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ABSTRACT 

In this thesis, implementation of Radial Basis a Function Neural Network (RBFNN) 

using genetic algorithm is described. The developed algorithm is used to model a 

certain dataset by training a RBFNN using some part of it, and then testing the 

performance of this RBFNN using the rest of data. The objective function of the 

proposed algorithm is to minimize the error between the computed output by the 

model and the target output given in the dataset. 

The genetic algorithm used in this thesis is an evolutionary algorithm that uses 

natural evolutionary process for selection and reproduction. An individual is 

constructed from the RBFNN parameters, which are hidden units, centers, weights, 

widths and bias associated with hidden units and output of RBFNN. Therefore, the 

fitness values are also assigned to all chromosomes as a result of getting the 

difference between the target output and the computed output by the RBFNN, in 

which a Gaussian function was used as an activation function. 

In experimental results, different tests were conducted in order to see the 

performance and correctness of the developed model. Since the number of hidden 

units plays an important role as well as weights, the intervals of weight values were 

adjusted accordingly and the number of hidden units was changed for different tests. 

As a result of conducted experiments, it is observed that the developed algorithm is 

successful in obtaining good results by minimizing the error. 

Keywords: Evolutionary algorithms, Radial Basis Functions, Data Modeling.  
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ÖZ 

Bu tezde Radyal Tabanlı Fonksiyonlar Ağı (RTFA), genetik algoritması kullanılarak 

tasarımlanmıştır. Geliştirilen algoritma modellenmesi hedeflenen belirli bir veri 

kümesinin bir kısmını öğretme geri kalan kısmını test için kullanmaktadır. 

Geliştirilen algoritmanın amaç fonksiyonu bulunan model ile verilen hedef çıktı 

arasındaki hatayı en aza indirmektir. 

Bu tezde kullanılan genetik algoritma bir evrimsel algoritmadır. Bu genetik 

algoritmadaki bireyler RTFA parametrelerinden oluşturulmuştur: gizli birimler, 

merkezler, ağırlıklar, genişlikleri ve sapma. Bireylere verilen uygunluk değeri olarak, 

bulunan model ile verilen hedef çıktı arasındaki fark kullanılmaktadır. RTFA’nın 

gizli birimlerinde aktivasyon işleri olarak Gauss işleri kullanılmıştır. 

Deney sonuçlarında, geliştirilen modelin performans ve doğruluğunu kontrol etme 

amaçlı farklı testler uygulanmıştır. Deneysel sonuçları elde ederken RTFA 

parametrelerinden en önemli iki parametre olan gizli birimlerin sayısı ve ağırlıkların 

değerleri değiştirilmiş ve sonuçlar gözlemlenmiştir. Deneysel sonuçlar neticesinde 

geliştirilen uygulamanın, iyi sonuçlar bulma ve hatayı en aza indirmede başarılı bir 

yöntem olduğu tespit edilmiştir. 

Anahtar Kelimeler: Evrimsel algoritmalar, Radyal Tabanlı Fonksiyonlar Ağı, Veri 

Modelleme.  
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Chapter 1 

1. INTRODUCTION 

Among the set of search and optimization techniques, the development of 

Evolutionary Algorithms (EA) have been very important in the last decade. EAs are 

a set of modern meta heuristics used successfully in many applications with great 

complexity. EAs are used in many fields, since they are very useful for optimization 

and searching tasks. Therefore, they are well known algorithms in the field of 

artificial intelligence. 

There are different approaches and methods of applying EAs for different problems. 

However, there is a main idea behind them, which is very similar to natural evolution 

in terms of generating populations or in other words reproduction. There are many 

benefits of using Evolutionary Computation (EC) techniques due to their 

implementation flexibility for various problems.  

Most of the present implementations of EA come from any of these four basic types: 

Genetic Algorithms (GA), Evolutionary Programming (EP) and Evolutionary 

Strategies (ES) and Genetic Programming.  

Genetic Algorithms imitate the process of natural evolution in terms of reproduction 

of population from a generation to generation. The main aim in genetic algorithms is 

to find the best solution in a given search space during the evolution process. The 
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evolution process includes the most important activities for reproduction purposes, 

which are selection, crossover and mutation. Some of the most famous ones are as 

follows: Travelling Salesman Problem (TSP), Vehicle Routing Problem (VRP) and 

Scheduling Problems (SP), and Difficult Real-Valued Optimization Problems. 

 In this thesis, a genetic algorithm was used in order to implement a Radial Basis 

Function Neural Networks (RBFNN). In general, Radial Basis Functions are of the 

following types: the Gaussian RBF and a Multiquadric RBF. The calculation of the 

output by the Radial Basis Function network is done through the computation of 

local parameters from input to the output. RBFNN is used to solve modeling and 

classification problems, since it is fast in terms of learning speed and 

approximations. The RBFNN can be considered as a three-layer feed-forward neural 

network with a simple architecture. The type of activation function of RBFNN in this 

thesis is a Gaussian function. 

The implementation of RBFNN using a GA is done in such a way that GA controls 

the parameters of RBFNN. These are hidden units, centers, weights and widths.  

The organization of other chapters in this thesis is as follows. Chapter 2 presents the 

general description of data modeling. In Chapter 3, the genetic algorithms are 

explained along with different variants of selection, crossover and mutation 

operators. Chapter 4 presents the description and evolutionary design of RBFNN. 

