
Evolutionary Design of Radial Basis Function Neural

Network for Data Modelling

Alparslan Kaplan

Submitted to the

Institute of Graduate Studies and Research

in partial fulfilment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

December 2012

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Assoc. Prof. Dr. Muhammed Salamah

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Asst. Prof. Dr. Adnan Acan

 Supervisor

 Examining Committee

1. Assoc. Prof. Dr. Muhammed Salamah

2. Asst. Prof.Dr. Adnan Acan

3. Asst. Prof. Dr. Arif Akkeleş

iii

ABSTRACT

In this thesis, implementation of Radial Basis a Function Neural Network (RBFNN)

using genetic algorithm is described. The developed algorithm is used to model a

certain dataset by training a RBFNN using some part of it, and then testing the

performance of this RBFNN using the rest of data. The objective function of the

proposed algorithm is to minimize the error between the computed output by the

model and the target output given in the dataset.

The genetic algorithm used in this thesis is an evolutionary algorithm that uses

natural evolutionary process for selection and reproduction. An individual is

constructed from the RBFNN parameters, which are hidden units, centers, weights,

widths and bias associated with hidden units and output of RBFNN. Therefore, the

fitness values are also assigned to all chromosomes as a result of getting the

difference between the target output and the computed output by the RBFNN, in

which a Gaussian function was used as an activation function.

In experimental results, different tests were conducted in order to see the

performance and correctness of the developed model. Since the number of hidden

units plays an important role as well as weights, the intervals of weight values were

adjusted accordingly and the number of hidden units was changed for different tests.

As a result of conducted experiments, it is observed that the developed algorithm is

successful in obtaining good results by minimizing the error.

Keywords: Evolutionary algorithms, Radial Basis Functions, Data Modeling.

iv

ÖZ

Bu tezde Radyal Tabanlı Fonksiyonlar Ağı (RTFA), genetik algoritması kullanılarak

tasarımlanmıştır. Geliştirilen algoritma modellenmesi hedeflenen belirli bir veri

kümesinin bir kısmını öğretme geri kalan kısmını test için kullanmaktadır.

Geliştirilen algoritmanın amaç fonksiyonu bulunan model ile verilen hedef çıktı

arasındaki hatayı en aza indirmektir.

Bu tezde kullanılan genetik algoritma bir evrimsel algoritmadır. Bu genetik

algoritmadaki bireyler RTFA parametrelerinden oluşturulmuştur: gizli birimler,

merkezler, ağırlıklar, genişlikleri ve sapma. Bireylere verilen uygunluk değeri olarak,

bulunan model ile verilen hedef çıktı arasındaki fark kullanılmaktadır. RTFA’nın

gizli birimlerinde aktivasyon işleri olarak Gauss işleri kullanılmıştır.

Deney sonuçlarında, geliştirilen modelin performans ve doğruluğunu kontrol etme

amaçlı farklı testler uygulanmıştır. Deneysel sonuçları elde ederken RTFA

parametrelerinden en önemli iki parametre olan gizli birimlerin sayısı ve ağırlıkların

değerleri değiştirilmiş ve sonuçlar gözlemlenmiştir. Deneysel sonuçlar neticesinde

geliştirilen uygulamanın, iyi sonuçlar bulma ve hatayı en aza indirmede başarılı bir

yöntem olduğu tespit edilmiştir.

Anahtar Kelimeler: Evrimsel algoritmalar, Radyal Tabanlı Fonksiyonlar Ağı, Veri

Modelleme.

v

ACKNOWLEDGEMENTS

First of all, I would like to thank my dear parents–Latif Kaplan and Ayten Kaplan for

their patience and support. My brothers’ suggestions and help were invaluable for me

throughout the time I was writing my thesis. Their beleive in me made me strong in

accomplishing this thesis successfully.

My sincere thanks go to my supervisor Asst. Prof. Dr. Adnan Acan for his direction,

assistance and guidance. His recommendations and suggestions have been invaluable

for the thesis.

I am also thankful to Zhavat Sherinov for his advises and help throughout the thesis.

And I also thank Cem Ayas for his support and motivation.

I am particularly indepted to my wife Gülşah Kaplan for her patience and being

always next to me, who used to give confidence to me throughout the thesis.

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

ACKNOWLEDGEMENTS ... v

LIST OF FIGURES .. viii

LIST OF TABLES ... x

1 INTRODUCTION .. 1

2 THE DATA MODELING PROBLEM IN INDUSTRY .. 3

3 GENETIC ALGORITHMS .. 6

3.1 Genetic Operators .. 8

3.1.1 Selection... 9

3.1.2 Crossover ... 10

3.1.3 Mutation ... 12

3.1.4 Reordering ... 14

4 RADIAL BASIS FUNCTION NEURAL NETWORK .. 15

4.1 General Formula of RBF ... 17

4.2 Types of RBFNN ... 18

4.4 Training Algorithms of RBFNN ... 19

4.5 Least Squares ... 20

4.6 RBF Properties .. 20

4.7 RBFNN Improvements .. 20

5 THE DEVELOPED MODEL ... 22

5.1 Genetic Operators .. 24

vii

5.1.1 Constraints ... 24

5.1.2 Arithmetic Crossover ... 25

5.2 Mutation .. 25

5.3 Chromosome Representation and Data Structure ... 25

5.4 Implemented Objective Function .. 28

5.5 Cross Validation .. 30

5.5.1 RBFNN Parameters ... 30

5.5.2 K-Fold Implementation ... 31

5.6 Local Search .. 32

5.6.1 Pattern Search .. 32

5.7 Normalization .. 34

5.8 Algorithm Description ... 34

6 EXPERIMENTAL RESULTS .. 39

7.CONCLUSION ... 46

REFERENCES ... 48

viii

LIST OF FIGURES

Figure 3.1: Genetic Algorithm Flowchart .. 8

Figure 3.2: One - Point Crossover ... 11

Figure 3.3: Two–Point Crossover .. 12

Figure 3.4: Uniform Crossover .. 12

Figure 3.5: Swap Mutation ... 13

Figure 3.6: Point Mutation ... 14

Figure 3.7: Mutation Operator ... 14

Figure 4.1: RBFNN Structure .. 17

Figure 4.2: Gaussian RBF .. 18

Figure 4.3: Neuron Influence ... 19

Figure 5.1: RBFNN Design Procedure .. 23

Figure 5.2: Chromosome Representation ... 26

Figure 5.3: General Skeleton of RBFNN Combining with GA 28

Figure 5.4: K-fold Cross Validation... 31

Figure 5.5: Algorithm Main Flowchart .. 36

Figure 5.6: Evolution Process .. 37

Figure 5.7: Implementation of Test Part .. 38

Figure 6.1: Training results with 3 hidden units .. 40

Figure 6.2: Test results with 3 hidden units ... 40

Figure 6.3: Training results with 5 hidden units .. 41

Figure 6.4: Test results with 5 hidden units ... 41

Figure 6.5: Training results with 10 hidden units .. 42

ix

Figure 6.6: Test results with 10 hidden units ... 42

Figure 6.7: Training results with 15 hidden units .. 43

Figure 6.8: Test results with 15 hidden units ... 43

Figure 6.9: Comparison of results .. 44

x

LIST OF TABLES

Table 3.1: Relation between tournament size and selection intensity 9

Table 3.2: Selection probability and fitness value ... 10

1

Chapter 1

1. INTRODUCTION

Among the set of search and optimization techniques, the development of

Evolutionary Algorithms (EA) have been very important in the last decade. EAs are

a set of modern meta heuristics used successfully in many applications with great

complexity. EAs are used in many fields, since they are very useful for optimization

and searching tasks. Therefore, they are well known algorithms in the field of

artificial intelligence.

