter, the preliminary and necessary definitions for mmWave MIMO systems 

are explained and the optimization techniques to solve the hybrid precoding problem 

in the literature are also reviewed. Moreover, brief information about the IN channel 

characteristics and IN mitigation techniques are given.  

2.1 mmWave MIMO Systems 

Multiple antenna techniques are well investigated by the researchers to apply in both 

transmitter and receiver for the wireless systems. It is shown that the MIMO systems 

enhance the transmission rate, link reliability, and coverage [6], [15], [16]. Therefore, 

MIMO systems are the most popular candidates to deliver needed data rates for 

mmWave communication [7]. This subsection reviews the MIMO architecture for 

mmWave communication and emerging techniques of the mmWave MIMO 

communication network.  

2.1.1 MIMO Architectures for mmWave Communications 

Although MIMO technology has been deployed and widely used in current 

commercial systems such as the 3rd Generation (3G) and Long-Term Evolution (LTE), 

these systems are considered as sub-6GHz and only support a small number of 

antennas (maximum eight elements). MmWave communication systems are expected 

to have much more antenna array elements due to the small wavelength characteristic. 

Antenna arrays can be built from 32 to 256 elements with the advantage of small 

physical size and this architecture is called massive MIMO [17]. Therefore, several 
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MIMO techniques are investigated in the literature to enhance the spectral efficiency 

performance of the system with a lower number of RF chains compared to antenna 

array size. One of the popular candidates for future wireless systems to achieve a 

higher spectral efficiency using a lower order modulation is spatial modulation [18]–

[20] which is also taking attention for Visible Light Communication (VLC) that can 

be used in  the 6th Generation (6G) [21]. Another powerful approach is to build a 

hybrid precoding scheme to handle a large number of antennas with lower power 

consumption by reducing the number of RF chains connected to the antennas.  

The architecture of the MIMO in mmWave and microwave frequencies is different 

from each other. In conventional MIMO, fully digital precoders are used to apply 

signal processing and this scheme is not feasible for a large number of antenna 

elements. Thus, a better strategy is needed to employ precoding in mmWave massive 

MIMO architecture. In the next subsection, we review the precoding techniques for 

the conventional and massive MIMO systems.    

2.1.1.1 Precoding Techniques  

Precoders are designed to control the amplitude and phases of the transmitting signal 

to cancel the interference in advance to optimize mobile networks' performance. The 

use of precoding techniques has an important role in mmWave massive MIMO 

systems. In the literature, precoding is also known as beamforming which aims to 

transmit pencil-shaped beams to the selected terminals directly with no interference 

[22], [23]. There are three primary architecture schemes for precoding: analog 

beamforming, digital precoding, and hybrid analog/digital precoding. An overview of 

these schemes will be introduced in the following subsections. 
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Figure 2.1: Analog beamforming architecture for single-user mmWave massive 

MIMO. 

2.1.1.1.1 Analog Beamforming 

Analog beamforming is one of the most basic methods to implement for mmWave 

MIMO systems, which can be used in both transmitter and receiver. Figure 2.1 

illustrates the mmWave MIMO system using analog beamforming, where several 

antenna elements are attached to a single RF chain using simple phase shifters. In this 

approach, the phase of the signal is controlled with the network of digitally controlled 

phase shifters to achieve an optimal array gain and effective Signal to Noise Ratio 

(SNR) [17], [22]. 

 

Analog beamforming scheme requires a small number of RF chains compared with the 

large number of antenna elements used in mmWave massive MIMO. However, despite 

the simplicity of the hardware implementation, the performance of the analog 

beamforming scheme is poor due to the constant amplitude constraint of the design. 

Hence, fully digital precoding is preferable for low frequencies to eliminate the 

interference effects since both the amplitude and the phase can be controlled by the 

digital precoders for optimal performance [24].  
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2.1.1.1.2 Digital Precoding 

Digital precoding is a conventional design for low-frequency applications in MIMO 

systems. It aims to eliminate interference in advance by controlling both the amplitude 

and the phase of the transmitting signal. Digital precoding can be classified under two 

categories as linear and nonlinear. Linear precoding schemes form the transmitted 

signal using a linear combination of the original signals and nonlinear precoders do 

this process in a nonlinear way.  

Throughout this thesis, we will only focus on linear digital precoding schemes, 

including Matched Filter, Zero Forcing, and the Wiener Filter precoder, ordered in 

increasing depending on their complexities and performances. The system model for 

single-user mmWave massive MIMO system using fully digital precoding is shown in 

Figure 2.2, and to have a general understanding, the linear precoder models are derived 

respectively in (2.1) as: 

 

𝐃𝑀𝐹 = √
𝑀

tr(𝐅𝐅𝐻)
𝐅, 𝐅 = 𝐇𝐻 

𝐃𝑍𝐹 = √
𝑀

tr(𝐅𝐅𝐻)
𝐅, 𝐅 = 𝐇𝐻(𝐇𝐇𝐻)−1 

𝐃𝑊𝐹 = √
𝑀

tr(𝐅𝐅𝐻)
𝐅, 𝐅 = 𝐇𝐻 (𝐇𝐇𝐻 +

𝜎𝒏
𝟐𝑀

𝑃𝒓
𝐈)

−1

, 

(2.1) 

where 𝑀 denotes the transmitted number of data streams,  𝐇 represents the channel 

matrix between the transmitter and receiver, 𝑃𝒓 and 𝜎𝒏
𝟐 denote the average received 

power and the noise power, respectively, and the corresponding linear digital 

precoders are referred as 𝐃𝑀𝐹,𝑍𝐹,𝑊𝐹 [22]. 
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Figure 2.2: Digital precoding architecture for single-user mmWave massive MIMO. 

At mmWave frequencies, there are several hardware limitations for using the fully 

digital precoding, and this makes the system infeasible in practice for a large number 

of antenna elements that are used in massive MIMO. A dedicated Analog to Digital 

Converter (ADC) / Digital to Analog Converter (DAC) and RF chain are required for  

each antenna element in digital precoding. This will increase the energy consumption 

and hardware cost enormously. Thus, hybrid analog/digital precoding technique is 

proposed to solve this problem [8] and the required number of RF chains is reduced 

while achieving a close performance to fully-digital precoders [22], [24]. 

2.1.1.1.3 Hybrid Analog/Digital Precoding 

Hybrid analog/digital precoding scheme is a promising candidate for mmWave 

massive MIMO systems to overcome the challenges that occurred in analog and digital 

precoding schemes. This scheme is proposed to reduce the number of RF chains 

needed to employ fully digital precoding, which will significantly reduce energy 

consumption and hardware cost while achieving a near-optimal performance 

compared to digital precoding schemes. In hybrid precoding, the precoding process is 

divided into two domains as digital and analog domains. In the first step, a small-size 

digital precoder with a small number of RF chains is applied to eliminate the effects 
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Figure 2.3: Hybrid analog/digital precoding architecture for single-user mmWave 

massive MIMO systems. 

of interference, and antenna array gain is increased by employing a large-size analog 

beamformer using only phase shifters in the second step [7], [8], [17], [22], [24]. The 

system model for the mmWave massive MIMO with hybrid precoding is illustrated in 

Figure 2.3. 

Hybrid precoders can be divided into two groups depending on their analog 

beamforming structure. Analog beamforming can be employed using different 

techniques such as phase shifters and switches. There are two main hybrid 

architectures: fully connected architecture, also known as spatially sparse precoding, 

and sub-connected architecture. In the first approach, all the antennas are connected to 

each RF chain using phase shifters, and in the second approach, antennas are divided 

into subgroups and all subgroups are connected to each RF chain [8], [17], [22], [24]–

[26]. Two architectures for analog beamforming using phase shifters are shown in 

Figure 2.4. 
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Figure 2.4: Analog beamforming schemes for hybrid precoding (a) fully connected 

structure (b) sub-connected structure. 

In this thesis, we investigated hybrid precoding with a fully connected structure based 

on phase shifters, and the mathematical models for this structure are expressed in 

Chapter 3.  

2.2 Minimization Methods for Hybrid Precoding 

In recent years, research interest is growing rapidly on optimizing the hybrid precoders 

using minimization methods. Significant amounts of efforts have been invested in 

solving the hybrid precoding problem in mmWave massive MIMO systems to achieve 

a near-optimal spectral efficiency performance with low complexity compared with 

fully digital precoding. It is stated that minimizing the Euclidian distance between the 

hybrid precoders and optimal precoder (fully digital precoder) results in maximizing 

the spectral efficiency performance of the system [8]. In this subsection, the 

minimization techniques and alternating minimization methods in the literature will be 

investigated.  

 

(a) (b) 
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2.2.1 Orthogonal Matching Pursuit 

In the literature, hybrid precoders are mostly designed using a fully connected structure 

and most of the works are based on Orthogonal Matching Pursuit (OMP), which 

achieves near-optimal performance. It is pointed out that the spectral efficiency can be 

maximized by optimizing the hybrid precoders using an algorithmic precoding 

solution based on OMP [8]. Optimal precoders are given as input to this algorithm and 

beam steering vectors are approximated to apply at RF. The columns of the RF 

precoding matrix are picked from the channel's array response vector and thus, hybrid 

precoding based on OMP can be considered a sparse matrix approximation problem. 

Although the complexity of the problem is reduced, there will be performance losses 

for feasible RF precoding solutions [8], [10], [27], [28]. 

An algorithmic solution based on OMP is presented in [8] and the hybrid precoder 

problem is solved using an optimization approach. The given algorithm first finds the 

channel’s array response vector so that the optimal precoder achieves a maximum 

projection. After that, it aims to attach the selected array response vector onto the 

analog precoder and once the dominant vector is obtained, the digital precoder is 

computed using a direct least square approach. Finally, the residual precoding matrix 

is found by removing the selected vector and the digital precoder is normalized at the 

end of the algorithm to ensure the transmit power constraint.    

In addition to performance losses, extra overhead is needed to obtain the information 

of array response vectors, and researchers are focused on reducing the computational 

cost of the OMP algorithm. Therefore, alternating minimization based hybrid 

precoding algorithms are proposed by the researchers and we review the alternating 

minimization methods for fully-connected structure in the next subsection.  
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2.2.2 Alternating Minimization 

In mmWave MIMO, there is still a search to find a sophisticated method for solving 

the hybrid precoding problem with the unit modulus constraint. In this regard, 

alternating minimization algorithms are taking attention from the researchers, and 

several alternating minimization based algorithms are proposed. The main principle of 

alternating minimization is to divide the hybrid precoding problem into two 

subproblems, which are the analog and digital precoder design. It is aimed to optimize 

the digital precoder and analog precoder alternately to achieve near-optimal 

performance with an acceptable complexity [10], [11], [29]. In this subsection, several 

alternating minimization algorithms are investigated and the drawbacks and 

limitations of these algorithms are discussed to present a guideline for selecting the 

suitable alternating minimization method for the hybrid precoding problem.  

