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ABSTRACT  

In this work, asymptotic and Ulam-Hyers stabilities in two cases linear and nonlinear 

time-delay systems of linear impulsive constrains are studied. The linear parts of the 

impulsive systems are defined by non-permutable matrices. To obtain solution for 

linear impulsive delay systems with non-permutable matrices in explicit form, current 

notion of impulsive delayed matrix exponential is presented. Using the representation 

formula and norm estimation of impulsive delayed matrix exponential, sufficient 

conditions for the asymptotic and Ulam-Hyers stabilities are obtained. 

Keywords: Impulsive Delay Equation; Delayed Matrix Exponential; Stability. 
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ÖZ 

 Bu çalışmada, asimtotik ve Ulam-Hyers kararlılıkları iki durumda, lineer ve lineer 

olmayan lineer impalsif kısıtların zaman gecikmeli sistemleri üzerinde çalışılmuştır. 

İmpalsif sistemlerin lineer kısımları permutable olmayan matrislerle tanımlanmıştır. 

Açık formdaki permutable olmayan lineer impalsif gecikmeli sistemlere çözüm 

bulmak için mevcut impalsif gecikmeli matris üstel kavramı sunulmuştur. Temsil 

formülü ve impalsif gecikmeli matris üstelinin norm tahmini kullanılarak, aismptotik 

ve Ulam-Hyers kararlılıkları için yeter koşulları elde edilmiştir.  

Anahtar Kelimeler: Impalsif Gecikmeli Denklem; Gecikmeli Matris Ustel; 

Kararlılık. 
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Chapter 1 

INTRODUCTION 

Mathematical analysis, handles the integrals and derivatives of arbitrary order. This 

field is related to many other fields of analysis, such as integral equations, differential 

equations, function theories, and others. The great number of articles in the related 

literature and conferences held about mathematical analysis prove that it is a constantly 

developing field. The related literature includes a wide variety of studies in the form 

of articles, book chapters, conferences, etc. that include studies about differential 

equations and all related applications. These studies have been famous to the extend it 

has become a trend in the studies of the beginning of the previous century.  

 

Nevertheless, the wide amount of study on this field has not resulted in any 

monographs or books that can thoroughly examine the latest developments and 

achievements in this field. Having scattered information in different book chapters 

may be a gap as the new learners in the mathematical field may not be able to find a 

unified resource that explains in one book that starts with the main concepts’ definition 

and ends with examples that apply the mathematical rules of differential equations 

problems on the reality of nature. which was even in chemistry rather than a pure 

mathematical field. Since the fractional calculus is widely used in many different 

fields, such as engineering, physics, chemistry, it is good to have this book. 

Nevertheless, mathematical students may not be able to understand the chemistry 
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concepts as well. Hence, there is a need for a book devoted for mathematics students 

that applies mathematical problems using the fractional calculus.  

 

Furthermore, there are a few thesis studies devoted for examining the mathematical 

analysis, such as Marke [27], and there are a few historical outline papers published 

about this topic, such as Davis, Mikolas Ross, XX PREFACE. [27], one reason behind 

this lack of studies may be because of the rapidly developing fractional integer-

differentiation theory. The absence of such a monograph has become crucial for the 

calculus development. Furthermore, the scarcity of studies is accompanied with some 

mistakes in the little studies published in this issue, which makes it difficult for novice 

learners to have a full idea about this theory from one resource. There are many studies 

in the field of differential equations, in which the studies reach the same results using 

different methods. Nevertheless, there are little research conducted for the sake of 

comparing these varied approaches.  

 

The recent developments in both theory and practice of math has mainly depended on 

many factors. One of the most important factors is derivatives and intergrals of the 

positive integer order. One more essential factor is the mathematical functions, such 

as gamma, beta, special functions, and many others. Furthermore, there are other 

factors that can be considered as a development between theory and practice in the 

field of mathematics. This includes integer-differential operators, such as singular and 

non-singular kernels.  

 

This monograph aims to examine the general calculus as well as the general fractional 

calculus of variable order. It also aims to examine the aforementioned types in relation 
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to other functions. The study also aims to show the rheological and anomalous 

relaxation models according to their complexity. This study is crucial for many 

stakeholders including, engineers, chemists, mathematicians, physicians, and 

scientists. 

 

Both integrals and their derivatives order are normal in analysis, but the fractional 

order form their peculiar features. There is a need for investigating the modifications 

of these features, which result from the being in different situations.  

 

The field of differential equations has been a very old field of science, dating back to 

three centuries. It was very common among the mathematicians’ community. 

Nevertheless, it was not that much popular among the other fields of knowledge, such 

as science, engineering, etc. This field is considered to be unique since it has the ability 

to describe the reality of nature better than other fields. Thus, it can be used in fields 

other than mathematics to solve their problems, as it is the case with engineering. With 

differential equations, engineers are able to add another dimension of their 

understanding to the basic nature of their fields. Rather, it is extended to have more 

variables that can describe the essence results of engineering and science. Hence, the 

rigorous mathematics is kept to its minimal with the new uses of mathematical calculus 

presented above.  

 

As it was stated before, the goal of calculus mathematics is to explain the reality of 

nature in a better way. Suppose we have normal derivative 
d

dt
to represent the rate of 

accumulation or loss. This can mathematically speaking be gain rate minus loss rate at 

infinitesimal bounded space. If this infinitesimal space has some traps or has many 
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different sizes, there will be differences that need explanation. It is known that many 

biological phenomena involving thresholds, bursting rhythm models in medicine and 

biology, optimal control models in economics, pharmacokinetics and frequency 

modulated systems exhibit the impulse effect. 

 

Thus impulsive differential equations, that is, differential equations involving impulse 

effects, appear as a natural description of observed evolution phenomena for several 

real word problems. In recent years, qualitative properties of the mathematical theory 

of impulsive differential equations have been developed by a large number of 

mathematicians; see [1–12]. 

 

Since time delay exists in many fields in our society, systems with time delay have 

received significant attention in recent years. In [4–6], the authors considered the 

stability of impulsive differential equations with finite delay, and got some results. 

Systems with infinite delay deserve study because they describe a kind of system 

present in the real world. For example, in a predator–prey system the predation 

decreases the average growth rate of the prey species, linearly, with an infinite delay—

for the predator cannot hunt prey when the predators are infants, and predators have to 

mature for a duration of time (which for simplicity in the mathematical analysis has 

been assumed to be infinite) before they are capable of decreasing the average growth 

rate of the prey species. And there are some results on systems with infinite delay; see 

[13,14] and references therein. However, to the best of the authors’ knowledge, results 

for impulsive infinite delay differential equations are rare. Functional Equations 

Stability was first raised by Ulam at Wisconsin University, who asked the following 

question: ‘‘Under what conditions does there exist an additive mapping near an 
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approximately additive mapping?’’ Answering Ulam’s question was first done by 

Hyers in 1940 through the Banach spaces. Therefore, the stability was since then called 

Ulam-Hyers Stability.  

 

The theory of functional differential equations has been attracted by many researchers. 