There are different approaches and methods of applying EAs for different problems.

However, there is a main idea behind them, which is very similar to natural evolution

in terms of generating populations or in other words reproduction. There are many

benefits of using Evolutionary Computation (EC) techniques due to their

implementation flexibility for various problems.

Most of the present implementations of EA come from any of these four basic types:

Genetic Algorithms (GA), Evolutionary Programming (EP) and Evolutionary

Strategies (ES) and Genetic Programming.

Genetic Algorithms imitate the process of natural evolution in terms of reproduction

of population from a generation to generation. The main aim in genetic algorithms is

to find the best solution in a given search space during the evolution process. The

2

evolution process includes the most important activities for reproduction purposes,

which are selection, crossover and mutation. Some of the most famous ones are as

follows: Travelling Salesman Problem (TSP), Vehicle Routing Problem (VRP) and

Scheduling Problems (SP), and Difficult Real-Valued Optimization Problems.

 In this thesis, a genetic algorithm was used in order to implement a Radial Basis

Function Neural Networks (RBFNN). In general, Radial Basis Functions are of the

following types: the Gaussian RBF and a Multiquadric RBF. The calculation of the

output by the Radial Basis Function network is done through the computation of

local parameters from input to the output. RBFNN is used to solve modeling and

classification problems, since it is fast in terms of learning speed and

approximations. The RBFNN can be considered as a three-layer feed-forward neural

network with a simple architecture. The type of activation function of RBFNN in this

thesis is a Gaussian function.

The implementation of RBFNN using a GA is done in such a way that GA controls

the parameters of RBFNN. These are hidden units, centers, weights and widths.

The organization of other chapters in this thesis is as follows. Chapter 2 presents the

general description of data modeling. In Chapter 3, the genetic algorithms are

explained along with different variants of selection, crossover and mutation

operators. Chapter 4 presents the description and evolutionary design of RBFNN.

Chapter 5 focuses on the proposed work. The experimental results along with

discussions are found in Chapter 6. Finally, the conclusion and discussion of possible

future work is presented in Chapter 7.

3

Chapter 2

2. THE DATA MODELING PROBLEM IN INDUSTRY

One of the most important technologies developed in industries is the pulp and paper

manufacturing technology, which combines engineering with industrial training. In

the pulp and paper manufacturing technology there are several factors to be

considered for a good and profitable development, which are effective and organized

factory systems that are people-oriented and economic. Engineers in this field focus

their work in areas such as research, development and quality control. Moreover,

they are responsible for the whole pulp and paper making process to ensure its

quality. Another issue with the pulp and paper making process is that it breaks fast if

recycling was done by improper addition of other materials such as water or other

liquid and inaccurate procedure. It is the engineer’s job to make sure that the whole

process of the pulp and paper operation meets all requirements. There are several

problems that technologists face with while implementing such operations. For

example, the accurate measurements of products’ quality and process performance

are very important issues for manufacturing industries. In addition, this requires real-

time for making necessary measurements for good control of products, which is

usually a problem in most of the cases, since such results as process variability and

unscheduled downtime may occur. One of the examples of such problems is the

control of the black liquor concentration system in the pulp and paper manufacturing

industries. Therefore, different models are proposed for implementing this kind of

tasks using software systems. In this thesis, the radial basis functions neural network

4

(RBFNN) based model was designed to control the black liquor solid content

(BLSC).

Wood chips are used for producing pulp during paper making process. Wood chips

and “white liquor” are combined and cooked in a digester, which is called “black

liquor”. Through evaporation, by heating with steam, the black liquor is concentrated

up to the point when it is around 66% of solids, and then it is burned in the recovery

boiler. After burning of the black liquor steam and a residue of molten chemicals are

produced. Then addition of water and lime is performed for the residue of molten

chemicals to be processed and turned back to fresh white liquor for future use. After

other several stages such as evaporation, the black liquor solid content’s process

ends. There are several important variables that the solid content of the black liquor

depends on, i.e. pressures, temperatures, flow rates, etc [21].

The proposed RBFNN model, using regression analysis, makes accurate estimation

of the BLSC that can lead to variability and cost reduction and a more stable

operation with limited unscheduled shutdowns. Advantage of using RBFNN is that it

uses established linear regression techniques, which allow reaching to the global

minimum and fast convergence with specified hidden neurons and other RBFNN

parameters.

The dataset used in this thesis is obtained from a Canadian pulp and paper company.

The dataset contains historical sensor measurements over 10 years. There are a lot of

outliers and missing values in the original dataset. However, the company provided

us a cleaned dataset. That is obtained from the original one by removing outliers and

interpolating the missing ones.

5

Starting in 19
th

 century, the pulp and paper industry became widespread all over the

Canada and was serving the needs of the people. As the technology was developed,

the more there was a need for the paper industry. The Great Lakes-St Lawrence and

the Maritimes were filled with new mills due to the need of the paper.

The cotton and linen rags were known for many centuries to be the mostly used

resources for paper manufacture. Later in 1840s it was realized that the paper

manufacture can be done using the vast forest wood. Ground wood, is used primarily

for cheap papers, which is prepared by grinding the wood.

The modern papermaking began in 1864, when the first chemical wood-pulp mill

was built at Windsor Mills. Preparation of chemical pulp is done from wood chips

boiled under pressure with chemicals with usage of soda in order to leave mostly

cellulose fiber. The wood pulp is washed, bleached, blended and then poured over a

wire screen, after which a fine layer of fiber is produced [22].

The BLSC dataset used in this thesis contains 19 variables. Each sample contains 18

explanatory variables and one response variable. The data set used in this thesis is

also clear with regards to distinguishing the explanatory variables from the response

variable. This is due to the fact that 18 variables in each sample are the input

variables, which are going to ‘explain’ the remaining one variable – response

variable, which is the output.

6

Chapter 3

3. GENETIC ALGORITHMS

Genetic Algorithms (GAs) are search heuristics, which involve the process of natural

evolution. In GAs, potential solutions are repeatedly generated in a particular number

of times for optimization or search purposes. GAs are very useful to apply in a

problems when very small amount of information is known. GAs are generally the

adaptation of random search, which is used in optimization problems, whereas, there

still exists a direction for search due to constraints. GAs can be applied for single

objective optimization and for different problems with more than one objective

function. Usually, GAs contain several components which are:

i. Individual: any possible solution generated by GA, which is also called a

chromosome.

ii. Population: set of individuals present together.

iii. Search Space: all possible solutions to the problem.

iv. Fitness: the value assigned to an individual based on the quality of the

individual.

v. Objective Function: a function that assigns fitness value to the individuals.

vi. Parent: member of a current generation selected for reproduction

vii. Offspring: generated child (individual) from parent(s) as a result of crossover

or mutation, which is a member of the next generation.

7

viii. Crossover: using two individuals, interchange their genes with each other

and thus generating two new individuals.

ix. Mutation: changing a random gene in an individual.

x. Selection: selecting individuals (parents) for creating the next generation.

xi. Generation: iteratively created new populations.

