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ABSTRACT 

This thesis  consists of  six chapters. Introduction is in the first chapter. In the second 

chapter we present a method for solving partial differential equation by use of Fourier 

series. The method is called separation of variables. 

      In the third chapter we show that the Fourier series converges under certain reasonable 

general hypothesis. We give important results like Riemann-Lebesgue  Lemma, 

Dirichlet kernels and three important conditions for the convergence of Fourier series at 

a point Dini’s, Lipchitz and Dirichlet-Jordan conditions.  

In the fourth chapter Fourier series are studied in more general point of view, 

considering functions as elements of abstract inner product space. Bessel’s inequality, 

Parseval’s identity, Cesaro summability and Fejer kernels are important results that are 

given. 

In the fifth chapter is set the problem of uniform convergence of Fourier series based on 

piecewise-smooth functions. In addition it is given Weierstrass approximation theorem 

and Gibbs phenomenon, the case when the function is not uniformly convergent.  

In the last chapter we deal with convergence of  Fourier integrals. First we introduce the 

Fourier integral formula and then give the analogs of Dini’s, Lipchitz and Dirichlet-

Jordan conditions  for Fourier integrals. 

 

Keywords: Dirichlet kernels, Bessel’s inequality, Parseval’s identity, Cesaro 

summability, Fejer kernels. 
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ÖZ 

Bu tez altı bölümden oluşmaktadır. Birinci bölüm giriş bölümüdür. İkinci bölümde 

Fourier serileri kullanarak kısmi türevli denklemin çözüm metodunu sunmaktayız. Bu 

metoda değişkenlerine ayırma metodu denir. 

Üçüncü bölümde genel hipotezler altında Fourier serilerinin yakınsaklığı gösterildi. 

Riemann Lebesgue Lemma , Dirichlet çekirdekleri gibi önemli sonuçlar verildi ve 

Fourier serilerinin bir noktada yakınsaması için üç önemli koşul: Dini, Lipshctiz ve 

Dirichlet-Jordan' dır .  

 

Dördüncü bölümde Fourier serilerinin soyut iç çarpım uzaylarının elemanları olan 

fonksiyonlar olduğu dikkate alınarak , geniş çapta çalışıldı.Bunlar arasında en önemlileri 

Bessel eşitsizliği, Parseval özdeşiliği, Cesaro toplanabilirlik ve Fejer çekirdekleridir. 

 

Beşinci bölümde parçalı düzgün fonksiyonlar üzerine Fourier serilerinin düzgün 

yakınsaması problemi ortaya konulmuştur.Bunun yanı sıra fonksiyon düzgün yakınsak 

olmadığında Weistrass yaklaşım teoremi ve Gibbs fenomeni verilmiştir. 

 

Son bölümde Fourier integrallerinin yakınsaması ele alınmıştır. Öncelikle Fourier integral 

formülü ve sonra Fourier integralleri için Dini, Lipschitz ve Dirichlet-Jordan şartlarının 

benzerleri verilmiştir. 

 

 Anahtar Kelimeler: Dirichlet çekirdekleri, Bessel eşitsizliği, Parseval özdeşliği, Cesaro 

toplanabilirlik, Fejer çekirdekleri. 
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Chapter 1

INTRODUCTION

Just before 1800, french mathematicien Jean Baptise Joseph Fourier made an aston-

ishing invention. In 1807 he presented a paper to the Academy of Science which

dealt with the problem of how heat ”flows” through metallic rods and plates. In paper

Fourier clamed that any function defined on a finite closed interval could be presented

as a sum of sine and cosine functions. He proposed that any function f (x) defined over

the interval (-π,π) could be written as

f (x) =
a0

2
+

∞∑
n=1

(an cos(nx)+bn sin(nx))

where an and bn are called constants. Fourier’s paper was nevertheless, rejected by

Lagrange, Laplace and Legendre who criticised it for lack of rigor. His claims in

analysis for series was wrong. The assertation that Fourier bealived that any arbi-

trary function f (x) can be presented in terms of sine and cosine series over the inter-

val (−π,π) is pragmatically false. In 1878 Dirichlet (his phd student) showed that a

Fourier series is guaranted to converge under the moderately loose conditions that a

function has a finite number of finite discontinuities and a finite number of extremas.

Today we call those conditions as a Dirichlet conditions. During our work we will

deal with conditions wich ensure pointwise and uniform convergence of Fourier Se-

ries and Integrals.
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This thesis is organized as follows. In chapter two we present a method for solving

partial differential equations by use of Fourier series. The method is called separation

of variables.In the third chapter we will show that the Fourier series converges under

certain reasonable general hypothesis. We will give important results like Riemann-

Lebesgue Lemma, Dirichlet kernel and three important conditions for pointwise con-

vergence at a point: Dini’s, Lipchitz and Dirichlet-Jordan conditions. In the fourth

chapter Fourier series are studied in more general point of view, considering functions

as elements of abstract inner product space. Bessel’s inequality, Parseval’s identity,

Cesaro summability and Fejer kernels are important results that are given. In the

fifth chapter is set the problem of uniform convergence of Fourier series based on

piecewise-smooth functions. In addition it is given Weierstrass approximation theo-

rem and Gibbs phenomenon, the case when the function is not uniformly convergent.

In the last chapter we deal with convergence of Fourier integrals. First we intro-

duce the Fourier integral formula and then give the analogs of Dini’s, Lipchitz and

Dirichlet-Jordan conditions for Fourier integrals.
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Chapter 2

SOLUTION OF HEAT EQUATION BY FOURIER METHOD

2.1. Separation of variables

In this section we present one of the simplier methods of solving partial differential

equations by the use of Fourier series. This method is called separation of variables

(or sometimes the Fourier method). We demosntrate this method by considering the

homogeneous heat equation defined on a rod of length 2L with periodic boundary

conditions. In mathematical terms we must find a solution u = u(x, t) to the problem



ut − kuxx = 0, −L < x < L, 0 < t <∞

u(x,0) = f (x), −L ≤ x ≤ L,

u(−L, t) = u(L, t), 0 ≤ t <∞

ux(−L, t) = ux(L, t) 0 ≤ t <∞

where k > 0 is a constant. The common wisdom is that these mathematical equations

model (under ideal conditions) the heat flow u(x, t) is the temperature in a ring 2L,

where the initial (t = 0) distribution of temperature in the ring is given by the function

f . A point on the ring is represented by a point in the interval [−L,L] where the

endpoints x = L and x = −L represents the same point in the ring. For this reason the

mathematical representation of this problem includes the equations u(−L, t) = u(L, t)

and ux(−L, t) = ux(L, t). To obtain a good solution to this problem, it is better if we
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assume that f is a countinous function, f ′ ∈ E, and f satisfies f (−L) = f (L) and

f ′(−L) = f ′(L). The idea behind the method of separation of variables is first to find

all non identically zero solutions of the form u(x, t) = X(x)T (t) to the homogeneous

system



ut − kuxx = 0, −L < x < L, 0 < t <∞,

u(−L, t) = u(L, t), 0 ≤ t ≤∞,

ux(−L, t) = ux(L, t), 0 ≤ t <∞.

(2.1.1)

Later we will look for a solution to the equation u(x,0) = f (x) from the linear space

generated by these solutions of the system above. Taking into consideration the sys-

tem and the fact that u(x, t) = X(x)T (t). Then

ut(x, t) = X(t)T ′(t), uxx(x, t) = X′′(x)T (t).

Substituting these forms in the equation we obtain

X(x)T ′(t)− kX′′(x)T (t) = 0

and thus

X(x)T ′(t) = kX′′(x)T (t).

Dividing both sides of the equation by kX(x)T (t), we obtain

T ′(t)
kT (t)

=
X′′(t)
X(x)

.
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The expression on the left-hand side is a function of t alone, while the expression on

the right-hand side is a function of x. We already know that x and t are independent

upon each other, the equation that is given above can hold only if and only if both

sides of it is equal to some unknown constant −λ for all values of x and t. Thus we

may write

T ′(t)
kT (t)

=
X′′(x)
X(x)

= −λ.

Clearly we obtain one pair of ordinary differential equations with unknown constant

λ:

X′′(x)+λX(x) = 0

T ′(t)+ kλT (t) = 0

From those two boundary conditions we derive two conditions. From the boundary

condition u(−L, t) = u(L, t) it follows that for all t ≥ 0

X(−L)T (t) = X(L)T (t) .

There exist two possibilities. Either T (t) = 0 for all t ≥ 0, or X(−L) = X(L). After

all, the first possibility leads us to the trivial solution for which we are not interested.

So we look to the second condition X(−L) = X(L). Similarly we obtain the second

condition X′(−L) = X′(L). When we are looking for non trivial solutions of (2.1.1)
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of the form u(x, t) = X(x)T (t) to the equations for X:



X′′(x)+λX(x) = 0, 0 < x < L,

X(−L) = X(L)

X′(−L) = X′(L)

(2.1.2)

We can easily check that values of λ for which equation (2.1.2) has non trivial solu-

tions are exactly

λn =
n2π2

L2 , n = 0,1,2, ...

For λ0 = 0 the equation is X′′(x) = 0 and general solution is

X(x) = c1x+ c2.

From the condition X(−L) = X(L) we obtain c1 = 0, while the condition X′(−L) =

X′(L) is always satisfied. This being so, in this case, the constant functions X(x) = C

are solutions of (2.1.2). For λn =
n2π2

L2 , n ≥ 1, the equation is

X′′(x)+
n2π2

L2 X(x) = 0.

General solution has the form of

X(x) = c1 sin
nπ
L

x+ c2 cos
nπ
L

x.