Chapter 5 focuses on the proposed work. The experimental results along with 

discussions are found in Chapter 6. Finally, the conclusion and discussion of possible 

future work is presented in Chapter 7.  
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Chapter 2 

2. THE DATA MODELING PROBLEM IN INDUSTRY 

One of the most important technologies developed in industries is the pulp and paper 

manufacturing technology, which combines engineering with industrial training. In 

the pulp and paper manufacturing technology there are several factors to be 

considered for a good and profitable development, which are effective and organized 

factory systems that are people-oriented and economic. Engineers in this field focus 

their work in areas such as research, development and quality control. Moreover, 

they are responsible for the whole pulp and paper making process to ensure its 

quality. Another issue with the pulp and paper making process is that it breaks fast if 

recycling was done by improper addition of other materials such as water or other 

liquid and inaccurate procedure. It is the engineer’s job to make sure that the whole 

process of the pulp and paper operation meets all requirements. There are several 

problems that technologists face with while implementing such operations. For 

example, the accurate measurements of products’ quality and process performance 

are very important issues for manufacturing industries. In addition, this requires real-

time for making necessary measurements for good control of products, which is 

usually a problem in most of the cases, since such results as process variability and 

unscheduled downtime may occur. One of the examples of such problems is the 

control of the black liquor concentration system in the pulp and paper manufacturing 

industries. Therefore, different models are proposed for implementing this kind of 

tasks using software systems. In this thesis, the radial basis functions neural network 
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(RBFNN) based model was designed to control the black liquor solid content 

(BLSC). 

Wood chips are used for producing pulp during paper making process. Wood chips 

and “white liquor” are combined and cooked in a digester, which is called “black 

liquor”. Through evaporation, by heating with steam, the black liquor is concentrated 

up to the point when it is around 66% of solids, and then it is burned in the recovery 

boiler. After burning of the black liquor steam and a residue of molten chemicals are 

produced. Then addition of water and lime is performed for the residue of molten 

chemicals to be processed and turned back to fresh white liquor for future use. After 

other several stages such as evaporation, the black liquor solid content’s process 

ends. There are several important variables that the solid content of the black liquor 

depends on, i.e. pressures, temperatures, flow rates, etc [21]. 

The proposed RBFNN model, using regression analysis, makes accurate estimation 

of the BLSC that can lead to variability and cost reduction and a more stable 

operation with limited unscheduled shutdowns. Advantage of using RBFNN is that it 

uses established linear regression techniques, which allow reaching to the global 

minimum and fast convergence with specified hidden neurons and other RBFNN 

parameters. 

The dataset used in this thesis is obtained from a Canadian pulp and paper company. 

The dataset contains historical sensor measurements over 10 years. There are a lot of 

outliers and missing values in the original dataset. However, the company provided 

us a cleaned dataset. That is obtained from the original one by removing outliers and 

interpolating the missing ones. 
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Starting in 19
th

 century, the pulp and paper industry became widespread all over the 

Canada and was serving the needs of the people. As the technology was developed, 

the more there was a need for the paper industry. The Great Lakes-St Lawrence and 

the Maritimes were filled with new mills due to the need of the paper. 

The cotton and linen rags were known for many centuries to be the mostly used 

resources for paper manufacture. Later in 1840s it was realized that the paper 

manufacture can be done using the vast forest wood. Ground wood, is used primarily 

for cheap papers, which is prepared by grinding the wood. 

The modern papermaking began in 1864, when the first chemical wood-pulp mill 

was built at Windsor Mills. Preparation of chemical pulp is done from wood chips 

boiled under pressure with chemicals with usage of soda in order to leave mostly 

cellulose fiber. The wood pulp is washed, bleached, blended and then poured over a 

wire screen, after which a fine layer of fiber is produced [22]. 

The BLSC dataset used in this thesis contains 19 variables. Each sample contains 18 

explanatory variables and one response variable. The data set used in this thesis is 

also clear with regards to distinguishing the explanatory variables from the response 

variable. This is due to the fact that 18 variables in each sample are the input 

variables, which are going to ‘explain’ the remaining one variable – response 

variable, which is the output. 
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Chapter 3 

3. GENETIC ALGORITHMS 

Genetic Algorithms (GAs) are search heuristics, which involve the process of natural 

evolution. In GAs, potential solutions are repeatedly generated in a particular number 

of times for optimization or search purposes. GAs are very useful to apply in a 

problems when very small amount of information is known. GAs are generally the 

adaptation of random search, which is used in optimization problems, whereas, there 

still exists a direction for search due to constraints. GAs can be applied for single 

objective optimization and for different problems with more than one objective 

function. Usually, GAs contain several components which are: 

i. Individual: any possible solution generated by GA, which is also called a 

chromosome. 

ii. Population: set of individuals present together. 

iii. Search Space: all possible solutions to the problem. 

iv. Fitness: the value assigned to an individual based on the quality of the 

individual. 

v. Objective Function: a function that assigns fitness value to the individuals. 

vi. Parent: member of a current generation selected for reproduction 

vii. Offspring: generated child (individual) from parent(s) as a result of crossover 

or mutation, which is a member of the next generation. 
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viii. Crossover: using two individuals, interchange their genes with each other 

and thus generating two new individuals. 

ix. Mutation:  changing a random gene in an individual. 

x. Selection: selecting individuals (parents) for creating the next generation. 

xi. Generation: iteratively created new populations. 

The following is a general workflow of a GA: first, initial population is generated 

randomly and the fitness value for each individual in the current population is 

computed and saved based on the objective function and constraints if exist. After 

that, the selection operator is applied based on the fitness values of individuals for 

further reproduction. The probability of an individual being selected is directly 

proportional to its the fitness value. As a result, those individuals possessing higher 

fitness values will have more probability to be selected than the other ones. Then, the 

application of crossover and mutation operators is committed on the selected 

individuals (parents) for reproduction and generating new population. This whole 

process is repeated for a number of particular generations, which is specified by the 

user. Figure 3.1 illustrates the GA process. 
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Figure 3.1: Genetic Algorithm Flowchart 

 

3.1 Genetic Operators 

In GAs, several operators are involved during the evolution process, which are 

selection, crossover and mutation. Each of these operators has different variants of 

implementation and carries different aims, which fulfill the evolution process. This 

section describes in detail each of these operators and their different approaches for 

implementation. 
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3.1.1 Selection 

Selecting individuals for reproduction is one of the most important steps in evolution 

process, since they are the reason for getting better offspring and thus obtaining best 

results. Therefore, the main idea of selection operators is to make a decision and give 

preference when selecting among candidate individuals those, which are better than 

the other. There are many different approaches for selecting parents for reproduction, 

so some of them are mentioned below. 