The following is a general workflow of a GA: first, initial population is generated

randomly and the fitness value for each individual in the current population is

computed and saved based on the objective function and constraints if exist. After

that, the selection operator is applied based on the fitness values of individuals for

further reproduction. The probability of an individual being selected is directly

proportional to its the fitness value. As a result, those individuals possessing higher

fitness values will have more probability to be selected than the other ones. Then, the

application of crossover and mutation operators is committed on the selected

individuals (parents) for reproduction and generating new population. This whole

process is repeated for a number of particular generations, which is specified by the

user. Figure 3.1 illustrates the GA process.

8

START

INITIALIZE

POPULATION

EVALUATE

INDEVIDUALS

SELECT GENETIC

OPERATOR

PROBABILISTICALLY

SELECTION CROSSOVER MUTATION

TERMINATION

CONDITON(S)

END

TRUE

FALSE

Figure 3.1: Genetic Algorithm Flowchart

3.1 Genetic Operators

In GAs, several operators are involved during the evolution process, which are

selection, crossover and mutation. Each of these operators has different variants of

implementation and carries different aims, which fulfill the evolution process. This

section describes in detail each of these operators and their different approaches for

implementation.

9

3.1.1 Selection

Selecting individuals for reproduction is one of the most important steps in evolution

process, since they are the reason for getting better offspring and thus obtaining best

results. Therefore, the main idea of selection operators is to make a decision and give

preference when selecting among candidate individuals those, which are better than

the other. There are many different approaches for selecting parents for reproduction,

so some of them are mentioned below.

3.1.1.1 Tournament Selection

In tournament selection a number Tour of individuals is chosen randomly from the

population and the best individual from this group is selected as parent. This process

is repeated as often as individuals must be chosen. These selected parents produce

uniform at random offspring. The parameter for tournament selection is the

tournament size Tour. Tour takes values ranging from 2 to the number of individuals

in the population. Table 3.1 shows implementation of tournament selection with Tour

size equal to 7. In this table, there are 7 candidate parents that were randomly chosen

from the population, and each has a fitness value, where less fitness indicates a better

quality of the individual, since we consider minimizing the objective function. As a

result from the given data in below table, parent 3 and parent 7 are the best among

the all selected candidate parents.

Table 3.1: Relation between tournament size and selection intensity

Candidate Parent 1 2 3 4 5 6 7

Fitness (Quality) 23 11 5 32 17 28 9

10

3.1.1.2 Roulette Wheel Selection

Roulette Wheel selection is one of the traditional GA selection techniques. The

Roulette Wheel selection method sums all the fitness’s of all individuals and then it

calculates the probability of selection for each individual. Then, an array is built

containing cumulative probabilities of individuals. So, the probability of a

chromosome (individual) to be selected is defined below:

Individual i is chosen according to the following selection probability:


N

i
if

if

)(

)(
[11],

where N is the number of individuals in the population.

Table 3.2: Selection probability and fitness value

Number of

individual

1 2 3 4 5 6 7 8 9 10 11

Fitness

Value

2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

Selection

Probability

0.18 0.16 0.15 0.13 0.11 0.09 0.07 0.06 0.03 0.02 0.0

3.1.2 Crossover

Crossover is a recombination of two different chromosomes and generating two

better chromosomes. In crossover operation, recombination process creates different

individuals in the next generations by combining genes from two individuals of the

previous generation. Crossover operator exchanges the genes of current selected

chromosomes and generates two new offspring as a result. Some of the different

types of crossover operators are described in the next subsections.

3.1.2.1 Crossover Probability

In the GAs, crossover operation is the main method of reproduction. Therefore,

crossover probability indicates how often crossover will be performed. If crossover

probability is high, it will destroy the good individuals, because of extreme usage of

11

crossover operator. Otherwise, offspring will be exact copies of parents. Moreover, if

crossover probability is 100%, then no offspring will be generated by mutation,

which is explained in the next section.

3.1.2.2 One-Point Crossover

One-point crossover is one of the simple types of crossover operators, though it is a

base for many other crossover types. In one-point crossover operator, a common

crossover point in the parent chromosome is selected and then the swapping of the

corresponding sub trees is performed between two individuals. There are two steps in

implementation of one-point crossover operation: a point is generated randomly

between 1 and the size of the chromosome, and then the first part of parent 1 is

concatenated with the second part of parent 2 and given to child 1. The same is

implemented for child 2, the first part of parent 2 is concatenated with the second

part of parent 1. Figure 3.2 illustrates the implementation of one-point crossover.

Parents:

3 2 1 1 3 6 4 4

4 5 7 8 2 1 3 1

 Crossover Point

Children:

3 2 1 1 2 1 3 1

4 5 7 8 3 6 4 4

Figure 3.2: One - Point Crossover

3.1.2.3 Two-Point Crossover

In addition to single point crossover, many different crossover types have

been introduced by involving more than one cut point, there is an advantage of

having more crossover points, since the problem space may be searched in deep. In

two-point crossover, two crossover points are chosen and the genes between these

points are exchanged between two mated parents as shown in Figure 3.3.

12

Figure 3.3: Two–Point Crossover

3.1.2.4 Uniform Crossover

Uniform crossover is a different type of crossover, which uses an extra temporary

parameter called mask, which is created from bits randomly. Therefore, the genes

between the chromosomes are distributed to new offspring according to the mask. If

mask contains bit 1, then the gene is taken from parent 1 and given to child 1,

otherwise it is given to child 2 and place in the same location. The same is

implemented for parent 2. The Uniform crossover is illustrated in Figure 3.4.

Figure 3.4: Uniform Crossover

3.1.3 Mutation

Another important genetic operator is the mutation operator, which is also very

important for reproduction process. The difference between mutation and crossover

operations is that mutation does not involve Exchange of information between

chromosomes, since it is applied on a single individual. So mutation is done within

3 2 1 1 3 6 4 4 Parents 4 5 7 8 2 1 3 1

3 2 7 8 2 1 3 1 Children 4 5 1 1 3 6 4 4

Mask: 1 0 1 1 0

Parent1: 0 1 0 1 1 Parent2: 1 1 1 0 0

Child1: 0 1 0 1 0 Child2: 1 1 1 0 1

13

the same chromosome without introducing new genes from other individuals.

Mutation enables algorithm to escape local minimum. There are various types of

mutation operators among which some are mentioned below.

3.1.3.1 Mutation Probability

The mutation probability is the important parameter of GAs, since as in the case of

crossover probability it plays a vital role, which decides whether mutation operation

will be performed much. When the mutation probability is very high or 100%, then

there is a risk of getting stuck at local minimum or local maximum. However, it

should not be very low either, since the mutation is important to implement from

time to time during the evolution process in order to compensate the loss of diversity

during crossover operations.

3.1.3.2 Swap Mutation

One of the most used and simple mutation types is a swap mutation, since the

operation, which is done during swap is just to replace the positions of two genes in a

chromosome. As a result of swapping the order in a chromosome is destroyed, which

improves the solution. Swap mutation is shown in Figure 3.5.

Parent: 1 2 3 4 5 6 7 8 9

 ↓
↓

Offspring: 1 5 3 4 2 6 7 8 9

Figure 3.5: Swap Mutation

14

3.1.3.3 Point Mutation

In point mutation a random point in a chromosome is chosen and its element is

replaced by the complement of it or given another value, which results in a different

chromosome. Point mutation is shown in Figure 3.6.