6



Finally, we have two non-trivial linearly independent solutions for all n ∈ N and λn =

n2π2

L2

Xn(x) = cos
nπx
L

x, X∗n sin
nπx
L

x.

Every other solution is a linear combination of these two solutions. The values

λn are called the eigenvalues of the problem, and the solutions of Xn and X∗n are

called the eigenfunctions associated with eigenvalue λn. We also recall that among

the eigenvalues we also have λ0 = 0, with associated eigenfunction

X0(x) = 1.

Now we consider the second equation T ′(t)+ kλT (t) = 0. We restrict ourself to λ =

λn =
n2π2

L2 ,n = 0,1,2,3, .... For each n there exists non trivial solution

Tn(t) = e−kλnt.

Every other solution is a constant multiple therefore. So, finally we can summarize,

for each n ∈ N we have pair of nontrivial solution of (2.1.2) of the form

un(x, t) = Xn(x)Tn(t) = e−kλnt cos
nπx
L
,

u∗n(x, t) = X∗n(x)Tn(t) = e−kλnt sin
nπx
L
.

For n = 0 we have the solution

u0(x, t) = X0(t)T0(t) = 1.

7



Since the system (2.1.2) is homogeneous every ”infinite linear combination” of the

solutions is again a solution (if we asume it converges). So, we have in a sense, an

infinity of solutions of the general form

u(x, t) =
a0

2
+

∞∑
n=1

e−kλnt
[
an cos

nπx
L
+bn sin

nπx
L

]
.

We must consider the non-honogeneous initial condition u(x,0) = f (x), − L ≤ x ≤ L.

This condition should determine the two sequences of coefficients {an}∞n=0 and

f (x) = u(x, t) =
a0

2
+

∞∑
n=1

e−kλnt
[
an cos

nπx
L
+bn sin

nπx
L

]
.

We call it as a Fourier series of f on the interval [−L,L] [2]. Where

an =
1
L

L∫
−L

f (x)cos
nπx
L

dx, n = 0,1,2, ...

bn =
1
L

L∫
−L

f (x) sin
nπx
L

dx. n = 1,2,3, ...

8



Chapter 3

CONVERGENCE OF FOURIER SERIES AT A POINT

3.1. Trigonometric Series

Definition 3.1.1 A series of the form

a0

2
+

∞∑
n=1

(an cosnx+bn sinnx)

is called a trigonometric series.

The terms of this series are periodic functions with period 2π. Hence, if it converges

on (−π,π), then it converges on R. Therefore from now on we will study this series

on the interval [−π,π], taking into consideration that, it produces the same values at

−π and π.

Definition 3.1.2 A given function f (x) can be represented, under hypothesis of con-

siderable generality, by an infinite series of the form

f (x) ∼ a0

2
+

∞∑
n=1

(an cos(nx)+bn sin(nx)) (3.1.1)

Such a series, when the coefficients are determined in the manner to be described

below, is called Fourier series.

9



Since the each term is a periodic function with period 2π, the sum of the series neces-

sarily has the same period. (A function f (x) is said to be periodic if f (x+a) = f (x)).

If a is a period, any integral multiple of a is also a period 2π/n). On other hand, a

Fourier series is sometimes useful for the presentation of a given function in a single

interval of length 2π, when the property of periodicity is of no concern except as it

results indicidentally from evaluation of the series outside the interval in which the

function was orginally defined.

Theorem 3.1.3 If the series in (3.1.1) converges uniformly to the function f on [−π,π]

then f ∈C(−π,π), f (−π) = f (π) and

an =
1
π

π∫
−π

f (x)xcosnxdx and bn =
1
π

π∫
−π

f (x) sinnxdx. (3.1.2)

Proof. The sum of uniformly convergent series of countinous functions is countinuous.

Hence, f ∈C(−π,π). Also,

f (π) = f (−π) = a0

2
+

∞∑
n=1

an cosnπ =
a0

2
+

∞∑
n=1

(−1)nan

Taking any n ∈ N so that n ≤ m. If

sm =
a0

2
+

m∑
k=1

(ak cos(kx)+bk sin(kx)), (3.1.3)

than we have

π∫
−π

sm cosnxdx =

π∫
−π

am cos2 nxdx = anπ.

10



It is clear that sm→ f uniformly,

anπ = lim
m→∞

π∫
−π

sm(x)cosnxdx =

π∫
−π

f (x)cosnxdx,

proving the formula for an,n ∈ N. The same arguments work for a0 and bn , n ∈ N.

Remark 3.1.4 a) Writing the free constant term of the series in the form of a0
2 is

for the convinence and is standart notation, the definition of a0 is no part of the

general definition of all an in (3.1.2) (since cos(0) = 1).

b) In the definition of the Fourier series of f we wrote ∼ and not equality. There

is a reason for this. There is no necessity that the series in question converges

for all x ∈ [−π,π]. And even if the series converges, it might not converge to the

value f (x). We need additional conditions on the function f to ensure that the

series converges to the desired values, and in order to obtain the particular type

of onvergence desired (such as uniform or pointwise convergence).

c) The Fourier series of f is totally determined by the values of the coefficients

an and bn (of which there are a countable number). These coefficients them-

selves determined by the specific integrals in (3.1.2). If we alter the value of the

function f at a finite number of points, then the integrals defining an and bn are

unchanged. Thus every two function which differ at a finite number of points

have exactly the same Fourier series.

11



3.2. Rieman-Lebesgue Lemma

The sufficient conditions for the convergence of Fourier series and integrals, consid-

ered in this chapter are based on a result that is called the Riemann-Lebesgue Lemma.

In the section we prove this useful result.

Theorem 3.2.1 (Riemann-Lebesgue Lemma) Let g be absolutely integrable on [a,b],

either g is Riemann integrable or |g| is improperly integrable on [a,b]. Than

lim
λ→∞

b∫
a

g(x) sinλxdx = 0,

assuming that λ tends to∞ ever real numbers, not only over integers.

Proof. First, assume g ∈ R(a,b). Take any ε > 0. There is a partition P = {x0, x1, ..., xn}

of [a,b] such that

|S ∗(g,P)−S ∗(g,P)| < ϵ2 ,

where

S ∗(g,P) =
n∑

i=1

Mi(xi− xi−1) and S ∗(g,P) =
n∑

i=1

mi(xi− xi−1)

with Mi = sup[xi−1−xi] g and mi = inf[xi−1,xi] g. On the other hand

∣∣∣∣∣∣∣∣∣
xi∫

xi−1

sinλxdx

∣∣∣∣∣∣∣∣∣ =
|cosλxi− cosλxi−1|

λ
≤ 2
λ
.

12



Hence,∣∣∣∣∣∣∣∣∣
b∫
a

g(x) sinλxdx

∣∣∣∣∣∣∣∣∣ ≤
n∑

i=1

∣∣∣∣∣∣∣∣∣
xi∫

xi−1

g(x) sinλxdx

∣∣∣∣∣∣∣∣∣
≤

n∑
i=1

xi∫
xi−1

|(g(x)−mi) sinλx|dx+
n∑

i=1

∣∣∣∣∣∣∣∣∣
xi∫

xi−1

mi sinλxdx

∣∣∣∣∣∣∣∣∣
≤ S ∗(g,P)−S ∗(g,P)+

2
λ

n∑
i=1

|mi| .

We obtain that for every

λ >
4
ϵ

n∑
i=1

|mi| ,

the inequality

∣∣∣∣∣∣∣∣
π∫
−π

g(x) sinλxdx

∣∣∣∣∣∣∣∣ ≤ ϵ,
holds. This proves the theorem for g ∈ R(a,b).

Later on we assume that |g| is improperly integrable on [a,b]. Since we have different

possibilities it suffices to consider only one case, it means we will cosider when the

improperness of |g| is due to the point a, for every a < c < n, |g| is unbounded on [a,c]

and bounded on [a,c]. So,

|g(x) sinλx| ≤ |g(x)| ,

13



the improper integral

b∫
a

g(x) sinλxdx

is convergent for all λ > 0. Take any ϵ > 0. Than there is a c, where a < c < b such that

c∫
a

|g(x)|dx <
ϵ

2
,

which implies ∣∣∣∣∣∣∣∣∣
b∫
c

g(x) sinλxdx

∣∣∣∣∣∣∣∣∣ <
c∫
a

|g(x)|dx <
ϵ

2
.

Thus, ∣∣∣∣∣∣∣∣∣
b∫
c

g(x) sinλxdx

∣∣∣∣∣∣∣∣∣ < ϵ,
whenever λ > M. This complates the proof.

Riemann-Lebesgue lemma has a modification to infinite intervals as well.

Theorem 3.2.2 (Riemann-Lebesgue Lemma) Let g be absolute integrable on [a,∞).

Than

lim
λ→∞

∞∫
a

g(x) sinλxdx = 0,

assuming that λ→∞ over real numbers.
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3.3. Dirichlet Kernels

The function Dm defined by

Dm = 1+2
m∑

k=1

coskx, −∞ < x <∞, (3.2.1)

is called Dirichlet kernel. Here m takes values 0,1,2,..., assuming that D0(x) = 1. By

use of trigonometric identity

2coskxsin
x
2
= sin

(2k+1)x
2

− sin
(2k−1)x

2
,

now from the formula for Dirichlet kernel we can evaluate,

Dm = 1+2
m∑

k=1

coskx = 1+
1

sin x
2

m∑
k=1

2coskxsin
x
2

= 1+
sin (2m+1)x

2 − sin x
2

sin x
2

=
sin (2m+1)x

2

sin x
2
,

whenever sin x
2 , 0, where x , 2πn. Using the continuity of Dm, the values of Dm at

x = 2πn can be recovered by taking the limit

lim
x→2πn

sin (2m+1)x
2

sin x
2
= lim

x→2πn

(2m+1)cos (2m+1)x
2

cos x
2

,

= 2m+1 = 1+2
m∑

k=1

cos2πnk = Dm(2πn).