2.2.2.1 Orthogonal Procrustes Problem based Alternating Minimization  

Authors in [10] and [11] proposed an alternating minimization algorithm based on 

Orthogonal Procrustes Problem (OPP) to solve the hybrid precoding problem. The 

motivation of this algorithm is to acquire a low computational complexity with a slight 

performance loss compared with the algorithms in the literature. The Procrustes 

problem aims to approximate a matrix 𝐀 ∈ ℝ𝑚×𝑛 from a matrix 𝐁 ∈ ℝ𝑝×𝑛 multiplied 

by a matrix that has orthogonal columns 𝐔 ∈ ℝ𝑚×𝑝. Thus, the problem can be written 

using the Frobenius norm as 

 min‖𝐀 − 𝐔𝐁‖𝐹
2  subject to 𝐔𝑇𝐔 = 𝐈𝑝. (2.2) 

The matrix 𝐔 has orthonormal columns, therefore the Frobenius part of the equation 

(2.2) can be written as 

 ‖𝐀 − 𝐔𝐁‖𝐹
2 = Tr(𝐀𝑇𝐀) − 2Tr(𝐀𝐁𝑇𝐔𝑇) + Tr(𝐁𝑇𝐁), (2.3) 
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where minimizing (2.2) is equivalent to maximizing Tr(𝐀𝐁𝑇𝐔𝑇) and 𝐔 can be 

maximized using the Singular Value Decomposition (SVD) of 𝐀𝐁𝑇 [30], [31]. 

Since the digital precoder satisfies the orthogonal property, the OPP algorithm can be 

applied to the hybrid precoding problem to determine the phases of the analog precoder 

with unit constraint from the equivalent precoder formed by the digital precoder and 

the optimal precoder [10], [11].  Although the OPP-based hybrid precoding algorithm 

requires low computational cost, this algorithm is not practical because of the 

restrictions. In the OPP algorithm, the number of transmitted symbols and RF chains 

should be equal to each other to achieve comparable spectral efficiency performance 

with the competing methods. Hence, in search of different optimization methods 

without any restrictions and with an acceptable complexity, it is discovered that the 

Manifold Optimation (MO) based alternating minimization can be a strong candidate 

to solve the hybrid precoding problem. In the next subsection, the fundamentals of the 

MO are reviewed to have a general understanding of the proposed BB alternating 

minimization algorithm based on MO, which will be discussed in detail in Chapter 4. 

2.2.2.2 Manifold Optimization-based Alternating Minimization 

The essential idea of this study is to find a method to solve the hybrid precoding 

problem without any restrictions and reduce the complexity of the competing methods 

in the literature. Thus, the MO-based algorithms are investigated and the authors in 

[10] proposed a MO-based alternating minimization algorithm for hybrid precoding. 

This method optimizes the analog precoders and digital precoders alternately while 

fixing the other. Since jointly optimizing these two matrices are highly complex due 

to the unit modulus constraint of the analog precoder, the solution requires two steps. 

In the first step, the digital precoder is solved with a fixed analog precoder using a 
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single least-square solution. In the second step, the analog precoder is optimized using 

Conjugate Gradient (CG) algorithm based on MO for fixed digital precoder.  

In this subsection, the fundamentals and terminologies about the MO will be provided 

and our proposed Riemannian BB algorithm for analog precoding given in Chapter 4 

will be built on this ground. 

Manifold can be considered as a topological space that is locally similar to some 

Euclidean space with certain properties. The illustration of manifold ℳ is shown in 

Figure 2.5, where 𝑇𝑥ℳ denotes the tangent space at a given point 𝑥 on the manifold 

ℳ, and 𝜉𝑥 and 𝛾 represent the tangent vector at a point 𝑥 and the curves through  𝑥, 

respectively [10], [32], [33]. 

Riemannian Manifold (RM) is a special type of topological manifold that can be used 

for most applications. In this manifold, tangent space 𝑇𝑥ℳ is equipped with a 

smoothly varying inner product that can be considered as Riemannian metric and this 

allows to use of calculus on the RM. Besides, the gradients of cost functions can be 

defined using the rich geometry of RM, and optimization techniques can be applied on 

the manifold over a Euclidian space without any constraints or smooth constraints [32]. 

In the hybrid precoding design, analog precoding vector deploys a complex circle 

manifold in which the complex plane ℂ with Euclidian metric can be represented as 

 〈𝐱1, 𝐱2〉 = Re{𝐱1
𝐻𝐱2}, (2.4) 

and the complex circle can be expressed as 

 ℳ𝑐𝑐 = {𝐱 ∈ ℂ ∶  𝐱𝐻𝐱 = 1}. (2.5) 

Tangent vectors are used to characterize the directions of the movement for a given 

point 𝑥 on the manifold ℳ𝑐𝑐 and thus, the tangent space can be specified as 
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Figure 2.5: The illustration of manifold ℳ with the tangent space and tangent vector 

[32]. 

 𝑇𝑥ℳ𝑐𝑐 = {𝐳 ∈ ℂ ∶  𝐳𝐻𝐱 + 𝐱𝐻𝐳 = 2〈𝐱, 𝐳〉 = 0}, (2.6) 

where the analog precoding vector  𝐱 on the complex circle manifold is in the form 

 ℳ𝑐𝑐 = {𝐱 ∈ ℂ ∶  |𝐱1| = |𝐱2| = ⋯ = |𝐱𝑚| = 1}, (2.7) 

such that 𝑚 is equal to the number of transmitting antennas times the number of RF 

chains. Hence, the optimization problem for analog precoding can be considered as a 

Riemannian submanifold of ℂ𝑚 which has product geometry over 𝑚 circles in the 

complex plane and the tangent space at 𝐱 ∈ ℳ𝑐𝑐
𝑚 can be defined as 

 𝑇𝑥ℳ𝑐𝑐
𝑚 = {𝐳 ∈ ℂ𝑚 ∶  Re{𝐳 ∘ 𝐱𝐻} = 0𝑚}, (2.8) 

where ∘ denotes the elementwise multiplication. The direction of the maximum 

decrease of a function can be found using negative Riemannian gradient and the 

Riemannian gradient at x is the orthogonal projection of the Euclidean gradient ∇f(𝐱) 

along the tangent space 𝑇𝑥ℳ𝑐𝑐
𝑚 in which can be derived as 

 gradf(𝑥) = Proj𝐱∇f(𝐱) 

= ∇f(𝐱) − Re{∇f(𝐱) ∘ 𝐱𝐻} ∘ 𝐱,   

(2.9) 
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where  ∇f(𝐱) is expressed in Chapter 4 [10], [32]. Based on the above terminology, the 

Riemannian BB algorithm [14] can be used to solve analog precoding problem and the 

details about this algorithm can be found in Chapter 4.   

2.3 Impulsive Noise and Mitigation Techniques 

Noise is commonly modeled using Gaussian distribution in the literature. On the other 

hand, the noise at the mmWave frequencies appears to be non-Gaussian and a mixed 

noise model with GN and IN can be used to express this noise model. The main source 

of IN is thought to be man-made and neighboring equipment frequently causes additive 

IN to the receivers. Since 5G technology needs an ultra-dense cellular network and the 

use of machine-to-machine communication is increasing day by day, the receivers are 

predicted to be impacted by a mixed noise rather than the traditional white GN defined 

in most of the studies. Furthermore, IN can be used to represent the atmospheric and 

solar static signals caused by the sunspots, which are likely to decrease the 

communication quality in mmWave bands [34], [35].  The Middleton class A model 

[36] is a widely accepted and realistic model to evaluate the mixture noise model for 

wireless communication channels [37]–[40], and it has been demonstrated that the 

presence of IN has a negative impact on systems performance for applications 

operating at mmWave frequencies [41]–[45]. Besides, the authors in [46] investigate 

the degradation of the performance of massive MIMO systems under IN. Thus, a 

sophisticated method should be developed to detect and mitigate the effects of IN in 

mmWave massive MIMO systems. 

Several detectors have been designed to improve the performance of the systems under 

the effects of IN, and the majority of the works are based on clipping and blanking 

[47]–[49]. Although these methods are straightforward to apply, the Bit Error Rate 
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(BER) performances of the systems are insufficient for practical use in mmWave. The 

authors in [50] proposed a threshold mechanism is for detecting impulses, and the 

performance of the system is improved by using an optimal threshold. The system's 

performance, however, is still poor for practical use, and a more sophisticated method 

is required. Additionally, to increase the performance of IN filters, neural networks 

and deep learning algorithms are expressed [51]–[53]. 

The fuzzy logic-based algorithm presented in [54] is another effective strategy to 

mitigate IN and it has been discovered that this statistical method can meet our 

objectives. This method aims to organize the samples with fuzzy order and then reduce 

the effects of IN using a fuzzy median filter. For IN channels, this approach works 

well, but the performance is expected to degrade when the noise is distributed as 

Gaussian. Therefore, to detect the impulses, a threshold mechanism is designed in [55]  

and a fixed threshold is set to ensure the system to work in both impulsive and 

Gaussian scenarios.  

An adaptive threshold mechanism is implemented in [56] to enhance the system’s 

performance further and the filter is only applied to the identified impulses. Statistical 

metrics, median, and standard deviation are used to choose the optimal threshold 

adaptively for each received signal. It is indicated here that the threshold applied 

performance of the system in the Gaussian environment is much better than the system 

without any threshold. 
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Chapter 3 

SYSTEM MODEL AND PROBLEM FORMULATION 

In this chapter, first, the system model for single-user mmWave massive MIMO and 

channel model for the considered system are presented. Then, IN characteristics and 

simplified architecture of fuzzy logic-based decoder to mitigate IN are introduced. 

Finally, the hybrid precoding problem is formulated, and mathematical formulations 

are expressed.  

3.1 System Model for Single-User mmWave Hybrid Massive MIMO  

The system model for a single-user mmWave hybrid massive MIMO system is shown 

in Figure 3.1. This research focused on the downlink model, where 𝑁s symbols are 

transmitted by the Base Station (BS) using 𝑁BS transmit antennas and received by a 

single Mobile Station (MS) operating with 𝑁MS receive antennas. The number of RF 

chains are denoted as 𝑁RF and for simplicity, it is assumed that both the BS and MS 

have the same number of 𝑁RF with the constraint 𝑁s ≤ 𝑁RF ≤ 𝑁BS, 𝑁MS. 

The transmitted signal vector 𝐦 ∈ ℂ𝑁BS×1 can be written as 

 𝐦 = 𝐅RF𝐅BB𝐬,  (3.1) 

where 𝐬 ∈ ℂ𝑁s×1 denotes the transmitted symbol vector normalized by  

 𝔼[𝐬𝐬𝐻] =
1

𝑁s
𝐈𝑁s

.   (3.2) 

The hybrid precoders are the combination of digital baseband precoder 𝐅BB ∈ ℂ𝑁RF×𝑁s 

and analog RF precoder 𝐅RF ∈ ℂ𝑁BS×𝑁RF in which normalized to satisfy the power 

constraint as 
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Figure 3.1: System model for hybrid analog/digital architecture in single-user 

mmWave massive MIMO system. 