Delay phenomena have application in control engineering, biology, medicine, 

economy and other sciences. Many processes are characterized by quick state changes. 

The time of event changes are comparatively short with the total duration of the 

complete process. For the theory of impulsive differential equations, the reader can 

refer to the monograph of Samoilenko et al. [25] and references theory, automatic 

engines and engineering therein. On the other hand, phenomena with time delays can 

be appeared in system systems. Recently, in [3] a concept of delayed matrix 

exponential is introduced to give a formula of solutions for linear time-delay 

continuous systems with commutative matrices. In [12], [13] a similar idea is used to 

find an explicit representation of solutions of linear discrete delay systems. Generally, 

it is not easy to reformulating of the solution explicitly without knowing impulsive 

delayed fundamental matrix for impulsive linear time-delay differential equations. In 

[14] authors adopted the idea of [3], [12], [13] to get the formulation of solutions to 

linear time-delay continuous impulsive systems. To do so they introduced impulsive 

delayed matrix concept for commutative matrices. These basic results are very useful 

to deal with control theory, iterative learning control and stability analysis for time-

delay continuous\discrete and impulsive equations; For more details on the recent 

advances on the stability (Ulam-Hyers) of differential equations, one can see the 

monographs [22], [23], [24]. However, there is no paper in the literature searching an 

explicit solution of linear impulsive time-delay differential equations with non-
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commutative matrices. Due to the double impact of impulses and time-delay, it is an 

interesting task to get a representation for a solution of a time-delay impulsive 

differential equation with non-commutative matrices and study some stability concepts 

for these equations. 

Motivated by the above articles, we consider reformulating of solutions of a linear 

time-delay impulsive differential equation of the way: 

( ) ( ) ( ) ( )  

( ) ( ) ( ) ( )
( ) ( )

, 0, , h 0,

, 1, 2,....., ,

, 0,

y t Ay t By t h f t t T t t
k

y t y t y t C y t k p
k k k k k

y t t h t

+ −

 = + − +   


 = − = =


= −  


                          (1) 

Where are constant matrices A,B,C  n n

k
,  ( )1 ,0 , nC h − ,  )( )0,T , ,nf C

and  
1



=k k
t is a sequence that satisfies

0 1 10 ... ,+=     =p pt t t t T for T 0 ,and 

( ) ( )
0

limk ky t y t



+

+

→
= + , ( ) ( )k ky t y t− = , 

Moreover, we investigate exponential and Ulam-Hyers stabilities of the following 

semi linear time-delay impulsive differential equation: 

 

( ) ( ) ( ) ( )( )  

( ) ( ) ( ) ( )
( ) ( )

, , 0, , h 0,

, 1,2,....., ,

, 0,

y t Ay t By t h f t y t t T t t
k

y t y t y t C y t k p
k k k k k

y t t h t

  = + − +   


 = − = =


= −  


                                    (2)      

The main contributions are as follows: 

 • We introduce a novel impulsive delayed matrix exponential function (impulsive 

delayed exponential) and give its norm estimate. Using this impulsive delayed 

exponential and the variation of constants method, we give an explicit representation 

for solutions of impulsive time-delay initial value problems with linear parts defined 

by no permutable matrices. 
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• Based on the presentation of solutions and a norm estimate of the impulsive delayed 

exponential, we obtain sufficient conditions for Ulam-Hyers and asymptotic stabilities. 

In the next section (chapter 3), we introduce some, and concepts the impulsive delayed 

matrix exponential and show that it is the fundamental (Cauchy) matrix for linear time-

delay impulsive differential equations. Next, we give explicit formulae for solutions 

to linear homogeneous/nonhomogeneous time-delay impulsive differential equations 

via an impulsive delayed matrix exponential. In Chapter 5, we present a norm estimate 

to the impulsive delayed matrix exponential under the condition that A is an 

exponentially stable matrix and examine the exponential stability of nonlinear 

impulsive time-delay system. Chapter is devoted to Ulam-Hyers stability of the system 

(2). then in chapter 7 we have some results of existence and uniqueness of chapter 8 

completed this work by introducing numerical examples. 
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Chapter 2 

PRELIMINARIES 

In this section, we introduce notations, definitions, and preliminary facts that are 

used throughout this thesis. 

Schaefer’s fixed point theorem: 

Let X  be a Banach space and :N X X→ be a completely continuous operator. If the 

set ( ) : ,  for some 0,  1y X y Ny  =  =  is bounded, then N  has a fixed point. 

Arzela Ascoli theorem 

Consider a sequence of real-valued continuous functions  :nf n   defined on a 

closed and bounded interval [a, b] of the real line. If this sequence is uniformly 

bounded and uniformly equicontinuous, then there exists a subsequence  :nkf k   

that converges uniformly. 

 

Banach’s fixed point theorem: 

Let C  be a non-empty closed subset of a Banach spaceX . Then any contraction 

mapping T  from C  into itself has a unique fixed point. 
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Gronwalls inequality: 

 For 0   0 t t , let
00

( ) ( ) ( , ) ( ) ( ) ( )
k

t

k k

t t tt

x t t g t s x s ds t x t 
 

 + +   where, ( ) ,   k t k are non-

decreasing functions for 0  t t  ,  )( )0 , , + a PC t R   is non-decreasing, and ( ),  g t s  is a 

continuous nonnegative function for 0,    t s t   and is non-decreasing with respect to t 

for any fixed 0 s t  Then, for, 0 t t

0 0

( ) ( ) (1 ( ))exp ( , ) .
 

 
 +  

 
 

 
k

t

k

t t t t

x t a t t g t s ds  

Definition 1. Let A be n n  matrix, then the matrix exponential is: 

 
2 3

2 3

0

.....
1! 2! 3! j!

j
At j

j

t t t t
e I A A A A



=

= + + + + =   

 

 

Lemma 1. Let A be n n  constant matrix, then =At AtAe e A  

Proof. 
!0

j
tjAtAe A A
jj


= 

=

2 3
2 3 .....

1! 2! 3!

t t t
A I A A A
 
 = + + + +
 
 

  

                     
2 3

2 3 4 .....
1! 2! 3!

= + + + +
t t t

IA A A A   

                    
2 3

2 3 ..... .
1! 2! 3!

 
 = + + + + =
 
 

t t t AtI A A A A e A . 

 

Lemma 2.  Let A be 

n n

constant matrix. Then, 
( )+

=
A t sAt Ase e e   

Proof.
! !0 0

 
=  

= =

j j
t sj jAt Ase e A A
j jj j

                             

                      
2 3 2 3

2 3 2 3..... .....
1! 2! 3! 1! 2! 3!

t t t s s s
I A A A I A A A
   
   = + + + +  + + + +
   
   
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2 3 2 3
2 3 2 3..... .....

1! 2! 3! 1! 2! 1! 3! 1!
= + + + + + + + +

t t t s t s t s
I A A A A A A A A  

2 2 2 2
2 2 2 2 .....