The Dirichlet kernels play a significant rol in studying Fourier series. We can observe

the following properties of Dirichlet krnels:

a) Dm is an even function.
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b) Dm is a periodic function with the period 2π.

c)

π∫
0

Dmdx = π.

Theorem 3.3.1 Let sm be the mth partial sum defined in (3.1.3) of an integrable func-

tion f of period 2π. Than

sm(x) =
1

2π

δ∫
0

f (x− y)+ f (x+ y))Dm(y)dy. (3.3.2)

Proof. Replacing the Fourier coeficients in (2.1.3), we obtain

sm(x) =
1

2π

π∫
−π

f (y)dy+
1
π

m∑
k=1

π∫
−π

f (y)(coskycoskx− sinkysinkx)dy

=
1

2π

π∫
−π

1+2
m∑

k=1

cosk(y− x)

dy =
1

2π

π∫
−π

f (y)Dm(y− x)dy.

Since f and Dm are periodic functions with period 2π and Dm is even,

sm(x) =
1

2π

π+x∫
−π−x

f (x+ y)Dm(y)dy =
1

2π

π∫
−π

f (x+ y)Dm(y)dy

=
1

2π

0∫
−π

f (x+ y)Dm(y)dy+
1

2π

π∫
0

f (x+ y)Dm(y)dy

=
1

2π

π∫
0

( f (x− y)+ f (x+ y)) Dm(y)dy.

Which complates the proof.
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Theorem 3.3.2 (Riemann localization theorem) Let f ∈ R(−π,π). If

lim
m→∞

δ∫
0

( f (x− y)+ f (x+ y)) Dm(y)dy (3.3.3)

exists for some 0 < δ < π, then the Fourier series of f converges at x to this value.

Proof. First, we divide the integral that is given in (3.3.3) into two integrals, on the

intervals [0, δ] and [δ,π].

1
2π


π∫
0

+

δ∫
π

 f (x− y)+ f (x+ y)
sin y

2
sin

(2m+1)y
2

dy.

Writing the integral on [δ,π] in the form

1
2π

π∫
δ

f (x− y)+ f (x+ y)
sin y

2
sin

(2m+1)y
2

dy.

Here the function

f1(y) =
f (x− y)+ f (x+ y)

sin y
2

,

is bounded on [δ,π] and hence, belongs to R(δ,π). By Riemann Lebesgue Lemma, the

limit of this integral as m→∞ is zero. Hence the limit of m-th partial sum sm(t) of

the Fourier series of the function is same as its limit if it exists.

This theorem is named after Riemann, it was known earlier as Ostogradski and Lobochevski

Theorem.
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3.4. Dini’s condition

Three important theorems for pointwise convergence will be proved in this section.

The first one belongs to Dini.

Theorem 3.4.1 (Dini) Let f ∈ R(−π,π). If

δ∫
0

∣∣∣∣∣ f (x− y)+ f (x+ y)−2s
y

∣∣∣∣∣dy <∞ (3.4.1)

for some 0 < δ ≤ π and s ∈ R, where the integral is proper or improper Riemann

integral, than the Fourier series of f converges at x to s.

Proof. Let sm be m− th partial sum of the Fourier series of f . From the properties of

Dirichlet kernel, we have

sm− s =
1

2π

π∫
0

( f (x− y)+ f (x+ y)) Dm(y)dy− 1
π

π∫
0

sDm(y)dy

=
1

2π

π∫
0

( f (x− y+ f (x+ y)−2s) Dm(y)dy

=
1
π

π∫
0

f (x− y)+ f (x+ y)−2s
y

y
2

sin y
2

sin
(2m+1)y

2
dy

=
1
π


δ∫
0

+

π∫
δ

 f (x− y)+ f (x+ y)−2s
y

y
2

sin y
2

sin
(2m+1)y

2
dy.

Here, f (x−y)+ f (x+y)−2s
sin y

2
is properly Riemann integrable on [0,π] . Hence by Riemann-

Lebesgue Lemma the second integral goes to zero as m → ∞. At the same time

f (x−y)+ f (x+y)−2s
y is absolutely integrable on [0, δ], and f (x−y)+ f (x+y)−2s

y is bounded func-

tion on [0, δ]. So the product of absolutely integrable function and bounded function
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is absolutely integrable function on [0,π]. So, lim
m→∞

sm(x) = s.

3.5. Lipschitz Condition

Theorem 3.5.1 (Lipschitz) Let f ∈ R(−π,π). If there are numbers L ≥ 0, 0 < α ≤

1 and σ > 0 such that

| f (x+ y)− f (x)| ≤ L|y|α (3.5.1)

for all |x− y| < σ, than the Fourier series of f converges at x to f (x).

This sufficient condition is attributed to Lipschitz although this original paper was

corrected by Hölder. So, the theorem is called the local Lipschitz condition at x

if α = 1, and the local Hölder condition at x if 0 < α < 1. We will verify the Dini’s

condition for s = f (x). We have

∣∣∣∣∣ f (x− y)+ f (x+ y)−2 f (x)
y

∣∣∣∣∣ ≤ ∣∣∣∣∣ f (x− y)− f (x)
y

∣∣∣∣∣+ ∣∣∣∣∣ f (x+ y)− f (x)
y

∣∣∣∣∣
≤ L|y|α

y
+

L|y|α
y
=

2L
y1−α ,

where 0 ≤ y ≤ σ, and 0 < α ≤ 1, in case when α = 1,

σ∫
0

1
y1−αdy is proper Reimann

integrable, for 0 < α < 1,

σ∫
0

1
y1−αdy is convergent improper integral. So, in both cases

the integral is convergent, hence

σ∫
0

∣∣∣∣∣ f (x− y)+ f (x+ y)−2 f (x)
y

∣∣∣∣∣dy <∞.
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The Lipchitz condition implies the Dini’s condition. But the next condition, due to

Dirichlet and Jordan, is incomparable with the Dini’s condition. To prove Dirichlet

Jordan theorem we need this Lemma.

Definition 3.5.2 If [a,b] is compact interval, a set of points P = {x0, x1, x2, ..., xn} is

called a partition of [a,b]. The interval [xk−1, xk] is called the k− th subinterval of p

and we write △ xk = xk − xk−1, so that

n∑
k=1

|△ fk| ≤ M

for all partitions of [a,b], than f is said to be of bounded variation on [a,b].

Theorem 3.5.3 a) If f is monotonic on [a,b] , then f is of bounded variation on

[a,b] ,

b) if f is continuous on [a,b] and f ′exists and is bounded, say | f ′(x)| ≤ A for all x

in (a,b), then f is of bounded variation on [a,b] ,

c) if f is of bounded variation on [a,b] , say
∑ |△ fk| ≤ M for all partitions of [a,b],

then f is bounded on [a,b] .

In fact

| f (x)| ≤ | f (a)|+M f or all x ∈ [a,b] .

Proof.
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a) Let f be increasing. Than for every partition of [a,b] we have △ fk ≥ 0 and

hence

n∑
k=1

|△ fk| =
n∑

k=1

△ fk =
n∑

k=1

[
f (xk)− f (xk−1)

]
= f (b)− f (a),

thus f is with bounded variation,

b) applying the mean value theorem,

△ fk = f (xk)− f (xk−1) = f ′(tk)(xk − xk−1), tk ∈ (xk−1, xk)

this implies

n∑
k=1

|△ fk| =
n∑

k=1

∣∣∣ f ′(tk)
∣∣∣ △ xk

since f ′ is bounded, which means that | f ′(x)| ≤ A f or all x ∈ (a,b)

n∑
k=1

|△ fk| =
n∑

k=1

∣∣∣ f ′(tk)
∣∣∣ △ xk ≤ A

n∑
k=1

△ xk = A(b−a),

c) assume that x ∈ (a,b). Using the special partition P = {a, x,b}, we find

| f (x)− f (a)|+ | f (b)− f (x)| ≤ M.

This implies | f (x)− f (a)| ≤ M, f (x) ≤ | f (x)| ≤ | f (a)|+M, the same inequality

holds if x = a or x = b.
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Definition 3.5.4 Let f be of bounded variation on [a,b], and let
∑

(P) denote the sum

n∑
k=1

|△ fk|

corresponding to the partition P = {x0, x1, x2, ..., xn} of [a,b]. The number V f (a,b) =

sup{∑(P) : P ∈ P[a,b]} is called the total variation of f on [a,b].

3.6. Dirichlet-Jordan Lemma

Theorem 3.6.1 (Dirichlet-Jordan lemma) If g ∈ BV in (o,σ). Than

lim
m→∞

σ∫
0

g(y) sin
2m+1

2

y
dy =

π

2
g(0+). (3.6.1)

Proof. First note that

lim
m→∞

σ∫
0

g(y) sin
2m+1

2
dy = 0,

by Reimann Lebesgue Lemma

σ∫
0

g(y)
sin 2m+1

2

y
dy =

σ∫
0

g(0+)
sin 2m+1

2

y
dy+

σ∫
0

[
g(y)−g(0+)

]
sin

2m+1
2

dy.

σ∫
0

g(o+)
sin 2m+1

2

y
dy = g(0+)

2m+1
2 σ∫
0

sinz
z

dz = g(0+)Si(
2m+1

2
σ)

= g(0+)
π

2
as m→∞.
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So it remains to show that

σ∫
0

[
g(y)−g(0+)

]
sin

2m+1
2

dy = 0.