 ‖𝐅RF𝐅BB‖𝐹
2 = 𝑁s.  (3.3) 

Hence the received signal vector 𝐫 ∈ ℂ𝑁MS×1 observed by the MS can be formulated 

as 

 𝐫 = √𝜌𝐇𝐅RF𝐅BB𝐬 + 𝐧, (3.4) 

where 𝜌 denotes the average received power, 𝐇 ∈ ℂ𝑁MS×𝑁BS refers to the channel 

matrix between the BS and the MS, and 𝐧 ∈ ℂ𝑁MS×1 represents the noise vector. The 

noise vector is expressed using two different models. In the first model, the noise 

vector 𝐧 is distributed using circularly symmetric complex Gaussian definition with 

zero mean and covariance matrix 𝜎2𝐈𝑁MS
 in the form: 

 𝐧~𝒞𝑁(0, 𝜎2𝐈𝑁MS
), (3.5) 

and in the second model, 𝐧 is defined using the Gaussian mixture model that is 

explained in the next subsection [8], [10], [11], [29], [57], [58].  

At the receiver, the received signal  𝐫 is decoded using the hybrid decoders, which 

consist digital baseband decoder 𝐖BB ∈ ℂ𝑁RF×𝑁s and analog RF decoder 𝐖RF ∈

ℂ𝑁MS×𝑁RF. Thus, the received signal after decoding operation can be expressed as 
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 𝐲 = √𝜌𝐖BB
𝐻 𝐖RF

𝐻 𝐇𝐅RF𝐅BB𝐬 + 𝐖BB
𝐻 𝐖RF

𝐻 𝐧, (3.6) 

where the RF precoders and decoders are designed to perform only using phase shifters 

and they can only manipulate the phase of the signals. Therefore, the magnitude of all 

nonzero elements are equal and have unit modulus constraint shown as [10], [11], [29] 

 |(𝐅RF)𝑖,𝑘| = |(𝐖RF)𝑖,𝑘| = 1. (3.7) 

3.1.1 Channel Model  

Multipath models for lower frequency can be used to express mmWave channels [59]; 

however, the highly directional nature of propagation at mmWave makes the 

beamspace representation more suitable [60]. Besides, mmWave channels have sparse 

channel characteristics due to the high space path loss and limited scattering [61], [62]. 

Thus, in this thesis, Saleh-Valenzuela [63] clustered channel model is used to express 

the representation of narrowband mmWave channels [64]–[66], and the channel matrix 

𝐇 can be evaluated as  

 

𝐇 = √
𝑁BS𝑁MS

𝑁cl𝑁ray
∑ ∑ 𝛼𝑖𝑙 [𝐚MS(𝜙𝑖𝑙

MS, 𝜃𝑖𝑙
MS) 𝐚BS(𝜙𝑖𝑙

BS, 𝜃𝑖𝑙
BS)

𝐻
]

𝑁ray

𝑙=1

𝑁cl

𝑖=1

 (3.8) 

where 𝑁cl and 𝑁ray represent the number of clusters and number of rays respectively, 

𝛼𝑖𝑙 denotes the complex channel gain of the 𝑙th ray in the 𝑖th cluster. It is assumed that 

the 𝛼𝑖𝑙 has independent and identical (i.i.d) distribution that is given by 

 𝛼𝑖𝑙~𝒞𝑁(0, 𝜎2𝐈), (3.9) 

in which normalized by a factor 

 

∑ 𝜎2𝐈

𝑁cl

𝑖=1

= 𝛿 (3.10) 

to ensure the channel power constraint 

  𝔼[‖𝐇‖𝐹
2] = 𝑁BS𝑁MS. (3.11) 

, 
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In addition, 𝐚MS(𝜙𝑖𝑙
MS, 𝜃𝑖𝑙

MS) and 𝐚BS(𝜙𝑖𝑙
BS, 𝜃𝑖𝑙

BS) represent the antenna array response 

vectors in the MS and BS, respectively, while the azimuth (elevation) angles of arrival 

and departures are denoted as the coefficients 𝜙𝑖𝑙
MS(𝜃𝑖𝑙

MS) and 𝜙𝑖𝑙
BS(𝜃𝑖𝑙

BS). The array 

geometry is assumed as a uniform square planar array and under this consideration, 

the array response vector at the BS can be defined as 

 

𝐚BS(𝜙𝑖𝑙
BS, 𝜃𝑖𝑙

BS) =
1

 √𝑁BS
[

1, … , 𝑒𝑗
2𝜋

𝜆
𝑑 (𝑝sin(𝜙𝑖𝑙

BS) sin(𝜃𝑖𝑙
BS)+𝑞cos(𝜃𝑖𝑙

BS),

… , 𝑒𝑗(√𝑁𝐵𝑆−1)
2𝜋

𝜆
𝑑(sin(𝜙𝑖𝑙

BS) sin(𝜃𝑖𝑙
BS)+cos(𝜃𝑖𝑙

BS))
]

𝑇

, (3.12) 

where 𝜆 and 𝑑 represent the wavelength of the signal and the space between antenna 

elements respectively, and p and q indicate the indices of the antennas such that, 0 ≤

𝑝 ≤ √𝑁BS and 0 ≤ 𝑞 ≤ √𝑁BS. The array response vector at the MS 𝐚MS(𝜙𝑖𝑙
MS, 𝜃𝑖𝑙

MS) 

can be defined using the same definition [10], [11], [57], [58], [66]. 

3.2 Fuzzy Logic based Receiver for IN Mitigation 

Figure 3.2 illustrates the simplified hybrid receiver architecture with a fuzzy median 

filter to mitigate the IN in mmWave channels. In conventional mmWave hybrid 

decoding systems, the ambient noise is assumed to be AWGN and the effect of the 

noise is reduced using only the hybrid decoders as shown in Figure 3.1. However, for 

the IN environment, the IN components should be suppressed before passing the 

received signal through the decoder to avoid the enhancement of the IN level. 

Therefore, a fuzzy median filter is designed and attached to the hybrid decoder to 

minimize the effects of outlier amplitudes which is considered as IN. More information 

about the fuzzy median filter and the detailed schematic of the fuzzy algorithm is given 

in Chapter 5. Besides, the IN characteristics and the Gaussian mixture model based on 

Middleton Class A noise to express the IN behavior are introduced in the next 

subsection. 
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Figure 3.2: Simplified hybrid receiver architecture with a fuzzy median filter for 

single user mmWave massive MIMO system. 

3.2.1 Impulsive Noise  

In wireless communication, noise can affect the system in various ways depending on 

the source. In general, Gaussian distribution has been used to model the noise at the 

receiver of communication systems which is supported by the central limit theorem. 

On the other hand, it is shown that the ambient noise in various physical channels may 

have non-Gaussian behavior such as IN.  

IN is made up of sudden sharp bursts which is a “on/off” sequence of random pulses 

in the time domain. The main source of IN is considered man-made and nearby devices 

often cause additive IN to the receivers. Since 5G technology requires an ultra-dense 

cellular network and machine-to-machine communication is growing rapidly, the 

receivers are expected to be affected by a mixed noise rather than the classical white 

GN expressed in most research papers. In addition, atmospheric and solar static signals 

caused by the sunspots and thunderstorms can also be represented by IN, and it is 

expected to degrade the communication quality in mmWave bands [34], [35], [67], 

[68]. 
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3.2.1.1 Gaussian Mixture Model based on Middleton Class A 

The nonlinearity of the electromagnetic interference is expressed by D. Middleton, 

considering the Gaussian component to represent the thermal noise at the receiver of 

communication systems. To evaluate the canonical description of several non-

Gaussian behaviors in different environments, Middleton Class A, B, and C statistical 

noise models are presented [69], [70]. Middleton Class A model has been widely used 

in communication systems to represent the electromagnetic interference and the power 

density function (pdf) of this model can be shown as 

 
 𝑓𝐴(𝑥) = 𝑒−𝐴 ∑

𝐴𝑛

𝑛!√2𝜋𝜎𝑛
2

∞
𝑛=0 𝑒

−𝑥2

2𝜎𝑛
2
, (3.13) 

where 𝐴 ≥ 0 denotes the impulsive index, 𝜎𝑛
2 ≥ 0 represents the power of the noise 

that can be derived as (
𝑛

𝐴
+ 𝛤) (1 + 𝛤)⁄ , such that 𝛤 ≥ 0 is the ratio of the powers of 

background Gaussian and non-Gaussian noise components [71], [72]. 

The Gaussian mixture model is a two-term model to illustrate the behavior of non-

Gaussian environments with the noise density function 

 𝑓(𝑥) = (1 − 𝜀)𝑓𝐺(𝑥) + 𝜀𝑓𝐼(𝑥) (3.14) 

where 0 ≤ 𝜀 ≤ 1 denotes the mixture parameter, adjusting the occurrence probabilities 

of the two zero-mean Gaussian distributed probability density functions, 𝑓𝐺(𝑥) and 

𝑓𝐼(𝑥), with different variance values [73], [74].  

In this thesis, the behavior of IN is characterized using the Gaussian mixture model 

given by (3.14), which is an approximation of Middleton Class A noise. The Gaussian 

distributed noise components in the mixture are defined as 𝑓𝐺(𝑥)~𝑁(0, 𝜎𝑤
2 ) and 

𝑓𝐼(𝑥)~𝑁(0, 𝜅𝜎𝑧
2), where 𝜎𝑤

2  and 𝜅𝜎𝑧
2 represent the variances of the mixture 
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components in (3.14), with 𝜅 ≥ 1. Note that the variance of the IN depends on the 

level of Signal to Impulsive Noise Ratio (SINR) [36], [55], [56], [75]. Consequently, 

it is expected that the IN has severe impacts on mmWave channels and the mixture 

model adapted in (3.14) will be more realistic to indicate the behavior of the noise 

signal in the system [50]. 

3.3 Problem Formulation for Hybrid Precoding  

The main goal of this thesis is to design the hybrid precoders, 𝐅RF and 𝐅BB, and the 

hybrid decoders, 𝐖RF and 𝐖BB, to maximize the achievable spectral efficiency. The 

spectral efficiency 𝑅 for the hybrid precoding system given in Figure 3.1 can be 

derived as [8], [10], [11], [76] 

 
𝑅 = log2 det (𝐈𝑁s

+
𝜌

𝑁𝑠
𝐑𝑛

−1𝐖BB
𝐻 𝐖RF

𝐻 𝐇𝐅RF𝐅BB𝐅BB
𝐻 𝐅RF

𝐻 𝐇𝐻(𝐖RF𝐖BB)), (3.15) 

where 𝐑𝑛 denotes the noise covariance matrix after decoding that can be defined as 

 𝐑𝑛 = 𝜎𝑛
2𝐖BB

𝐻 𝐖RF
𝐻 𝐖RF𝐖BB. (3.16) 

Since optimizing the problem as a joint problem with hybrid precoder and decoder 

together is too complex, the design of transmitter and receiver are handled separately 

as proposed in  [8]. To simplify the maximizing problem of the spectral efficiency, the 

main problem is decoupled into two subproblems, and it is shown that the decoupled 

solution performs almost identical with the performance of a fully digital 

precoder/decoder that can be considered as the optimal solution. Both precoding and 

decoding problems have similar constraints and can be derived using the same 

mathematical expressions. Therefore, throughout this thesis, we will focus on the 

precoder design and the same approach will be applied to the decoder [8], [10], [11], 

[27]. 
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After some mathematical approximations shown in [8], the hybrid precoding problem 

can be approached as an optimization problem and the problem is translated to design 

𝐅RF and  𝐅BB that  can be formulated as 

 min
𝐅RF,𝐅BB

‖𝐅opt − 𝐅RF𝐅BB‖
𝐹

2
 

subject to ((𝐅RF)𝑖,𝑙) ∈ {𝐚BS(𝜙𝑖𝑙
BS, 𝜃𝑖𝑙

BS), for all 𝑖, 𝑙}, 

‖𝐅RF𝐅BB‖𝐹
2 = 𝑁s, 

(3.17) 

where 𝐅opt is referred for the optimal fully digital precoder. It has been pointed out 

that, minimizing the objective function (3.17) results to maximize the spectral 

efficiency [8], [10], [77].  