1! 2! 1! 2! 2!
+ + + +

s s t s t
A A A A A  

By reordering the sum 

( ) ( ) ( ) ( )

1 2 2 12 2
.....

j! 1 !1! 2 !2! 2! 2 ! 1! 1 ! j!0

− − − − 
 = + + + + + +
 − − − −=  

j j j j j j
t t s t s s t s t sj

A
j j j jj

 

( ) ( ) ( ) ( )

1 2 2 2 2 1

0

j! j! j! j! j!
.....

j! j! 1 !1! 2 !2! 2! 2 ! 1! 1 ! j!

− − − −

=

 
= + + + + + +  − − − − 


n j j j j j j

j

A t t s t s s t s t s

j j j j
 

( )0 1 1 2 2 2 2 2 2 1 1

0

.....
j!


− − − − − −

=

= + + + + + +
j

j j j j j j j j j

j j j j j j

j

A
C t C s t C t s C s t C s t C s

 

( ) ( )

0 j!


+

=

= + =
j

j A t s

j

A
t s e

 

where   

( )

!

!n!
=

−

n

j

j
C

j n
 

 

Lemma. Let 
1

A  and 
2

A  be commutative matrices, (i.e.
1 2 2 1

=A A A A ). Then,

1 1
2 2

=
A t A t

A e e A ,    t 0                                                     

Proof. 1
2 1 2!0


= 

=

jA t tj
e A A A

jj

 
2 3

2 3 .....
1 1 1 21! 2! 3!

 
 = + + + +
 
 

t t t
I A A A A                                                            
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2 3
2 3

2 1 2 1 2 1 2 .....
1! 2! 3!

t t t
IA A A A A A A= + + + + .

2 3
2

2 2 1 2 1 2 1

3 .....
1! 2! 3!

t t t
A A A A A A A= + + + +

3

3
2

2

2 1 2 1 2 1 2 .....
1! 2! 3!

t t t
A A A A A A A= + + + +

2 3
2 3

2 1 1 1 .....
1! 2! 3!

t t t
A I A A A

 
= + + + + 

 
 

1
2 1 2

0 j!

j
j

j

t A t
A A A e



=

= =  

Note: Our work on the general case when the matrices are not commutative. 

Lemma. If  hB e  , +  then 
( )−


B t h he e  , +t  

Theorem. Delayed matrix exponential is the fundamental matrix of solutions of the 

matrix differential equation with pure delay 

( ) ( ) = −y t y t h
, 0  h t   where A is n n constant matrix. 

Proof. By differentiate of delayed matrix exponential 

( )
( ) ( ) ( )( )2 3

2 3
1

.....
1! 2! 3! k!

k

At k

h

t k ht h t ht
e I A A A A

 − −− −  = + + + + +
 
 

 

( ) ( ) ( )( )
( )

1 12

2 3
11

.....
1! 1! 2! k 1 !

k

k
t k ht h t h

A A A A

−

− −− −
= + + + + +

−
 

( ) ( ) ( )( )
( )

11 2

1
12 .....

1! 2! k 1 !

k

k
t k ht h t h

A I A A A

−

−
 − −− −
 = + + + +
 −
 

 

( )A t h

hAe −=  



12 

 

Chapter 3 

IMPULSIVE DELAYED MATRIX EXPONE 

Let ( (0 1 1 1 1
 0,   ,....., ,   ,0, , ,.., , .

p p p p p p
J t J t t J tT T t TJ

− − +
= =  =       = 

=


 Further, define

( ) ( )  = = →  =, : : y , ,m 0,1,2,....., ,n n n n

m
PC J y J C J p and there exist the left limit

( )my t−  and right limit ( )my t+ . It’s clear that   is a Banach space endowed with norm 

defined by  =  =sup ( ) : , 1,2,3,..., .
kPC

y y t t J k m  

We introduce the spaces:                                                                                              

 1( , ) ( , ), ( , )=  n n nC J y C J y C J .                                                                          

 1( , ) : : ( , )n n nPC J y J y PC J= →  . 

Definition 2. Let ( ),C J denotes the Banach space of all continuous functions from J  

into  with the norm 

 sup ( ) : ,y y t t J

= 

 

 

 

1

1

1

( , ) ( , ), ( , )

( , ) : : ( , )

( , ), ( , )

                     and there exist ( ) and ( ),m 0,1, ,

                     with ( ) ( )} ( , ) : : (

− +

−

=  

= → 

 

=

= = → 

n n n

n n n

n n

k k

n n

k k

C J y C J y C J

PC J y J y C J

y C J y C J

y t y t p

y t y t PC J y J y C J , )n

 

( ) ( ) 

( ) ( )

, : : y , ,m 0,1,2,....., ,

,

n n n n

m

m m

PC J y J C J p

y t y t− +

= →  =
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Clearly, ( , )PC J is a Banach space with the norm sup ( )t JPC
y y t= .                         

Moreover, ( ) ( ) ( )= 1 ,    {   ,   :   PC J R y PC J R y t is continuous everywhere except for 

some k
t  at which ( )+ 

k
y t  and ( )− 

k
y t  exist and ( ) ( )+ = = ,    0,..., }

k k
y t y t k m Is a Banach 

space with the norm  1  max , . 
PC PC PC

y y y=  

Definition 7. A function  ( ) ( )1 1,0 ,  ,   − n ny C h PC J is said to be a solution of (1) if 

y  satisfies the equation ( ) ( )y =t t , 0−  h t and the equation (1) on J. 

Definition 8.  A function ( ) : →B n n

he t is called delayed matrix exponential if 

( )

( ) ( )( )
( )

2

2

0, , 0

, 0,

1
.... , 1 ,

2 !

B

h

k

k

t h h

e t I h t

t k ht h
I Bt B B k h t kh

k




−   − 


= −  


− −−
+ + + + −  

       

where ,B ,0n nk   and I  are the zero and identity matrices, respectively. 

For k 0 we define 

( ) ( )
0 , ,

−
= 

A t s
X t s e t s  

( )
( ) ( )0

1

, , ,
,

0, ,

t
A t r

s h

e BX r h s dr s h t
X t s h

s h t

−

+


− + 

+ = 


+ 


                              

( )
( ) ( )( )1 , 1 , ,

,

0, ,

t
A t r

k

k s kh

e BX r h s k h dr s kh t
X t s kh

s kh t

−

−

+


− + − + 

+ = 


+ 


                     

Definition 9. Let ,  n nA B . Delayed perturbation of matrix exponential function 

, :  →A B n n

hX  

generated by ,A B  is defined by 
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( )
( ) ( ) ( ) ( )

,

1

0, 0,

,s ,

, .... , , k 1 , 0,1, 2,

A B

h

A t s

k

t s

X t I t s

e X t s h X t s kh h t s k h k
−

 −  − 


= =


+ + + + +  −  + =

          (4)  

 

Lemma 1.  Let ( ), , sA B

hX t  be defined as in equation (4). Then the following holds true: 

   (i)  If 0A= , then ( ) ( ) ( ), ,0 , 1= −   +A B B

h hX t e t h kh t k h . 