Let L = sup
x≥0
|Si(x)| , note that according to the fact that Si(x) is continuous on (0,∞)

and limit of it is finite, than Si(x) is a bounded function on (0,∞) So, 0 ≤ L ≤∞, next

lim
y→0+

g(y) = g(0+) there is 0 < δ < σ such that

|g(y)−g(0+)| < ε
4L

whenever 0 < y < δ.

Take 0 < η < δ, then

σ∫
0

[
g(y)−g(0+)

] sin 2m+1
2

y
dy,


η∫
0

+

σ∫
η

 [g(y)−g(0+)
] sin 2m+1

2

y
dy,

here

σ∫
η

[
g(y)−g(0+)

] sin 2m+1
2

y
dy→ 0 as m→∞.

Hence , there is M > 0 such that for every λ > M,∣∣∣∣∣∣∣∣∣
σ∫
η

[
g(y)−g(0+)

] sinλ
y

dy

∣∣∣∣∣∣∣∣∣ <
ε

2
. (3.6.2)

23



On the other hand by Reimann Lebesgue Lemma the other integral can be written as

η∫
0

[
g(y)−g(0+)

] sinλ
y

dy =

η∫
0

g(y)−g(0+))d Si(λy)

= (g(0)+g(0+)) (Si(λc)−Si(0))+

+ (g(η)−g(0+)) (Si(λη)−Si(λc)) ,

where 0 ≤ c ≤ η. Here c depends on λ and as well as on g(0) if we make g(0) free in

the interval (−∞,g(0+)). Such a freedom does not demage the increasing property of

g and does not change the value of the integral in (3.6.1). Taking c corresponding to

g(0) = g(0+). Then

η∫
0

[
g(y)−g(0+)

] sinλ
y

dy = (g(η)−g(0+)) (Si(λη)−Si(λc)) .

Here g(η)−g(0+) < ε
4L , since 0 < η < δ

∣∣∣∣∣∣∣∣∣
η∫
0

[
g(y)−g(0+)

] sinλ
y

dy

∣∣∣∣∣∣∣∣∣ <
ε

4L
|Si(λη)−Si(λc)| ≤ ε

4L
2L =

ε

2
, (3.6.3)

independently on λ. Hence, from (3.6.2) and (3.6.3) yield that for every λ > M,∣∣∣∣∣∣∣∣∣
σ∫
0

[
g(y)−g(0+)

] sinλy
y

dy

∣∣∣∣∣∣∣∣∣ <
ε

2
+
ε

2
= ε,

which complates the proof.

Theorem 3.6.2 (Dirichlet-Jordan) Let f ∈ R(−π,π). If f has a bounded variation on

some onterval [x−σ, x+σ], than its Fourier series at x converges to ( f (x+)+ f (x−))/2.
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Proof. By Riemann localization lemma, it suffices to evaluate the limit in (3.3.3)

1
π

σ∫
0

( f (x− y)+ f (x+ y))
y
2

sin y
2

sin (2m+1)y
2

y
dy.

Here f1(y) = f (x−y)+ f (x+y) has a bounded variation on [0,σ] under fixed x. Also,

f2(y) = y/2
sin(y/2) is increasing on [0,σ] assuming that f2(0) = limy→0+ f2(y) = 1. So,

the product of an increasing function and function of bounded variation is also of

bounded variation on [0,σ]. Than by Dirichlet-Jordan Lemma, limit in (3.3.3) exists

and equals to

π

2π
g(0+) =

1
2

f1(0+) f2(0+) =
f (x−)+ f (x+)

2
.

This complates the proof.
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Chapter 4

FOURIER SERIES IN INNER PRODUCT SPACES

4.1. Linear and Inner Product Spaces

In this chpter we will examine Fourier series from more general point of view con-

sidering functions as elements of abstract inner product spaces.

Definition 4.1.1 A vector space E is called an inner product space if the real number

⟨p,q⟩, called the inner product of p and q, is assigned to each p,q ∈ E such that the

following axioms hold:

a) (nonnegativity) ∀ p ∈ E, ⟨p, p⟩ ≥ 0;

b) (nondegeneracy) ⟨p, p⟩ = 0⇔ p = 0;

c) (symmetry) ∀p,q ∈ E, ⟨p,q⟩ = ⟨q, p⟩ ;

d) (additivity) ∀p,q,r ∈ E, ⟨p+q,r⟩ = ⟨p,r⟩+ ⟨q,r⟩ ;

e) (homogeneity) ∀p,q ∈ E and ∀a ∈ R, ⟨ap,q⟩ = a ⟨p,q⟩ .

Every inner product space E can be converted to normed space with the norm

||p|| =
√
⟨p, p⟩.
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Convergence with respect to this norm is called convergence in E. The axioms of

norm can be verified by use of axioms of inner product. A verification of triangle

inequality needs an additional fact as stated below.

Theorem 4.1.2 (Cauchy-Schwarz inequality) Let E be an inner product space, then

for every p,q ∈ E, |⟨p,q⟩| ≤ ∥p∥∥q∥ .

Theorem 4.1.3 (Triangle inequality) Let E be an inner product space. Than for every

p,q ∈ E, ||p+q|| ≤ ||p||+ ||q||.

Theorem 4.1.4 (Continuity of inner product) Let E be a inner product space. Assume

that the sequence {pn} converges to p in E. Than for every q ∈ E, lim
n→∞
⟨pn,q⟩ = ⟨p,q⟩ .

Proof. Since pn→ p, this means ||pn− p|| → 0. Than |⟨pn,q⟩− ⟨p,q⟩| = | ⟨pn− p,q⟩ | ≤

||pn− p|| · ||q|| → 0.

Definition 4.1.5 An inner product space that can be converted into a Banach space

in the above mentioned way is called a Hilbert space.

Example 4.1.6 One can verify that for f ,g ∈C(a,b) the function defined by

⟨ f ,g⟩ =
b∫
a

f (x)g(x)dx, (4.1.1)

satisfies the axioms (a)-(e) of the definition. This makes C(a,b) an inner product
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space, which becomes a normed space with the norm

∥ f ∥ =


b∫
a

f (x)2dx


1/2

. (4.1.2)

This space will be denoted by
∼
C(a,b) in order to make a distinction of norms. The

convergence in
∼
C(a,b) is called a mean square convergence (sometimes, mean con-

vergence). The space
∼
C(a,b) is neither Hilbert or Banach space.

In normed spaces, hence, in inner product spaces, it is possible to define infinite se-

ries in a very similar way as numerical series. A series
∞∑

i=1
pi is said to converge if

the sequence of partial sums sn =
∞∑

i=1
pi converges as n → ∞. If the numerical se-

ries
∞∑

i=1
∥pi∥ converges, than

∞∑
i=1

pi is said to converge absolutely. In a normed space

absolute convergence does not yet imply convergence, but in a Banach space abso-

lute convergence implies convergence. Thus the series of the form
∞∑

i=1
ai pi, where

a1,a2, ... ∈ R and p1, p2, .. are vectors, has sense in normed spaces.

Another important concept in an inner product space E is orthogonality. Two vec-

tors p,q ∈ E are said to be orthogonal if ⟨p,q⟩ = 0. This fact we write like p ⊥ q. A

sequence {pi} (finite or infinite) of nonzero terms E is said to be orthogonal system, if

pi ⊥ p j for every i , j. If, additionally, all pi are units vectors, than {pi} can be made

orthonormal by normalizing its vectors, i.e., by changing pi by ei =
pi
||pi|| .

Example 4.1.7 In the inner product spaces
∼
C(−π,π) and R(−π,π), the functions

1
√

2π
,

1
√
π

sin x,
1
√
π

cos x,
1
√
π

sin2x,
1
√
π

cos2x, ... (4.1.3)
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form an orthonormal system. This follows from the trigonometric integrals.

Theorem 4.1.8 (Orthogonal projection) Let {e1,e2, ...,en} be a finite orthonormal sys-

tem in an inner product space E. For fixed x ∈ E. The function

f (a1,a2, ...,an) =

∥∥∥∥∥∥∥x−
n∑

i=1

aiei

∥∥∥∥∥∥∥
2

, a1, ...,an ∈ R

takes its minimal value at a1 = ⟨x,a1⟩ , ..., ⟨x,an⟩ and

min f = ∥x∥2−
n∑

i=1

⟨x,e1⟩2 .

Proof. One can evaluate and find that

f (⟨x,e1⟩ , ..., ⟨x,en⟩) = ∥x∥2+
n∑

i=1

⟨p,e1⟩ (⟨p,ei⟩−2 ⟨p,ei⟩) = ∥p∥2−
n∑

i=1

⟨p,ei⟩2 .

4.2. Bessel’s Inequality

Now we consider an inner product space E and a countably infinite orthonormal sys-

tem {ei} in E. Taking first n of them we see that

xn =

∞∑
i=1

⟨x,ei⟩ei,
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is the best approximation of x ∈ E by linear combinations of e1,e2, ...en.Motivated by

this , we can associate with x ∈ E the series

x ∼
∞∑

i=1

⟨x,ei⟩ei. (4.2.1)

It can be observe that the series in (4.2.1) match with the Fourier series of f ∈
∼
C(−π,π)

with respect to the orthonormal system.

Theorem 4.2.1 (Bessel’s inequality) Let {ei} be countable infinite orthonormal sys-

tem in inner product space E. Then for every x ∈ E,

∞∑
i=1

⟨x,ei⟩2 ≤ ∥x∥2 .

Proof. From orthogonal projection we know that f is a nonnegative function. Hence

n∑
i=1

⟨x,ei⟩2 ≤ ∥x∥2

for every n. Taking the limit in both sides and moving n to infinity, we obtain the

Bessel’s inequality.