Furthermore, the optimal precoder 𝐅opt and optimal decoder 𝐖opt can be 

approximated from the singular value decomposition of the channel matrix 

 𝐇 = 𝐔∑𝐕𝐻. (3.18) 

 By considering, there are no hardware limitations and all the streams have equal 

power allocations, the first 𝑁s columns of  𝐔 and 𝐕 maximize the data rates which are 

related with the highest singular values in ∑. Thus, the optimal precoder 𝐅opt and 

optimal decoder 𝐖opt can be obtained by the first 𝑁s columns of the 𝐕 and 𝐔, 

respectively [8], [11]. Hence, 𝐅opt ∈ ℂ𝑁BS×𝑁s  and 𝐖opt ∈ ℂ𝑁MS×𝑁s can be 

approximated as [77], [78] 

 𝐅opt ≜ 𝐕(: , 1: 𝑁s) and 𝐖opt ≜ 𝐔(: , 1: 𝑁s), (3.19) 

which also satisfy the following constraints similar to (3.17) 

 ‖𝐅opt‖
𝐹

2
= 𝑁s and ‖𝐖opt‖

𝐹

2
= 𝑁s. (3.20) 

Besides, optimal precoders and decoders have a semi-unitary structure that can be 

justified as [11] 
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 𝐅opt
𝐻 𝐅opt = 𝐈𝑁s

 and  𝐖opt
𝐻 𝐖opt = 𝐈𝑁s

. (3.21) 

In this thesis, we propose a low complexity alternating minimization algorithm to solve 

the objective function (3.17). It is aimed to maximize the spectral efficiency and 

achieve a near-optimal performance that is close to a fully digital precoder which is 

defined as 𝐅opt. The problem will be considered as a matrix factorization problem with 

matrix variables 𝐅RF and 𝐅BB, and alternating minimization will be applied to this 

problem. Many researchers get attention to alternating minimization since this method 

can be applied for several optimization problems and achieves a near-optimal 

performance with different subsets of variables [79]–[83].  

In [9] and [10], several alternating minimization algorithms for hybrid precoding 

problem are investigated and the results are very promising. Therefore, our research 

mainly focuses on solving the (3.17) using an alternating minimization method to 

achieve low computational cost with a very close spectral efficiency performance 

compared with the competing methods in the literature. The proposed method based 

on Riemannian BB is discussed in Chapter 4, and since jointly optimizing the hybrid 

precoders 𝐅RF and 𝐅BB is heavily complex, the problem is decoupled into two 

subproblems. Two matrices are optimized alternately while fixing the other, and this 

will be the main idea throughout this thesis.  
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Chapter 4  

PROPOSED BARZILAI-BORWEIN ALGORITHM FOR 

HYBRID PRECODING 

The work presented in this chapter is inspired by the alternating minimization methods 

to solve the hybrid precoding problem given in (3.17). In the first stage, the digital 

precoder 𝐅BB is solved using a direct least square approach by fixing the analog 

precoder 𝐅RF and in the second stage, analog precoder 𝐅RF is calculated using 

optimization techniques by fixing 𝐅BB. To find a nearly optimal solution for 𝐅RF, 

several gradient algorithms are investigated, and it is discovered that the BB gradient 

algorithm [12] can be applied to reduce the computational cost of the well-known CG 

algorithm. 

In this chapter, first brief information about the gradient algorithms and conjugate 

gradient algorithm are given. After that, the conventional Euclidian BB [12]  gradient 

algorithm is discussed, and to ensure the global convergence, Riemannian BB [14] 

algorithm is presented. Finally, the two-staged proposed alternating minimization 

algorithm for the hybrid precoder design is illustrated and the complexity of the 

proposed algorithm is analyzed.  

4.1 Gradient Algorithms 

This section summarizes the gradient algorithms to solve the analog precoder problem 

of the alternating minimization algorithm for hybrid precoder design. Several 
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algorithms are developed and their performances are compared to give us a direction 

to built our proposed algorithm. Consider a system of linear equations 

 𝐀𝐱 = 𝐛, (4.1) 

where 𝐀 ∈ ℂn×n is a positive definite complex symmetric matrix, vector 𝐛 ∈ ℂn, and 

𝐱 denotes the solution that we want to achieve. Thus, the problem given in (4.1) is the 

same as solving the unconstrainted optimization problem [84] 

 min f(𝐱) 

𝐱 ∈ ℂ𝑛, 
(4.2) 

where f(𝐱) can be written as 

 
f(𝐱) =

1

2
𝐱𝑇𝐀𝐱 − 𝐱𝑇𝐛. (4.3) 

The f(𝐱) is convex and the gradient of the cost function can be expressed as 

 ∇f(𝐱) = 𝐀𝐱 − 𝐛. (4.4) 

We will investigate the gradient algorithms to solve (4.2) in the following subsections. 

First, Gradient Descent (GD) and Steepest Descent (SD) algorithms are evaluated. 

However, these algorithms converge very slow and have high computational 

complexity for real-time implementation of hybrid precoder design. Besides, these 

algorithms have no global convergence guarantee and it is highly possible to get stuck 

in a local minimum while searching for a solution set. This leads us to find a better 

algorithm and we found out that the CG algorithm can serve better for our needs. 

Research findings prove that the CG has a higher convergence speed when compared 

with the competing gradient algorithms. However, the CG algorithm is still highly 

complex for practical use since it requires finding the search direction for every 

iteration. Therefore, the BB gradient algorithm is examined in the next section to 

reduce the computational cost of the well-known CG algorithm. 
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4.1.1 Gradient Descent Method 

In the GD method, a negative gradient is selected as the search direction and the 

approximate minimizer is updated iteratively by the following equation 

 𝐱𝑖+1 = 𝐱𝑖 − 𝛼𝑖𝐠𝑖, (4.5) 

where 𝛼𝑖 represents the step size, and 𝐠𝑖 denotes the gradient of the cost function  

 𝐠𝑖 = ∇f(𝐱𝑖), (4.6) 

The negative gradient is used to move toward the local minimum that is stated as 

 f(𝐱𝑖+1) < f(𝐱𝑖). (4.7) 

Besides, the step size 𝛼𝑖 is selected in every iteration using a backtracking line search 

[85]. In the backtracking line search, the 𝛼𝑖 starts with unit step size and then will be 

reduced by a factor 0.5 until it satisfies the following Armijo-Goldstein condition 

 f(𝐱𝑖 − 𝛼𝑖𝐠𝑖) ≤ f(𝐱𝑖) − 𝜏𝛼𝑖∇f(𝐱𝑖)
𝑇𝐠𝑖, (4.8) 

where 𝜏 is chosen as 0.5 [84]–[87]. The summary for the GD method is given in 

Algorithm 1 [85] and 𝜂 represents the termination criterion in all the algorithms.  

Algorithm 1 Gradient Descent Method 

Input: 𝐀, 𝐛 and 𝐱0 = 𝐛  

1. Set 𝑖 = 0, and calculate 𝐠0 = ∇f(𝐱0) 

2. while ‖𝐠𝑖‖2>𝜂 

3. Using the backtracking line search to find the step size 𝛼𝑖 satisfying (4.8).  

4. Update the solution 𝐱𝑖+1 = 𝐱𝑖 − 𝛼𝑖𝐠𝑖. 

5. Calculate the gradient 𝐠𝑖+1 = ∇f(𝐱𝑖+1). 

6. 𝑖 = 𝑖 + 1 

7. end 
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4.1.2 Steepest Descent Method 

Although the GD method is a straightforward algorithm, the convergence rate is not 

good enough. Therefore, the SD method with an exact line search can be used to solve 

(4.2) to speed up the convergence rate. Since this is also a gradient method, the same 

approximate minimizer as shown in (4.5) is used in this algorithm. The step size 𝛼𝑖 

can be chosen using an exact line search as 

 
𝛼𝑖 =

𝐠𝑖
𝑇𝐠𝑖

𝐠𝑖
𝑇𝐀𝐠𝑖

. (4.9) 

The SD method is summarized in Algorithm 2 [84], and a slight improvement in the 

convergence speed is observed compared to GD.  

Algorithm 2 Steepest Descent Method 

Input: 𝐀, 𝐛 and 𝐱0 = 𝐛  

1. Set 𝑖 = 0, and calculate 𝐠0 = ∇f(𝐱0) 

2. while ‖𝐠𝑖‖2>𝜂 

3. Find the step size using an exact line search as 𝛼𝑖 =
𝐠𝑖

𝑇𝐠𝑖

𝐠𝑖
𝑇𝐀𝐠𝑖

.  

4. Update the solution 𝐱𝑖+1 = 𝐱𝑖 − 𝛼𝑖𝐠𝑖. 

5. Calculate the gradient 𝐠𝑖+1 = ∇f(𝐱𝑖+1). 

6. 𝑖 = 𝑖 + 1 

7. end 

In both Algorithm 1 and Algorithm 2, the matrix 𝐀 should be extremely well-

conditioned to have a reasonable convergence rate and to ensure global convergence. 

However, these algorithms are not preferable for practical use due to the slow 

convergence and there is a probability of converging into a local minimum rather than 

the global minimum [84], [85].  Thus, CG as a more sophisticated method is 
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investigated and it is proven that the convergence rate is much better than the other 

two gradient algorithms and it is known as global convergent [84], [86], [87].  

