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ABSTRACT

In this work, asymptotic and Ulam-Hyers stabilities in two cases linear and nonlinear
time-delay systems of linear impulsive constrains are studied. The linear parts of the
impulsive systems are defined by non-permutable matrices. To obtain solution for
linear impulsive delay systems with non-permutable matrices in explicit form, current
notion of impulsive delayed matrix exponential is presented. Using the representation
formula and norm estimation of impulsive delayed matrix exponential, sufficient

conditions for the asymptotic and Ulam-Hyers stabilities are obtained.

Keywords: Impulsive Delay Equation; Delayed Matrix Exponential; Stability.
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Bu calismada, asimtotik ve Ulam-Hyers kararliliklart iki durumda, lineer ve lineer
olmayan lineer impalsif kisitlarin zaman gecikmeli sistemleri lizerinde ¢alisilmustir.
Impalsif sistemlerin lineer kisimlar1 permutable olmayan matrislerle tanimlanmistir.
Acik formdaki permutable olmayan lineer impalsif gecikmeli sistemlere ¢oziim
bulmak i¢in mevcut impalsif gecikmeli matris iistel kavrami sunulmustur. Temsil
formiilii ve impalsif gecikmeli matris iistelinin norm tahmini kullanilarak, aismptotik

ve Ulam-Hyers kararliliklar1 igin yeter kosullari elde edilmistir.

Anahtar Kelimeler: Impalsif Gecikmeli Denklem; Gecikmeli Matris Ustel,

Kararlilik.
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Chapter 1

INTRODUCTION

Mathematical analysis, handles the integrals and derivatives of arbitrary order. This
field is related to many other fields of analysis, such as integral equations, differential
equations, function theories, and others. The great number of articles in the related
literature and conferences held about mathematical analysis prove that it is a constantly
developing field. The related literature includes a wide variety of studies in the form
of articles, book chapters, conferences, etc. that include studies about differential
equations and all related applications. These studies have been famous to the extend it

has become a trend in the studies of the beginning of the previous century.

Nevertheless, the wide amount of study on this field has not resulted in any
monographs or books that can thoroughly examine the latest developments and
achievements in this field. Having scattered information in different book chapters
may be a gap as the new learners in the mathematical field may not be able to find a
unified resource that explains in one book that starts with the main concepts’ definition
and ends with examples that apply the mathematical rules of differential equations
problems on the reality of nature. which was even in chemistry rather than a pure
mathematical field. Since the fractional calculus is widely used in many different
fields, such as engineering, physics, chemistry, it is good to have this book.

Nevertheless, mathematical students may not be able to understand the chemistry



concepts as well. Hence, there is a need for a book devoted for mathematics students

that applies mathematical problems using the fractional calculus.

Furthermore, there are a few thesis studies devoted for examining the mathematical
analysis, such as Marke [27], and there are a few historical outline papers published
about this topic, such as Davis, Mikolas Ross, XX PREFACE. [27], one reason behind
this lack of studies may be because of the rapidly developing fractional integer-
differentiation theory. The absence of such a monograph has become crucial for the
calculus development. Furthermore, the scarcity of studies is accompanied with some
mistakes in the little studies published in this issue, which makes it difficult for novice
learners to have a full idea about this theory from one resource. There are many studies
in the field of differential equations, in which the studies reach the same results using
different methods. Nevertheless, there are little research conducted for the sake of

comparing these varied approaches.

The recent developments in both theory and practice of math has mainly depended on
many factors. One of the most important factors is derivatives and intergrals of the
positive integer order. One more essential factor is the mathematical functions, such
as gamma, beta, special functions, and many others. Furthermore, there are other
factors that can be considered as a development between theory and practice in the
field of mathematics. This includes integer-differential operators, such as singular and

non-singular kernels.

This monograph aims to examine the general calculus as well as the general fractional

calculus of variable order. It also aims to examine the aforementioned types in relation



to other functions. The study also aims to show the rheological and anomalous
relaxation models according to their complexity. This study is crucial for many
stakeholders including, engineers, chemists, mathematicians, physicians, and

scientists.

Both integrals and their derivatives order are normal in analysis, but the fractional
order form their peculiar features. There is a need for investigating the modifications

of these features, which result from the being in different situations.

The field of differential equations has been a very old field of science, dating back to
three centuries. It was very common among the mathematicians’ community.
Nevertheless, it was not that much popular among the other fields of knowledge, such
as science, engineering, etc. This field is considered to be unique since it has the ability
to describe the reality of nature better than other fields. Thus, it can be used in fields
other than mathematics to solve their problems, as it is the case with engineering. With
differential equations, engineers are able to add another dimension of their
understanding to the basic nature of their fields. Rather, it is extended to have more
variables that can describe the essence results of engineering and science. Hence, the
rigorous mathematics is kept to its minimal with the new uses of mathematical calculus

presented above.

As it was stated before, the goal of calculus mathematics is to explain the reality of
nature in a better way. Suppose we have normal derivative d—to represent the rate of

accumulation or loss. This can mathematically speaking be gain rate minus loss rate at

infinitesimal bounded space. If this infinitesimal space has some traps or has many

3



different sizes, there will be differences that need explanation. It is known that many
biological phenomena involving thresholds, bursting rhythm models in medicine and
biology, optimal control models in economics, pharmacokinetics and frequency

modulated systems exhibit the impulse effect.

Thus impulsive differential equations, that is, differential equations involving impulse
effects, appear as a natural description of observed evolution phenomena for several
real word problems. In recent years, qualitative properties of the mathematical theory
of impulsive differential equations have been developed by a large number of

mathematicians; see [1-12].

