
 

An Investigation into the Dissipative Stochastic 

Mechanics Based Neuron Model under Time Varying 

Input Currents 

 

 

Amin Almassian 

 

 

 

 

Submitted to the 

Institute of Graduate Studies and Research 

in partial fulfillment of the requirements for the Degree of 

 

 

 

 

 

 

 

Master of Science 

in 

Computer Engineering 

 

 

 

 

 

Eastern Mediterranean University 

January 2010 

Famagusta, North Cyprus 



 

Approval of the Institute of Graduate Studies and Research 

 

 
          
           

           

           Prof. Dr. Elvan Yılmaz 

                  Director (a) 

 

 

 

I certify that this thesis satisfies the requirements as a thesis for the degree of Master 

of Science in Computer Engineering. 

 

      

    

 
 

           

      

          Assoc. Prof. Dr. Muhammed Salamah 

                 Chair, Department of Computer Engineering 

 

 

 

We certify that we have read this thesis and that in our opinion it is fully adequate in 

scope and quality as a thesis for the degree of Master of Science in Computer 

Engineering. 

 

 

 
 

 

                                   

 

                      Prof. Dr. Marifi Güler 

                                                                Supervisor 

          

   

     

    

 

       Examining Committee 

1.  Prof. Dr. Marifi Güler        

   

2.  Assoc. Prof. Dr. Işık Aybay   

3.  Asst. Prof. Dr. Adnan Acan       



iii 

ABSTRACT 

Led by the presence of a multiple number of gates in an ion channel, it was recently 

predicted that the equations of activity for the neuronal dynamics acquire some 

renormalization terms which play a significant role in the dynamics for smaller 

membrane sizes (Güler 2006, 2007, 2008). In this Thesis, we examine the resultant 

computational neuron model, from the above approach, in the case of time varying 

input currents. In particular, we focus on what role the renormalization terms might 

be playing in the signal-to-noise ratio values. Our investigation reveals that the 

presence of renormalization terms somehow enhances the signal-to-noise ratio. 

Keywords: Ion Channel Noise, Stochastic Ion Channels, Neuronal Dynamic, Signal-

to-Noise Ratio, Stochastic Resonance, Rose-Hindmarsh Model. 



iv 

ÖZ 

Son yıllarda, bir iyon kanalında birden fazla geçit bulunmasından dolayı, nöronal 

dinamik denklemlerinin ekstra olarak bazı renormalizasyon terimleri içermesi 

gerekliliği öne sürülmüştür (Güler 2006, 2007, 2008). Ayrıca, bu renormalizasyon 

terimlerinin küçük boyutlu zarların dinamiği üzerinde önemli bir etkisi olabileceği 

gösterilmiştir. Bu tezde, yukarıda öne sürülen sinir hücresi modeli zaman değişmeli 

girdi akımları altında incelenmiştir. Renormalizasyon terimlerinin sinyal-gürültü 

oran değerleri üzerindeki olası etkileri özellikle çalışılmıştır. Bu çalışma, 

renormalizasyon terimlerinin sinyal-gürültü oranını arttırdığını göstermiştir. 

 

 

 

 

 

 

 

 

Anahtar Kelimeler: Iyon Kanalı Gürültüsü, Stokhastik Iyon Kanalları, Nöronal 

Dinamik, Sinyal-Gürültü Oranı, Stokhastik Resonans, Rose-Hindmarsh Modeli.     
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Chapter 1 

INTRODUCTION 

1.1  Introduction 

Neurons display electrical activity which is known to be stochastic in nature (Faisal 

2008). The primary source of stochasticity in vivo is the external noise from the 

synapses. However, the intrinsic noise, attributed to the probabilistic character of the 

gating of an ion channel, can also have significant implications on the dynamic 

behavior of neurons; as shown both by experimental studies (Sakmann and Neher  

1995; Bezrukov and Vodyanoy 1995; Diba et al. 2004; Jacobson et al. 2005; Kole 

et al. 2006) and by theoretical investigations or numerical simulations (Fox and Lu 

1994; Chow and White 1996; Jung and Shuai 2001; Schmid et al. 2001; 

Rubinstein 1995; Schneidman et al. 1998). 