4.1.3 Conjugate Gradient Method 

The CG is a very efficient method since it requires much fewer iterations than the other 

descent algorithms to converge a critical point that can be considered the global 

minimum. In this section, the CG algorithm developed by Hestenes and Stieffel [88] 

is discussed to solve the optimization problem given in (4.2). The method starts with 

an initialization phase to compute the residual 𝐫0, and direction vector 𝐩0 which can 

be obtained by the formula 

 𝐩0 = 𝐫0 = 𝐛 − 𝐀𝐱0. (4.10) 

Then, the direction vector can be computed as 

 𝐩𝑖+1 = 𝐫𝑖+1 + 𝛿𝑖𝐩𝑖, (4.11) 

where 

 
𝐫𝑖+1 = 𝐫𝑖 − 𝛼𝑖𝐀𝐩𝑖 and 𝛿𝑖 =

𝐫𝑖+1
𝑇 𝐫𝑖+1

𝐫𝑖
𝑇𝐫𝑖

. (4.12) 

Besides, the step size 𝛼𝑖 is given by 

 
𝛼𝑖 =

𝐫𝑖
𝑇𝐫𝑖

𝐩𝑖
𝑇𝐀𝐩𝑖

. (4.13) 

Finally, the approximate solution can be estimated as 

 𝐱𝑖+1 = 𝐱𝑖 + 𝛼𝑖𝐩𝑖. (4.14) 

It should be noted that the residuals are mutually orthogonal and direction vectors are 

mutually conjugate, such that 

 〈𝐫𝑖, 𝐫𝑗  〉 = 0 and 〈𝐩𝑖, 𝐀𝐩𝑗 〉 = 0 for 𝑖 ≠ 𝑗. (4.15) 

The summary of the CG is given in Algorithm 3 [84] and the computational cost of 

this algorithm will be presented in section 4.4.  
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The CG method is a very efficient and robust tool to solve the optimization problem 

defined in (4.2). However, it is still highly complex for practical implementation due 

to the computation of search direction for each iteration. Therefore, the conventional 

Euclidain BB gradient algorithm presented in [12] is investigated to reduce the 

computational cost. Research findings state that the conventional BB algorithm is not 

global convergent and the global convergence of the BB algorithm is proved for the 

Riemannian optimization on the special case of Stiefel manifolds [89]. The authors in 

[14] proposed a BB algorithm defined over RM and this algorithm can be used to solve 

the optimization problem of analog precoder by ensuring the global convergence while 

reducing the complexity of CG.  

In the next section, the conventional Euclidean BB gradient algorithm is discussed to 

have a general understanding of the BB gradient method and then the Riemannian BB 

method is illustrated to solve the analog part of the alternating minimization problem. 

Algorithm 3 Conjugate Gradient Method 

Input: 𝐀, 𝐛 and 𝐱0 = 𝐛  

1. 𝐩0 = 𝐫0 = 𝐛 − 𝐀𝐱0 

2. while ‖𝐫𝑖‖2>𝜂 

3. Determine the step size 𝛼𝑖 =
𝐫𝑖

𝑇𝐫𝑖

𝐩𝑖
𝑇𝐀𝐩𝑖

. 

4. Compute the residual 𝐫𝑖+1 = 𝐫𝑖 − 𝛼𝑖𝐀𝐩𝑖 and then the coefficient 𝛿𝑖 =
𝐫𝑖+1

𝑇 𝐫𝑖+1

𝐫𝑖
𝑇𝐫𝑖

.  

5. Compute the direction vector 𝐩𝑖+1 = 𝐫𝑖+1 + 𝛿𝑖𝐩𝑖. 

6. Update the solution 𝐱𝑖+1 = 𝐱𝑖 + 𝛼𝑖𝐩𝑖. 

7. 𝑖 = 𝑖 + 1 

8. end 
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4.2 Euclidean Barzilai-Borwein Gradient Algorithm 

From the above discussions, it is known that the GD and SD methods have poor 

performance, slow convergence and conditioning plays an important role in their 

performance. Besides, CG performs almost perfectly with the help of a good 

convergence rate, but also this method is still highly complex and it is required to 

reduce the computation cost of the CG algorithm. In this regard, Barzilai and Borwein 

[12] developed a two-step size gradient method which is known as the BB gradient 

method and in this thesis, we called this method the Euclidean BB method.  

Euclidean BB method is also a gradient method and aims to solve the problem in (4.2) 

considering the quadratic function (4.3). Therefore, the approximate minimizer has the 

same form as the GD as shown in (4.5) and the gradient of the cost function can be 

denoted as  𝐠𝑖, same as (4.6).  

In this method, the step size 𝛼𝑖 is approximated using the secant equation in quasi-

Newton methods. The Hessian approximation of f at 𝐱𝑖 is denoted as the matrix 

 𝐃𝑖 = 𝛼𝑖
−1𝐈, (4.16) 

to satisfy the quasi-Newton property, such that 

 min‖𝐃𝑖+1𝐬𝑖 − 𝐲𝑖‖. (4.17) 

Hence, the step size 𝛼𝑖 is chosen as  

 
𝛼𝑖+1 =

𝐬𝑖
𝑇𝐬𝑖

𝐬𝑖
𝑇𝐲𝑖

. (4.18) 

The 𝛼𝑖 is derived from the information obtained at the points 𝐱𝑖 and 𝐱𝑖+1, and thus, 

the 𝐬𝑖 and 𝐲𝑖 can be expressed as [12], [13], [90]–[92]  

 𝐬𝑖 = 𝐱𝑖+1 − 𝐱𝑖 and 𝐲𝑖 = 𝐠𝑖+1 − 𝐠𝑖. (4.19) 



38 

 

Based on the above descriptions, the Euclidian BB algorithm can be summarized as 

shown in Algorithm 4 [12]. 

As it can be seen in Algorithm 4, there are no matrix calculations in the BB method, 

and the line search is only required for the initial condition 𝑖 = 0. Since there is no 

need to find search directions for every iteration like the other gradient methods, this 

reduces the computational cost and greatly speeds up the convergence speed of the 

algorithm [13], [91]. However, there is no guarantee for the global convergence of the 

Euclidian BB method and there is a possibility to converge into a local minimum point. 

Therefore, the researchers in [14] have adapted a RM optimization to the problem, and 

the BB method's global convergence is ensured. In the next section, the background 

information about the Riemannian BB method will be given and the analog precoder 

part of the proposed alternating minimization algorithm will be optimized based on 

this adaptation.  

Algorithm 4 Euclidian Barzilai-Borwein Gradient Method 

Input: 𝐀, 𝐛 and 𝐱0 = 𝐛  

1. Set 𝑖 = 0, and calculate 𝐠0 = ∇f(𝐱0) and find the step size 𝛼0 by Armijo 

backtracking line search that satisfies (4.8). 

2. while ‖𝐠𝑖‖2>𝜂 

3. Update the solution 𝐱𝑖+1 = 𝐱𝑖 − 𝛼𝑖𝐠𝑖. 

4. Calculate 𝐠𝑖+1 = ∇f(𝐱𝑖+1). 

5. Calculate 𝐬𝑖 and 𝐲𝑖 using (4.19) 

6. Set 𝛼𝑖+1 using (4.18) 

7. 𝑖 = 𝑖 + 1 

8. end 
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4.3 Riemannian Barzilai-Borwein Algorithm 

Globally convergent BB methods are taking attention from the researchers to solve the 

optimization problem in (4.2), which is defined in Euclidian space. Euclidean BB 

algorithms are mostly preferred for their simplicity and low computational cost for 

each iteration. Besides, the performance of the practical implementation is nearly 

optimal for a good choice of step size [14], [91], [93]. However, the global 

convergence of the BB methods for different setups has always been a problem for 

researchers.  

The authors in [94] proved the global convergence of the BB method for strictly 

convex quadratic functions, on the other hand, the property is not guaranteed for the 

nonquadratic case if there is no globalization strategy [95]. Since the cost function has 

a nonmonotone behavior due to the BB steps, the decrease condition for the cost 

function is generally not efficient at each step and the strategy becomes to set the cost 

functions to repeat maximum N steps. Research findings state that the convergence 

rate of the BB method does not change for large N values, which will make the BB 

method a good candidate to compete with CG [95], [96].  

To generalize the global convergence of the BB method defined in the Euclidian space, 

a more general setting is considered in [14] and RM optimization is adapted to the 

problem. Thus, the cost function is defined over the RM ℳ𝑐𝑐
𝑚 in which 𝐱 ∈ ℳ𝑐𝑐

𝑚 and 

the optimization problem can be stated as 

 min f(𝐱) 

𝐱 ∈ ℳ𝑐𝑐
𝑚. 

(4.20) 

In numerical optimization, iterative algorithms aim to compute a descent direction 

using the negative gradient of the objective function  f(𝑥) for a given point 𝑥 and move 
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in the direction of the negative gradient until found a moderate decrease in f. In 

manifold optimization, the concept of moving along a tangent vector without leaving 

the manifold is called retraction and retraction can be used to map a vector from the 

tangent space to the manifold [32]. Therefore, the approximate minimizer on the 

manifold is modified as 

 𝐱𝑖+1 = Retr𝐱𝑖
(−𝛼𝑖𝐠𝑖), (4.21) 

where Retr denotes the retraction on ℳ𝑐𝑐
𝑚 and can be defined as [10] 

 
Retr𝐱𝑖

(−𝛼𝑖𝐠𝑖) = vec [
(𝐱𝑖 − 𝛼𝑖𝐠𝑖)

|𝐱𝑖 − 𝛼𝑖𝐠𝑖|
] (4.22) 

where vec( . ) represents the vectorization. Besides, the vectors 𝐬𝑖 and 𝐲𝑖 are modified 

for the adaptation of the RM. The increment 𝐱𝑖+1 − 𝐱𝑖 is updated as 

 𝛕𝑖 = −𝛼𝑖𝐠𝑖, (4.23) 

that belongs to the tangent space 𝑇𝐱𝑖
ℳ𝑐𝑐

𝑚 and it is transported to 𝑇𝐱𝑖+1
ℳ𝑐𝑐

𝑚 [14]. The 

vectors 𝐬𝑖 and 𝐲𝑖 require the operations from different tangent spaces which can be 

handled by mapping two tangent vectors from different tangent spaces. In this regard, 

the transport of gradient from 𝐱𝑖 to 𝐱𝑖+1 can be stated as [10] 

 𝑇𝐱𝑖→𝐱𝑖+1
(𝐠𝑖) = 𝐠𝑖 − Re{𝐠𝑖 ∘ 𝐱𝑖+1

𝐻 } ∘ 𝐱𝑖+1, (4.24) 

and the modified 𝐬𝑖 can be specified as 

 𝐬𝑖 = 𝑇𝛕𝑖
(𝛕𝑖) = 𝑇𝐱𝑖→𝐱𝑖+1

(−𝛼𝑖𝐠𝑖) = −𝛼𝑖𝑇𝐱𝑖→𝐱𝑖+1
(𝐠𝑖). (4.25) 

Then 𝐲𝑖 is computed by subtracting two gradients from two different tangent spaces 

and the updated equation can be written as 

 𝐲𝑖 = 𝐠𝑖+1 − 𝑇𝐱𝑖→𝐱𝑖+1
(𝐠𝑖) = 𝐠𝑖+1 + 1

𝛼𝑖
⁄ 𝑇𝛕𝑖

(𝛕𝑖). (4.26) 

Finally, the step size for the Riemannian BB method is chosen as [14] 

 
𝛼𝑖+1 =

〈𝐬𝑖 , 𝐬𝑖〉𝐱𝑖+1

〈𝐬𝑖, 𝐲𝑖〉𝐱𝑖+1

. (4.27) 

, 
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Based on the above descriptions, the summary for the Riemannian BB algorithm to 

solve the analog precoding problem is given in Algorithm 5 [14]. Brief information 

about the matrix manifolds can be found in Chapter 2, and more details about the 

manifold optimization can be found in [32]. 