3.1.1.1 Tournament Selection 

In tournament selection a number Tour of individuals is chosen randomly from the 

population and the best individual from this group is selected as parent. This process 

is repeated as often as individuals must be chosen. These selected parents produce 

uniform at random offspring. The parameter for tournament selection is the 

tournament size Tour. Tour takes values ranging from 2 to the number of individuals 

in the population. Table 3.1 shows implementation of tournament selection with Tour 

size equal to 7. In this table, there are 7 candidate parents that were randomly chosen 

from the population, and each has a fitness value, where less fitness indicates a better 

quality of the individual, since we consider minimizing the objective function. As a 

result from the given data in below table, parent 3 and parent 7 are the best among 

the all selected candidate parents.  

Table 3.1: Relation between tournament size and selection intensity 

Candidate Parent 1 2 3 4 5 6 7 

Fitness (Quality) 23 11 5 32 17 28 9 
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3.1.1.2 Roulette Wheel Selection 

Roulette Wheel selection is one of the traditional GA selection techniques. The 

Roulette Wheel selection method sums all the fitness’s of all individuals and then it 

calculates the probability of selection for each individual. Then, an array is built 

containing cumulative probabilities of individuals. So, the probability of a 

chromosome (individual) to be selected is defined below: 

Individual i is chosen according to the following selection probability:


N

i
if

if

)(

)(
[11], 

where N is the number of individuals in the population. 

Table 3.2: Selection probability and fitness value 

Number of 

individual 

1 2 3 4 5 6 7 8 9 10 11 

Fitness 

Value 

2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 

Selection 

Probability 

0.18 0.16 0.15 0.13 0.11 0.09 0.07 0.06 0.03 0.02 0.0 

 

3.1.2 Crossover 

Crossover is a recombination of two different chromosomes and generating two 

better chromosomes. In crossover operation, recombination process creates different 

individuals in the next generations by combining genes from two individuals of the 

previous generation. Crossover operator exchanges the genes of current selected 

chromosomes and generates two new offspring as a result. Some of the different 

types of crossover operators are described in the next subsections. 

3.1.2.1 Crossover Probability 

In the GAs, crossover operation is the main method of reproduction. Therefore, 

crossover probability indicates how often crossover will be performed. If crossover 

probability is high, it will destroy the good individuals, because of extreme usage of 
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crossover operator. Otherwise, offspring will be exact copies of parents. Moreover, if 

crossover probability is 100%, then no offspring will be generated by mutation, 

which is explained in the next section. 

3.1.2.2 One-Point Crossover 

One-point crossover is one of the simple types of crossover operators, though it is a 

base for many other crossover types. In one-point crossover operator, a common 

crossover point in the parent chromosome is selected and then the swapping of the 

corresponding sub trees is performed between two individuals. There are two steps in 

implementation of one-point crossover operation: a point is generated randomly 

between 1 and the size of the chromosome, and then the first part of parent 1 is 

concatenated with the second part of parent 2 and given to child 1. The same is 

implemented for child 2, the first part of parent 2 is concatenated with the second 

part of parent 1. Figure 3.2 illustrates the implementation of one-point crossover. 

Parents: 

3 2 1 1 3 6 4 4 

4 5 7 8 2 1 3 1 

 Crossover Point 

Children:  

3 2 1 1 2 1 3 1 

4 5 7 8 3 6 4 4 

 

Figure 3.2: One - Point Crossover 

3.1.2.3 Two-Point Crossover 

In addition to single point crossover, many different crossover types have 

been introduced by involving more than one cut point, there is an advantage of 

having more crossover points, since the problem space may be searched in deep. In 

two-point crossover, two crossover points are chosen and the genes between these 

points are exchanged between two mated parents as shown in Figure 3.3. 
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Figure 3.3: Two–Point Crossover 

3.1.2.4 Uniform Crossover 

Uniform crossover is a different type of crossover, which uses an extra temporary 

parameter called mask, which is created from bits randomly. Therefore, the genes 

between the chromosomes are distributed to new offspring according to the mask. If 

mask contains bit 1, then the gene is taken from parent 1 and given to child 1, 

otherwise it is given to child 2 and place in the same location. The same is 

implemented for parent 2. The Uniform crossover is illustrated in Figure 3.4. 

 

Figure 3.4: Uniform Crossover 

3.1.3 Mutation 

Another important genetic operator is the mutation operator, which is also very 

important for reproduction process. The difference between mutation and crossover 

operations is that mutation does not involve Exchange of information between 

chromosomes, since it is applied on a single individual. So mutation is done within 

3 2 1 1 3 6 4 4 Parents 4 5 7 8 2 1 3 1 

 

3 2 7 8 2 1 3 1 Children 4 5 1 1 3 6 4 4 

Mask: 1 0 1 1 0  

Parent1: 0 1 0 1 1 Parent2: 1 1 1 0 0 

Child1: 0 1 0 1 0 Child2: 1 1 1 0 1 
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the same chromosome without introducing new genes from other individuals. 

Mutation enables algorithm to escape local minimum. There are various types of 

mutation operators among which some are mentioned below. 

3.1.3.1 Mutation Probability 

The mutation probability is the important parameter of GAs, since as in the case of 

crossover probability it plays a vital role, which decides whether mutation operation 

will be performed much. When the mutation probability is very high or 100%, then 

there is a risk of getting stuck at local minimum or local maximum. However, it 

should not be very low either, since the mutation is important to implement from 

time to time during the evolution process in order to compensate the loss of diversity 

during crossover operations. 

3.1.3.2 Swap Mutation 

One of the most used and simple mutation types is a swap mutation, since the 

operation, which is done during swap is just to replace the positions of two genes in a 

chromosome. As a result of swapping the order in a chromosome is destroyed, which 

improves the solution. Swap mutation is shown in Figure 3.5. 