(ii) If 0B = , then ( ) ( ), ,s
−

=
A t sA B

hX t e . 

(iii) If =AB BA , then ( ) ( ) ( ) ( ) ( )1,

1,s , , 1 ,
A t s B t h s Ah BA B

h hX t e e B e kh t h k h
− − − −

= =  −  +  

 

Proof. (i) If 0A = , then 

( )0 ,X t s I= , ( ) ( )1 ,
+

+ = = − −
t

s h

X t s h Bdr B t h s , 

( ) ( )
( )

2

2 2

2

2

2
, 2 2

2!

t

s h

t h s
X t s h B r h s dr B

+

− −
+ = − − = , 

( ) ( )
( )

( )
1

, ,s 1
k!

kt
kk k

k

s kh

t kh s
X t s kh B r kh s dr B kh t s k h

−

+

− −
+ = − − = +   + + . 

So, 

( )
( )

( ),

0

,s ,s 1
j!=

− −
= +   + +

j
k

A B j

h

j

t jh s
X t B kh t s k h . 

 

(ii) If 0B = , then 

( ) ( ) ( )0 , , , 0, 1,2,....,
−

= + = =
A t s

kX t s e X t s kh k  

and 

( ) ( ), ,s
−

=
A t sA B

hX t e . 
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(iii) By our assumption A and B are commutative, consequently
( ) ( )− −

=
A t s A t s

e B Be . 

Using this property, we obtain 

( ) ( )
0 ,

−
=

A t s
X t s e , ( ) ( ) ( ) ( ) ( )1 , ,

t
A t r A r h s A t s Ah

s h

X t s h e Be dr e Be t h s
− − − − −

+

+ = = − −  

( ) ( ) ( ) ( ) ( ) ( )
2

2 2 2

2

2

2
, 2 2

2!

− − − − −

+

− −
+ = − − =

t
A t r A r h s A t r A h

s h

t h s
X t s h e Be B t h s dr e B e  

. ( ) ( ) ( )
( ), ,s 1

k!

k

A t s k Akh

k

t kh s
X t s kh e B e kh t s k h

− −
− −

+ = +   + +  

It follows that 

( ) ( ) ( ) ( ),

0 0

,s , '
j!

j
k k

A t sA B j Ajh

h j

j j

t jh s
X t X t s jh e B e e

− −

= =

− −
= + =   

( ) ( ) ( )1
, 1

A t s B t h s

he e s kh t s k h
− − −

= +   + +  

Lemma is proved. 

 

 Lemma 2. For all ,t s , we have 

( ) ( ) ( ), , ,, , ,A B A B A B

h h hX t s AX t s BX t h s
t


= + −


.  

 

Proof. The proof is based on the following formula: 

( ) ( )( )1 , 1

t
A t r

j

s jh

e BX r h s j h dr
t

−

−

+


− + −

   

( ) ( )( ) ( )( )1 1, 1 , 1
t

A t r

j j

s jh

A e BX r h s j h dr BX t h s j h
−

− −

+

= − + − + − + − . 

Indeed, for ( )1kh t s k h −  + , we have 

( ) ( ),

0

, ,
k

A B
h j

j

X t s X t s jh
t t =

 
= +

 
  
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                 ( ) ( )( )1
0

, 1
tk

A t r

j
j s jh

e BX r h s j h d r
t

−

−
= +


= − + −


   

                  ( ) ( )( ) ( )( )1 1
0

, 1 , 1
tk

A t r

j j
j s jh

A e BX r h s j h dr BX t h s j h
−

− −
= +

 
 
  

= − + − + − + −   

                 ( ) ( )( )1
0 0

, , 1
k k

j j
j j

A X t s jh B X t h s j h−
= =

= + + − + −   

                ( ) ( )1
0 0

, ,
k k

j j
j j

A X t s jh B X t h s jh−
= =

= + + − +  . 

The proof is finished. 

 

Now, we introduce an impulsive analogue ( ), , ,A B C

hY t s  of the delayed matrix 

exponential ( ), , sA B

hX t .Since in equation (1) impulse has the linear form ( ) ( ) =k k ky t C y t

impulsive Cauchy matrix has to contain the matrices , , kA B C , that is why we introduce 

the following impulsive delayed matrix exponential function. 

 

 Definition 10. Let , ,  n n

kA B C be constant matrices. Impulsive delayed matrix 

exponential function ( ), , sA B

hY t  is defined by 

( )

( ) ( ) ( )

, ,C

, , , ,

0, ,

,s ,

,s , ,s
k

A B

h

A B A B A B C

h h k k h k

s t t

t s

Y t I t s

X t X t t C Y t
 







= =

 +




                                         (5) 

It should be emphasized that in commutative case that is, if , , kA B C are commutative 

matrices impulsive delayed matrix exponential function was introduced in (11).  

 

Definition 11. If , , kA B C   are commutative matrices, then impulsive delayed matrix 

exponential function is defined as follows: 
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( ) ( ) ( ),s ,s
A t s

V t e X t h
−

= +  

( ) ( ) ( ) ( )11

1,s ,s ,k

k

B t h tB t h s Ah

h k h k

s t t

X t h e C e X t h B e
− −− − −

 

+ = + + = .          (6)  

 

Lemma 3. Let ( ), , sA B

hY t be defined by (5). If , , kA B C are commutative, then

( ) ( ), , ,s ,sA B C

hY t V t= . 

 

Proof. Since =AB BA  then by Lemma (1). We have ( ) ( ) ( )1, ,s
− − −

=
A t s B t h sA B

h hX t e e .Thus     

( ) ( ) ( ) ( ), , , , , ,,s ,s , ,s
k

A B C A B A B A B C

h h h k k h k

s t t

Y t X t X t t C Y t
 

= + 

( ) ( ) ( ) ( ) ( )11 , , ,sk k

k

A t t B t h tA t s B t h s A B C

h h k h k

s t t

e e e e C Y t
− − −− − −

 

= + 

( ) ( ) ( ) ( ) ( )11 , , ,sk k

k

B t h t A s tA t s B t h s A B C

h k h h k

s t t

e e C e e Y t
− − −− − −

 

 
= +  

 
  

( ) ( ) ( ) ( )11 ,sk

k

B t h tA t s B t h s

h k h k

s t t

e e C e X t h
− −− − −

 

 
= + +  

 
  

 
( ) ( ) ( ), ,

A t s
e X t s h V t s

−
= + =                                 .  

 

Lemma 9. Impulsive delayed matrix exponential function ( ), , ,sA B C

hY t satisfies 

( ) ( ) ( ), , , , , ,,s ,s t h,s ,A B C A B C A B C

h h h kY t AY t BY t t
t


= + − 


                (7) 

( ) ( ) ( ), , , , , ,,s ,s ,sA B C A B C A B C

h k h k k h kY t Y t C Y t+ = +                        (8) 

( ) ( ) ( ), , , , , ,,s ,s ,sA B C A B C A B C

h k h k k h kY t Y t AC Y t
t t

+ 
= +

 
            (9) 
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Proof. 