Corollary 4.2.2 Let the Fourier series of f ∈ R(−π,π) be given by (3.1.1), then

a2
0

2
+

n∑
i=1

(
a2

n+b2
n

)
≤ 1
π

π∫
−π

f (x)2dx.
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Proof. Let f (x) be geven by (3.1.1), and

fN(x) =
a0

2
+

N∑
n=1

(an cos(nx)+bn sin(nx)).

Taking

π∫
−π

( f (x)− fN(x))2dx =

π∫
−π

( f 2(x)−2 f (x) fN(x)+ f 2
N x))dx.

Hence, easy calculations give us

π∫
−π

f 2
N(x)dx = π(

a2
0

2
+

N∑
n=1

(a2
n+b2

n)).

Therefore

π∫
−π

( f (x)− fN(x))2dx =

π∫
−π

f 2(x)dx−π(
a2

0

2
+

N∑
n=1

(a2
n+b2

n)).

since

π∫
−π

( f (x)− fN(x))2dx ≥ 0,

then

π(
a2

0

2
+

N∑
n=1

(a2
n+b2

n)) ≤
π∫
−π

f 2(x)dx,

for any N > 1. Finally

a2
0

2
+

N∑
n=1

(a2
n+b2

n) ≤ 1
π

π∫
−π

f 2(x)dx.
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If we have equality

n∑
n=1

⟨x,ei⟩2 = ∥x∥2 (4.2.2)

then we say Parseval’s identity holds for x.

Theorem 4.2.3 If f and g are piecewise continuous functions of period 2π, with

Fourier coefficients an,bn and αn,βn respectively, then

1
π

2π∫
0

f (x)g(x)dx =
1
2

a0α0+

∞∑
n=1

anαn+bnβn. (4.2.3)

Proof. Since the Fourier series expansion of piecewise continuous function of period

2π converges in the mean to function. So the Fourier series

a0

2
+

N∑
n=1

(an cos(nx)+bn sin(nx))

converge in the mean to g. Multiplying each term of this series by f (x)/π and inte-

grating over the interval (0,2π); the resulting series will converge to 1
π

2π∫
0

f (x)g(x)dx.

After easy calculations the series obtained is preciesly the right side of (4.2.2). This

complates the proof.

Corollary 4.2.4 (Parseval’s Identity). If f is piecewise continuouse, of period 2π,
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then

1
π

2π∫
0

( f (x))2 dx =
a2

0

2
+

∞∑
n=1

(a2
n+b2

n). (4.2.4)

Proof. The proof follows from the above theorem, taking f = g.

Parseval’s identity (4.2.4) is an infinite-dimensional, the square of the length of the

vector is the sum of the squares of the scalar components of the vector along the

coordinate axes. As it is expressed, it appears rather more complicated than was the

corresponding formula given in (4.2.2) the reason is that the functions sinnx,cosnx,

are not normalized, i.e., ∥sinnx∥ and ∥cosnx∥ are not equal to unity.

Theorem 4.2.5 Let {ei} be countable infinite orthonormal system in inner product

space E. Than x ∈ E is represented by its Fourier series

x =
∞∑

i=1

⟨x,ei⟩ei (4.2.5)

if and only if the Parseval’s identity holds for x.

Proof. The proof is based on the equality

∥∥∥∥∥∥∥x−
n∑

n=1

⟨x,ei⟩ei

∥∥∥∥∥∥∥
2

= ∥x∥2−
n∑

i=1

⟨x,ei⟩2 .

If the Parseval’s identity holds for x, then the right hand side converges to 0 as n goes

to ∞. Hence, the left hand side also converges to 0, proving that the partial sum of

the Fourier series of x converges to x in E. Conversely, if x is presented by its Fourier

series, then the left hand side goes to 0. This means that the right hand side also
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converges to 0, i.e., the Parseval’s identity holds for x.

Another imoprtant issue related to orthonormal systems is that of completeness.

Definition 4.2.6 Let {ei} be an infinite orthonormal system in inner product space E.

We say the system is complate in E if x ∈ E the Parseval’s identity holds with respct

to this orthonormal system.

Later on we will prove that the orthonormal system in the inner product space
∼
C(−π,π)

is complate and obtain the Fourier series of every continuous function converges to it

in mean square sense.

4.3. Cesàro Summability and Fejér’s Theorem

As motivation for our future work in this section we will consider the following result

Example 4.3.1 Let us consider the series

1−1+1−1+ ... (4.3.1)

The sequence of partial sums of (4.3.1) is

1,0,1,0, ...
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which we know that it does not converge. Therefore, by definition., (3.2.1) is a diver-

gent series. On the other hand if we set s to be equal to (3.2.1),

s = 1−1+1−1+ ...

= 1− (1−1+1−1+ ...) = 1− s

where s = 1/2 .

Now we will introduce two new definitions of ”sum”.

Given any series

u1+u2+u3+ ... (4.3.2)

with partial sums

sn = u1+u2+u3+ ...+un, (4.3.3)

the n− th arithmetic mean of these partial sums is defined

σn =
s1+ s2+ s3+ ...sn

n
, (4.3.3)

which is the avarage of the first n partial sums of (4.3.2).

Let us consider a less trivial example. Consider the series of functions

1
2
+ cos x+ cos2x+ cos3x+ ... (4.3.5)
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This series diverge for all x.The n+1st partial sum is

1
2
+

n∑
m=1

cosmx =
sin(2n+1)( x

2)
2sin( x

2)
.

Therefore the arithmetic mean is

1
n

n−1∑
k=o

sin(2k+1)( x
2)

2sin( x
2)

=
1

2nsin( x
2)

n−1∑
k=o

sin(k+
1
2

)x,

which we can write in closed form like

σn(x) =
sin2 n(x/2)

2nsin2(x/2)
. (4.3.6)

So, if x is in the interval (0,2π), the numerator increases. Therefore σn(x) tends to

zero. It follows that the Cesaro sum of (4.3.5) is zero for every x in the interval

(0,2π). Observe however that when x = 0 or x = π, the nth arithmetic has the value

(obtained from (4.3.6) from the limit convention, obtained directly from (4.3.5)),

σn(x) = n2/2n = n/2. Therefore the Cesaro sum of (4.3.5) does not exists when x

is an integral multipleof 2π.Although (4.3.5)is not a Fourier Series.[1]

If the sequence of the arithmetic means σ1,σ2,σ3, ... converges to σ, we say that σ in

the Cessaro sum of the series (4.3.3).

In 1904 Hungarian mathematicient Leopold Fejer used Cesaro summability to Fourier

series and achived a great succes. He proved that the Fourier series of every continuos

function on [−π,π] converges in the mean square sense to the same function. So, now

we will concentrate on this issue:
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The function Fm, defined by

Fm(x) =
1

m+1

m∑
k=0

Dk(x), −∞ < x <∞,

is called Fejer kernel, where Dk is Dirichlet kernel and is defined in (3.3.1), m =

0,1,2,3, ... . For m = 0, we have F0(x) = D0(x) = 1. One can evaluate the closed

formula for Fm, starting

Fm =
1

m+1

m∑
k=0

Dk(x)

=
1

(m+1)

m∑
k=0

sin (2k+1)x
2

sin x
2

=
1

2(m+1)sin2 x
2

m∑
k=0

sin
(2k+1)x

2
sin

x
2
,

by use of trigonometric identies

2sin
(2k+1)x

2
sin

x
2
= coskx− cos(k+1)x and

sin2 (m+1)x
2

=
1− cos(m+1)x

2
,

Finally we get the Formula for Fejer kernel

Fm =
1− cos(m+1)x

2(m+1)sin2 x
2

=
1

m+1
sin2 (m+1)x

2

sin2 x
2

whenever x , 2πn. The value of Fm at x = 2πn can be recovered as well.

The following properties of Fejer kernels hold:

a) Fm is a nonnegative function;
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b) Fm is periodic function with the period 2π;

c) Fm id an even function;

d)

π∫
0

Fm(x)dx = π.

Theorem 4.3.2 Let sm be the mth partial sum defined in (3.1.3) of an integrable func-

tion f of period 2π. Define

σm =
1

m+1

m∑
k=0

sk(x). (4.3.7)

Then

σm =
1

2π

π∫
0

( f (x− y)+ f (x+ y))
m∑

k=0

Dk(y)dy.

Proof. Starting from

σm =
1

m+1

m∑
k=0

sk(x)

and from (2.2.2), we have

σm =
1

2π (m+1)

π∫
0

(( f (x− y)+ f (x+ y))
m∑

k=0

Dk(y)dy

=
1

2π

π∫
0

(( f (x− y)+ f (x+ y))
1

m+1

m∑
k=0

Dk(y)dy (4.3.7)

=
1

2π

π∫
0

(( f (x− y)+ f (x+ y)) Fm(y)dy. (4.3.8)
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Which complates the proof.

Theorem 4.3.3 (Fejer’s theorem) Let f be a continuous function on [−π,π] and f (−π)=

f (π) and let σm be Cesaro sum defined by (4.3.7). Than σm converges to f uniformly

on [−π,π] as m goes to∞.

Proof. Since f is continuouse function on [−π,π] , than f is uniformly continuouse on

[−π,π] . The periodic extension of f to R with the period 2π is also uniformly continu-

ous, since f (−π) = f (π). Take any x ∈ [−π,π] , given ε > 0, there exists δ > 0 such that

| f (x+ y)− f (x)| < ε/2 whenever |y| < δ. By the previous theorem and the properties of

Fejer kernels,

σm− f (x) =
1

2π

π∫
0

( f (x− y)+ f (x+ y)−2 f (x))Fm(y)dy.