 

Parent: 1 2 3 4 5 6 7 8 9 

 ↓  
↓ 

 

Offspring: 1 5 3 4 2 6 7 8 9 

 

Figure 3.5: Swap Mutation 
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3.1.3.3 Point Mutation 

In point mutation a random point in a chromosome is chosen and its element is 

replaced by the complement of it or given another value, which results in a different 

chromosome. Point mutation is shown in Figure 3.6. 

Parent 0 1 0 1 1 0 1 1 0 

                                    ↓ 

Offspring 0 1 0 0 1 0 1 1 0 

 

Figure 3.6: Point Mutation 

3.1.4 Reordering 

Reordering is also a very effective mutation type, since in most of the problems it 

gives good results from mutation operator. Reordering is a simple operation, which 

selects two points within the chromosome and then reorders all the genes in that 

interval. Reordering is shown in Figure 3.7. 

Before 0 1 0 1 1 0 1 0 1 1 0 1 0 0 

   

After 0 1 0 1 0 1 0 1 1 1 0 1 0 0 

 

Figure 3.7: Mutation Operator 
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Chapter 4 

4. RADIAL BASIS FUNCTION NEURAL NETWORK 

A radial basis function (RBF) network is a special type of neural network in which 

the activation function is a radial basis, which is a real-valued function, where its 

value depends only on the distance from the origin. Examples of some of the 

applications are as follows: interpolation, system identification, approximation, curve 

fitting, modeling and classification problems. Because of compact topology and 

faster training speed the radial basis function neural network (RBFNN) is different 

from other neural Networks [16]. Moreover, another thing that makes RBF neural 

networks different from others is that in most of the cases it reaches the global 

minimum of error surface during training [17]. As a result, RBFNN have attracted 

considerable attention in the field of science and engineering. RBFNN's main 

advantage is that after the number of hidden neurons, centers and radii have been set 

the optimal biases and weights, it can be efficiently computed for a certain set of 

desired output [14]. 

RBFNN is a type of feed forward neural network consisting of three layers – the 

input layer, the hidden layer and the output layer (see Figure 4.1 for its structure). 

The first layer (input layer) is responsible for accepting inputs, i.e. data sample and 

pass them to the each of the hidden units in the second layer. The hidden units in the 

second layer accept these inputs and using the activation function defined by the user 

process them independently from each other and signal them to the output layer. The 
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output layer, which is the RBF real valued output using summation mechanism sums 

all the hidden unit results by multiplying each of them by the relative weights. Thus 

this process is done so many times as it is required in order to design a model. 

When using RBFNN, the hidden unit activation function must be specified such as 

the number of processing units. Moreover, in order to find the parameters, the 

particular rules for modeling a given task and a training algorithm should also be 

specified. The purpose of network training is to find RBFNN weights. If there exists 

a set of input-output pairs, called training set, the network parameters are optimized 

in order to fit the network outputs to the given inputs. Mean squared error is used for 

the cost function, which is used to evaluate the fitness. The RBF network can be used 

with data, which is similar in structure to the data that was used for training the 

model [12]. 

Determination of the number of neurons in the hidden layer in RBFNN is very 

important. This is because all the neurons have radial basis function, which has as 

many dimensions as the number of inputs. A few number of hidden neurons in the 

hidden layer may cause the RBFNN receive the data incorrectly. However, usage of 

many neurons in RBF network may cause overlearning and thus bad prediction. 

Determination of center locations is also a very important issue in RBF, since the 

positions of centers have a considerable affect on the performance. All neurons have 

activation functions in the hidden layer and the Gaussian function is mainly used as 

an activation function. Then, since the weights are also another important factor in 

RBF network, they also must have a range of values to be selected for the weights, 

which are used between hidden and the output layers. The spread (radius) of the RBF 

function is generally different for different samples, and the bias values which are 
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also added as they have a small affect. The following data model in Figure 4.1 

represents the RBFNN structure with all three layers. 

Input Layer                             Hidden Layer                                     Output Layer 

  

 

 

 

 

 

 

Figure 4.1: RBFNN Structure 

All inputs are connected to neurons without weights (w) but neurons are connected to 

output through weights. Every neuron has one weight and output is calculated as 

follows: 

y(x)= )(
1

i

N

i xxw  , where y(x) represents the sum of radial basis functions, wi is 

some weight, x is the sample input and xi is the center of the input. 

4.1 General Formula of RBF 

The most general formula for any RBF is  

 h(x) = ))()(( 1 cxRcx   , 

where   is the function used (Gaussian, Multi-quadratic, Cubic, etc.), c is the center 

and R is the metric. The term  )( cx )(1 cxR   is the distance between the input x 

and the center c in the metric defined by R. There are several common types of 

functions used and Euclidean is often used as metric. In this case, R= 2r  for some 

scalar radius r and the above equation simplifies to: 
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h(x) = )
)()(

(
2r

cxcx  

 [15]. 

4.2 Types of RBFNN 

There are many basis functions used in RBFNN. However, in this thesis the Gaussian 

function was used, whose definition and description is given below: 

 Gaussian Function:  

The Gaussian function is the most preferred activation function, which has a spread 

parameter that controls the behavior of the function. During the training process of 

RBF the spread parameter is also optimized for each hidden neuron. The following is 

the Gaussian function: 

)
2

exp()(
2

2

j

jcx
r




  

Where width parameter  >0 and j = 1, 2… m, x is an input vector, )(r  is the 

output of hidden layer nodes, jc is the center of Gaussian function, jcx   is the 

Euclidean distance between x and the center jc ,   is the width  (radius) of Gaussian 

function, m is the number of hidden nodes. 

 

Figure 4.2: Gaussian RBF 
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Above figure illustrates the Gaussian RBF with center c = 0 and radius r = 1, which 

monotonically decreases with distance from the center. 