Since time delay exists in many fields in our society, systems with time delay have
received significant attention in recent years. In [4-6], the authors considered the
stability of impulsive differential equations with finite delay, and got some results.
Systems with infinite delay deserve study because they describe a kind of system
present in the real world. For example, in a predator—prey system the predation
decreases the average growth rate of the prey species, linearly, with an infinite delay—
for the predator cannot hunt prey when the predators are infants, and predators have to
mature for a duration of time (which for simplicity in the mathematical analysis has
been assumed to be infinite) before they are capable of decreasing the average growth
rate of the prey species. And there are some results on systems with infinite delay; see
[13,14] and references therein. However, to the best of the authors’ knowledge, results
for impulsive infinite delay differential equations are rare. Functional Equations
Stability was first raised by Ulam at Wisconsin University, who asked the following

question: ‘‘Under what conditions does there exist an additive mapping near an



approximately additive mapping?’’ Answering Ulam’s question was first done by
Hyers in 1940 through the Banach spaces. Therefore, the stability was since then called

Ulam-Hyers Stability.

The theory of functional differential equations has been attracted by many researchers.
Delay phenomena have application in control engineering, biology, medicine,
economy and other sciences. Many processes are characterized by quick state changes.
The time of event changes are comparatively short with the total duration of the
complete process. For the theory of impulsive differential equations, the reader can
refer to the monograph of Samoilenko et al. [25] and references theory, automatic
engines and engineering therein. On the other hand, phenomena with time delays can
be appeared in system systems. Recently, in [3] a concept of delayed matrix
exponential is introduced to give a formula of solutions for linear time-delay
continuous systems with commutative matrices. In [12], [13] a similar idea is used to
find an explicit representation of solutions of linear discrete delay systems. Generally,
it is not easy to reformulating of the solution explicitly without knowing impulsive
delayed fundamental matrix for impulsive linear time-delay differential equations. In
[14] authors adopted the idea of [3], [12], [13] to get the formulation of solutions to
linear time-delay continuous impulsive systems. To do so they introduced impulsive
delayed matrix concept for commutative matrices. These basic results are very useful
to deal with control theory, iterative learning control and stability analysis for time-
delay continuous\discrete and impulsive equations; For more details on the recent
advances on the stability (Ulam-Hyers) of differential equations, one can see the
monographs [22], [23], [24]. However, there is no paper in the literature searching an

explicit solution of linear impulsive time-delay differential equations with non-



commutative matrices. Due to the double impact of impulses and time-delay, it is an
interesting task to get a representation for a solution of a time-delay impulsive
differential equation with non-commutative matrices and study some stability concepts

for these equations.

Motivated by the above articles, we consider reformulating of solutions of a linear

time-delay impulsive differential equation of the way:

y'(t)= Ay(t)+By(t=h)+ f (t),te[0,T],h >0t 1,

[t J=v(ty J=y(ty )=yt ) k=12 1)
y(t)=e(t),~h<t<0,

Where are constant matrices A, B,C, eR™,p e C'([-h,0],K), f eC ([0, T),R"),
and {t} is a sequence that satisfieso=t,<t <..<t,<t,, =T, forT>0,and

y(tk*): lim y(t, +a),y(tk’): y(t),

a—0"

Moreover, we investigate exponential and Ulam-Hyers stabilities of the following
semi linear time-delay impulsive differential equation:

y'(t)=Ay (t)+By (t=h)+f (t,y (t)).t <[0T [,h>0t #t,

& [ty )=y (t )=y (8 )=Cye v (t )k =120, (2)
y (t)=ep(t),~h <t <0,
The main contributions are as follows:
» We introduce a novel impulsive delayed matrix exponential function (impulsive
delayed exponential) and give its norm estimate. Using this impulsive delayed
exponential and the variation of constants method, we give an explicit representation
for solutions of impulsive time-delay initial value problems with linear parts defined

by no permutable matrices.



* Based on the presentation of solutions and a norm estimate of the impulsive delayed

exponential, we obtain sufficient conditions for Ulam-Hyers and asymptotic stabilities.

In the next section (chapter 3), we introduce some, and concepts the impulsive delayed
matrix exponential and show that it is the fundamental (Cauchy) matrix for linear time-
delay impulsive differential equations. Next, we give explicit formulae for solutions
to linear homogeneous/nonhomogeneous time-delay impulsive differential equations
via an impulsive delayed matrix exponential. In Chapter 5, we present a norm estimate
to the impulsive delayed matrix exponential under the condition that A is an
exponentially stable matrix and examine the exponential stability of nonlinear
impulsive time-delay system. Chapter is devoted to Ulam-Hyers stability of the system
(2). then in chapter 7 we have some results of existence and uniqueness of chapter 8

completed this work by introducing numerical examples.



Chapter 2

PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts that are

used throughout this thesis.

Schaefer’s fixed point theorem:
Let X be a Banach space and N: X — X be a completely continuous operator. If the

set £={ye X :y=2ANy, forsome 2 (0, 1)} is bounded, then N has a fixed point.

Arzela Ascoli theorem

Consider a sequence of real-valued continuous functions {f, :neN} defined on a

closed and bounded interval [a, b] of the real line. If this sequence is uniformly

bounded and uniformly equicontinuous, then there exists a subsequence {f, :k e N}

that converges uniformly.