Parent 0 1 0 1 1 0 1 1 0

 ↓

Offspring 0 1 0 0 1 0 1 1 0

Figure 3.6: Point Mutation

3.1.4 Reordering

Reordering is also a very effective mutation type, since in most of the problems it

gives good results from mutation operator. Reordering is a simple operation, which

selects two points within the chromosome and then reorders all the genes in that

interval. Reordering is shown in Figure 3.7.

Before 0 1 0 1 1 0 1 0 1 1 0 1 0 0

After 0 1 0 1 0 1 0 1 1 1 0 1 0 0

Figure 3.7: Mutation Operator

15

Chapter 4

4. RADIAL BASIS FUNCTION NEURAL NETWORK

A radial basis function (RBF) network is a special type of neural network in which

the activation function is a radial basis, which is a real-valued function, where its

value depends only on the distance from the origin. Examples of some of the

applications are as follows: interpolation, system identification, approximation, curve

fitting, modeling and classification problems. Because of compact topology and

faster training speed the radial basis function neural network (RBFNN) is different

from other neural Networks [16]. Moreover, another thing that makes RBF neural

networks different from others is that in most of the cases it reaches the global

minimum of error surface during training [17]. As a result, RBFNN have attracted

considerable attention in the field of science and engineering. RBFNN's main

advantage is that after the number of hidden neurons, centers and radii have been set

the optimal biases and weights, it can be efficiently computed for a certain set of

desired output [14].

RBFNN is a type of feed forward neural network consisting of three layers – the

input layer, the hidden layer and the output layer (see Figure 4.1 for its structure).

The first layer (input layer) is responsible for accepting inputs, i.e. data sample and

pass them to the each of the hidden units in the second layer. The hidden units in the

second layer accept these inputs and using the activation function defined by the user

process them independently from each other and signal them to the output layer. The

16

output layer, which is the RBF real valued output using summation mechanism sums

all the hidden unit results by multiplying each of them by the relative weights. Thus

this process is done so many times as it is required in order to design a model.

When using RBFNN, the hidden unit activation function must be specified such as

the number of processing units. Moreover, in order to find the parameters, the

particular rules for modeling a given task and a training algorithm should also be

specified. The purpose of network training is to find RBFNN weights. If there exists

a set of input-output pairs, called training set, the network parameters are optimized

in order to fit the network outputs to the given inputs. Mean squared error is used for

the cost function, which is used to evaluate the fitness. The RBF network can be used

with data, which is similar in structure to the data that was used for training the

model [12].

Determination of the number of neurons in the hidden layer in RBFNN is very

important. This is because all the neurons have radial basis function, which has as

many dimensions as the number of inputs. A few number of hidden neurons in the

hidden layer may cause the RBFNN receive the data incorrectly. However, usage of

many neurons in RBF network may cause overlearning and thus bad prediction.

Determination of center locations is also a very important issue in RBF, since the

positions of centers have a considerable affect on the performance. All neurons have

activation functions in the hidden layer and the Gaussian function is mainly used as

an activation function. Then, since the weights are also another important factor in

RBF network, they also must have a range of values to be selected for the weights,

which are used between hidden and the output layers. The spread (radius) of the RBF

function is generally different for different samples, and the bias values which are

17

also added as they have a small affect. The following data model in Figure 4.1

represents the RBFNN structure with all three layers.

Input Layer Hidden Layer Output Layer

Figure 4.1: RBFNN Structure

All inputs are connected to neurons without weights (w) but neurons are connected to

output through weights. Every neuron has one weight and output is calculated as

follows:

y(x)=)(
1

i

N

i xxw  , where y(x) represents the sum of radial basis functions, wi is

some weight, x is the sample input and xi is the center of the input.

4.1 General Formula of RBF

The most general formula for any RBF is

 h(x) =))()((1 cxRcx   ,

where  is the function used (Gaussian, Multi-quadratic, Cubic, etc.), c is the center

and R is the metric. The term )(cx)(1 cxR  is the distance between the input x

and the center c in the metric defined by R. There are several common types of

functions used and Euclidean is often used as metric. In this case, R= 2r for some

scalar radius r and the above equation simplifies to:

X1

X2

X
n

Q1

Q2

Qm



1w

2w

mw

Y

18

h(x) =)
)()(

(
2r

cxcx  

 [15].

4.2 Types of RBFNN

There are many basis functions used in RBFNN. However, in this thesis the Gaussian

function was used, whose definition and description is given below:

 Gaussian Function:

The Gaussian function is the most preferred activation function, which has a spread

parameter that controls the behavior of the function. During the training process of

RBF the spread parameter is also optimized for each hidden neuron. The following is

the Gaussian function:

)
2

exp()(
2

2

j

jcx
r






Where width parameter  >0 and j = 1, 2… m, x is an input vector,)(r is the

output of hidden layer nodes, jc is the center of Gaussian function, jcx  is the

Euclidean distance between x and the center jc ,  is the width (radius) of Gaussian

function, m is the number of hidden nodes.

Figure 4.2: Gaussian RBF

19

Above figure illustrates the Gaussian RBF with center c = 0 and radius r = 1, which

monotonically decreases with distance from the center.

4.3 How RBFNN Works

An RBF network has hidden neurons, which have as many dimensions as there are

predictor variables or also may be called sample attributes. The radial basis function

is applied to the distance for calculating the weight for each neuron, where distance

is the Euclidean distance computed from the point being evaluated to the center of

each neuron. The radial basis function is named as such, because the radius distance

is the argument of the function.

The further a neuron is from the point being evaluated, the less influence it has.

Figure 4.3: Neuron Influence

4.4 Training Algorithms of RBFNN

A training algorithm’s purpose is to find optimal parameters for the specified

network structure and dataset. There are two categories of training algorithms:

supervised and unsupervised. However, in RBFNN, supervised methods are used

more often. There are data samples in supervised method with the same number of

attributes, called training set, and in addition to this the corresponding network

outputs are also known.

20

4.5 Least Squares

In supervised learning the least squares principle becomes an easy optimization task.

If the model is

f(x) =)(
1

xhw j

m

j

j


and the training set is
p

1iii }ŷ, x{  , then the least squares implementation is to

minimize the sum-squared-error (S)

S = 



p

i

ii xfy
1

2))(ˆ(.

When a weight value is added to the sum- squared-error, then the following cost

function is minimized as follows:

C =  
 


p

i

m

j

jjii wxfy
1 1

22))(ˆ( ,

where the
m

jj 1}{  are regularization parameters [15].

4.6 RBF Properties

The Gaussian Function is formed so that φ (r) →0 as r →∞. Moreover, when

considering in detail we may notice that the Linear Function φ (r) = r = pxx  is

still non-linear in terms of x. In one dimension, this comes to a linear interpolating

function, which in return represents a simple form of interpolation function.

4.7 RBFNN Improvements

Although below mentioned techniques will make analyzing and optimizing the

network much more difficult, RBFNN basic structure can be improved in several

ways as follows [18]:

21

 The number M of hidden units need not equal the number N of training data

samples. Thus, usually it is better to have M much less than N.

 The centers of the hidden units do not need to be defined as the training data

input samples. They can be determined by a training algorithm instead.

 The basis functions need not all have the same width parameter σ, since a

training algorithm can also determine them.