4.3 How RBFNN Works 

An RBF network has hidden neurons, which have as many dimensions as there are 

predictor variables or also may be called sample attributes. The radial basis function 

is applied to the distance for calculating the weight for each neuron, where distance 

is the Euclidean distance computed from the point being evaluated to the center of 

each neuron. The radial basis function is named as such, because the radius distance 

is the argument of the function. 

The further a neuron is from the point being evaluated, the less influence it has. 

 
 

Figure 4.3: Neuron Influence 

4.4 Training Algorithms of RBFNN 

A training algorithm’s purpose is to find optimal parameters for the specified 

network structure and dataset. There are two categories of training algorithms: 

supervised and unsupervised. However, in RBFNN, supervised methods are used 

more often. There are data samples in supervised method with the same number of 

attributes, called training set, and in addition to this the corresponding network 

outputs are also known. 
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4.5 Least Squares 

In supervised learning the least squares principle becomes an easy optimization task. 

If the model is 

f(x) = )(
1

xhw j

m

j

j


 

and the training set is 
p

1iii }ŷ, x{  , then the least squares implementation is to 

minimize the sum-squared-error (S) 

S = 



p

i

ii xfy
1

2))(ˆ( . 

When a weight value is added to the sum- squared-error, then the following cost 

function is minimized as follows: 

C =  
 


p

i

m

j

jjii wxfy
1 1

22))(ˆ(  , 

where the 
m

jj 1}{   are regularization parameters [15]. 

4.6 RBF Properties 

The Gaussian Function is formed so that φ (r) →0 as r →∞. Moreover, when 

considering in detail we may notice that the Linear Function φ (r) = r = pxx  is 

still non-linear in terms of x. In one dimension, this comes to a linear interpolating 

function, which in return represents a simple form of interpolation function. 

4.7 RBFNN Improvements 

Although below mentioned techniques will make analyzing and optimizing the 

network much more difficult, RBFNN basic structure can be improved in several 

ways as follows [18]: 
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 The number M of hidden units need not equal the number N of training data 

samples.  Thus, usually it is better to have M much less than N. 

 The centers of the hidden units do not need to be defined as the training data 

input samples.  They can be determined by a training algorithm instead. 

 The basis functions need not all have the same width parameter σ, since a 

training algorithm can also determine them. 

 We can introduce bias parameters into the linear sum of activations at the 

output layer. These will compensate for the difference between the average 

value over the data set of the basis function activations and the corresponding 

average value of the targets. 
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Chapter 5 

5. THE DEVELOPED MODEL 

This chapter discusses the proposed work and the developed model using RBFNN 

techniques and genetic algorithms. The developed model consists of implementation 

of RBFNN using GA approach. This thesis is concentrated on a single objective 

function, which is the Root Mean Square Error (RMSE), and therefore the objective 

function was minimized. There are two vectors involved in the objective function, 

which are the found vector output by the RBFNN and the target vector output given 

in the dataset. Applying the RMSE on these vectors we get the difference between 

the target output and the found output by the algorithm, thus minimizing this 

difference, such that the error. Moreover, the k-fold implementation was adopted in 

this thesis for better results and explained in detail in this chapter. Another essential 

part of the developed model in this thesis is the integration of local search into the 

algorithm. By introducing local search into the algorithm, the model could produce 

better results and could minimize error more. Normalization of the dataset also took 

place in the developed model, since the purpose of normalization was to eliminate 

the effects of certain sample’s large influences. In the development of this model the 

method of evolutionary computations was successfully adopted for finding the 

optimal parameters of RBFNN. Therefore, GA was used to find optimal parameters 

for the RBFNN. In other words, GA was responsible for generating hidden units, 

centers, widths and weights of RBFNN. In order to implement the combination of 

GA with RBFNN, various methods have been applied to different parts of the whole 
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model. The main target was to improve and find optimal parameters of RBFNN in 

order to get minimum error when comparing found output with the target output in 

an attempt that the difference between them would be ensured to be very close to 

zero. 

When using GA for optimizing the parameters of the hidden layer (the centers  and 

widths  ) of the RBFNN model, there is also one more factor that is important for 

GA to take care of: number of hidden neurons, and centers and radii related to them. 

The number of hidden units in RBFNN is very important as it has a big influence on 

the results obtained. Very few hidden neurons may not achieve good results because 

of lack of knowledge. However, using too many hidden neurons may result in 

overloading the model with extra knowledge and information. Therefore, finding 

golden middle for the number of hidden neurons to be used is very important issue in 

RBFNN. 

 

Figure 5.1: RBFNN Design Procedure 
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5.1 Genetic Operators 

In this algorithm genetic operators that are used are different for control genes 

(hidden units) and other parameter genes (center, weights and width). For control 

genes, single point crossover is used and arithmetic crossover is used for other 

parameter genes. As a purpose of selection operator Roulette Wheel Selection was 

used. 

5.1.1 Constraints 

When applying single point crossover for control genes, it may be ended up with no 

hidden neurons after crossover is done as illustrated in the following example, where 

cross point is between 3 and 4: 

Parent1: 0 1 1 0 0 Parent2: 0 0 0 1 1 

Offspring1: 0 0 0 0 0 Offspring2: 0 1 1 1 1 

 

As shown in the above example, there are 5 hidden neurons in total. However, not all 

hidden neurons are active since 1 indicates that the hidden neuron is active and 0 

indicates that it is inactive. Thus, after applying single point crossover to two parents, 

one offspring is obtained, which has all of its hidden neurons inactive, i.e. offspring 

1. Every chromosome must contain at least one hidden neuron to be active. 

Therefore, when applying single point crossover, the constraint is checked for at least 

one active hidden neuron to present in each chromosome and that is done by 

randomly selecting one of the hidden neurons and making it active, i.e. making its 0 

value 1. 