Step 1: We verify that ( ), , ,sA B C

hY t satisfies the differential equation (7). 

( ) ( ) ( ) ( ) ( ), , , , , , ,,s ,s , ,s ,
k k

A B C A B A B A B C A B

h h h k k h k h k k

s t t s t t

Y t X t X t t C Y t X t t
t t t t


   

   
= + +

   
                                  

( ) ( ) ( ) ( ), , , , ,,s , ,s ,
k k

A B A B A B C A B

h h k k h k h k k

s t t s t t

AX t AX t t C Y t AX t t 
   

= + +   

                      . ( ) ( ), , , ,C,s ,sA B C A B

h hAY t BY t h= + −  

Step 2: We verify the equality (8). Note that ( ) ( ), ,,s ,s+ =A B A B

h hX t X t . Then 

( ) ( ) ( ) ( ), , , , , ,,s ,s ,s ,s
k

A B C A B A B A B C

h m h m h m k h k

s t t

Y t X t X t C Y t+ + +

 

= +    

                  ( ) ( ) ( ), , , ,,s , t ,s
k

A B A B A B C

h m h m k k h k

s t t

X t X t C Y t− +

 

= +  ( ) ( ), , ,, ,sA B A B C

h m m m h mX t t C Y t++      

                   ( ) ( ), , , ,,s ,sA B C A B C

h m m h mY t C Y t−= +          

Step 3: The proof of (9) is similar to that of (8). 

This ends the proof. 
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Chapter 4 

REPRESENTATION OF SOLOUTION 

In this part of our work, we are looked for an explicit formula for the solutions of the 

linear impulsive inhomogeneous delay system fostering the traditional ways to find 

solution of a linear ordinary differential equations.  

 

At the beginning, two explicit formulae of solutions to linear impulsive homogeneous 

delay system are driven. 

Theorem 2. Let  ( )1 ,0 , nC h − . Then the solution of the initial value problem (1) 

with 0=f  has the form 

( ) ( ) ( ) ( ) ( ) ( )
0

, , , ,, ,s ,  
−

= − − + −  −  
A B C A B C

h h

h

y t Y t h h Y t s A s ds t h               (10) 

( ) ( ) ( ) ( ) ( )
0

, , , ,,0 0 ,s h , t 0 
−

= + + 
A B C A B C

h h

h

y t Y t Y t B s ds                  (11) 

 

Proof. To prove the formula (10), we looked for the solution in the form 

( ) ( ) ( ) ( ) ( )
0

, , , ,, 0 ,s , 0
−

= − + 
A B C A B C

h h

h

y t Y t h g Y t g s ds t                   (12)  

Where ( )  : ,0− → ng t h is a continuous differentiable function and furthermore, 

condition ( ) ( ) , 0= −  y t t h t  should be hold 

( ) ( ) ( ) ( ) ( ) ( )
0

, , , ,, 0 ,s 
−

= − + =
A B C A B C

h h

h

y t Y t h g Y t g s ds t , 0−  h t  
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If = −t h , we have 

( ) ( ) ( ) ( ) ( ) ( )
0

, , , ,, 0 ,s 0 
−

− − + − = = −
A B C A B C

h h

h

Y h h g Y h g s ds g h  

Thus ( ) ( )0 = −g h .On the interval 0−  h t , one can easily derive that 

( ) ( ) ( ) ( ) ( )
0

, , , ,, ,s 
−

 
= − − + + 

 
 
t

A B C A B C

h h

h t

t Y t h h Y t g s ds  

( ) ( ) ( ) ( )
0

A t h A t s

h

e h e g s ds
− −

−

= − +  . 

Differentiating the above equality, we have 

( ) ( ) ( ) ( ) ( ) ( )
0

A t h A t s

h

t Ae h A e g s ds g t 
− −

−

 = − + + . 

         ( ) ( )= +A t g t . 

Therefore, 

( ) ( ) ( )g t t A t = − . 

Next, we prove equivalence of (10) and (11). To do this, we use the integration by 

parts formula 

( ) ( ) ( ) ( ) ( ) ( )
0 0

0
, , , , , ,t,s ,s t,s

s
A B C A B C A B C

h h hs h
h h

Y s ds Y t s Y s ds
s

  
=

=−
− −


= −

   

                           ( ) ( ) ( ) ( ), , , ,t,0 0 , = − − −A B C A B C

h hY Y t h h  

                            ( ) ( ) ( ) ( )
0 0

, , , ,t,s t,s 
− −

+ + + 
A B C A B C

h h

h h

Y A s ds Y h B s ds  

Thus, we obtain 

( ) ( ) ( ) ( ) ( ) ( )
0

, , , ,t, t,s  
−

= − − + −  
A B C A B C

h h

h

y t Y h h Y s s ds  

       ( ) ( ) ( ) ( )
0

, , , ,t,0 0 t,sA B C A B C

h h

h

Y Y h B s ds 
−

= + + . 
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Next, we have a formula of solutions to linear impulsive a nonhomogeneous delay 

system with zero initial condition. 

 

Theorem 3. The solution ( )py t  of (8) satisfying zero initial condition, has a form 

( ) ( ) ( ) ( ) ( )
11

, , , ,

0

t,s t,s , 0

j

j k

t tk
A B C A B C

p h h

j t t

y t Y f s ds Y f s ds t

+−

=

= +                                                    (13) 

 

Proof. We are trying to find the solution ( )py t in the form 

( ) ( ) ( ) ( ) ( )
11

, , , ,

0

t,s t,s , 0

j

j k

t tk
A B C A B C

p h h k

j t t

y t Y g s ds Y g s ds t

+−

=

= +     

Where ( )jg s , 0,1,2,.....,=j k are unknown vector functions. The proof can be done by 

many steps: 

 

Step 1: 10 t t  . In this case, we have 

( ) ( ) ( ), ,

0

0

t,s= 
t

A B C

p hy t Y g s ds  

We differentiate 
py  and use the property ( ), , , ,− =  − A B C

hY t h s t h s to obtain 

( ) ( ) ( ) ( ) ( ) ( ), , , ,

0 0 0

0 0

t,s t ,s = + − + 
t t

A B C A B C

p h hy t A Y g s ds B Y h g s ds g t  

        ( ) ( ) ( ) ( ) ( ), , , ,

0 0

0 0

t,s ,s

−

−

 
= + + − + 

 
  
t t h t

A B C A B C

h h

t h

A Y g s ds B Y t h g s ds g t  

        ( ) ( ) ( ) ( ) ( ), , , ,

0 0

0 0

t,s ,s

−

= + − + 
t t h

A B C A B C

h hA Y g s ds B Y t h g s ds g t  

        ( ) ( ) ( )= + − +p pAy t By t h f t  

It follows that ( ) ( )0 =g t f t . 
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Step 2: 1 2t  t t . In this case 

( ) ( ) ( ) ( ) ( )
1

1

, , , ,

1

0

t,s ,s

t t

A B C A B C

p h h

t

y t Y f s ds Y t g s ds= +  . 