Taking the absolute value, we have

|σm− f (x)| ≤ 1
2π

π∫
0

| f (x− y)+ f (x+ y)−2 f (x)|Fm(y)dy

writing the integral in right hand side as the sum of two integrals on [0, δ] and [δ,π]

|σm− f (x)| ≤ 1
2π


δ∫
0

+

π∫
δ

 | f (x− y)+ f (x+ y)−2 f (x)|Fm(y)dy,

the first integral can be estimated as

1
2π

δ∫
0

| f (x− y)+ f (x+ y)−2 f (x)|Fm(y)dy ≤ 1
2π

2ε
2

π∫
0

Fm(y)dy ≤ ε
2
.

For the second integral, we consider Fm(y) on [δ,π] , letting M = max[−π,π] | f |, we
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have

1
2π

π∫
δ

| f (x− y)+ f (x+ y)−2 f (x)|Fm(y)dy ≤ 2M
π

π∫
0

Fm(y)dy

Here Fm(y) converges uniformly to 0 since

0 ≤ Fm(y) =
1

m+1
sin2 (m+1)y

2

sin2 y
2

≤ 1

(m+1)sin2 δ
2

, δ ≤ y ≤ π

Select N ∈ N independent on x ∈ [−π,π] , such that

max
[δ.π]

Fm <
ε

4M
,

for evry m > N

1
2π

π∫
δ

| f (x− y)+ f (x+ y)−2 f (x)|Fm(y)dy ≤ 2M
π

(π−δ)
4M

<
ε

2
,

finally

|σm(x)− f (x)| ≤ 1
2π

π∫
0

| f (x− y)+ f (x+ y)−2 f (x)|Fm(y)dy <
ε

2
+
ε

2
= ε.

This proves that σm converges uniformly to f on [−π,π] as m→∞.

Corollary 4.3.4 Let f be continuous function on [−π,π] and f (−π) = f (π), and let σm

be defined as (4.3.1). Then σm converges to f in mean square sense.

Proof. The proof of this corollary follows from the fact that uniforme convergence
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implies mean square convergence. Indeed

∥σm(x)− f (x)∥∼
C
=

√√√√√ π∫
−π

(σm(x)− f (x))2 dx

≤

√√√√√√√
δ∫
0

sup
x∈[−π,π]

|σm− f (x)|


2

dx

= sup
x∈[−π.π]

|σm(x)− f (x)|

√√√√√ π∫
−π

dx =
√

2π∥σm(x)− f (x)∥C

So,

∥σm(x)− f (x)∥C → 0 implies ∥σm(x)− f (x)∥∼
C
→ 0

The method of summation we have been discussing is called Cesaro’s method or

method of the first arithmetic mean. If the arithmetic means do not converge, one

might try taking the avarages of the first 2,3,4, ...,n arithmetic means, and seeing

if this sequence converge. Now we will turn to another method, known as Abel’s

method or the method of convergence factors.

us suppos we are given a series

u0+u1+u2+ ... (3.2.8)

whose terms may be numbers or functions. Now we form a new series

u0+u1r+u2r2+u3r3+ ... (3.2.9)
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If it should happen that (3.2.9) converges when r is in the interval 0 ≤ r < 1, and tends

to a finite limit when r→ 1, then we call this limit the Abel sum of the series (3.2.8).

As a simple example, let us sum (3.2.1) by the method of convergence factors. Mul-

tiplying the n+1st term rn, we obtain the series

1− r+ r2− r3+ ... (3.2.10)

which converges in the interval (−1,1) to 1
1+r .Although the series does not converge

at r = 1, the limiting value of 1
(1+r) as r→ 1 is 1

2 . Therefore Abel’s sum of (3.2.10) is

1
2 .
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As a less trivial example let us find the Abel sum of (3.2.5). As in the proceeding

example, we form the series containing the convergence factors rn, which in this case

gives

1
2
+

∞∑
n=1

rn cosnx. (3.2.11)

To write this in closed form, we observe that (3.2.11) is real part of the complex series

1
2
+ z+ z2+ z3+ ... (z = reix)

which converges for |z| < 1 and has sum

1
2
+

z
1+ z

=
1+ z

2(1− z)
(3.2.12)

By a simple algebraic calculation, the real part of (3.2.12) is

1− r2

2(1−2r cos x+ r2)
(3.2.13)

and therefore, in interval 0 ≤ r < 1, (3.2.11) converges,

1
2
+

∞∑
n=1

rn cosnx =
1− r2

2(1−2r cos x+ r2)

as r→∞, this tends to zero, provided that x is in the interior of the interval (0.2π).

Therefore (3.2.11) is Abel summable to zero in the interior of this interval. At the

endpoints x = 0 and x = 2π,the series does not have an Abel sum.[1]
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4.4. Complex Fourier Series

In this section we introduce a very important orthonormal system whose elements are

complex valued. Here the inner product space is slightly different and is given by

⟨ f ,g⟩ = 1
2π

π∫
−π

f (x)g(x)dx. (4.4.1)

The set of all functions {einx}∞n=−∞ form an orthonormal system with respect to (4.4.1).

For each f ∈ E the appropriate series with this orthonormal system is goven

f (x) ∼
∞∑

n=−∞
cneinx, (4.4.2)

where

cn =
1

2π

π∫
−π

f (x)e−inxdx, n = 0,±1,±,2,±, ...

For n = 1,2, , ...

cn =
1

2π

π∫
−π

f (x)e−inxdx

=
1

2π

π∫
−π

f (x)cosnxdx+ i
1

2π

π∫
−π

f (x) sinnxdx

=
an− ibn

2
, (4.4.3)
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and

c−n =
1

2π

π∫
−π

f (x)einxdx

=
1

2π

π∫
−π

f (x)cosnxdx+ i
1

2π

π∫
−π

f (x) sinnxdx

=
an+ ibn

2
(4.4.4)

from (4.4.3) and (4.4.4)

an = cn+ c−n, bn = i (cn− c−n) .

Theorem 4.4.1 Let
{
φ1,φ2, ...

}
be orthonormal on E, and suppose that

f (x) ∼
∞∑

n=−∞
cnφn(x).

Than

a) The series
∑ |cn|2 converges and satisfies the inequality

∞∑
n=0

|cn|2 ≤ ∥ f ∥2 (Bessel′s inequality).

b)The equation

∞∑
n=0

|cn|2 ≤ ∥ f ∥2 (Parseval′ s identity),
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holds, if and only if we also have

lim
n→∞
| f −S n| = 0,

where {S n} is the sequence of partial sums defined by

S n(x) =
n∑

k=0

ckφk(x).

Proof. a) Let

tn(x) =
n∑

k=0

bkφk(x) and S n(x) =
n∑

k=0

ckφk(x),

and

| f − tn|2 = ∥ f ∥2−
n∑

k=0

|ck|2+
n∑

k=0

|bk − ck|2 , (4.4.5)

we take bk = ck in (4.4.5) and observe that the left member is nonnegative

n∑
k=0

|ck|2 ≤ ∥ f ∥2 .

b) To prove b), again we set bk = ck,

∥ f −S n∥2 = ∥ f ∥2−
n∑

k=0

|ck|2 ,

letting n→∞, we have
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Chapter 5

UNIFORM CONVERGENCE OF FOURIER SERIES

5.1. Piecewise Continuouse and Piecewise Smooth Functions

In this chapter we will set the problem of uniform convergence of Fourier series based

on piecewise smooth functions, since the analogs of Dini, Lipchitz and Dirichlet-

Jordan conditions for uniform convergence of Fourier series are known. By Theorem

3.1.3, a uniformly convergent Fourier series has a continuouse sum with the equal

values at −π and π. Therefore, our problem will be functions f ∈C(−π,π)∩PS (−π,π)

satisfying f (−π) = f (π). A function f : [−π,π]→ R is said to be piecewise continuos

if there is a partition −π = x0 < x1 < ... < xn = π such that f is continuose on every

interval (xi−1, xi) and has one sided limits at points x0, x1, ..., xn. The collection of

all piecewise continuouse functions on [−π,π] are denoted by PC(−π,π). A function

f : [−π,π]→ R is said t be piecewise smooth if f ∈ PC(−π,π), there is a partition

−π = x0 < x1 < ... < xn = π such that f is continuosly differentiable on each (xi−1, xi)

and at points x0, x1, ..., xn, f ′ has one sided limits (and they are finite), The collection

of all piecewise smooth functions is denoted by PS (−π,π).

Clearly piecewise functions has bounded variation. Indeed if xi−1 ≤ a < b ≤ xi than

by mean value theorem

f (b)− f (a) = f ′(c)(b−a)
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which demonstrates that on every [xi−1, xi], f has bounded variation. Than on the

interval [−π,π], f has also bounded variation

Lemma 5.1.1 Let f ∈ PC(−π,π)∩PS (−π,π) satisfying f (−π) = f (π), and let an and

bn be Fourier coefficients of f and let αn and βn be the Fourier coefficients of f ′. Than

α0 = 0, αn = nbn and βn = −nan, for n ∈ N. Furthermore, the series
∑∞

n=1

√
α2

n+β
2
n

converges.

Proof. From the fundamental theorem of calculus,

α0 =
1
π

π∫
−π

f ′(x)dx =
1
π

( f (π)− f (−π)) = 0.

From integration by parts and the fact that f (−π) = f (π),

αn =
1
π

π∫
−π

f ′(x)cosnxdx =
n
π

π∫
−π

f (x) sinnxdx = nbn

and

βn =
1
π

π∫
−π

f ′(x) sinnxdx = −n
π

π∫
−π

f (x)cosnxdx = −nan.

for all n ∈N, by Bessel’s inequality, the sequence of partial sums of the Fourier series

∞∑
n=1
α2

n+β
2
n is bounded and increasing, therefore it converges.