 We can introduce bias parameters into the linear sum of activations at the

output layer. These will compensate for the difference between the average

value over the data set of the basis function activations and the corresponding

average value of the targets.

22

Chapter 5

5. THE DEVELOPED MODEL

This chapter discusses the proposed work and the developed model using RBFNN

techniques and genetic algorithms. The developed model consists of implementation

of RBFNN using GA approach. This thesis is concentrated on a single objective

function, which is the Root Mean Square Error (RMSE), and therefore the objective

function was minimized. There are two vectors involved in the objective function,

which are the found vector output by the RBFNN and the target vector output given

in the dataset. Applying the RMSE on these vectors we get the difference between

the target output and the found output by the algorithm, thus minimizing this

difference, such that the error. Moreover, the k-fold implementation was adopted in

this thesis for better results and explained in detail in this chapter. Another essential

part of the developed model in this thesis is the integration of local search into the

algorithm. By introducing local search into the algorithm, the model could produce

better results and could minimize error more. Normalization of the dataset also took

place in the developed model, since the purpose of normalization was to eliminate

the effects of certain sample’s large influences. In the development of this model the

method of evolutionary computations was successfully adopted for finding the

optimal parameters of RBFNN. Therefore, GA was used to find optimal parameters

for the RBFNN. In other words, GA was responsible for generating hidden units,

centers, widths and weights of RBFNN. In order to implement the combination of

GA with RBFNN, various methods have been applied to different parts of the whole

23

model. The main target was to improve and find optimal parameters of RBFNN in

order to get minimum error when comparing found output with the target output in

an attempt that the difference between them would be ensured to be very close to

zero.

When using GA for optimizing the parameters of the hidden layer (the centers  and

widths ) of the RBFNN model, there is also one more factor that is important for

GA to take care of: number of hidden neurons, and centers and radii related to them.

The number of hidden units in RBFNN is very important as it has a big influence on

the results obtained. Very few hidden neurons may not achieve good results because

of lack of knowledge. However, using too many hidden neurons may result in

overloading the model with extra knowledge and information. Therefore, finding

golden middle for the number of hidden neurons to be used is very important issue in

RBFNN.

Figure 5.1: RBFNN Design Procedure

Design
RBFNN

Data Set

The
position of
the centers

of the
RBFs(c)

Initialize
the

radius

The
weights
for the
output
layer

Set the
number

of hidden
nerons

24

5.1 Genetic Operators

In this algorithm genetic operators that are used are different for control genes

(hidden units) and other parameter genes (center, weights and width). For control

genes, single point crossover is used and arithmetic crossover is used for other

parameter genes. As a purpose of selection operator Roulette Wheel Selection was

used.

5.1.1 Constraints

When applying single point crossover for control genes, it may be ended up with no

hidden neurons after crossover is done as illustrated in the following example, where

cross point is between 3 and 4:

Parent1: 0 1 1 0 0 Parent2: 0 0 0 1 1

Offspring1: 0 0 0 0 0 Offspring2: 0 1 1 1 1

As shown in the above example, there are 5 hidden neurons in total. However, not all

hidden neurons are active since 1 indicates that the hidden neuron is active and 0

indicates that it is inactive. Thus, after applying single point crossover to two parents,

one offspring is obtained, which has all of its hidden neurons inactive, i.e. offspring

1. Every chromosome must contain at least one hidden neuron to be active.

Therefore, when applying single point crossover, the constraint is checked for at least

one active hidden neuron to present in each chromosome and that is done by

randomly selecting one of the hidden neurons and making it active, i.e. making its 0

value 1.

For the rest of the parameters of RBFNN, this constraint is not checked since all

values are between 0 and 1. Moreover, the crossover that is applied for other

25

parameters is arithmetic crossover, which is explored in depth in the following

section.

5.1.2 Arithmetic Crossover

In arithmetic crossover, one Formula is used assuming that two parents p1 and p2,

the two new offspring c1 and c2 are:

c1 = k (p2) + (1-k) p1 Offspring 1

c2= k (p1) + (1-k) p2 Offspring 2

while k is a random number between 0 and 1.

5.2 Mutation

The mutation operation used for control genes and parameter genes are different as in

the case of crossover operations. In the case of control genes, the bits were changed

from ‘1’ to ‘0’ or from ‘0’ to ‘1’.For parameter genes, uniform mutation method was

used. Assuming that K is the individual selected according to random probability to

mutate, then the result is:

K  = P min + r (P
max

- P min)

P
max

 and P min are the maximum and minimum values of K respectively.

5.3 Chromosome Representation and Data Structure

In this algorithm, a chromosome is represented as follows. If we consider hidden

units of size m and number of inputs in dataset n, then in the chromosome the first m

elements are the control genes (hidden units). Next, from m+1 to n*m a chromosome

elements contain the centers, so the total number of centers is equal to the number of

hidden units, whereas the length of each center is equal to the number of inputs in the

dataset, i.e. the sample size. Therefore, each hidden unit contains only one center, but

with the length equal to the number of inputs in the dataset. After positions of

centers, a chromosome contains the weights of size m, because each hidden unit

26

requires one weight and in addition to weights a bias is placed at the end of all

weights. The last m positions, also can be named as genes in a chromosome, are

occupied by the widths. When the chromosome is initialized, both weights and

widths are randomly created between -1 and 1. The figure 5.2 illustrates the

representation of chromosome.

Figure 5.2: Chromosome Representation

Where control genes are our hidden nodes, initialization of hidden nodes is done by

generating 0 or 1 randomly and assigning it to hidden unit, where 0 stands for

inactive hidden unit and the number 1 means the hidden unit is active. As shown in

Figure 5.2 above, the length of chromosome depends on the total number of hidden

units. Thus, even if we have 1 active hidden unit length of our chromosome does not

become shorter, which means that search space remains big all the time

independently on the number of hidden units used. Although search complexity

remains the same for any number of active hidden units, the number of active hidden

units plays a big role in getting good results. Therefore, hidden nodes’ size is

important, as it will be discussed in the experimental results chapter.

Centers are the other important genes in our chromosome, which are initialized by

using predefined MATLAB function called fcm, which has two parameters. These

Size m*n Size m Size

m

Size m Size 1

27

are our dataset samples and number of centers. When initialized, centers are

randomly selected from the dataset. After that, genetic operators are used on every

generation in order to get better results. So, fcm MATLAB function is used only

once when centers are initialized.

Weights are important parameters in order to find good solutions. We use weights for

all hidden nodes. Every hidden node has one weight and all weights must be greater

than -1 and smaller than 1. In the same way, genetic operators are applied to the

weights with constraints that the lower and upper bounds of weights are -1 and 1

respectively.

Below is the main algorithm structure used in this thesis.

28

Figure 5.3: General Skeleton of RBFNN Combining with GA

5.4 Implemented Objective Function

The objective function in this thesis is the Root Mean Square Error, which uses the

output found by RBFNN and the target output given in the dataset. So, it calculates

the difference between forecast and corresponding observed values are each squared

and then averaged over the sample. Finally, the square root of the average is taken.

Since the errors are squared before they are averaged. The following is the RMSE

Formula:

 Load training, validation and test sets.

 Create initial population. Evaluate and assign fitness to every individual.

 Instantiate operators and stop condition testers.

 Instantiate the evolutionary algorithm with the requıred RBFNN parameters.