Banach’s fixed point theorem:
Let ¢ be a non-empty closed subset of a Banach space X . Then any contraction

mapping T from C into itself has a unique fixed point.



Gronwalls inequality:

Fort > t,> 0, Ietx(t)ga(t)+jg(t,s)x(s)ds+ z B (O)x(t,) where, g (t),k eNare non-

o<t <t

decreasing functions for t > t, , ae PC([t,,),R,) is non-decreasing, and g(t, s) is a

continuous nonnegative function for t, s > t, and is non-decreasing with respect to t

to <t <t

for any fixed s> t, Then, for, t> t, x(ty<a(t) [T @+4 (t))eprg(t,s)ds}

Definition 1. Let A be nxn matrix, then the matrix exponential is:

A t o ,t2 Lt t
e =+ A=+ A" —+ A’ —+.... :EA‘_—
1! 21 3! =

Al _ Aty

Lemma 1. Let A benxn constant matrix, then Ae e

0 S 2 3
Proof. Aefl—A ¥ AJt_—'zA{I+A%+A2t—|+A3—+ ..... }
jIO )’ : :

2 3
_ara2t a3t a4t
TR TRRANET

2 3
=(| calip2t 3t }.A:eAtA.
TR TRRAET

nxn

AtgAs _ A(t+s)

Lemma 2. Let A be constant matrix. Then, e e

o0 H o0 H
Proof.eAleAS— 5 Al v A

2 3 2 3
=1 +At—+A2t—+A3t—+ ..... ]x(l +Ai+A25—+ASS—+ .....
1! 3! 1! 2! 3!

9



217" 3 TR TR TR TR
2 2 2 .2
A28 a28 At A28 g2t
1 IRETRRAETRANY

By reordering the sum

'[tj tj_ls tj_zs2 sj_zt2 sj_]T sj]

o0
= J —_—
JEOA TR T ) TR T R TRETI R T

A jitits jii%s? jlsi?tr st sl
=Dt e Frob—— R L +
< (e (j-2) 21(j=2)r 1(j-1 jt

= Z—(C?ti +CisI T+ ClIPsP L+ CI I + s T +ijsj)

Lemma. Let A and A, be commutative matrices, (i.e. A1A2:A2A1)' Then,

At AL

A2e AZ’ t>0

3

At o t  ot2 gt
Proof.e AZ_JEOAtl FAZ_ I+A15+Al z+Ai §+ ..... A2

10



“A+AA L AZA t2+A3A t3+ afraatiact Aty
_Z+12ﬂ+12§ 125 ----- ="y T Y gyt

ot
=AY A/ t—' —aeht
=) J:

Note: Our work on the general case when the matrices are not commutative.

eB(t—h) ah

Lemma. If |B]<ae® ,a<k* then <e®M tept

Theorem. Delayed matrix exponential is the fundamental matrix of solutions of the

matrix differential equation with pure delay

y'(t)= y(t_h), O < h <t where A is NxNconstant matrix.

Proof. By differentiate of delayed matrix exponential

2! 3! k!

(en) :[' +A%+A2 (t-n) waclt ~h) +ot AX . 2 J,

. L 2! (k-1)!

_ A(t-h)
=Ae,

11



Chapter 3

IMPULSIVE DELAYED MATRIX EXPONE

Let  J=[0,T],],=[0 & ] ], =(t,r t, ] ], =(t,, T)t,., =T  Further, define
BzPC”(],R”)z{y:]—)R” :yec(]m,R”),m=0,1,2,.....,p},and there exist the left limit
y(t,) and right limity(t, ). It’s clear thatB is a Banach space endowed with norm

defined by "y"pC = sup{|y(t)| ite] k=1, 2,3,...,m}.

We introduce the spaces:

C'(J,R")={yeC(J,R"),y'eC(J,R")} .

PC'(J,R") ={y:J >R":y e PC(J,R")}.

Definition 2. Let c(j,r)denotes the Banach space of all continuous functions from/
into R with the norm

[, =sup{v®l:t <},

C'(J,R") ={yeC(J,R"),y'eC(J,R")}

PC'(J,R") ={y:J >R":yeC(J,R")}

yeC(J,R"),y eC(J,R")
and there exist y(t, ) and y(t/),m =0,1, *; p
withy (t, )=y )PC (3. R") ={y:0 5> R":yec(3, R}

PC”(LR")={]/:]—>R" :yeC(]m,R"),m :0,1,2,.....,p},

y(t.)y(t)

12



Clearly, PC(J,®is a Banach space with the norm |y].,. =sup,,

y@) .
Moreover, PC'(], R) ={y  PC(], R) : y' (t)is continuous everywhere except for
somet, at which y' (¢) and y'(t;) exist and y'(t;)=y' (4), k = 0,..,m} Is a Banach

space with the norm y],.. = max{|yl,. |,

Definition 7. A function y e C*([-h,0], R")| JPC'(J, R")is said to be a solution of (1) if

y satisfies the equationy(t) =¢(t), -h<t<oand the equation (1) on J.

Definition 8. A function ¢’ (t):R — R™"is called delayed matrix exponential if

0,—o<t<-h,h>0
er (t)=11,-h<t<0,

t—h)’ t—(k-1)h
|+Bt+BZ%+....+ Bk%,(k—l)hstgkh,

where keN,Be R™,0and | are the zero and identity matrices, respectively.
For k >owe define

X, (t,s)=e"""t>5s

t

j e""BX, (r —h,s)dr,s+h<t,

s+h

0,s+h>t,

X, (t,s+h)=

je "BX,(r-h,s+(k-1)h)dr,s+kh<t,

s+kh

0,s+kh>t,

X, ts+kh

Definition 9. Let A,B € R™" . Delayed perturbation of matrix exponential function

XA RxR —R™

generated by A, B is defined by
13



0,—0<t-s<0,
X, B (ts)=11.t=s 4
e 1 X, (t,s+h)+.t X, (t,5+kh),kh <t-s<(k+1)h,k=0,12,...