We differentiate ( )py t again to obtain 

( ) ( ) ( ) ( )
1

, , , ,

0

t,s ,s  = + − 
t

A B C A B C

p h hy t AY BY t h f s ds  

( ) ( ) ( ) ( )
1

, , , ,

1 1t,s ,s + + − + 
t

A B C A B C

h h

t

AY BY t h g s ds g t  

( ) ( ) ( )= + − +p pAy t By t h f t . 

Which implies that ( ) ( )1 =g t f t .  

 

Step 3: Suppose that ( ) ( )1− =kg t f t holds on the subintervals ( 1 ,−k kt t , 2,3,....=k then for 

any 1− k kt t t , we have 

( ) ( ) ( ) ( ) ( )
11

, , , ,

0

t,s t,s

j

j k

t tk
A B C A B C

p h h k

j t t

y t Y f s ds Y g s ds

+−

=

= +   . 

 

We differentiate ( )py t again to obtain 

( ) ( ) ( ) ( )
11

, ,

0

t ,s

−−

=

 
  = + −

  
 

j

j

t
k

A B C

p p h

j t

y t Ay t B Y h f s ds  

( ) ( ) ( ), , t h,s+ − +
k

t

A B C

h k k

t

Y g s ds g t  

( ) ( ) ( )= + − +p pAy t By t h f t  

It follows that ( ) ( )=kg t f t . 

 

By the mathematical induction, we have ( ) ( )=kg t f t , 0,1,2,....=k thus, the formula (13) 

is obtained. 
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Theorems 2 and 3 will obtain the following representation formula.  

 

Theorem 4. Let  ( )1 ,0 , nC h − ,  ( )0,T , nf C Then the solution of the initial value 

problem (1) has the form 

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

0

, , , ,

1
, , , ,

0

, 0

t,0 0 t,s

t,s t,s , 0

j

j k

A B C A B C

h h

h

t tk
A B C A B C

h h k

j t t

t h t

y t Y Y h B s ds

Y f s ds Y g s ds t



 

+

−

−

=




−  



= + +


+ + 





  

                             

    

Where k  is the number of points 
jt in the interval ( )0, t . 
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Chapter 5 

ULAM-HYERS STABILITY 

In this section, we will discuss Ulam-Hyers stability (2). In Ulam-Hyers stability, we 

compare the solution of given differential equation with the solution of some 

differential inequality. The solution of differential equation is Ulam-Hyers stable if it 

stays close to a solution of some differential inequality related to the original equation. 

Ulam-Hyers stability does not imply the asymptotic stability, in general. 

For problem (2), for some 0  we focus on the following inequalities: 

( ) ( ) ( ) ( )( ), ,  0 t Ty y fy t A t B t h t ty  − −  −−                                                           (14) 

( ) ( )  −  =,  1,...,P
k k k

y t C t ky .              

Definition 12. Equation (2) is Ulam-Hyers stable on ,Th−   if for every 

( ) ( )1,T 0,Tn ny PC h PC −        satisfying (14), there exists a solution 

( ) ( )1,T 0,Tn nx PC h PC −        of (2) with y x L


−  , for all −  ,T .t h  

Proposition 1.  A function ( )1 0,T ny PC     satisfies (10) if and only if there is a 

function ( ),T nPC h  −   and a sequence k
g  depending on y such that    for all

−  ,Tt h , 
k
g j for all 1,...,Pk =  ,  
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( ) ( ) ( ) ( )( ) ( )− = − − ,  0+ t Ty y fy t A t B t y th t t  

( ) ( )= =+ , 1,...,P
k k k

t g kyy t C                           (11)  

Lemma 5. For s t , we have. 

( )
( )( ),

,s
A B t sA B

X t e
h

+ −
 . 

Proof. For k = 1, we have

( )
( ) ( ) ( ) ( )

,
1

t t A t r A r h sA t r A r h s
X t s h B e e dr B e e dr

s h s h

− − −− − −
+ =  

+ +

( ) ( )
( )

t A t h s A t h s
B e dr B e t h s

s h

− − − −
 = − −

+

.                                        

For k = 2, we get                                                                                                                                                                        

( )
( )

( ), 2 ,
2 1

2

t A t r
X t s h e B X r h s h dr

s h

−
+  − +

+

( ) ( )
( )

2
2

2

t A t r A r h s
B e B e r h s dr

s h

− − −
 − −

+

( )
( )

22
2

2

tA t h s
B e r h s dr

s h

− −
 − −

+

 

( ) ( )2222

2

t h sA t h s
B e

− −− −
= . 

By the mathematical induction assuming

( )( )
( )( ) ( )( )111

, 1
1 k!

k
t k h sA t k h sk

X t s k h B e
k

− − −− − −−
+ − 

−
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One can get 

( )
( )

( )( ), , 1
1

−
+  − + − −

+

t A t r
X t s kh e B X r h s k h dr

k k
s kh

 

( ) ( )( ) ( )

( )

1
11

1 !

kt r kh sA r k h sA t r k
e B B e dr

k
s kh

−
− −− − −− −

 
−

+

 

( ) ( )
!

t kh s kA t kh sk
B e

k

− −− −
    

Thus, for ( )s 1kh t s k h+   + +  we get 

( ) ( ),
, ,

0

kA B
X t s X t s jh

h j
j

 +
=

 

( ) ( )
j!0

jk t jh sA t jh sj
B e

j

− −− −
 

=

 

( ) ( )
!0

jk t jh sA t kh s j
e B

jj

− −− −
= 

=

 

( )( )A B t s
e

+ −
  

The impulsive delayed matrix exponential ( ), ,
,s

A B C
Y t
h

 for the problem in the 

proposition is defined as follows: 

( )

( ) ( ) ( )( )

, ,
, ,

, : ,

, , , ,
, , ,

t s
A B C

Y t s I t s
h

A B A B A B C
X t s X t t C Y t s g

h h k k h k k
s t t

k





 


= =

 + +


 

 

 

Lemma 6. For s t , we have the following estimation: 

( ) ( ) ( )( ), ,C , 1
k

A B t sA B

h k k

s t t

Y t s g C e
+ −

 

 + +                                          (15)  
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Proof. Our proof is based on the mathematical induction. We may assume that 

1+ m mt s t  and 1m n m nt s t t+ + +   for some natural number n.  

(i) 
1

t s t t
m m
  

+
.   