 If stop condition is not reached, do the following:

a) Select individuals (parents) from current population.

b) Apply operators to these parents; evaluate and assign them a fitness.

c) Combine newly generated population with the old one and apply

elitism.

 Compare generated output by training the (RBFNN) algorithm and the target

output.

 Use the test data set to obtain the generalization power of best solution found

by the (RBFNN) algorithm.

29

n

ty

RMSE

n

i

ii




 1

2)(

, where yi is the found output by RBF, ti is the target output

and n is the number of samples in the dataset.

In this algorithm, three parameters were used in order to calculate the Root mean

square error. These are new output, target output and sample size. When the new

output is calculated, RBFNN is used.

There is a function that is used to calculate the output in Radial Basis Functions

(RBF). This function is given by:

y
i
(x) = 




n

j

jij xxw
1

)(

where
iy is the output,  jxx () is the activity of the hidden node j, with a RBF

function centered on the vector jx , x is the target input vector and ijw are the hidden

layer weights from the RBF nodes. However, in this thesis a different function for

the activity of the hidden unit was used, which is a Gaussian Radial Basis Function.

The following is the Gaussian function:

)(jxx = exp (-
2

1

2

2

)(







K

k

jkk cx

)

where xk is a sample from the dataset inputs, K is the sample size (or length), c is the

centers and  is the width of the Gaussian and the Euclidean distance is used for

calculating the distance between input samples and centers. Lastly, the output of

RBFNN is found which is the summation of all active hidden unit results with

addition of bias value.

30

Thus, when the output is found for RBFNN, the error is calculated using RMSE

formula in order to get chromosome’s fitness value. Based on fitness value the best

chromosome is chosen. Less fitness value is better when chromosome is considered

since it is aimed at minimizing the error.

5.5 Cross Validation

In this algorithm there are two phases – training and testing phases. Training phase is

the first part of the whole process in the developed algorithm that is the most

important one. It is responsible for training the algorithm and generating the model

that will be used for testing. In order to implement training part of the algorithm

different methods were attempted and finally k-fold method was decided to be used

as it promises improvement and effective solution to the given problem.

5.5.1 RBFNN Parameters

In training part of the algorithm, all the parameters of RBFNN are affected and

modified through training process in order to achieve the best results when

comparing obtained results with the actual data output, i.e. target output. Therefore,

all RBFNN parameters are modified so that the error is minimized in the best

possible way. Among the most important parameters that are affected by the training

process are the weights, centers and the widths. These are the most critical

parameters that change behavior of a whole developed model. The training process

modifies hidden units also, whereas they do not affect the process as much as other

parameters, since hidden units mainly affect the algorithm model by the number of

active hidden units, not their positions.

For all of these parameters in training process different values with different intervals

were attempted in order to find out the best values for them. For example, weights

31

were attempted to be between 0 and 1, and also between -1 and 1. As a result,

interval of -1 and 1 was better for weights than between 0 and 1, since better results

could be achieved. Since the centers were initially generated by the predefined

MATLAB function fcm, their interval could not be set or modified to examine the

results for different intervals.

5.5.2 K-Fold Implementation

Cross validation technique was achieved by using the k-fold cross validation method

for implementation of training process and testing the developed model. General idea

behind k-fold is that the whole dataset is divided into several blocks and after that

one of the partitions is used for testing and the rest, i.e. k-1 is used for training

process. This is repeated k times and every time the partition for testing is changing,

thus attempting all partitions for testing. For instance, if k is equal to 10, then say

partition 1 is used for testing and partitions from 2-10 are used for training.

Therefore, in the next round for testing partition 2 will be used and for training all

partitions other than the second one. The following Figure 5.4 illustrates k-fold cross

validation technique.

Figure 5.4: K-fold Cross Validation

32

In general, in k-fold cross validation k is given 10. However, in this algorithm k is

decided to have a value of 5 since the datasets, which were used in this thesis for

training and testing the algorithm did not contain number of samples more than 1500.

5.6 Local Search

In this GA that was combined with RBFNN a local search technique was also

adopted in order to find better results and to make the study more optimized. Local

search techniques are widely used in evolutionary optimization algorithm and hard

computational problems and thus hybridizing them and improving their performance

and getting best results faster. The advantage of using local search is that it enables

algorithm to get the best results among the given candidate solutions, i.e. search

space, since for finding the optimal solution a global search may not be enough.

Pattern search was decided to implement the role of local search in this thesis.

5.6.1 Pattern Search

In order to implement local search in developed algorithm a predefined MATLAB

function called pattern search was used, which finds the minimum of a function

using pattern search. Let us consider in more detail the following fragment of

MATLAB code: x = patternsearch(@fun, x0), where it returns the local minimum

and assigns it to x. The local minimum is found according to the MATLAB function,

fun, that computes the values of the objective function f(x). The second parameterx0

is an initial point for the pattern search algorithm. The syntax of above fragment of

code is using @fun, so function patternsearch accepts the objective function as a

function handle of the form @fun and this function fun accepts an input, which is

vector, and returns a scalar function value.

33

In the developed algorithm, a more complex form of this function was implemented,

i.e. it had more parameters and options along with those parameters. The following

fragment of code demonstrates implementation of patternsearch function used with

more parameters and options:

[X,E] = patternsearch(@obj,chromosome,[],[],[],[],LB,UB,[],options);

In this case, patternsearch returns two parameters, where X is the chromosome with

optimized RBFNN parameters and E is the error. The first parameter, as it was

discussed above, @obj is the objective function to be evaluated while patternsearch

is searching for the optimal solution. The second parameter chromosome is the initial

chromosome passed to the patternsearch function by the genetic algorithm, which

contains the RBFNN parameters. The next parameters LB and UB are passed to this

function for lower and upper bound of the RBFNN parameters contained in the

chromosome respectively. All other parameters that are passed as empty brackets [],

indicate that the default parameters should take place since we are not interested in

them.

The last parameter, as shown in above fragment of code, is options. This is an extra

parameter that enables us to change one of many default settings of patternsearch

function. So in this study, maximum function evaluations parameter was changed

using options as follows:

options = psoptimset('MaxFunEvals',MaxEvals);

The psoptimset is another MATLAB function that allows performing required

operation. Thus, psoptimset function sets MaxFunEvals parameter to the variable

called MaxEvals. The default value of MaxFunEvals is 2000*numberOfVariables,

34

where numberOfVariables is the sample size from the dataset. The dataset used in

these experimental results had 18 inputs, i.e. the sample size is 18. What remained

was to calculate the value for numberOfVariables. Several different values were used

for the number of hidden units. Assuming that there are 5 hidden units in RBFNN,

then the length of our chromosome becomes as follows (number of genes/variables):

5 hidden units, 5*18 centers, 5 weights, 1 bias and 5 widths. Therefore, in total there

are 106 variables in a chromosome. Thus, the value for numberOfVariables is

2000*106 = 212000. However, this value was incremented a bit more and decided to

initialize MaxEvals variable with 250000.

5.7 Normalization

In order to achieve better results and improve the developed model, normalization

was used in proposed algorithm. The whole dataset was normalized before in both

training and testing parts of the algorithm. The normalization formula that was used

in the algorithm is as follows:

2minmax

1min

dXX

dXX
X Norm






Where X is the original dataset, 1d = 0.05 and 2d =0.1

5.8 Algorithm Description

The developed algorithm consists of several modules, which construct a powerful

model. Some of these are evolution process and a local search.