Lemma 1. Let X,;*®(t,s) be defined as in equation (4). Then the following holds true:
(i) If A=0,then X ®(t,0)=¢’(t—h),kh<t<(k+1)h.
(ii) If B=0, then X ®(t,5)=e"".

(iii) If AB=BA, then X®(t,5) =e""Jef ") B =e™™® kh<t-h<(k+1)h,

Proof. (i) If A =0, then

Xo(ts)=1 X (t,;s+h)= tj Bdr=B(t-h-s),

s+h

(t—2h—s)2

t
X,(t,s+2h)= j B*(r—2h—s)dr =B’ o ,

-

k
X, (t;s+kh)= [ B*(r—kh—s)ar =g (LN 79)

s+kh

s+kh<t<s+(k+1)h,

g (L= ih=s)

=0 J!

s+kh<t<s+(k+1)h

(ii) If B =0, then
X, (t,8) =€) X, (t,s+kh) =0,k =1,2,....,
and

X2 (t,5) =)

14



(iii) By our assumption A and B are commutative, consequently ¢*‘"*'B = Be""™®)

Using this property, we obtain

t
X, (t,5) =", Xy (t,;5+h) = [ "Be " ldr = e"Be " (t—h-s),

s+h

t —2h—s)’
Xz(t,S+2h): I pAt-T) gAlr-2h-s) ( —2h-— S)d _ pAt-r)g2g—A2h (t o S)

t-kh-s)"
|

Xk(t,s+kh):eA(t‘s)Bke‘Ak“( Stkh<t<s+(k+1)h

It follows that

K k t—ih—s)’
)= X, (t,s+jh)=> e “IBle e &
j=0

j=0 JI
=e P s 1 kh <t <s +(k +1)h

Lemma is proved.

Lemma 2. Forall t,s e R, we have

gxfﬁaﬁ):Axpwpg+Bx:Ba_msy

Proof. The proof is based on the following formula:

t

0 r .
= [ e"BX,(r—hs+(j-1)h)dr

=A [ e"BX ,(r=h;s+(j-1)h)dr+BX ,(t=hs+(j -1)h).

s+jh

Indeed, for kh <t —s <(k +1)h , we have
0 0 <

15



zi A tj e*"BX |, (r—h,s+(j-1)h)dr +BX ; ,(t—h,s+(j -1)h)
j s+jh

Kk

=Aix j(tis+ih)+BY" X, (t—h,s+(j-1)h)

i=0 j=0

k k
=A>'X j (t,s+jh)+B > X ia(t=h,s+jh).
i=0

=0

The proof is finished.

Now, we introduce an impulsive analogue Y *°€(t,s) of the delayed matrix
exponential X*®(t,s).Since in equation (1) impulse has the linear form Ay(t,)=C,y(t,)
impulsive Cauchy matrix has to contain the matrices A, B,C, , that is why we introduce

the following impulsive delayed matrix exponential function.

Definition 10. Let A B,C, e R™be constant matrices. Impulsive delayed matrix
exponential functiony,*® (t,s) is defined by

0,t<s,
YARC(ts)=11,t=s ()

Xo® (ts)+ Y. X8 (4t )CY, M2 (t,.5)

s<t, <t

It should be emphasized that in commutative case that is, if A B,C, are commutative

matrices impulsive delayed matrix exponential function was introduced in (11).

Definition 11. If A B,C, are commutative matrices, then impulsive delayed matrix

exponential function is defined as follows:

16



V(t,5)=e""IX (t,5+h)

X (t,s+h)=e2"9+ 3 Ccer "X (t,5+h),B ="

s<ty <t

(6)

Lemma 3. Let Y *®(t;s)be defined by (5). If AB,C ,are commutative, then

Y, PO (L) =V (t,9).

Proof. Since AB = BA then by Lemma (1). We have X;"° (,5) = eA(tfs)e:’l(t*h*s) .Thus

Y Be (ts)= X8 (ts)+ z X, (t.t, )CthA'B'C (t.s)

s<t, <t

_ eA(tfs)ehBl(tfhfs) + z eA(t_tk)e:l(t_h_tk)cthA'B’c (tk,S)

s<t <t

_ eA(t—s) [e?(ths) + Z Cke:»l(t—h—tk)eA(s—tk)YhA,B,c (tk’S)J

s<t, <t

s<t <t

="t [e,f‘l(‘hs) + > Cer T UIX (1, 5+ h)j

=e""IX (t,s+h)=V (t,5),

Lemma 9. Impulsive delayed matrix exponential functionY,*®€ (t,s) satisfies

gv;\'&c (t,5) = AYARC (t,5) + BY,®C (t—h,s),t %1, -
YhA’B’C (tk+’s) = YhA’B’C (tk ’S) + CthA'B'C (tk ’S) (8)
a A,B,C + a A,B,C A,B,C

EY“ (t.s)= EY“ (t,.5)+ ACY, € (t,.5) )

17



Proof.

Step 1: We verify that Y, e (LS) satisfies the differential equation (7).