For the rest of the parameters of RBFNN, this constraint is not checked since all 

values are between 0 and 1. Moreover, the crossover that is applied for other 
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parameters is arithmetic crossover, which is explored in depth in the following 

section. 

5.1.2 Arithmetic Crossover 

In arithmetic crossover, one Formula is used assuming that two parents p1 and p2, 

the two new offspring c1 and c2 are: 

c1 = k (p2) + (1-k) p1      Offspring 1 

c2= k (p1) + (1-k) p2      Offspring 2 

while k is a random number between 0 and 1. 

5.2 Mutation  

The mutation operation used for control genes and parameter genes are different as in 

the case of crossover operations. In the case of control genes, the bits were changed 

from ‘1’ to ‘0’ or from ‘0’ to ‘1’.For parameter genes, uniform mutation method was 

used. Assuming that K is the individual selected according to random probability to 

mutate, then the result is: 

K   = P min + r  (P
max

- P min ) 

P
max

 and P min are the maximum and minimum values of K respectively. 

5.3 Chromosome Representation and Data Structure 

In this algorithm, a chromosome is represented as follows. If we consider hidden 

units of size m and number of inputs in dataset n, then in the chromosome the first m 

elements are the control genes (hidden units). Next, from m+1 to n*m a chromosome 

elements contain the centers, so the total number of centers is equal to the number of 

hidden units, whereas the length of each center is equal to the number of inputs in the 

dataset, i.e. the sample size. Therefore, each hidden unit contains only one center, but 

with the length equal to the number of inputs in the dataset. After positions of 

centers, a chromosome contains the weights of size m, because each hidden unit 
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requires one weight and in addition to weights a bias is placed at the end of all 

weights. The last m positions, also can be named as genes in a chromosome, are 

occupied by the widths. When the chromosome is initialized, both weights and 

widths are randomly created between -1 and 1. The figure 5.2 illustrates the 

representation of chromosome. 

 

 

 

 

Figure 5.2: Chromosome Representation 

Where control genes are our hidden nodes, initialization of hidden nodes is done by 

generating 0 or 1 randomly and assigning it to hidden unit, where 0 stands for 

inactive hidden unit and the number 1 means the hidden unit is active. As shown in 

Figure 5.2 above, the length of chromosome depends on the total number of hidden 

units. Thus, even if we have 1 active hidden unit length of our chromosome does not 

become shorter, which means that search space remains big all the time 

independently on the number of hidden units used. Although search complexity 

remains the same for any number of active hidden units, the number of active hidden 

units plays a big role in getting good results. Therefore, hidden nodes’ size is 

important, as it will be discussed in the experimental results chapter. 

Centers are the other important genes in our chromosome, which are initialized by 

using predefined MATLAB function called fcm, which has two parameters. These 

Size m*n Size m Size 

m 

Size m Size 1 
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are our dataset samples and number of centers. When initialized, centers are 

randomly selected from the dataset. After that, genetic operators are used on every 

generation in order to get better results. So, fcm MATLAB function is used only 

once when centers are initialized. 

Weights are important parameters in order to find good solutions. We use weights for 

all hidden nodes. Every hidden node has one weight and all weights must be greater 

than -1 and smaller than 1. In the same way, genetic operators are applied to the 

weights with constraints that the lower and upper bounds of weights are -1 and 1 

respectively. 

Below is the main algorithm structure used in this thesis. 
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Figure 5.3: General Skeleton of RBFNN Combining with GA 

 

5.4 Implemented Objective Function 

The objective function in this thesis is the Root Mean Square Error, which uses the 

output found by RBFNN and the target output given in the dataset. So, it calculates 

the difference between forecast and corresponding observed values are each squared 

and then averaged over the sample. Finally, the square root of the average is taken. 

Since the errors are squared before they are averaged. The following is the RMSE 

Formula: 

 Load training, validation and test sets. 

 Create initial population. Evaluate and assign fitness to every individual. 

 Instantiate operators and stop condition testers. 

 Instantiate the evolutionary algorithm with the requıred RBFNN parameters. 

 If stop condition is not reached, do the following: 

a) Select individuals (parents) from current population. 

b) Apply operators to these parents; evaluate and assign them a fitness. 

c) Combine newly generated population with the old one and apply 

elitism. 

 Compare generated output by training the (RBFNN) algorithm and the target 

output. 

 Use the test data set to obtain the generalization power of best solution found 

by the (RBFNN) algorithm. 
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n

ty

RMSE

n

i

ii




 1

2)(

, where yi is the found output by RBF, ti is the target output 

and n is the number of samples in the dataset. 

In this algorithm, three parameters were used in order to calculate the Root mean 

square error. These are new output, target output and sample size. When the new 

output is calculated, RBFNN is used.  

There is a function that is used to calculate the output in Radial Basis Functions 

(RBF). This function is given by: 

y
i
(x) = 




n

j

jij xxw
1

)(  

where 
iy is the output,  jxx ( ) is the activity of the hidden node j, with a RBF 

function centered on the vector jx , x is the target input vector and ijw  are the hidden 

layer weights from the RBF nodes. However, in this thesis a different function for 

the activity of the hidden unit was used, which is a Gaussian Radial Basis Function. 

The following is the Gaussian function: 

)( jxx  = exp (-
2

1

2

2

)(







K

k

jkk cx

) 

where xk is a sample from the dataset inputs, K is the sample size (or length), c is the 

centers and   is the width of the Gaussian and the Euclidean distance is used for 

calculating the distance between input samples and centers. Lastly, the output of 

RBFNN is found which is the summation of all active hidden unit results with 

addition of bias value. 
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Thus, when the output is found for RBFNN, the error is calculated using RMSE 

formula in order to get chromosome’s fitness value. Based on fitness value the best 

chromosome is chosen. Less fitness value is better when chromosome is considered 

since it is aimed at minimizing the error. 