Theorem 5.1.2 Let f ∈C(−π,π)∩PS (−π,π) satisfying f (−π)= f (π). Than the Fourier

series of f converges absolutely and uniformly on [−π,π] to f .
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Proof. Let the Fourier series be given like (3.3.1), than

|an cosnx+bn sinnx| ≤ |an|+ |bn|

since f ∈ C(−π,π)∩PS (−π,π) and f (−π) = f (π) the series
√

2(a2
n+b2

n) converges.

So the Fourier series of f converges absolutely and uniformly on [−π,π] . After all the

sum of Fourier series of f equals to f .

5.2. Term by Term Integration and Differentiation

Theorem 5.2.1 (Term by term integration) Let the Fourier series of f ∈ PC(−π,π) be

given by (3.1.1). Than

x∫
0

f (y)dy =
a0

2
x+

∞∑
n=1

an

x∫
0

cosnydy+bn

x∫
0

sinnydy

 ,
where the convergence is absolute and uniform on [−π,π] .

Proof. Let

F(x) =

x∫
0

(
f (y)− a0

2

)
dy, −π ≤ x ≤ π.
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F ∈C(−π,π)∩PS (−π,π), since F ∈C(−π,π) and F′ ∈ PS (−π,π).Next we see whether

F(−π) = F(π),

F(π) =

π∫
0

(
f (y)− a0

2

)
dy =

1
2


π∫
0

f (y)dy−
0∫
−π

f (y)dy


=

π∫
0

(
f (y)− a0

2

)
dy = F(−π).

By the previous theorem, Fourier series of F converges absolutely and uniformly to

F, so we can write

F(x) =
A0

2
+

∞∑
n=1

(An cosnx+Bn sinnx) .

And since an = nBn and bn = −nAn. Letting x = 0, we find

A0

2
= −

∞∑
n=1

An =

∞∑
n=1

bn

n
.

Hence,

F(x) =
∞∑

n=1

an sinnx+bn(1− cosnx)
n

=

∞∑
n=1

an sinnx
n

+
bn(1− cosnx)

n

=

∞∑
n=1

an

π∫
0

cosnxdx+bn

π∫
0

sinnxdx

 ,
which proves the theorem.

Remark 5.2.2 Theorem of term by term integration is valid even if the Fourier series
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of f is divergent. On other hand, the term by term differentiation of Fourier series

requires stronger conditions.

Theorem 5.2.3 (Term by term differentiation) Let f ∈C(−π,π)∩PS (−π,π) satisfying

f (−π) = f (π). Than,

f ′(x) ∼
∞∑

n=1

(an (cosnx)′+bn(sinnx)′),

where the series converges absolutely and uniformly on [−π,π] to f ′ if f ′ ∈C(−π,π)∩

PS (−π,π) and f ′(−π) = f ′(π).

Proof. Let

f ′(x) ∼ α0

2
+

∞∑
n=1

(αn cos(nx)+βn sin(nx))

Since α0 = 0, αn = nbn and βn = −nan for all n ∈ N. And hence,

f ′(x) ∼
∞∑

n=1

(nbn cos(nx)−nan sin(nx)) =
∞∑

n=1

(an(cosnx)′+bn(sinnx)′).

f ′ ∈ C(−π,π)∩ PS (−π,π) and f ′(−π) = f ′(π), than Fourier series of f ′ converges

uniformly and absolutely to f ′.

5.3. Weierstrass Approximation Theorem

In this section we present a theorem due to Weierstrass , which states that although

not all continuous functions can be presented by their Fourier series, all of them can

be approximated by trigonometric polinomials even in uniform sense.
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Theorem 5.3.1 Trigonometric polynomials can be approximated uniformly by poly-

nomials in any interval of finite length.

Proof. First we should state that a trigonometric polynomial is a linear combination

of functions of the form An cosnx and Bn sinnx. Trigonometric functions cosnx and

sinnx have power series expansions that converges for all x. This means that every

trigonometric plynomial has a power series expansion that converges for all x. So

the partial sums of such a power series converge uniformly in any interval of finite

length. Each of these partial sums is a polynomial. It follows that any trigonometric

polynomial can be approximated uniformly by a polynomial in such an interval.

Theorem 5.3.2 [1] Every continuous function can be approximated uniformly by a

piecewise smooth continuous function in any closed interval of finite length.

Proof. (Outline of proof) Every continuous function f , defined in the interval a ≤ x ≤

b, can be approximated by a broken line function. To see this, we subdivide the inter-

val into n parts, which for convenience can be taken equal in length: a = x0 < x1 <

... < xn = b. Then, we construct a broken-line function Wn by joining the successive

points (x0, f (x0)), (x1, f (x1)), ..., (xn, f (xn)) with line segments; the resulting graph de-

fines Wn in the interval. From the continuity of f , it is obvious that Wn(x)→ f (x)

for every x in the interval. It is somewhat less obvious, but nonetheless true, that Wn

converges uniformly to f in the interval.

Theorem 5.3.3 [1] Every continuous function having period 2π can be approximated

uniformly by trigonometric polynomials(in any interval).
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Proof. Let 0 ≤ x ≤ 2π. All the functions Wn constructed in this manner have the prop-

erty Wn(0) =Wn(2π) in this case. Let the slopes of the n line segments be k1,k2, ...,kn,

and let K =max |ki| . Now from the mean value theorem we have

∣∣∣Wn(x′)−Wn(x′′)
∣∣∣ ≤ K

∣∣∣x′− x′′
∣∣∣ .

The period 2π extension of Wn also has this property, and the class of such functions

uniformly approximate f (which also has period 2π by hypothesis) in any interval. So

Wn can be approximated by trignometric polynomials.

Theorem 5.3.4 (Weierstrass Theorem) Every f ∈ C(−π,π) with f (−π) = f (π) can be

approximated uniformly by trigonometric polynomials of the form

σn(x) = αn,0+

n∑
k=1

(
an,k coskx+bn,k sinkx

)
.

Proof. Let f ∈ C(−π,π). Then f is uniformly continuous, that is (∀ε > 0, ∃δε > 0

|x− y| < δ⇒ | f (x)− f (y)| < ε2), select partitition of −π = x0 < x1 < ... < xn = π so

that max(xi− xi−1, i = 1, ...,n) < δ. Now consider a piecewise linear function φ(x) on

[−π,π] which is obrained stright by stright joining the points

(x0, f (x0)), (x1, f (x1)), ..., (xn, f (xn))

Clearly, φ(x) is piecewise smooth, continuous and φ(−π) = φ(π). Therefore, φ con-

verges uniformly to φ. Let Tn(x), n-th partial sum of the Fourier series of φ(x). Than
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there exists N such that ∀n > N

∣∣∣φn(x)−Tn(x)
∣∣∣ < ε

2
, −π ≤ x ≤ π

also

|φ(x)− f (x)| < ε
2

Combining these two inequalities, we obtain

| f (x)−Tn(x)| < ε, −π ≤ x ≤ π.

5.4. Gibbs Phenomenon

In section 4.1 we state the sufficient conditions under which the Fourier series con-

verges uniformly on [−π,π] to its function . Uniform convergence is the best possible

convergence. However does not always hold. In this section we will consider the

situations where the function is not uniform convergent.

Let

−π = d1 < d2 < ... < dn = π

denote the jump points of f in [−π,π], where f is 2π peiodic function satisfying

the conditions of Dirichlet’s Theorem. We proved that under certain conditions the

Fourier series of f converges uniformly on every subinterval of [−π,π] which does not
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contain any of these points. But the points dk,1 ≤ k ≤ n, something rather odd occurs

which is called the ”Gibbs phenomenon”. This phenomenon was noted by physicist

A.Michelson at the end of the nineteenth century. He built a ”machine” which could

calculate some initial Fourier coefficients of a graphically given function f . He no-

ticed that the praphs of ”good” functions (those functions satisfying the conditions

in Theorem 3.1.3) the graphs of the partial sum of Fourier series where close to the

function f . Bur, for f (x) = sgn(x) the graph of partial sums estimates a large error

in the neighbourhood of x = 0 and x = ±π independent of the number of termes in

partial sum. It was discovered first by Wilbraham in 1848, but later studied in detail

by Gibbs in 1898.

To see this issue, we consider this example.Let

f (x) =



−1, −π ≤ x < 0,

0, x = π,

1, 0 < x ≤ π.

This is a piecewise smooth and odd function. By the definition, its Fourier series has

the form

∞∑
n=1

bn sinnx,
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and it converges to f (x) pointwise, but not uniformly.

Calculations shows that

bn =
2
π

π∫
0

sinnx =
2

nπ
(cos0− cosnπ) =

2(1− (−1)n)
nπ

=


4

nπ , n is odd,

0, n is even.

So,

f (x) =
4
π

∞∑
n=1

sin(2n−1)x
2n−1

.

Denote by sn−1 the (2n−1)st partial sum of Fourier series of f :

s2n−1(x) =
4
π

∞∑
n=1

sin(2k−1)x
2k−1

.

s
′
2n−1(x) is odd and we can restrict our self to study positive values of x. We are

interested in the local maximum of s2n−1(x). Taking the derivative

s
′
2n−1(x) =

4
π

∞∑
n=1

cos(2k−1)x.

Or

s
′
2n−1(x) =

4
πsin x

∞∑
n=1

sin xcos(2k−1)x

=
2
πsin x

∞∑
n=1

(sin2kx− sin2(k−1)x)

=
2sin2nx
πsin x

,
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which implies that the equation s
′
2n−1(x) = 0 has solution if x = πm/2n. The solution

which is more close to 0 if x = π/2n. The second derivative

s
′′
2n−1(x) =

2(2ncos2nxsin x− sin2nxcos x)

πsin2 x
.

Hence, at x = π/2n,

s
′′
2n−1(π/2n) = − 4

πsin2 π
2n

< 0.