0 0 0 0
—ynece (t,s)zax,f'B(t,s)+ Z — X8 (64 )C Y B (b, 5)+ Z — X8 (6t 4,

at s<t <t s<t, <t

= AXB(ts)+ D AXME (65 )CYAPC (1, s)+ D AXE (L) 4,

s<t <t s<t <t

.= AVAEC (1,5)+ BY, S (t—h,s)

Step 2: We verify the equality (8). Note that X,*® (t*,s) = X*® (t,s) . Then

y ABC (tm+,s) = XA (tm+,s)+ Z X A8 (tm+,s)CthA,B,C (tk,S)

s<t <t

= X2 (t,s)+ D0 XAP (1 )Y (,s) X8 (1,71, )Y B (t,,8)

s<t <t
Y50 (1,7,8) 4 C, Y50 (1,,,9)

Step 3: The proof of (9) is similar to that of (8).

This ends the proof.

18



Chapter 4

REPRESENTATION OF SOLOUTION

In this part of our work, we are looked for an explicit formula for the solutions of the
linear impulsive inhomogeneous delay system fostering the traditional ways to find

solution of a linear ordinary differential equations.

At the beginning, two explicit formulae of solutions to linear impulsive homogeneous

delay system are driven.

Theorem 2. Let p<C*([-h,0],R"). Then the solution of the initial value problem (1)

with f =0 has the form

y(t) =Y % (t,-h)p(-h)+ j‘ y A BC (t,s)[(p’(s)— A(p(s)] ds,t >—h (10)
y(t) =Y "¢ (t,0)p(0)+ T Y8 (t,s+h)Bgp(s)ds,t 20 (12)

Proof. To prove the formula (10), we looked for the solution in the form
y(t) =Y % (t,—h)g(0)+ IYhA'B'C (t,s)g(s)ds,t =0 (12)
-h

Where g(t):[-h,0]>R"is a continuous differentiable function and furthermore,

condition y(t)=¢(t),-h <t <0 should be hold

y(t) =Y % (t,-h)g(0)+ _TYhA’B'C (t.s)g(s)ds=g(t),~h<t<0
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If t=-h, we have
Y2 (~h,-h)g (0)+_TthA’B'C (-h,s)g(s)ds=g(0)=p(-h)

Thus g(0)=¢(-h).On the interval -h <t <0, one can easily derive that
t 0
p(t)=Y,° (t,—h)go(—h)+U - JYhA'B’C (t,s)g(s)ds
-h t
0
=g (—h)+ [ g (s)s

el

Differentiating the above equality, we have
0

¢'(t) = Ae" g (-h)+ A_[ eg(s)ds+g(t).
-h

=Ap(t)+g(t).
Therefore,
g(t)=¢'(t)-Ap(t).
Next, we prove equivalence of (10) and (11). To do this, we use the integration by

parts formula

[ et ot

- TEe ol
YR (10)g(0) Y, (t-h)p(-h)
+'(|);Yh’*'3'c (t,5) Ap(s)ds+ JiYhA'B'C (t,s+h)Be(s)ds

Thus, we obtain

0

y(t) =Y, (t,-h)p(-h)+ IYhA’B*C (ts)[@'(s)-e(s) Jds

-h
0

=Y % (1,0)p(0)+ [ Y,** (t,s+h)Bp(s)ds .

-h
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Next, we have a formula of solutions to linear impulsive a nonhomogeneous delay

system with zero initial condition.

Theorem 3. The solution y ) of (8) satisfying zero initial condition, has a form

tin

]YhABC s)ds+_[YABC (t,;s)f (s)ds,t =0 (13)

t

k-1

=0

Proof. We are trying to find the solution vy, (t)in the form

k-1 tist

y,(t)= IYhABC )ds+jY”‘C (t,s)g, (s)ds,t >0
t.

=0 ¢

Where g,(s), j=0,12,....kare unknown vector functions. The proof can be done by

many steps:

Step 1:0<t<t,. In this case, we have
t
t)= thA’B'C (t,s)g,(s)ds
0
We differentiate y, and use the property Y,**¢(t-h,s)=©,t—h<s to obtain

y, (t)= Aj[YhA'B’C (t.s)g,(s)ds + B_i'Ylf"B'C (t=h,s)g, (s)ds+g, (t)

= A-:[YhA,B,C (t,S)gO (s)ds + B[t_([h+j ]YhA,B,c (t _ h,s)g (s)ds g, (t)

t-h

t t-h
= AJ'Yh‘"B'C (t,s)g,(s)ds+B I Y B (t=h,s)g(s)ds+g,(t)
0 0

= Ay, (t)+By, (t—h)+f(t)

It follows that g, (t)=f(t).
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Step 2:t, <t <t,. In this case

15

y, ()= [%22C (L3)f (s)ds + [%C (1,5)g, (s) s -

0 4

We differentiate y, (t)again to obtain
V, (6) = [[ A2 (t.5)+ BY, 2 (t—h,s)]f (s)ds

+j AYPC (,5)+ BY,*C (t=h,s) g, (s)ds + g, (t)

= Ay, (t)+By, (t—h)+ f(t).

Which implies that g, (t) = f (t).

Step 3: Suppose that g, ,(t)= f (t)holds on the subintervals(t,,.t,] .k =2,3,....then for

anyt <t<t._,, we have

tja

.[YhABC s)ds+J‘YABC (t.5)g, (s)ds.
t;

f

k-1

i=0 1,

We differentiate y, (t)again to obtain

k-1t

y, (t)=Ay, (1) J'YhABC (t=h,s) f (s)ds
i=0 ¢

0 (), (X, 1)

I

= Ay, (t)+By, (t—h)+f(t)

It follows that g, (t)= f (t).