This section summarizes the Riemannian BB method that will be used to solve the 

second stage of the proposed alternating minimization algorithm. In the second 

stage, 𝐅RF will be optimized using Algorithm 5 and the following section will 

introduce the proposed two-staged alternating minimization method to solve the 

objective function (3.17). 

Algorithm 5 Riemannian Barzilai-Borwein Gradient Method [14] 

Input: 𝐅opt, 𝐅BB and 𝐱0 ∈ ℳ𝑐𝑐
𝑚  

1. Set 𝑖 = 0, and calculate 𝐠0 = grad f(𝐱0) and find the step size 𝛼0 by Armijo 

backtracking line search that satisfies (4.8). 

2. while ‖𝐠𝑖‖2>𝜂 

3. Calculate 𝐱𝑖+1 = Retr𝐱𝒊
(−𝛼𝑖𝐠𝑖) and 𝐠𝑖+1 = grad f(𝐱𝑖+1) using (2.9). 

4. Calculate 𝐬𝑖 and 𝐲𝑖 using (4.25) and (4.26), respectively. 

5. Set 𝛼𝑖+1 using (4.27) 

6. 𝑖 = 𝑖 + 1 

7. end 

4.4 Proposed Alternating Minizimiation Algorithm 

The proposed algorithm is made up of two stages to solve (3.17), where digital 

precoder 𝐅BB and analog precoder 𝐅RF are alternately achieved with the principle of 

alternating minimization by fixing the other. Digital precoder 𝐅BB is obtained with a 

direct least square approach, while the Riemannian BB algorithm is used to optimize 

the analog precoder 𝐅RF. 
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4.4.1 Digital Baseband Precoder Design 

In the first stage, the digital precoder 𝐅BB is obtained with a fixed analog precoder 𝐅RF. 

Hence, the problem (3.17) for the 𝐅BB design can be rewritten as  

 min
𝐅BB

‖𝐅opt − 𝐅RF𝐅BB‖
𝐹

2
. (4.28) 

This equation can be solved by using a well-known least square solution as 

 
𝐅BB = 𝐅RF

⟊ 𝐅BB, (4.29) 

where the term 𝐅RF
⟊   denotes the pseudo-inverse of the analog precoder that can be 

expressed as [10] 

 𝐅RF
⟊ = (𝐅RF

𝐻 𝐅RF)−1𝐅RF
𝐻 𝐅opt. (4.30) 

4.4.2 Analog Precoder Design based on Riemannian BB Method 

In the second stage, analog precoder 𝐅RF can be optimized similarly with a fixed 

𝐅BB considering the unit modulus constraint |(𝐅RF)𝑖,𝑘| = 1. Thus, the analog precoder 

can be optimized using the following problem 

 min
𝐅RF

‖𝐅opt − 𝐅RF𝐅BB‖
𝐹

2
, (4.31) 

where Algorithm 5 is applied to the problem to find a nearly optimal solution of the 

𝐅RF. In the algorithm, the desired solution vector 𝐱 is denoted as [10], [11] 

 
𝐱 = vec(𝐅RF). (4.32) 

Besides, the Euclidian gradient of the cost function in (4.31) can be derived as 

 
∇f(𝐱) = -2(𝐅BB

𝐻 ⨂𝐈𝑁BS
)[vec(𝐅opt) − (𝐅BB

𝐻 ⨂𝐈𝑁BS
)𝐱], (4.33) 

where ⨂ denotes the Kronecker product which is used to vectorize the second term of 

(4.31), vec(𝐱𝐅BB) [97].  
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4.4.3 Two-Staged Hyrbid Precoder Design 

The proposed alternating minimization algorithm is developed with the help of the 

above descriptions, and the Riemannian BB method shown in Algorithm 5. Hybrid 

precoder is designed to solve the problems (4.28) and (4.31) in two stages iteratively. 

The digital precoder 𝐅BB is normalized at the end of the algorithm to satisfy the power 

constraint of (3.17) and the normalization can be shown as 

 
𝐅BB̂ =

√𝑁𝑠

‖𝐅RF𝐅BB‖𝐹
𝐅BB. (4.34) 

The proposed alternating minimization algorithm based on the Riemannian BB 

method is shown in Algorithm 6.  

Algorithm 6 Riemannian BB Based Alternating Minimization Algorithm for 

Hybrid Precoding 

Input: 𝐅opt  

1. Set 𝑖 = 0, and initialize 𝐅RF(0) with random phases. 

2. while (termination criterion ≥ 𝜼) 

3. Calculate 𝐅BB(𝑖) = 𝐅RF
⟊ (𝑖)𝐅BB(𝑖) for a fixed 𝐅RF(𝑖). 

4. For a fixed 𝐅BB(𝑖), optimize 𝐅RF(𝑖 + 1) by using Algorithm 5. 

5. 𝑖 = 𝑖 + 1 

6. end 

7. Normalize the digital baseband precoder at the transmitter end as shown in (4.34). 

To avoid the increase in each iteration, the objective function (3.17) is minimized at 

Step 3 and Step 4, and it is known that the objective functions are non-negative. 

Therefore, the proposed algorithm is guaranteed to converge in a critical point to solve 

the hybrid precoding problem [10]. The complexity of the proposed algorithm is 

analyzed in the next subsection and the simulation results in Chapter 6 demonstrate 

that the proposed algorithm achieves nearly optimal performance with a less 

computational cost compared with the CG-based algorithm given in [10]. 
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4.4.4 Complexity Analysis 

In this section, the complexity of the proposed algorithm is analyzed and compared 

with the other alternating minimization algorithms. The number of operations required 

to compute the hybrid precoders (or decoders) for the proposed alternating 

minimization algorithm based on Riemannian BB and the competing methods are 

illustrated in Table 4.1. For a given number of transmitter (or receiver) antennas, RF 

chains, and transmitted symbols, Table 4.1 displays the computational cost of the 

proposed algorithm and competing methods. Since the complexity provided by the 

number of additions and subtractions has minor effects, the computations are focused 

on the number of multiplications and divisions (no. of mult. & div.). As it can be 

observed,  Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [86], [98] has the 

highest complexity with 𝑂(𝑁BS
3𝑁RF

3) and it cannot be applied for practical use. As 

previously stated, the OPP algorithm has the lowest computational complexity given 

by 𝑂(𝑁BS𝑁RF𝑁s). Although both CG and BB methods have the same complexity 

𝑂(𝑁BS𝑁RF
2𝑁s), simulation results in Chapter 6 demonstrate that the computational  

Table 4.1: Computational Cost of the Proposed and Competing Methods 

 Number of Multiplications & Divisions 

BB 𝑁RF (4𝑁BS(𝑁RF𝑁s + 𝑁s + 1) +
1

3
(𝑁RF

2 + 3𝑁RF − 1)) 

BFGS 

 

𝑁RF (
𝑁BS(2𝑁BS

2𝑁RF
2 + 7𝑁BS𝑁RF + 2𝑁RF𝑁s + 2𝑁RF + 3𝑁s + 3)

+
1

3
(𝑁RF

2 + 3𝑁RF − 1)
) 

CG 𝑁RF (4𝑁BS(𝑁RF𝑁s + 𝑁RF + 𝑁s + 4) +
1

3
(𝑁RF

2 + 3𝑁RF − 1)) 

OPP 𝑁RF(2𝑁BS𝑁s + 𝑁RF𝑁s + 2𝑁RF
2 + 𝑁s

2) 
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cost of BB is much less than CG. The dominant terms to approximate the time 

complexities of different algorithms are chosen considering the fact that  𝑁BS ≫ 𝑁RF 

and 𝑁BS ≫ 𝑁s in the hybrid precoding system. 
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Chapter 5 

PROPOSED ADAPTIVE FUZZY LOGIC-BASED 

FILTER 

In mmWave systems, the noise is generally modeled using the GN model. On the other 

hand, research findings state that the ambient noise may act non-Gaussian in many 

physical channels, and the Gaussian mixture model with additive IN as shown in (3.14) 

is a more realistic approach to express the noise in mmWave channels. Furthermore, 

although the effects of GN can be reduced by applying the hybrid decoders to the 

received signal, the IN component should be removed before passing the signal 

through the decoders.  Therefore, in this thesis, a fuzzy logic-based filter is proposed 

to mitigate the effects of IN and the filter design is introduced in this chapter. 

5.1 Receiver Model for Impulsive Noise Environment 

The receiver model for the IN environment is shown before in Figure 3.2, where the 

proposed adaptive fuzzy median filter is added to the hybrid decoder to minimize the 

effects of the outlier amplitudes. The outlier amplitudes can be considered as the IN 

and it is aimed to minimize the effects of IN by ordering the samples based on the 

fuzzy rank. The filter alone is working very well for the IN environment. However, it 

is observed that the filter is suppressing the information while reducing the effects of 

the noise for the GN environment. Thus, a novel threshold mechanism is adapted to 

the design to detect the received packages with IN. A modified Z-score as suggested 

in [99] is applied to the received signal to detect the outlier amplitudes and it is  
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Figure 5.1: Block diagram of the fuzzy median filter at the receiver. 

observed that the proposed decoder with the filter that selects a proper threshold is 

suitable for GN and IN environments. The proposed fuzzy median filter design with 

the threshold mechanism is explained in the next subsection. 

5.1.1 Fuzzy Median Filter Design 

The fuzzy median filter is added in front of the receiver and the received signal 𝐫 =

[𝑟(1), 𝑟(2), … , 𝑟(𝑁MS)] denoted in (3.4) is passed through the filter to reduce the 

effects of the IN. It should be noted that the noise term of the 𝐫 is represented as the 

Gaussian mixture model as shown in (3.14). Thus, the block diagram of the proposed 

fuzzy median filter with the threshold mechanism is shown in Figure 5.1 and the 

effects of the outlier amplitudes are minimized, which will lead to suppressing IN 

components. 