5.5 Cross Validation 

In this algorithm there are two phases – training and testing phases. Training phase is 

the first part of the whole process in the developed algorithm that is the most 

important one. It is responsible for training the algorithm and generating the model 

that will be used for testing. In order to implement training part of the algorithm 

different methods were attempted and finally k-fold method was decided to be used 

as it promises improvement and effective solution to the given problem. 

5.5.1 RBFNN Parameters 

In training part of the algorithm, all the parameters of RBFNN are affected and 

modified through training process in order to achieve the best results when 

comparing obtained results with the actual data output, i.e. target output. Therefore, 

all RBFNN parameters are modified so that the error is minimized in the best 

possible way. Among the most important parameters that are affected by the training 

process are the weights, centers and the widths. These are the most critical 

parameters that change behavior of a whole developed model. The training process 

modifies hidden units also, whereas they do not affect the process as much as other 

parameters, since hidden units mainly affect the algorithm model by the number of 

active hidden units, not their positions. 

For all of these parameters in training process different values with different intervals 

were attempted in order to find out the best values for them. For example, weights 
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were attempted to be between 0 and 1, and also between -1 and 1. As a result, 

interval of -1 and 1 was better for weights than between 0 and 1, since better results 

could be achieved. Since the centers were initially generated by the predefined 

MATLAB function fcm, their interval could not be set or modified to examine the 

results for different intervals. 

5.5.2 K-Fold Implementation 

Cross validation technique was achieved by using the k-fold cross validation method 

for implementation of training process and testing the developed model. General idea 

behind k-fold is that the whole dataset is divided into several blocks and after that 

one of the partitions is used for testing and the rest, i.e. k-1 is used for training 

process. This is repeated k times and every time the partition for testing is changing, 

thus attempting all partitions for testing. For instance, if k is equal to 10, then say 

partition 1 is used for testing and partitions from 2-10 are used for training. 

Therefore, in the next round for testing partition 2 will be used and for training all 

partitions other than the second one. The following Figure 5.4 illustrates k-fold cross 

validation technique. 

 

Figure 5.4: K-fold Cross Validation 
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In general, in k-fold cross validation k is given 10. However, in this algorithm k is 

decided to have a value of 5 since the datasets, which were used in this thesis for 

training and testing the algorithm did not contain number of samples more than 1500. 

5.6 Local Search 

In this GA that was combined with RBFNN a local search technique was also 

adopted in order to find better results and to make the study more optimized. Local 

search techniques are widely used in evolutionary optimization algorithm and hard 

computational problems and thus hybridizing them and improving their performance 

and getting best results faster. The advantage of using local search is that it enables 

algorithm to get the best results among the given candidate solutions, i.e. search 

space, since for finding the optimal solution a global search may not be enough. 

Pattern search was decided to implement the role of local search in this thesis. 

5.6.1 Pattern Search 

In order to implement local search in developed algorithm a predefined MATLAB 

function called pattern search was used, which finds the minimum of a function 

using pattern search. Let us consider in more detail the following fragment of 

MATLAB code: x = patternsearch(@fun, x0), where it returns the local minimum 

and assigns it to x. The local minimum is found according to the MATLAB function, 

fun, that computes the values of the objective function f(x). The second parameterx0 

is an initial point for the pattern search algorithm. The syntax of above fragment of 

code is using @fun, so function patternsearch accepts the objective function as a 

function handle of the form @fun and this function fun accepts an input, which is 

vector, and returns a scalar function value. 
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In the developed algorithm, a more complex form of this function was implemented, 

i.e. it had more parameters and options along with those parameters. The following 

fragment of code demonstrates implementation of patternsearch function used with 

more parameters and options: 

[X,E] = patternsearch(@obj,chromosome,[],[],[],[],LB,UB,[],options); 

 

In this case, patternsearch returns two parameters, where X is the chromosome with 

optimized RBFNN parameters and E is the error. The first parameter, as it was 

discussed above, @obj is the objective function to be evaluated while patternsearch 

is searching for the optimal solution. The second parameter chromosome is the initial 

chromosome passed to the patternsearch function by the genetic algorithm, which 

contains the RBFNN parameters. The next parameters LB and UB are passed to this 

function for lower and upper bound of the RBFNN parameters contained in the 

chromosome respectively. All other parameters that are passed as empty brackets [], 

indicate that the default parameters should take place since we are not interested in 

them. 

The last parameter, as shown in above fragment of code, is options. This is an extra 

parameter that enables us to change one of many default settings of patternsearch 

function. So in this study, maximum function evaluations parameter was changed 

using options as follows: 

options = psoptimset('MaxFunEvals',MaxEvals); 

The psoptimset is another MATLAB function that allows performing required 

operation. Thus, psoptimset function sets MaxFunEvals parameter to the variable 

called MaxEvals. The default value of MaxFunEvals is 2000*numberOfVariables, 
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where numberOfVariables is the sample size from the dataset. The dataset used in 

these experimental results had 18 inputs, i.e. the sample size is 18. What remained 

was to calculate the value for numberOfVariables. Several different values were used 

for the number of hidden units. Assuming that there are 5 hidden units in RBFNN, 

then the length of our chromosome becomes as follows (number of genes/variables): 

5 hidden units, 5*18 centers, 5 weights, 1 bias and 5 widths. Therefore, in total there 

are 106 variables in a chromosome. Thus, the value for numberOfVariables is 

2000*106 = 212000. However, this value was incremented a bit more and decided to 

initialize MaxEvals variable with 250000. 

5.7 Normalization 

In order to achieve better results and improve the developed model, normalization 

was used in proposed algorithm. The whole dataset was normalized before in both 

training and testing parts of the algorithm. The normalization formula that was used 

in the algorithm is as follows: 

2minmax

1min

dXX

dXX
X Norm






            

 

Where X is the original dataset, 1d  = 0.05 and 2d =0.1 

5.8 Algorithm Description 

The developed algorithm consists of several modules, which construct a powerful 

model. Some of these are evolution process and a local search. 