By the mathematical induction, we have g, (t)= f (t), k=0,1,2,....thus, the formula (13)

is obtained.
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Theorems 2 and 3 will obtain the following representation formula.

Theorem 4. Let pC*([-h,0],R"), f eC([0,T],R") Then the solution of the initial value

problem (1) has the form

p(t),-h<t<0

y(t) =Y/ EC (t,0)¢)(0)+j‘YhA’B*C (t,s+h)Be(s)ds

k-1 tin t
+>° I Y,BC (t,s) f(s)ds +J‘Yh""3'C (t,;s)g, (s)ds,t=0
i=0 t; ty

Where « is the number of points ¢, in the interval (0,t).
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Chapter 5

ULAM-HYERS STABILITY

In this section, we will discuss Ulam-Hyers stability (2). In Ulam-Hyers stability, we
compare the solution of given differential equation with the solution of some
differential inequality. The solution of differential equation is Ulam-Hyers stable if it
stays close to a solution of some differential inequality related to the original equation.

Ulam-Hyers stability does not imply the asymptotic stability, in general.

For problem (2), for some ¢ <0we focus on the following inequalities:

||y’(t)— Ay(t)-By(t—h)—f (t, y(t))|| <g 0<t<T (14)

“Ay(tk)—Cky(tk) <¢g k=1,..,P.

Definition 12. Equation (2) is Ulam-Hyers stable on [-n,T]if for every
yePC([—h,T]ﬂ}R“)ﬁPC1 ([O,T]ﬂR“) satisfying (14), there exists a solution

xe PC([-h, T]NR")NPC' ([0, T]NR") of (2) with |y« <Le, forallte[-hT].

Proposition 1. A function ye PC' ([O,T]nR”) satisfies (10) if and only if there is a
function ¢ e PC([—h,T]mR")and asequence g, depending on y such that|g <« for all

te[-hT], |g/<ejforallk=1,..,P,
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y'(t)= Ay(t)—B]/(t—h)—f(t,y(t))+¢(t) 0<t<T

Ay(t)=Cuy(t)+g, k=1..P (11)

Lemma 5. Fors <t , we have.

“le\ B (t,s) < e(”A” + ”B”)(t ) |

Proof. For k =1, we have

JAt=T)

dr <8 I JAI(t=r) JAl(r=h=s)

[x, (t.s+n)| = (8] ;
s+h

s+h

‘eA(r—h—s)

<|8| } JAI(t=h—s) :”B”e||A||(t—h—s) (t—h—s).

s+h

For k = 2, we get

t -
X, (ese2nf< 1 A glx, (r-nsn)ar
s+2h
el ey A2 sy
s+2h
t
<|8J? Al(t=2n-s) [ (r-2h-s)dr

s+2h

g2 dA(-2n-5) (t=2n-9)°

2

By the mathematical induction assuming

k
“Xk_l(t,s+(k—1)h)“S”B”k—1e||A||(t—(k—1)h—s) (t—(k—i!)h— )
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One can get

% (esrwm= 1 R

Bl < o (r

< | dAlen) _1 JAl(r-(k-1)h-s) (r-kh-s)* 1
< 1 dDjpgete (oo,

k JIAI(t—kh—s) (t—kh—s)k

<[el -

Thus, for s+kh<t<s+(k+1)h we get

HXAB ts

< Z H ts+Jh)H

K At jh—s) (t— jh—s)]
<3 ||B||Je" I( ) ( 0 )
j= !

Al(t—kh-s) K Jh s))
=e" I § I "J( )

_ (Al Bl -s)

The impulsive delayed matrix exponentlaIYABC(

proposition is defined as follows:

g, t<s,
yAB, C(t,s).— I,t=s

Lemma 6. For S <t , we have the following estimation:

o=t TT (Ll +le e

s<ty <t

26
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t,s) for the problem in the

(15)



Proof. Our proof is based on the mathematical induction. We may assume that

t, <s<t, . and t,., <S<t<t,,,.; for some natural number n.

(1) to<s<t<t ..

By Lemma 5

A B,C A B
Yo (ts)=X,"" (t.s)

< lAl+lt-s)

A B,C
th (t,s)

(i) o <t<t. o :Then

A B,C _vAB AB A B,C
Yh (t,s)—Xh (t,s)+Xh (t’tm+1)(cm+th (tm—l’s)+gm+l)

ABC ol < A+ BIE-5)
5 e

(IA1+1B)(t =ty , 1)

Al+|B (t —s)
e HC ‘e(” I+18i)(ty, , 1

m+1‘ +Hgm+1H

Al+|B)it— Al|B[t-t, .,
Je[ )t 16[ Bt

<[wley, s 9y

+1H

<ol foal)e D

(iii) For o <t<t. . 5, Wwe have

AB.C AB AB AB
%y (t’s)th (t’s)”(h (t’tm+1)(Cm+1YhA'B'C(tm+1's)+gm+1)+Xh (t'tm+2)(cm+2YhA’B’C(tm+2's)+gm+2)

Consequently

||YhA,B (t, s)” < eUAIHIBN(=9) g o (AFBIEtn) ("Cm+1||e(\\A\\+HB\\)(tM—s) +||9m+1||)
selAkIB-tn2) (”sz "(1 +||9m+1|| +||Cm+l||) UIAHBI) (.2 —s) +||gm+1||)