The filtering process starts with the threshold mechanism to detect the received 

packages with IN and the details about the threshold mechanism will be explained in 
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the following subsection. The outlier amplitudes will be detected by the threshold and 

the signals with the IN components will pass through the fuzzy median filter.  Firstly, 

the received signal is divided into real and imaginary parts, and then the statistical 

measures of both parts of the received signal are computed as 

 𝑚𝑒𝑑𝑅 = 𝑚𝑒𝑑(|Re{𝐫}|), 𝑚𝑒𝑑𝐼 = 𝑚𝑒𝑑(|Im{𝐫}|) (5.1) 

 𝑠𝑡𝑑𝑅 = 𝑠𝑡𝑑(|Re{𝐫}|), 𝑠𝑡𝑑𝐼 = 𝑠𝑡𝑑(|Im{𝐫}|), (5.2) 

where the median of the real and imaginary parts of the 𝐫 is denoted as 𝑚𝑒𝑑𝑅 and 

𝑚𝑒𝑑𝐼, respectively, and the standard deviation of the real and imaginary parts of the 𝐫 

is represented as 𝑠𝑡𝑑𝑅 and 𝑠𝑡𝑑𝐼, respectively. The real and imaginary parts of the 𝑟(𝑘) 

and the statistic components are then used in the fuzzifier to calculate the Gaussian 

membership degrees. Thus, the fuzzifier for real and imaginary parts can be derived 

separately as 

 𝐹𝑅(𝑘) = exp (
−||Re{𝑟(𝑘)}|−𝑚𝑒𝑑𝑅|

2

2𝑠𝑡𝑑𝑅 )  (5.3) 

 𝐹𝐼(𝑘) = exp (
−||Im{𝑟(𝑘)}|−𝑚𝑒𝑑𝐼|

2

2𝑠𝑡𝑑𝐼 ), (5.4) 

where 𝐹𝑅(𝑘) and 𝐹𝐼(𝑘) denote the real and imaginary parts of the fuzzifier which give 

the membership degrees of the received signals 𝑟(𝑘) by checking their distances with 

the median. The fuzzifiers are distributed between 0 and 1 based on the membership 

degrees of 𝑟(𝑘) and then they are applied to the received signal elementwise to order 

each received signal based on the fuzzy rank. Hence, the elements of the received 

vectors after applying the fuzzy filter can be shown as 

 𝑟𝑅(𝑘) = Re{𝑟(𝑘)} ∘ 𝐹𝑅(𝑘)  (5.5) 

 
𝑟𝐼(𝑘) = Im{𝑟(𝑘)} ∘ 𝐹𝐼(𝑘), (5.6) 
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where 𝑟𝑅(𝑘) and 𝑟𝐼(𝑘) represent the elements of the real and imaginary parts of the 

fuzzy median filter output, respectively [54]–[56], [100]. Finally, 𝑟𝑅(𝑘) and 𝑟𝐼(𝑘) are 

combined in the last stage as 

 
𝑟𝐹(𝑘) = 𝑟𝑅(𝑘) + 𝑗𝑟𝐼(𝑘), (5.7) 

where 𝑟𝐹(𝑘) denotes the output of the fuzzy median filter that can be shown in the 

vector form as 

 
𝐫𝐹 = [𝑟𝐹(1), 𝑟𝐹(2), … , 𝑟𝐹(𝑁MS)]. (5.8) 

After passing the received signal vector through the fuzzy median filter, the output of 

the filter is fed into the hybrid decoders, 𝐖RF and 𝐖BB, to obtain the vector 𝐲 as shown 

in (3.6). 

5.1.2 Threshold Mechanism to Detect Outlier Amplitudes 

A threshold mechanism is designed to detect the outlier amplitudes considered as the 

IN, and the fuzzy filter is only applied to the received signals with IN samples. The 

optimal threshold value is selected to enable the proposed filter to perform adaptively 

in both GN and IN environments. Thus, the Z-score method and the modified Z-score 

are tested to detect outlier amplitudes in mmWave systems. It is observed that the 

performance of the simple Z score is poor and the modified Z score can detect the 

outlier amplitudes with very high precision. In this section, both methods are 

introduced and the proposed threshold mechanism based on the modified Z-score is 

given.  

5.1.2.1 Z-Score Method to detect Outlier Amplitudes 

The Z-Score method is a well-known and commonly used method to detect outlier 

amplitudes. In this method, the fundamental property of the normal distribution is 

used, such that if the distribution of r is 𝑁(𝜇, 𝜎2), then the vector 𝐳 = (𝑟 − 𝜇) 𝜎⁄  can 
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be distributed as  𝑁(0, 1). Thus, the Z-score for each received signal 𝑟(𝑘) can be 

expressed as 

 
𝑍(𝑘) =

(𝑟(𝑘) − mean(𝐫))

𝑠
 (5.9) 

where the denominator coefficient 𝑠 can be considered as the standard deviation of 𝐫 

that is denoted as 

 

𝑠 = √
∑ (𝑟(𝑘) − mean(𝐫))2𝑁MS

𝑘=1

𝑁MS − 1
. (5.10) 

The amplitudes will be labeled as outliers if the absolute value of 𝑍(𝑘) is greater than 

3 [99]. Although this method is very simple to implement, the performance is poor in 

detecting the outliers for small data sets.  Besides, this method only uses the mean and 

standard deviation as estimators, which can be affected by a few outliers (even one 

outlier). Therefore, alternative Z-score methods are developed to ensure resistant 

estimators, and the modified Z-score with better estimators is proposed to identify 

outlier amplitudes [99].  

5.1.2.2 Modified Z-Score to Detect Outlier Amplitudes 

To detect the outliers with high precision, the estimators should be selected carefully 

and they need to be stable for minor changes in the samples. This kind of estimator has 

a high breakdown point. The breakdown point of an estimator is the largest set of 

samples that can be substituted with the random values by not causing an infinite 

estimated value. Since the mean and standard deviation have high breakdown points, 

they are replaced with the median and Median Absolute Deviation (MAD), 

respectively [99]. Thus, the modified Z-score to detect IN samples is given by 

 
𝑀(𝑘) =

0.6745(𝑟(𝑘) − 𝑚𝑒𝑑(𝐫))

MAD
 (5.11) 

where MAD can be calculated as 

, 
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MAD =
1

𝑁MS
∑|𝑟(𝑘) − 𝑚𝑒𝑑(𝐫)|

𝑁MS

𝑘=1

. (5.12) 

In this method, the constant 0.6745 is used in (5.11) since 𝔼[MAD] = 0.6745𝜎, and  the 

potential outlier amplitudes can be detected when the absolute value of 𝑀(𝑘) is higher 

than 3.5 [99]. 

This method is still not too complex and performs very accurately to label the outlier 

amplitudes. Based on the study in [99], the optimal threshold is selected as 3.5 and the 

samples are considered as IN for |𝑀(𝑘)| > 3.5. Simulation results demonstrate that 

the optimal threshold is selected properly, and the proposed fuzzy median filter with 

threshold mechanism mitigates the IN better than the competing methods in both IN 

and GN environments.  
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Chapter 6 

SIMULATION RESULTS 

In this chapter, the performance of the proposed Riemannian BB-based algorithm is 

evaluated with different aspects and compared with the existing algorithms. Besides, 

numerical simulation results of the proposed decoder with the fuzzy median filter are 

demonstrated for different scenarios in IN environment.  

Throughout the simulations, channel parameters in (3.8) are selected as 𝑁cl = 5 

clusters, and 𝑁ray = 10 rays and it is assumed that the perfect channel information is 

known. The arrival and departure angles are distributed randomly which follows the 

uniform distribution in [0, 2π] and the angular spread is set as 10. Furthermore, each 

cluster is organized to have unit average power as 𝜎𝛼,𝑖
2 = 1, and the SNR in the receiver 

side is defined as SNR = 𝜌 𝜎𝑛
2⁄ . The system is assumed to operate at 28 GHz carrier 

frequency with a bandwidth of 100 MHz, and all the simulation results are executed 

in MATLAB 2018b while each simulation point is averaged over 1000 independent 

realizations. The antenna elements are placed with a half wavelength distance and the 

number of BS antennas and MS antennas is assumed to be 𝑁BS = 144 and 𝑁MS = 36, 

respectively. Besides, the phases of the analog precoder 𝐅RF is initialized to follow a 

uniform distribution in [0, 2π] for the alternating minimization algorithms. 
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6.1 Simulation Results for GN Environment 

In this section, simulations are performed to find out the spectral efficiency, BER, 

coverage probability, and no. of mult. & div. of the proposed Riemannain BB method 

under GN defined in (3.5) together with the competing methods.  

Firstly, the spectral efficiency performance is evaluated using (3.15) for various SNR 

values, where the number of transmitted symbols and RF chains are chosen as 𝑁s =

𝑁RF = 3. Based on that assumption, Figure 6.1 illustrates the spectral efficiency versus 

SNR under GN for the proposed Riemannian BB method and the competing methods. 

It can be seen that the spectral efficiency performances of the CG, BFGS, OPP, GP 

[101], and the proposed BB algorithms are almost identical. On the other hand, the 

Penalty Function (PF) and Sequential Quadratic Programming (SQP) [86] algorithms 

have poorer performance, and there is a gap between the rest of the algorithms. It 

should be also noted that the Optimal Precoder (OP) is serving as a benchmark that 

represents the performance of the fully digital precoding, and all the algorithms except 

PF and SQP are performing very close to the optimal scenario. In addition, Figure 6.2 

demonstrates the spectral efficiency performance of the proposed and competing 

methods with respect to the different number of RF chains. In this figure, the number 

of transmitted symbols and SNR value are set to be 𝑁s = 6 and SNR = 0, respectively. 

The GP algorithm is not included since the authors in [101] simulate their results for 

the settings presented in Figure 6.1. Here, although the CG, BFGS, OPP, and the 

proposed BB method have a very close spectral efficiency performance for the equal 

case scenario of the number of transmitted symbols and RF chains, 𝑁s = 𝑁RF, the 

performance of the OPP algorithm is not improving like the other algorithms while  
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Figure 6.1: Spectral Efficiency versus SNR under GN. 

 
Figure 6.2: Spectral Efficiency versus the number of RF chains under GN. 

increasing the number of RF chains. It is observed that the performance of the CG, 

BFGS, and the proposed BB algorithm is approaching the performance of the OP when 

the difference between the 𝑁RF and  𝑁s is increased, and based on this result, we can 
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claim that the performances of these algorithms are same as the OP for 𝑁RF ≥ 2𝑁s. 

Moreover, PF and SQP algorithms still have poor performances, and it is shown that 

these algorithms perform better than the OPP algorithm for 𝑁RF > 10.  

Since BFGS is too complex for practical implementation and PF and SQP methods 

performing very poorly compared to the other algorithms, these algorithms are not 

included in the rest of the figures. To have a better understanding of the performances 

of the competing methods, additional performance parameters such as BER, coverage 

probability, and no. of mult. & div. are evaluated. In this regard, Figure 6.3 plots the 

coverage probability defined as 𝒫(𝑅 > 𝑇ℎ) for SNR = 0, 𝑁s = 4, and 𝑁RF = 5, where 

R denotes the achievable rate and 𝑇ℎ represents the arbitrary threshold value. It can be 

seen that the coverage probability of the proposed BB method is almost identical with 

the CG with a close performance to OP, while OPP achieves slightly poorer 

performance. Besides, Figure 6.4 shows the BER performance of the BB method with 

the competing methods for various SNR values. The same setup is used as the Figure 

6.3 and it is observed that the CG method is performing better than the other alternating 

minimization methods with the lowest BER. Additionally, the proposed BB method 

has a close performance to CG and achieves nearly optimal performance.  

Figure 6.5 depicts the spectral efficiency performance for different numbers of 

transmitter and receiver antennas. In Figure 6.5 (a), the number of MS antennas is 

fixed to be 36, and the same setup is used as Figure 6.3 and Figure 6.4. It is shown that 

the spectral efficiency performance of all the algorithms is improving, while the 

transmitter antennas are increasing. Furthermore, Figure 6.5 (b) has the same setup 

except for the number of BS antennas which is fixed to be 144, and it is observed that   
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Figure 6.3: Coverage probability versus threshold values under GN. 