The following flowcharts describe the developed algorithm in detail. All of these 

flowcharts are interconnected and thus implement the model. Figure 5.5 is the 

representation of algorithm main flowchart, which includes local search and testing 

algorithm in it. Figure 5.6 is the illustration of the evolution process, which is 
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contained in the main algorithm. And finally, Figure 5.7 is the demonstration of the 

implementation of the testing part of the main algorithm. 
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Figure 5.5: Algorithm Main Flowchart 
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Figure 5.6: Evolution Process 
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Figure 5.7: Implementation of Test Part 
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Chapter 6 

6. EXPERIMENTAL RESULTS 

Several experimental results were obtained through different values of the number of 

hidden units, since other parameters, such as weight or width interval was decided to 

be fixed for all experiments. Moreover, the population size was also decided to be 

fixed and has value of 100, though generally population size affects the results. In 

order to see how the number of hidden units affects the results, number of iterations 

was also fixed. However, the only parameter in the local search, i.e. pattern search, 

was changed, which is maximum function evaluations, for which a value of 250000 

was assigned. 

All experimental results were conducted on the same BLSC dataset, which consists 

of 1452 observations or also known as samples and the number of variables of each 

sample is 18 and 19th variable is the target output of the sample. 

The following Figure 6.1 is the training data result with 3 hidden units. 
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Figure 6.1: Training results with 3 hidden units 

 

The error could be minimized down to 0.0956 for the above figure with 3 hidden 

units. 

The following Figure 6.2 demonstrates the test data results for the same data set with 

the same number of hidden units. 

 

Figure 6.2: Test results with 3 hidden units 

The error could be minimized down to 0.1049 for the above figure with 3 hidden 

units. 
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The following Figure 6.3 is the display of training data results with 5 hidden units. 

 

Figure 6.3: Training results with 5 hidden units 

 

The error could be minimized down to 0.0996 for the above figure with 5 hidden 

units. 

The following Figure 6.4 exhibits the test data results for the above Figure 6.3 with 

the same number of hidden units. 

 

Figure 6.4: Test results with 5 hidden units 
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The error could be minimized down to 0.1070 for the above figure with 5 hidden 

units. 

The following Figure 6.5 shows the training data results with 10 hidden units. 

 

Figure 6.5: Training results with 10 hidden units 

 

The error could be minimized down to 0.1025 for the above figure with 10 hidden 

units. 

The following Figure 6.6 shows the test data results for the above Figure 6.5 with the 

same number of hidden units. 

 

 

Figure 6.6: Test results with 10 hidden units 
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The error could be minimized down to 0.1115 for the above figure with 10 hidden 

units. 

The following Figure 6.7 is the training result with 15 hidden units. 

 

Figure 6.7: Training results with 15 hidden units 

 

The error could be minimized down to 0.1040 for the above figure with 15 hidden 

units. 

The following Figure 6.8 displays the test data results for the above Figure 6.7 

training result with the same number of hidden units. 

 
 

Figure 6.8: Test results with 15 hidden units 
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The error could be minimized down to 0.1171 for the above figure with 15 hidden 

units. 

As shown from the above experimental results, as the number of hidden units 

increase, the magnitude RMSE error also increases slightly. This is due to increase in 

number of variables to be optimized and GAs are very sensitive to this. Their 

performance degrades with increasing number of variables to be optimized.  

Moreover, as was mentioned in previous chapters, very small number of hidden units 

may not be enough in order to reach the best results. And too many hidden units may 

cause overlearning in the model. So there should be a middle point for selecting the 

number of hidden units. However, in this thesis experimental results show that when 

less number of hidden units are used, then the better results are obtained. Therefore, 

we may see that for training results when we have 15 and 3 hidden units, the error 

could be minimized down to 0.1040 and 0.0956 respectively. 

The following Figure 6.9 illustrates all the results conducted in this thesis and 

demonstrates the influence of the number of hidden units used. 

 

Figure 6.9: Comparison of results 
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The dataset that is used in this thesis was used for other modeling methods such as 

Partial Least Squares (PLS), Neural networks with feedforward backpropagation and 

2 layers, Sugeno-type fuzzy logic and Anfis. The following Table 6.1 illustrates the 

results of above mentioned modeling methods by Radu Platon in [22].  In most cases, 

our proposed model performs better than these well-known approaches. 

Table 6.1 Different Modeling Method Results [22] 

Modeling method PLS Sugeno-type 

fuzzy logic 

Neural 

networks 

Anfis 

Training Error 0.689 0.196 0.157 0.163 

Testing Error 0.627 0.331 0.401 0.480 

 

When comparing results obtained in this thesis using RBFNN modeling method and 

results in above Table 6.1, we can see a significant difference in minimization of the 

training and validation errors by modeling method used in our work. 
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  Chapter 7 

7. CONCLUSION 

This thesis presents a solution to the data modeling problem. The developed model in 

this thesis is able to model a data based on previous experience and optimized 

parameters of RBFNN. The dataset of BLSC was used for development of the model. 

The combination of a genetic algorithm with RBFNN is a good approach to the given 

task as seen from the performance of the developed model. A hybridized genetic 

algorithm with an integrated local search could easily optimize the RBFNN 

parameters for a single objective problem, which was to minimize the error, i.e. 

making difference between target output and the found output to be zero. 

RBFNN parameters played very important roles in optimizing this model, since a 

genetic algorithm used all those parameters in its chromosome. There were many 

conducted experiments of developed model with different variations of RBFNN 

parameters, for example; different numbers of hidden units were used to see how it 

reflects the results and also different intervals for such parameters as weights and 

width was used, which showed great difference in improvement of results. 

The Multi-objective version of developed model can be a future task to be 

implemented for the proposed algorithm in this thesis. Optimizing more than one 

objective function is very popular for the last decades. And therefore it will be a 

primary concern for further improvement, since the current model consists of the 
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powerful integration of genetic algorithm with RBFNN, which in addition uses local 

search, thus becoming a hybridized version of genetic algorithm. 
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