<M (e |+ gl + I ([Co (L4 G+ )+ ])

<M (1 lg 1+ IC )% (1 Coall + 9 )
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We may use the mathematical induction on n to get

Lemma 7. Every yePC([—h,T],R”)that satisfies (14) also satisfies the following

inequality
i k 1111 .
Y()-Y2 (£0)(0) - [ Y5 (t,9)Bo(s)ds— 3. | Y22 1, ds— [Y,25 (t,5) (s, y(t))ds] <c,
Sh =% )
forallte[0,T], where
c= (; 11 (1+||gk||+||Ck||)( (1a+{p)T )+ k 1eHAH+HBH () ] )
A+l oz, = >

Proof.ye PC([—h,T],R”) Satisfies (14), then by Proposition 1, we have
||l << Forallte[0,T],|g,]<zforall k=12,...p;
y'(t)=Ay(t)+By(t—h)+ f (Ly(t))+o(t), 0<t<T;

Ay(t)=Cyy(t)+9 k=12, p;

Then, by Theorem 3, we have the following representation formula for the above

0

problem y(t):YhA’B’C (t,0)¢(0)+ J.YhA'BYC (t S+ h)B¢ dS"‘ZXAB( )gj

-h

tia

+Zk:IYhAB t,3)[ f(s,y(s))+o(s :|dS+j-YhA'B’C (ts)] f(s.y(s))+e(s)]ds,

=0 t

It follows that

i

y(t) =Y, % (1,0)p( J'Y“BC (t,s+h)Bp(s)ds— Zk;] YA (ts) F (s s))+go(s)]dsijhA'B'° (ts)[ f(s.y(s))+e(s)]ds,

1=0t

i

t k=1
<[l cllo(eles 55 x5 1 o)
0 -
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t k1
< J‘ Ht (1 +"gk" +||Ck ")E(WHBH)(H)dS " ¢"PC +Z(;e(w IBI)(t t")”gj"
0 <t < j=

K—:

1 . . .
< {||A||+||B|| H (1+||gk||_,_||ck ”)(e(HAH &)™ _1)+ e(HAH IBl)(t-t )”gj"JE

1
s<t, <T j=0
Now, we are able to present our second main result on Ulam-Hyers stability.

Theorem 5. If f:[0,T]xR" —R"is continuous and satisfies the Lipchitz condition:
there exists L, >0such that for all (t,y,)(t,y,)€[0,T]xR"

[ty = eyl <L vyl -

Then

e the equation (2) has a unique solution y < PC([—h,T]ﬂR”)ﬂPCl ([O,T](]R”) ;

e the equation (2) is stable in Ulam-Hyers sense.

Proof. We define

t.
Hym—th'B’C<t,o>¢<o)+_?thA' Be (t,s+h)s¢(s)ds+éo Jt? 1YhA' ®(ts)f (s,y<s>)ds+t} YAB (1) (s.y(s))ds,
i k

On the space PC([—h,T] NR" ) We will apply the contraction mapping theorem to show

that 11 has a unique fixed point. At first glance, it seems natural to use the supermom
norm. But the choice of supermom norm only leads us to a local solution defined in

the subinterval of [-h, T]. The idea is to use the weighted supermom norm

IVl 5 :sup{e_5t ly()]:-h stsT}.
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On PC([—h,T]nR”)Observe that PCl([—h,T]ﬂRn) is a Banach space with this norm

since it is equivalent to supermom norm

(i) We show that 11 is a contraction on PC([—h,T]ﬂR“).Indeed, for

X,y e PC ([—h,T]ﬂRn)

We have

e TIx (t)—TTy (t)]|
- e_at}HYhA, B,C (t,S)H@Se—& [ (s.x(s))— f (s,¥(s))|as
0

< e(_gt) } e(+5s) HYhA’ B.C (t,s)HdsL

Ix =yl
0 f o

< I1 (1+Hck H)'j'e(”A”'F”B”_é‘)(t _S)dst [ _y”5

s <ty <T (0]

- 5—||A1||-||B_|| IT (2+[e, H)[l‘e(||A||+||B||_5)T JIIX Yls @

s<t, <T
Taking supermom over [0,T]we get

1 (I A+B]-5)T
| | 1+ (|C 1—e X—Yy
5‘ ”A” ”B” ( ” k ||)( )” ”5

s<t, <T .

”HX - Hy”é‘ =

We can choose & >||A|+|B| so that the coefficient of |x-y|, become strictly less than

one. Hence 11 is a contractive operator and by the Banach contraction principle P is

a unique fixed point in PC([—h,T]ﬂR”)and the equation (2) has a unique solution.
(ii) Let y e PC([-h, T]NR")be a solution (14), and let x be a unique solution of (2).
We see that

ly(t)-x(t)|=0for -h<t<0.For te[0,T]we have

Iy (O ()] =y (O)-T1x ()] <[y O~y (O« <y (1)~ Tx(0)].
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Now we use Lemma 7 and inequality (17) to get

- (Al+[B]-5
€ o ”y (t)—x(t)||£Cg+§ ||A|| ||B|| H (1+”C “)[ ) ]”X_y"é‘_

s<ty, <T

Where C is defined by (16). Consequently,

C

&
L1 (1+“Ck“)[ [AlI+[B]-8)T J |
5—[Al- ||B||s<tk<T

eyl <

Hence equation (2) is Ulam-Hyers stable.
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Chapter 6

EXISTENCE

Existence results
The following result depends on the Schaefer’s fixed point theorem. For getting the
optimal results,

We have the following assumptions:

(H1) The function f :JxR" — R"is continuous.
(H2) There exists a constant M; > O such that

[f(ty)| <M, (1+]y]), for ted and Yy € R".