The following flowcharts describe the developed algorithm in detail. All of these

flowcharts are interconnected and thus implement the model. Figure 5.5 is the

representation of algorithm main flowchart, which includes local search and testing

algorithm in it. Figure 5.6 is the illustration of the evolution process, which is

35

contained in the main algorithm. And finally, Figure 5.7 is the demonstration of the

implementation of the testing part of the main algorithm.

36

BEGIN

Initialize

RBFNN

Normalize

Data

Create Partitions For K-fold

Cross Validation

All partitions are executed?

Set current

partition for testing

and others for

Use partitions for

which

Display result by

comparing found

training

Implementation of

testing

YES

NO

Initialize

Population

Assign fitness values

to all chromosomes

Evolution process

for particular

number of

END

Figure 5.5: Algorithm Main Flowchart

37

BEGIN

Select Parents

Crossover

Mutation

Assign fitness

values

Initialize best

chromosome

Apply elitism by taking

15% from old population

and 85% from

Termination

conditions

END

YES

NO

Figure 5.6: Evolution Process

38

BEGIN

Initialize best solution found

during training process

Get proper

test partition

Normalize

test data

Calculate RBFNN output

for test data

Display result by

comparing target output

with generated

END

Figure 5.7: Implementation of Test Part

39

Chapter 6

6. EXPERIMENTAL RESULTS

Several experimental results were obtained through different values of the number of

hidden units, since other parameters, such as weight or width interval was decided to

be fixed for all experiments. Moreover, the population size was also decided to be

fixed and has value of 100, though generally population size affects the results. In

order to see how the number of hidden units affects the results, number of iterations

was also fixed. However, the only parameter in the local search, i.e. pattern search,

was changed, which is maximum function evaluations, for which a value of 250000

was assigned.

All experimental results were conducted on the same BLSC dataset, which consists

of 1452 observations or also known as samples and the number of variables of each

sample is 18 and 19th variable is the target output of the sample.

The following Figure 6.1 is the training data result with 3 hidden units.

40

Figure 6.1: Training results with 3 hidden units

The error could be minimized down to 0.0956 for the above figure with 3 hidden

units.

The following Figure 6.2 demonstrates the test data results for the same data set with

the same number of hidden units.

Figure 6.2: Test results with 3 hidden units

The error could be minimized down to 0.1049 for the above figure with 3 hidden

units.

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples trained

N
o
rm

al
iz

ed
 O

u
tp

u
t

V
al

u
es

Number of samples tested

N
o
rm

al
iz

ed
 O

u
tp

u
t

V
al

u
es

 Target Output

 Found Output

 Target Output

 Found Output

41

The following Figure 6.3 is the display of training data results with 5 hidden units.

Figure 6.3: Training results with 5 hidden units

The error could be minimized down to 0.0996 for the above figure with 5 hidden

units.

The following Figure 6.4 exhibits the test data results for the above Figure 6.3 with

the same number of hidden units.

Figure 6.4: Test results with 5 hidden units

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

al
iz

ed
 O

u
tp

u
t

V
al

u
es

Number of samples trained

N
o
rm

al
iz

ed
 O

u
tp

u
t

V
al

u
es

Number of samples tested

 Target Output

 Found Output

 Target Output

 Found Output

42

The error could be minimized down to 0.1070 for the above figure with 5 hidden

units.

The following Figure 6.5 shows the training data results with 10 hidden units.

Figure 6.5: Training results with 10 hidden units

The error could be minimized down to 0.1025 for the above figure with 10 hidden

units.

The following Figure 6.6 shows the test data results for the above Figure 6.5 with the

same number of hidden units.

Figure 6.6: Test results with 10 hidden units

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

al
iz

ed
 O

u
tp

u
t

V
al

u
es

Number of samples trained

N
o
rm

al
iz

ed
 O

u
tp

u
t

V
al

u
es

Number of samples tested

 Target Output

 Found Output

 Target Output

 Found Output

43

The error could be minimized down to 0.1115 for the above figure with 10 hidden

units.

The following Figure 6.7 is the training result with 15 hidden units.

Figure 6.7: Training results with 15 hidden units

The error could be minimized down to 0.1040 for the above figure with 15 hidden

units.

The following Figure 6.8 displays the test data results for the above Figure 6.7

training result with the same number of hidden units.

Figure 6.8: Test results with 15 hidden units

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

al
iz

ed
 O

u
tp

u
t

V
al

u
es

Number of samples trained

Number of samples tested

N
o
rm

al
iz

ed
 O

u
tp

u
t

V
al

u
es

 Target Output

 Found Output

 Target Output

 Found Output

44

The error could be minimized down to 0.1171 for the above figure with 15 hidden

units.

As shown from the above experimental results, as the number of hidden units

increase, the magnitude RMSE error also increases slightly. This is due to increase in

number of variables to be optimized and GAs are very sensitive to this. Their

performance degrades with increasing number of variables to be optimized.

Moreover, as was mentioned in previous chapters, very small number of hidden units

may not be enough in order to reach the best results. And too many hidden units may

cause overlearning in the model. So there should be a middle point for selecting the

number of hidden units. However, in this thesis experimental results show that when

less number of hidden units are used, then the better results are obtained. Therefore,

we may see that for training results when we have 15 and 3 hidden units, the error

could be minimized down to 0.1040 and 0.0956 respectively.

The following Figure 6.9 illustrates all the results conducted in this thesis and

demonstrates the influence of the number of hidden units used.

Figure 6.9: Comparison of results

3 5 10 15

Training Error 0,0956 0,0996 0,1025 0,104

Testing Error 0,1049 0,107 0,1115 0,1171

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

Comparison of Results

45

The dataset that is used in this thesis was used for other modeling methods such as

Partial Least Squares (PLS), Neural networks with feedforward backpropagation and

2 layers, Sugeno-type fuzzy logic and Anfis. The following Table 6.1 illustrates the

results of above mentioned modeling methods by Radu Platon in [22]. In most cases,

our proposed model performs better than these well-known approaches.

Table 6.1 Different Modeling Method Results [22]

Modeling method PLS Sugeno-type

fuzzy logic

Neural

networks

Anfis

Training Error 0.689 0.196 0.157 0.163

Testing Error 0.627 0.331 0.401 0.480

When comparing results obtained in this thesis using RBFNN modeling method and

results in above Table 6.1, we can see a significant difference in minimization of the

training and validation errors by modeling method used in our work.

46

 Chapter 7

7. CONCLUSION

This thesis presents a solution to the data modeling problem. The developed model in

this thesis is able to model a data based on previous experience and optimized

parameters of RBFNN. The dataset of BLSC was used for development of the model.

The combination of a genetic algorithm with RBFNN is a good approach to the given

task as seen from the performance of the developed model. A hybridized genetic

algorithm with an integrated local search could easily optimize the RBFNN

parameters for a single objective problem, which was to minimize the error, i.e.

making difference between target output and the found output to be zero.

RBFNN parameters played very important roles in optimizing this model, since a

genetic algorithm used all those parameters in its chromosome. There were many

conducted experiments of developed model with different variations of RBFNN

parameters, for example; different numbers of hidden units were used to see how it

reflects the results and also different intervals for such parameters as weights and

width was used, which showed great difference in improvement of results.