For x = π/2n, s2n−1(x) takes its local maximum, so we have to estimate

s2n−1(π/2n) =
4
π

∞∑
n=1

sin(2k−1) π2n

2k−1
.

Later we observe that the Riemann sum S (g,ρ) of the function g(x) = sin x
x for the

partition

ρ = {0,π/n,2π/n, ..., (n−1)π/n,π}

of the interval [0,π] with tags selected to be the center of each partition interval equals

to

S (g,ρ) =
π

n

∞∑
n=1

sin(2k−1) π2n
(2k−1)π

2n

=
π

2
s2n−1(π/2n).

Hence

ζ = lim
n→∞

s2n−1(π/2n) =
2
π

π∫
0

sin x
x

dx =
2
π

Si(π),
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which exceed the value f (0+) = 1.

The Gibbs phenomenon is valid for every piecewise smooth function. If a function is

PS (−π,π) has a discontinuity at c ∈ [−π,π) with the jump d = | f (c+)− f (c−)| > 0 and

a = 1
2( f (c+)− f (c−)), then

limsup
n→∞

sn(c) = a+
d
π

Si(π) and liminf
n→∞

sn(c) = a− d
π

Si(π),

where Si(π) is called a Wilbraham-Gibbs constant.
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Chapter 6

FOURIER INTEGRALS

6.1. A Fourier Integral Formula

In this chapter we will deal with the convergence of infinite integrals. The concepts

of infinite series have their counterparts in the theory of infinite integrals. The word

”infinite” here refers to the length of the interval over which we are integrating. Those

integrals are called ”improper integrals of the first kind” to differ them from integrals

of unbounded functions which are known as ”improper integrals of the second kind”.

Let us consider a function f which is integrable over (a, x) for all values of x ≥ a. We

then define the integral

∞∫
a

f (x)dx = lim
x→∞

x∫
a

f (t)dt.

If this limit exists, the integral on the left is said to converge and is assigned the

value of the limit, in the same way that we assign a number to an infinite series if its

sequence of partial sums of f converges.

Now we assume that f is a function on [−l, l],where l> 0. Then g(x)= f (lx/π) defines

a function g on [−π,π]. Assuming that the Foourier series of g exists, we can use the
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inverse substitution and create a series for f on [−l, l] in the form

f (x) ∼ a0

2
+

∞∑
n=1

(
an cos

nπx
l
+bn sin

nπx
l

)
,

where

an =
1
l

l∫
−l

f (x)cos
nπx

l
dx and bn =

1
l

l∫
−l

f (x) sin
nπx

l
dx.

Now, we consider

r1 =
π

l
, r2 =

2π
l
, ...,rn =

nπ
l
, ...

where the values of r are in [0,∞). Letting △ r = rn+1− rn =
π
l , we can write

f (x) ∼ a0

2
+

∞∑
n=1

(an cosrnx+bn sinrnx) ,

where

an =
△ r
π

l∫
−l

f (x)cosrnxdx and bn =
△ r
π

l∫
−l

f (x) sinrnxdx.

So

f (x) ∼ 1
2l

l∫
−l

f (y)dy+
1
π

∞∑
n=1

△ r

l∫
−l

f (y)(cosrnycosrnx+ sinrnysinrnx)dy,

In the case if the improper integrals are convergent we can move l to∞. Then the first

term in the right hand side approches 0 and the second term transforms to an integral.
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Thus, we obtain

f (x) ∼ 1
π

∞∫
0

∞∫
−∞

f (y)(cosrycosrx+ sinrysinrx)dydr

or in other form

f (x) ∼ 1
π

∞∫
0

∞∫
−∞

f (y)cosr(y− x)dydr. (6.1.1)

This formula is called Fourier integral of f . The right hand side can be interpreted as

lim
λ→∞

1
π

∞∫
0

∞∫
−∞

f (y)cosr(y− x)dydr

if the improper integral

∞∫
−∞

f (y)cosr(y− x)dy (6.1.2)

converges for r ≥ 0, and x ∈ R.

6.2. Uniform Convergence of Fourier Integrals

There are different conditions on convergence of Fourier integrals. We will state the

analogs of Dini’s, Lipchitz and Dirichlet-Jordan conditions. But first we need some

helpful results .

Theorem 6.2.1 Let f be absolutely integrable on R.Then the improper integral in
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(6.1.1) converges absolutely and uniformly for r ≥ 0 and x ∈ R and for λ > 0,

λ∫
0

∞∫
−∞

f (y)cosr(y− x)dydr =

∞∫
0

( f (x− y)+ f (x+ y))
sinλy

y
dy. (6.2.1)

Proof. Easily we find that

| f (y)cosr(y− x)| ≤ | f (y)| ,

which means that (6.1.2) converges absolutely and uniformly for r ≥ 0 and x ∈R.Therefore

λ∫
0

∞∫
−∞

f (y)cosr(y− x)dydr =

∞∫
−∞

λ∫
0

f (y)cosr(y− x)dydr

=

∞∫
−∞

f (y)
sinλ(y− x)

y− x
dy

=

∞∫
−∞

f (x+ y)
sinλy

y
dy,

where

∞∫
−∞

f (x+ y)
sinλy

y
dy =

0∫
−∞

f (x+ y)
sinλy

y
dy+

∞∫
0

f (x+ y)
sinλy

y
dy

=

∞∫
0

( f (x− y)+ f (x+ y))
sinλy

y
dy.

Theorem 6.2.2 Let f be absolutley integrable on R. Then

lim
λ→∞

1
π

∞∫
σ

( f (x− y)+ f (x+ y))
sinλy

y
dy = 0,
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for σ > 0. Additionally, if

lim
λ→∞

1
π

σ∫
0

( f (x− y)+ f (x+ y))
sinλy

y
dy, (6.2.2)

exists for some σ > 0, than the Fourier integral of f at x converges to this value.

Proof. For fixed x ∈ R,

g(y) =
f (x− y)+ f (x+ y)

y

is absolutely integrable on [σ,∞) since

|g(y)| ≤ 1
σ

(| f (x− y)|+ | f (x+ y)|) .

Hence, by Riemann-Lebesgue Lemma, we obtain

lim
λ→∞

1
π

∞∫
0

( f (x− y)+ f (x+ y))
y

sinλydy = 0.

Using this fact in (6.2.1), we obtain

lim
λ→∞

1
π

λ∫
0

∞∫
−∞

f (y)cosr(y− x)dydr = lim
λ→∞

1
π

∞∫
0

( f (x− y)+ f (x+ y))
y

sinλydy

= lim
λ→∞

1
π

σ∫
0

( f (x− y)+ f (x+ y))
y

sinλydy.

This proves the theorem.
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Theorem 6.2.3 (Dini) Let f be abolutely integrable on R. If

σ∫
0

∣∣∣∣∣ f (x− y)+ f (x+ y)−2s
y

∣∣∣∣∣dy <∞

for someσ> 0 and s ∈R,where the integral is a proper or improper Riemann integral,

then the Fourier integral of f converges at x to s.

Proof. From the fact that

1
π

λ∫
0

∞∫
−∞

f (y)cosr(y− x)dydr− s

=
1
π

∞∫
0

( f (x− y)+ f (x+ y))
sinλy

y
dy− s

=
1
π

∞∫
0

f (x− y)+ f (x+ y)−2s
y

sinλydy. (6.2.3)

Later, we write the integral as

1
π


σ∫
0

+

∞∫
σ

 f (x− y)+ f (x+ y)−2s
y

sinλydy

The first factor is absolutely integrable on [0,σ] by Dini’s condition, the second fac-

tor is Riemann integrable on (0,σ). Hence their product is absolutely integrable on

[0,σ] . Hence

lim
λ→∞

1
π

σ∫
0

f (x− y)+ f (x+ y)−2s
y

sinλydy = 0 (6.2.4)
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On the other hand

1
π

∞∫
σ

f (x− y)+ f (x+ y)−2s
y

sinλydy

1
π

∞∫
σ

f (x− y)+ f (x+ y)
y

sinλydy− 2s
π

∞∫
σ

sinλy
y

dy.

By the previous theorem, the first term converges to 0 as λ→∞, and the second term

can be written as

2s
π

∞∫
σ

sinλy
y

dy =
2s
π

∞∫
λσ

siny
y

dy,

it is clear that it converges to 0 as λ→∞. Thus

lim
λ→∞

1
π

∞∫
σ

f (x− y)+ f (x+ y)−2s
y

sinλydy = 0. (6.2.5)

From (6.2.3), (6.2.4), (6.2.5), we obtain

lim
λ→∞

1
π

λ∫
0

∞∫
−∞

f (y)cosr(y− x)dydr = s

Theorem 6.2.4 (Lipchitz) Let f be absolutely integrable on R. If there are constants

L ≥ 0, 0 ≤ α ≤ 1 and σ > 0 such that

| f (x+ y)− f (x)| ≤ L |α|α

for all |x− y| < σ, then the Fourier integral of f converges at x to f (x)
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Proof. The proof is identically as in Chapter 3.

Theorem 6.2.5 (Dirichlet-Jordan) Let f be absolutely integrable on R. If f has a

bounded variation on some interval [x−σ, x+σ], than its Fourier integral at x con-

verges to

f (x−)+ f (x+)
2

.

Proof. It suffices to evaluate the limit in (6.2.2). Since f has a bounded variation on

[x−σ, x+σ] , the function

g(y) = f (x− y)+ f (x+ y)

has a bounded variation on [0,σ] , hence by (2.5.1),

lim
λ→∞

1
π

σ∫
0

f (x− y)+ f (x+ y)
y

sinλydy =
f (x−)+ f (x+)

2
,

this proves the theorem.
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