Theorem 6. If the assumptions (H1) and (H2) are satisfied, then problem (2) has at

least one solution.

Proof. Let 11 that showed in Theorem 5. The Schaefer’s fixed-point theorem will be

used to Illustrate that 11 has a fixed point. We should divide the proof into four steps.

Step 1. 11 is continuous.

Take a sequence{y,} =B, such that y, convergesto yeBasn—w. Then for teJ we

have H(Hyn )(t)—(l‘[y)(t)”

gt} HYhA’ B.C (ts)““f (s,yn (s))— f (s,y(s))”ds
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< T!"Yh“f"c (Ts)""f (s.y, ()= f (s, y(s))"ds

As a result of Lebesgue dominated convergent theorem, the right-hand side of the
previous Inequality goes to zero asn — oo,
Hence,

(1Y, ) (8)~(TTy)(t)] > O when N —so0

Which means that.

[y, (t)-T1y (t)].. =0 when n—>oo

Thus 11 is a continuous function on J.

Step 2. 11 takes bounded sets into bounded sets in P.

Let » be a positive number, and there is a constant », >0
Then, forall ye B, ::{y eB:|y|,. < rl} :
We have |iy|,. <r,.ForteJ, ,m=012...p,

And
Iy )= %2 Ol @)+ 19 (s (s =< ()] (5 (s

<Gyt e (TO)M,T (14l
<G, +||YhA,B,c (T, 0)|| M, T(1+r):=r,.

Which implies that|ry|.. <r,.

Step 3. 11 Maps bounded set into equicontinuous set of P.

Lett,t,eJ,,m=012,...p,with t <t,and B, be aball as in the second step. Then for
yeB
We have
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() () —(Ty) ()] < %" (t,0) %< (¢, 0) [ (0)]

0 t
TN (tuse ) =15 (st IBlo()]ds + [ (t,5)-Y5 (t.9)]|F (5.v(5))]ds
“h tn

+_|‘||Yh’*8’C (t, s)""f (s, y(s))" ds
4
We see that the right hand side of the previous inequality goes to zero ast, —t,, since

Y,** (t,s) is continuous in te J, and f is bounded on B, .

11 is completely continuous by the previous steps and by Arzela—Ascoli Theorem.

Step 4. A priori bound.
The last step illustrates this definition:

W ={yeB:y=AII(y)for some 0 < 2 <1} is bounded.
Letyew, the for some0<A<1,y=AaII(y).

Therefore fort e J, as in Step 2, we have
Iy @)= AINI(y () <Co b 22 (Lo, T +fv2ee (T.0) m, (s

Gronwell’s inequality yields
[y (O] < Co + [ (T,0)[ M, T exp([¥,* (T, 0)| M, T) <0

Then the set W is bounded.

So, by the Schaefer’s fixed-point result, we deduce that 11 has a fixed point which

means the solution of the suggested problem (2).
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Chapter 7

ILLUSTRATIVE EXAMPLES

In this section we introduce two numerical examples.

Example 1. Consider the linear problem (1):

y'(t)=Ay(t)+By(t—h)+ f (t,y(t)),te[0,T],h >0t =t
Ay(t)=y(t)-y(t)=Cy(t).k=12...p,
y(t)=o(t),-h<t<0,

Where A,B,C, e R™™are constant matrices, o « C*([-h,0],R"), f €C ([0,0),R"), {t, }

k=1

satisfies 0=t, <t <..<t <t =T.

This problem satisfies the conditions of Theorem 4 and this linear impulsive system is

stable in Ulam-Hyers sense.

Example 2. Consider (2) with h = 0.2
-33 1 0.8 0.2 1.2 05) .
0 -03 0 06) ' (02 1.2
(e _(0.25sinx,
(p(t){e“J f(x(t))_(O.ZSSinxJ
Where [x] is the biggest integer less than real x.

And AB#=BA j=12,....

AC, %C; A.
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BC, =C,B.

Obviously, f satisfies the Lipchitz condition L, =0.25> 0, the conditions of Theorem 4

are satisfied and equation (2) has a uniqueness solution in PC[-h,1]NPC*[0,1]which is

Ulam-Hyers stable on[-h,1].

Example 3. Consider the below fractional problem

ORI O by MR YO

1
Ay(tk)y(t*k)y(tk)[zT O}y(tk),kl,z,.....A, te[01],h=02>0t=t,
12

Obviously, A,B and c, are mutually non-commutative
AB = BA.
AC, #C,A

BC, #C,B ,]j=1,2

Assume that f :[0,1]xR* — R? is any continuous function satisfying(H,) .

Then, by Theorem 6 the equation (2) has at least one solution on[-h,1].
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Chapter 8

CONCLUSION

The major contribution of our work is to establish an impulsive delayed matrix
exponential for non-permutable matrices and use it to construct explicit results to solve
the problem of impulsive delay systems that they have linear portions determined by
non-permutable matrices. We give a sufficient for asymptotic stability of impulsive
delay systems. And, Banach fixed point method is applied to present existence,
uniqueness, and Ulam-Hyers stability of the impulsive delay system. The study on
representation and stability of delay differential impulsive systems has prospective for
coming times study on fractional impulsive delay systems, on fractional multiple delay

impulsive problems, or on a delayed nonlinear problem.
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