By Lemma 5  

( ) ( ), , ,
, ,

A B C A B
Y t s X t s
h h

=  

( )
( )( ), ,

,
A B t sA B C

Y t s e
h

+ −
  

(ii) 
1 2

t t t
m m

 
+ +

:Then 

( ) ( ) ( ) ( )( ), , , , , ,
, , , ,

1 1 1 1
A B C A B A B A B C

Y t s X t s X t t C Y t s g
h h h m m h m m

= + +
+ + − +

  

( )
( )( ), ,

,
A B t sA B C

Y t s e
h

+ −
            

( )( ) ( )( )1 1
1 1

A B t t A B t S
m me C e g

m m

 + − + −
 + ++ +
 + + 
 

 

( ) ( )1
1

1 1

m
A B t s A B t t

C e g e
m m

   
     +
    

 
 

+ − + −
 + +

+ +
 

( )
( )

1
1 1

A B t s
g C e

m m

 
 
 

+ −
 + +

+ +
  

(iii) For 
2 3
 

+ +
t t t
m m

 , we have 

( ) ( ) ( ) ( )( ) ( ) ( )( ), , , , ,, , , ,
, , , , , ,

1 1 1 1 2 2 2 2

A B C A B A B A BA B C A B C
Y t s X t s X t t C Y t s g X t t C Y t s gh h h hm m m m m m m mh h

= + + + +
+ + + + + + + +

Consequently 

( ) ( )( ), ,
A B t sA B

hY t s e e
+ −


( )( ) ( )( )( )1 1

1 1
m mA B t t A B t s

m me C e g+ ++ − + −

+ ++ +  

                        ( )( ) ( ) ( )( )( )2 2

2 1 1 11m mA B t t A B t s

m m m me C g C e g+ ++ − + −

+ + + ++ + + +  

                      
( )( ) ( )1 11

A B t s

m me C g
+ −

+ + + + ( )( ) ( )( )2 1 1 21
A B t s

m m m me C g C g
+ −

+ + + ++ + + +  

                   
( )( ) ( ) ( )1 1 2 21 1

A B t s

m m m me g C C g
+ −

+ + + + + +  + +  
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We may use the mathematical induction on n to get 

 

Lemma 7. Every  ( ), , − ny PC h T that satisfies (14) also satisfies the following 

inequality

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
10 1

, ,C , , , , , ,

0

,0 0 ,s ,s ,s ,

j

j k

t tk
A B A B C A B C A B C

h h h h

jh t t

y t Y t Y t B s ds Y t f s ds Y t f s y t ds c 
+−

=−

− − − −   

for all  0,t T , where 

( ) ( )( ) ( )( )
1

00

1
: 1 1 j

k

k
A B t tA B T

k k

jt T

c g C e e
A B

−
+ −+

= 

 
= + + − +  + 

                                                       (16) 

 

Proof.  ( ), , − ny PC h T  Satisfies (14), then by Proposition 1, we have 

 
PC

For all  0,t T , kg for all 1, 2,..., p;=k  

( ) ( ) ( ) ( )( ) ( )y y y , yt A t B t h f t t t = + − + + , 0 ; t T  

( ) ( )y y = +k k k kt C t g      1, 2,..., p;=k  

Then, by Theorem 3, we have the following representation formula for the above 

problem ( ) ( ) ( ) ( ) ( ) ( )
0

, ,C , , ,

0

y ,0 0 ,s h , 
=−

= + + +
k

A B A B C A B

h h h j j

jh

t Y t Y t B s ds X t t g

( ) ( )( ) ( ) ( ) ( )( ) ( )
1

, , ,C

0

,s , y ,s , y , 
+

=

   + + + +     
j

j k

t tk
A B A B

h h

j t t

Y t f s s s ds Y t f s s s ds  

It follows that 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
10

, ,C , , , , ,C

0

y ,0 0 ,s h ,s , y ,s , y ,

+

=−

   − − + − + − +     
j

j k

t tk
A B A B C A B A B

h h h h

jh t t

t Y t Y t B s ds Y t f s s s ds Y t f s s s ds   

( ) ( ) ( )
1

, ,C , ,

00

,s ,

t k
A B A B C

h h j j

j

Y t s ds X t t g
=

=

 +
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( ) ( )( ) ( )( )
1

00

1 j

k

t k
A B t tA B t s

k k jPC
js t t

g C e ds e g
−

+ −+ −

= 

 + + +

( ) ( )( ) ( )( )
1

0

1
1 1 

−
+ −+

= 

 
 + + − +  + 


j

k

k
A B t tA B T

k k j

js t T

g C e e g
A B

 

 

Now, we are able to present our second main result on Ulam-Hyers stability. 

 

Theorem 5. If  : 0,  →n nf T is continuous and satisfies the Lipchitz condition: 

there exists 0fL such that for all ( )( )  1 2, y , y 0,  nt t T  

( ) ( )1 2 1 2t, y t, y−  −ff f L y y . 

Then 

• the equation (2) has a unique solution 1,T 0,Tn ny PC h PC    −            
; 

• the equation (2) is stable in Ulam-Hyers sense. 

 

Proof. We define 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
10

, ,C , , , ,
,0 0 ,s h ,s , y ,s , y ,

0

t
j tkA B A B C A B A B

y t Y t Y t B s ds Y t f s s ds Y t f s s ds
h h h h

jh t t
j k

 
+

 = + + + +  
=−

 

On the space  ( ),T− nPC h . We will apply the contraction mapping theorem to show 

that  has a unique fixed point. At first glance, it seems natural to use the supermom 

norm. But the choice of supermom norm only leads us to a local solution defined in 

the subinterval of  ,T−h . The idea is to use the weighted supermom norm 

( ) : sup :


− −  ty e y t h t T . 
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On  ( ),T− nPC h Observe that  ( )1 h,T nPC −  is a Banach space with this norm 

since it is equivalent to supermom norm 

(i) We show that   is a contraction on  ( ),T− nPC h .Indeed, for

 ( ),, T −Cx ny P h  

We have 

( ) ( )te x t y t−  −  

( ) ( )( ) ( )( ), ,C
,s , x , y

0

t
A Bt s se Y t e e f s s f s s ds

h
  − − −  

( ) ( )
( ), ,C

,s

0

tt s A B
e e Y t dsL x y

h f

 


− +
 −  

( ) ( )( )
1

0ks t T

t A B t s
C e dsL x y

k f




 

+ − −
 + −

( ) ( )1
1 1

ks t T

A B T
C e x y

kA B


  

 + −
= + − −  − −  

          (17) 

Taking supermom over  0,T we get 

( ) ( )( )1
1 1

k

A B T

k

s t T

x y C e x y
A B



 

+ −

 

 −  + − −
− −


. 

We can choose   +A B so that the coefficient of 


−x y become  strictly  less than 

one. Hence   is a contractive operator and by the Banach contraction principle  P  is 

a unique fixed point in  ( ),T− nPC h and the equation (2) has a unique solution. 

 (ii) Let  ( ),T − ny PC h be a solution (14), and let x be a unique solution of (2). 

We see that 

( ) ( ) 0− =y t x t for 0−  h t . For  0,t T we have 

( ) ( ) ( ) ( )y t x t y t x t− = − ( ) ( ) ( ) ( )y t y t y t x t − +   − . 
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Now we use Lemma 7 and inequality (17) to get 

( ) ( ) ( ) ( )1
1 1

ks t T

A B Tte y t x t C C e x y
kA B

 
  

 + −− −  + + − −  − −  
 .     