The Multi-objective version of developed model can be a future task to be

implemented for the proposed algorithm in this thesis. Optimizing more than one

objective function is very popular for the last decades. And therefore it will be a

primary concern for further improvement, since the current model consists of the

47

powerful integration of genetic algorithm with RBFNN, which in addition uses local

search, thus becoming a hybridized version of genetic algorithm.

48

8. REFERENCES

[1] Parras-Gutierrez, E. , del Jesus, M.J. , Rivas, V.M. , Merelo, J.J. , “Parameter

Estimation for Radial Basis Function Neural Network Design by Means of

Two Symbiotic Algorithms”, Advanced Engineering Computing and

Applications in Sciences, 2008. ADVCOMP '08, Sept. 29 2008-Oct. 4 2008,

164–169.

[2] Alberto Guillen, Ignacio Rojas, Jesus Gonzalez, Hector Pomades, L. J.

Herrera and Francisco Fernandez, “Multiobjective RBFNNs Designer for

Function Approximation: An Application for Mineral Reduction”, Advances

in Natural Computation, 2006, Volume 4221/2006, 511-520, DOI:

10.1007/11881070_71.

[3] N. Tang, “Application of RBF neural network based on adaptive hierarchical

genetic algorithm in soft sensor modeling”, Natural Computation (ICNC),

2011 Seventh International Conference, 26-28 July 2011, 83–86.

[4] Qi Zhi-dong, Zhu Xin-jian, Cao Guang-yi, “Temperature modeling of DMFC

based on RBFNN and neural fuzzy control study”, Journal of System

Simulation, 2007, 126-137.

[5] B. Burdsall, and C. Giraud-Carrier, “GA-RBF: A Self Optimising RBF

Network”, ICANNGA’97, Springerverlag, 1997, 348-351.

[6] C. Harpham et al, “A review of genetic algorithms applied to training radial

basis function Networks”, Neural Computing & Applications, 2004, 193-201.

[7] V.M. Rivas, J.J. Merelo, P.A. Castillo, M.G. Arenas, J.G. Castellanos,

“Evolving RBF neural Networks for time series forecasting with Ev RBF”,

Information Sciences, 2004, 207-220.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Parras-Gutierrez,%20E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.del%20Jesus,%20M.J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rivas,%20V.M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Merelo,%20J.J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4640975
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4640975
http://www.springerlink.com/content/?Author=Alberto+Guill%c3%a9n
http://www.springerlink.com/content/?Author=Ignacio+Rojas
http://www.springerlink.com/content/?Author=Jes%c3%bas+Gonz%c3%a1lez
http://www.springerlink.com/content/?Author=H%c3%a9ctor+Pomares
http://www.springerlink.com/content/?Author=L.+J.+Herrera
http://www.springerlink.com/content/?Author=L.+J.+Herrera
http://www.springerlink.com/content/?Author=Francisco+Fern%c3%a1ndez
http://www.springerlink.com/content/j471744721k06302/
http://www.springerlink.com/content/j471744721k06302/
http://www.springerlink.com/content/978-3-540-45901-9/
http://www.springerlink.com/content/978-3-540-45901-9/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Na%20Tang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Na%20Tang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Na%20Tang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Na%20Tang.QT.&newsearch=partialPref

49

[8] R. Schwaiger, and H. A.Mayer, “Genetic Algorithms to create training data

sets for artifical neural networks”, “Proceedings of the 3NWGA”, 1997.

[9] B. A. Whitehead, T. D. Choate, “Cooperative-Competitive Genetic Evolution

of Radial Basis Function Centers and Widths for Time Series Prediction”,

IEEE Transactions on Neural Networks 7, 1996, 869-880.

[10] Li-juan Xie, Xing-qian Ye, Dong-hong Liu, Yi-bin Ying, “Application of

principal component-radial basis function neural networks (PC-RBFNN) for

the detection of water-adulterated bayberry juice by near-infrared

spectroscopy”, J ZhejiangUnivciB, 2008, 982–989.

[11] R.Sivaraj, Dr. T. Ravichandran, “A Review of Selection Methods in Genetic

Algorithms”, International Journal of Engineering Science and Technology

(IJEST), 2011, 0975-5462.

[12] A.G. Bors, "Introduction of the Radial Basis Function (RBF) Networks",

Online Symposium for Electronics Engineers, 2001, 1-7.

[13] S. S. Fayaed, A. El-Shafie, O. Jaafar, “Performance of artificial neural

network and regression techniques for simulation model in reservoir inter-

relationships”, International Journal of Physical Sciences, 2011, 7738-7748.

[14] Victor M Rivas, Maribel G Arenas, Juan J Merelo, Alberto Prieto, EvRBF:

evolving RBF neural networks for classification problems, “AIC'07

Proceedings of the 7th Conference on 7th WSEAS International Conference

on Applied Informatics and Communications”, 2007, Pages 98-103.

[15] M. Orr., Introduction to radial basis function networks, Technical report,

Institute for Adaptive and Neural Computation, 1996.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596291/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596291/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596291/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596291/
http://www.experts.scival.com/ukm/pubDetail.asp?t=pm&id=83655192383&n=Ahmed+Hussein+Kamel+Ahmed+Nasser+Elshafie&u_id=367
http://www.experts.scival.com/ukm/pubDetail.asp?t=pm&id=83655192383&n=Ahmed+Hussein+Kamel+Ahmed+Nasser+Elshafie&u_id=367
http://www.experts.scival.com/ukm/pubDetail.asp?t=pm&id=83655192383&n=Ahmed+Hussein+Kamel+Ahmed+Nasser+Elshafie&u_id=367
http://www.researchgate.net/researcher/81506493_Victor_M_Rivas
http://www.researchgate.net/researcher/81348119_Maribel_G_Arenas
http://www.researchgate.net/researcher/46538927_Juan_J_Merelo
http://www.researchgate.net/researcher/70671182_Alberto_Prieto

50

[16] Nawaf Hamadneh, Saratha Sathasivam,Ong Hong Choon, Higher Order

Logic Programming in Radial Basis Function Neural Network”, Applied

Mathematical Sciences, Vol.6,” 2012, no.3, 115–127.

[17] Xiaojun Yao, Xiaoyun Zhang, Ruisheng Zhang, Mancang Liu, Zhide Hu,

Botao Fan, Prediction of gas chromatographic retention indices by the use of

radial basis function neural networks, “Department of Chemistry, Lanzhou

Uni_ersity, Lanzhou 730000, China Uni_ersite´ Paris 7 -Denis Diderot,

ITODYS 1, Rue Guy de la Brosse, 75005 Paris, France”, Talanta 57 (2002)

297–306.

[18] Krzanowski, W.J., Statistical Modelling, Arnold, London, 1998, p.107.

[19] Hazewinkel, Michiel, ed., "Regression analysis", Encyclopedia of

Mathematics, Springer, (2001) ISBN 978-1-55608-010-4.

[20] Dodge, Y., The Oxford Dictionary of Statistical Terms, 2003, OUP. ISBN 0-

19-920613-9.

[21] M.Amazouz, R.Platon, “Soft-sensors for real-time monitoring and control of

a black liquor concentration process”, CanmetEnergy, Natural Resources

Canada, Varennes(QC) J3X IS6 Canada.

[22] R.Platon, “Soft Sensor Development”, Concordia University, Montreal,

Quebec, Canada, (2009).