 
Figure 6.4: BER versus SNR under GN. 

the spectral efficiency is also increasing for the higher number of receiver antennas. 

Both figures show that the BB and CG methods have equivalent performance, but OPP 

has a lower performance. Based on the outcomes from Figure 6.5, it can be said that 
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the implementation of massive MIMO systems can improve spectral efficiency 

performance, and increasing the antennas has a direct effect on the performance. Also, 

it can be seen that the OPP algorithm only achieves a close performance to the other 

algorithms and the OP for the equal number of transmitted symbols and RF chains. 

Therefore, the OPP method has an unrealistic restriction for the real-time practical 

implementation, and we focus on the CG and BB algorithms to find the optimal 

solution for hybrid precoding problem in terms of complexity.   

Figure 6.6 displays the no. of mult. & div. required for the proposed BB algorithm and 

the competing CG method for several 𝑁BS, and 𝑁RF in which the numerical results are 

calculated with the help of Table 4.1. Both methods are simulated considering that the 

number of MS antennas are assumed to be 𝑁MS = 36, and the number of transmitted 

symbols is selected as 𝑁s = 4. In this regard, Figure 6.6 (a) plots the no. of mult. & 

div. versus the 𝑁BS for 𝑁RF = 5, and Figure 6.6 (b) plots no. of mult. & div. versus the 

𝑁RF for 𝑁BS = 144. It is remarked that to provide the almost same performance with 

CG, the proposed BB method requires less computational cost. Besides, the 

computational gap between the two algorithms is increasing for the higher number of 

𝑁BS and 𝑁RF. For a better understanding of the dramatic difference between the two 

algorithms, the improvement of the no. of. mult. & div. of the proposed BB algorithm 

over the CG under several scenarios, and the numerical representation of the no. of. 

mult. & div. for both algorithms are illustrated in Table 6.1 and Table 6.2, respectively. 

It is indicated that the improvement in the computational cost is constant for the 

different number of BS antennas, while it is slightly decreasing for the higher number 

of RF chains.  
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Figure 6.5: (a) Spectral efficiency versus the number of BS antennas for 𝑁MS = 36, 

and (b) the number of MS antennas for 𝑁BS = 144 under GN. 

   

Figure 6.6: (a) The number of mult. & div. versus the number of BS antennas, and 

(b) the number of mult. & div. versus the number of RF chains. 

 

 

(a) (b) 

(a) (b) 



59 

 

Table 6.1: Improvement of Computational Cost of BB over CG 

𝑁RF 𝑁BS Improvement (%)* 𝑁BS 𝑁RF Improvement (%)* 

5 

121 24.22 

144 

4 24.98 

144 24.22 6 23.66 

169 24.22 8 22.89 

Table 6.2: Numerical Representation of the Computational Costs 

𝑁RF = 5, 𝑁BS = 144 BB BFGS CG OPP 

No. of Mult. & Div. 
7.207 

× 104 

7.502 

× 108 

9.511 

× 104 

6.190 

× 103 
 

* Improvement = 
no.  of mult.  & div.(CG)− no.  of mult.  & div.(BB)

no.  of mult.  & div.(CG)
× 100. 

6.2 Simulation Results for IN Environment 

In this section, the numerical simulation results of the proposed decoder with the fuzzy 

median filter to mitigate IN under different scenarios are demonstrated, and the results 

are compared with the methods proposed in [50]. BER and the spectral efficiency 

performances of the system are calculated under the IN using the Gaussian mixture 

noise model expressed in (3.14), where the proposed BB algorithm is applied to solve 

the hybrid precoders and decoders. It is assumed that the 𝑁s = 1 symbol with 256 

packets are transmitted through 𝑁RF = 6 RF chains, and the transmitted signal is 

modulated using 16-QAM, besides, the SINR is set to be -10 dB.   

Figure 6.7 shows the BER performance of the system with a fuzzy median filter for 

different SNR values in the Gaussian channel (𝜖 = 0). It is observed that the  
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Figure 6.7: BER versus SNR in Gaussian channel (𝜖 = 0) for fuzzy filter with 

threshold and without threshold. 

  

Figure 6.8: BER versus noise threshold in Gaussian channel (𝜖 = 0) and IN channel 

(𝜖 = 0.02) (a) SNR = 6 dB (b) SNR = 20 dB. 

  

(a) (b) 
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performance of the system is very poor when there is no threshold used in the filter 

and the system without the fuzzy filter is served as a benchmark. Thus, a threshold 

mechanism is developed as suggested in Chapter 5 and applied together with the fuzzy 

median filter to identify the IN samples. In Figure 6.8, the BER performance of the 

system with fuzzy median filter is tested for different threshold values at 6 dB and 20 

dB SNR values to select the optimal threshold. To achieve a maximum gain in GN and 

minimum loss in IN with 𝜖 = 0.02, the threshold can be chosen between 2 and 4. 

Therefore, we have decided to choose the optimal threshold as 3.5 considering the 

theoretical proofs given in [99]. After threshold implementation, the fuzzy median 

filter performs almost the same as the benchmark as illustrated in Figure 6.7. 

Figure 6.9 demonstrates the SNR versus BER of the system with different IN 

mitigation filters in IN channel for 𝜖 = 0.02 and 𝜖 = 0.04. It is indicated that the fuzzy 

median filter with an optimal threshold performs much better than the blanking and 

clipping filters for both IN channels. Besides, the clipping filter achieves the worst 

performance among the competing methods, and the system without any IN filter has 

a very deficient performance. Furthermore, the BER performance of the competing 

filters in IN channel for various epsilon (𝜖) values are investigated. In this regard, BER 

versus epsilon at SNR values 5 dB, 10 dB, and 20 dB are presented in Figure 6.10. The 

results show that the proposed fuzzy median filter has the best performance for each 

epsilon and SNR value while the gap with the competing methods is increasing for 

low epsilon values at 20 dB. 

The main aim of this thesis is to maximize the spectral efficiency of the mmWave 

hybrid massive MIMO system. Hence, the spectral efficiency of the proposed fuzzy  
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Figure 6.9: BER versus SNR in IN channel (a) (𝜖 = 0.02), and (b) (𝜖 = 0.04) 

Figure 6.10: BER versus epsilon for SNR values 5 dB, 10 dB, and 20 dB 

median filter with hybrid precoding based on the Riemannian BB algorithm is 

evaluated using (3.15) and compared with the competing IN filters. Figure 6.11 plots 

(a) (b) 
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Figure 6.11: Spectral efficiency versus SNR in IN channel (a) (𝜖 = 0.02), and (𝜖 =
0.04) 

the spectral efficiency performance of the system with fuzzy median filter in the 

receiver for various SNR values under IN, where 𝜖 = 0.02 and 𝜖 = 0.04, and the 

simulation results are compared with the competing algorithms. It is shown that the 

spectral efficiency results are parallel to the previous BER results in which the 

proposed fuzzy median filter achieves a better performance than the competing 

methods, and the performance is improved enormously compared with the system 

without any IN filter implementation.  

The simulation results clearly show that the fuzzy median filter with the optimal 

threshold successfully reduces the IN effects and achieves a better BER and spectral 

efficiency than the existing algorithms. It is also observed that the IN samples distort 

the received signal extremely and should be suppressed before passing through the 

hybrid decoders with the help of IN filters. Additionally, outlier amplitudes are 

(a) (b) 
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detected using the optimal threshold and this allows the system to work in both GN 

and IN environments.  
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Chapter 7 

CONCLUSIONS AND FUTURE WORK  

7.1 Conclusions 

This thesis mainly focuses on maximizing the spectral efficiency of the mmWave 

hybrid massive MIMO systems using alternating minimization techniques. The 

alternating minimization method is made up of two stages, where the digital baseband 

precoder is obtained in the first stage using a least-square solution, and in the second 

stage, the Riemannian BB method is proposed to solve the analog RF precoder 

problem. Additionally, the Gaussian mixture model with additive IN is employed to 

express the noise in mmWave systems and a fuzzy median filter is designed to mitigate 

the IN. 

In this thesis, a new approach is built for hybrid precoding design in mmWave MIMO 

systems under GN and it is aimed to achieve nearly optimal performance with less 

computational cost than the competing methods. In this regard, the two-staged 

alternating minimization algorithm based on the Riemannian BB method is proposed. 

Simulations are performed to calculate the spectral efficiency, BER, and the coverage 

probability of the proposed method together with the existing methods in the literature. 

It is shown that the proposed method requires less computational cost than the well-

known CG algorithm to achieve almost the same performance. Besides, in spite of 

higher complexity than the OPP method, the proposed method performs much better 

than the OPP method when the number of transmitted symbols and RF chains are not 
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equal to each other. The restrictions that occurred in the OPP algorithm is avoided and 

it is observed that the spectral efficiency performance of the proposed algorithm is 

approaching the fully digital precoders defined as OP for 𝑁RF ≥ 2𝑁𝑠. Moreover, the 

performance of the BB method is much better than the PF and SQP while obtaining an 

identical performance with CG, BFGS, and GP algorithms. Since the proposed BB 

method has less complexity than the CG and BFGS, this method can be preferred for 

practical implementation. 

The mmWave hybrid MIMO system is also investigated under a different noise model 

considering the IN effects. Additive IN is added to the received signal using the 

Gaussian mixture model and the Riemannian BB algorithm is applied to solve the 

hybrid precoders and decoders under IN. It is indicated that the IN should be 

suppressed before passing through the decoders. Therefore, a fuzzy median filter with 

a novel threshold mechanism is designed to reduce the effects of the IN in mmWave 

massive MIMO systems. The proposed filter is attached at the receiver before the 

hybrid decoders to detect the outlier amplitudes considered as the IN. The proposed 

filter detects the received signals with IN with the help of the threshold mechanism 

and it is illustrated that the system is working for both GN and IN environments. The 

optimal threshold is selected by testing the filter for various threshold values and it is 

observed that the threshold is selected properly considering the theoretical proofs. BER 

and spectral efficiency of the fuzzy median filter are evaluated and compared with the 

clipping and blanking filters. The simulation results demonstrate that the fuzzy median 

filter performs better than the clipping and blanking filters in terms of detection and 

mitigation of IN samples. In addition, the performance of the system is improved 

enormously when it is compared with the results without any IN filter. 
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7.2 Future Work 

In the literature, the mmWave MIMO systems are mostly investigated for single-user 

scenario and there is a need for further investigation in multi-user environment. The 

multi-user interference effects can be taken into consideration and the alternating 

minimization methods can be applied to cancel the interference. It will be interesting 

to adapt the proposed Riemannian BB algorithm to the multi-user and a similar 

approach as shown in [102] can be used to solve the multi-user hybrid precoding 

problem with the help of alternating minimization techniques.  Besides, convergence 

analysis of different alternating minimization techniques can be evaluated and the 

hybrid precoder can be designed considering the channel training and feedback. 

Finally, more IN mitigation filters can be examined and compared with the proposed 

fuzzy logic-based filter to improve the performance of the mmWave system under IN. 
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