Where C is defined by (16). Consequently, 

( ) ( )1
1 1 1

ks t T

C
x y

A B T
C e

kA B


 

  

− 
 + −

− + −  − −  
 .                                        

Hence equation (2) is Ulam-Hyers stable. 
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Chapter 6 

EXISTENCE 

Existence results 

The following result depends on the Schaefer’s fixed point theorem. For getting the 

optimal results, 

We have the following assumptions: 

(H1) The function :  →n nf J is continuous. 

(H2) There exists a constant 0fM such that 

( ) ( )t, y 1 +ff M y , for t J  and  ny . 

Theorem 6. If the assumptions (H1) and (H2) are satisfied, then problem (2) has at 

least one solution. 

 Proof. Let   that showed in Theorem 5. The Schaefer’s fixed-point theorem will be 

used to Illustrate that   has a fixed point. We should divide the proof into four steps. 

Step 1.  is continuous. 

Take a sequence  ny , such that ny  converges to y as →n . Then for  mt J we 

have ( )( ) ( )( )y t y t
n

 −   

( ) ( )( ) ( )( ), ,C
,s , y , y

t
A B

Y t f s s f s s ds
h n

t
m

 −  
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( ) ( )( ) ( )( ), ,C

0

T,s , y , y

T

A B

h nY f s s f s s ds −  

As a result of Lebesgue dominated convergent theorem, the right-hand side of the 

previous Inequality goes to zero as →n , 

Hence, 

( )( ) ( )( ) 0ny t y t −  →    when    →n  

Which means that. 

( ) ( ) 0n PC
y t y t − →    when      →n  

Thus   is a continuous function on J. 

Step 2.   takes bounded sets into bounded sets in P. 

 Let 
1
r  be a positive number, and there is a constant 

2
0r   

Then, for all  
1 1: :r PC

y B y B y r =   . 

We have 2PC
y r  .For  mt J , 0,1,2,...., ,=m p  

And 

( ) ( ) ( ) ( ) ( )
0

, ,,0 0 ,s hA B A B

h h

h

y t Y t Y t B s ds 
−

  + + ( ) ( )( ), , ,s , y

m

t

A B C

h

t

Y t f s s ds+  

( ) ( ), ,C

0 T,0 1A B

h f PC
C Y M T y + +  

( ) ( ), ,C

0 1 2T,0 1 :A B

h fC Y M T r r + + = . 

Which implies that 2PC
y r  . 

Step 3.   Maps bounded set into equicontinuous set of P. 

Let 1 2,  mt t J , m 0,1,2,.....,p= , with 1 2t t and 
1

r  be a ball as in the second step. Then for

y   

We have 
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( )( ) ( )( ) ( ) ( ) ( ), , , ,

2 1 2 1,0 ,0 0A B C A B C

h hy t y t Y t Y t  −   −

( ) ( ) ( )
0

, ,C , ,C

2 1,s h ,s hA B A B

h h

h

Y t Y t B s ds
−

+ + − + ( ) ( ) ( )( )
1

, , , ,

2 1,s ,s , y

m

t

A B C A B C

h h

t

Y t Y t f s s ds+ −  

( ) ( )( )
2

1

, ,

2 ,s , y

t

A B C

h

t

Y t f s s ds+  

We see that the right hand side of the previous inequality goes to zero as 2 1→t t , since

( ), , ,sA B C

hY t  is continuous in  mt J and f is bounded on 
1

r  .  

 

  is completely continuous by the previous steps and by Arzela–Ascoli Theorem. 

Step 4. A priori bound. 

The last step illustrates this definition: 

( ) : for some 0 1W y y y =  =    is bounded.  

Let y W , the for some 0 1  , ( )y y=  . 

Therefore for  mt J as in Step 2, we have  

( ) ( )( ) ( ), ,

0 T,0A B C

h fy t y t C Y M T   + ( ) ( ), ,C

0

T,0+ 
t

A B

h fY M y s ds  

Gronwell’s inequality yields 

   ( ) ( ) ( )( ), , , ,C

0 T,0 exp T,0A B C A B

h f h fy t C Y M T Y M T +         

Then the set W is bounded. 

 

So, by the Schaefer’s fixed-point result, we deduce that   has a fixed point which 

means the solution of the suggested problem (2). 
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Chapter 7 

ILLUSTRATIVE EXAMPLES 

In this section we introduce two numerical examples.  

Example 1. Consider the linear problem (1): 

( ) ( ) ( ) ( )( )  

( ) ( ) ( ) ( )

( ) ( )

, , 0, , h 0,

, 1,2,....., ,

, 0,

k

k k k k k

y t Ay t By t h f t y t t T t t

y t y t y t C y t k p

y t t h t

  = + − +   

 = − = =


= −  

                                                                                 

Where ,A,B,C  n n

k
are constant matrices,  ( )1 ,0 , − nC h ,  )( )0, ,  nf C , 

1



=k k
t

satisfies 
0 1 10 ..... +=     =p pt t t t T .   

This problem satisfies the conditions of Theorem 4 and this linear impulsive system is 

stable in Ulam-Hyers sense. 

 

Example 2. Consider (2) with ℎ = 0.2 

3.3 1 0.8 0.2 1.2 0.5
. . , 1,2

0 0.3 0 0.6 0.2 1.2
jA B C j

−     
= = = =     

−     
 

( ) ( )( )
3

1

4
2

0.25sin
    

0.25sin

xe
t f x t

xe


−

−

   
= =    

  
 

Where  x  is the biggest integer less than real x. 

And .AB BA j 1,2,......=  

AC Cj j A . 
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C C .j jB B  

 

Obviously, f satisfies the Lipchitz condition 0.25 0fL =  , the conditions of Theorem 4 

are satisfied and equation (2) has a uniqueness solution in    1,1 0,1−PC h PC which is 

Ulam-Hyers stable on  ,1−h . 

 Example 3.  Consider the below fractional problem 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )
3

4

60 0 1 1
, ,

0 5.5 0 1

1
2 0

, 1,2,....., 4,

1 2

, 0,

k k k k

y t y t y t h f t y t

y t y t y t y t kk

e
y t h t

e

+ −

−

−

 −   
 = + − +   

−    


  +   = − = =   
 


  

= −     
  

  0,1 , h 0.2 0, kt t t =    

Obviously, ,A B  and JC  are mutually non-commutative 

AB BA . 

J JAC C A  

J JBC C B    , j=1, 2 

Assume that   2 2: 0,1  →f  is any continuous function satisfying ( )2H . 

Then, by Theorem 6 the equation (2) has at least one solution on  ,1−h . 
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Chapter 8 

CONCLUSION 

The major contribution of our work is to establish an impulsive delayed matrix 

exponential for non-permutable matrices and use it to construct explicit results to solve 

the problem of impulsive delay systems that they have linear portions determined by 

non-permutable matrices. We give a sufficient for asymptotic stability of impulsive 

delay systems. And, Banach fixed point method is applied to present existence, 

uniqueness, and Ulam-Hyers stability of the impulsive delay system. The study on 

representation and stability of delay differential impulsive systems has prospective for 

coming times study on fractional impulsive delay systems, on fractional multiple delay 

impulsive problems, or on a delayed nonlinear problem. 
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