Neuronal dynamics under the influence of channel fluctuations is normally modeled 

using stochastic differential equations obtained by introducing some white noise 

terms of vanishing means into the underlying deterministic equations (Fox and Lu 

1994). However, the so-called dissipative stochastic mechanics based neuron model 

(or shortly, “the DSM neuron”) was put forward by Güler (2006, 2007), is an 

exception to this. The DSM model accommodates some functional forms called the 

renormalization terms, in addition to some white noise terms of vanishing, in the 

equations of activity. The DSM model has been investigated in detail numerically for 
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its dynamics for time-independent input currents (Güler 2008); it was found that the 

renormalization corrections augment the behavioral transitions from quiescence to 

spiking and from tonic firing to bursting. It was also found that the presence of 

renormalization corrections can lead to faster temporal synchronization of the 

respective discharges of electrically coupled two neuronal units (Jibril and Güler 

2009). In the present treatise, we examine the DSM model in the case of time 

varying input currents; in particular, we focus on what role the renormalization terms 

might be playing in the signal-to-noise ratio values. 

1.2  Scope and Organization 

In this thesis my attempt is to adhere to the top to bottom approach and to cover 

essential concepts before dealing with the experiment done and corresponding 

results. In this sense, after an introduction in chapter 1, a distilled explanation about 

neuron morphology and the characteristics of neuron known to participate in 

information processing is presented in chapter 2. In chapter 3, a theme of 

predominant theories of neuron models is presented and it is followed by explanation 

of dissipative stochastic (DSM) neuron model and its formalism. In chapter 4, I focus 

on the experiment done, approaches and results. The main conclusion drawn from 

the results gained is presented in Chapter 5. 
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Chapter 2 

THE STRUCTURE AND ELECTRICAL ACTIVITY OF 

NEURONS 

2.1  Neuron Structure and Morphology 

Neurons are main building blocks of the brain that highly specialized for generating 

electrical signals in response to chemical and other inputs, and transmitting them to 

other cells. These cells have a sort of morphological specializations like dendrite and 

axon. Dendrites receive inputs from other neurons and propagate it to the main body 

of neuron cell called soma. The axon then carries the neuronal output to other cells. 

The branching structure of the dendritic tree increases surface area of the cell 

enhancing the ability of neuron to receive inputs from many other neurons through 

synaptic connections. Fig. 2.1 shows structure and information flow in a schematic 

neuron. Axons from single neurons can traverse large fractions of the brain or, in 

some cases, of the entire body. In the mouse brain, it has been estimated that cortical 

neurons typically send out a total of about 40 mm of axon and have approximately 4 

mm of total dendritic cable in their branched dendritic trees. The axon makes an 

average of 180 synaptic connections with other neurons per μm of length while the 

dendritic tree receives, on average, 2 synaptic inputs per μm. The cell body or soma 

of a typical cortical neurons ranges in diameter from about 10 to 50 μm.  (Dayan 

Abbot 2002) 
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Figure  2.1: Information Flow in a Neuron (Kolb and Whishaw 2009). 
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2.1.1 Membrane Proteins 

Proteins embedded in the cell membrane transport substances across it. Knowing 

something about how membrane proteins work is useful for understanding many 

functions of neurons. We describe three categories of membrane proteins that assist 

in transporting substances across the membrane. In each case, the protein's function 

is an emergent property of its shape or its ability to change shape. The categories are 

channels, gates, and pumps. 

2.1.1.1 Channels 

Some membrane proteins are shaped in such a way that they create channels, or 

holes, through which substances can pass. Different proteins with different-sized 

holes allow different substances to enter or leave the cell. Protein molecules serve as 

channels for predominantly sodium (Na+), potassium (K+), calcium (Ca2+), and 

chloride (Cl−) ions. 

2.1.1.2. Gates 

An important feature of some protein molecules is their ability to change shape. 

Some gates work by changing shape when another chemical binds to them. In these 

cases, the embedded protein molecule acts as a door lock. When a key of the 

appropriate size and shape is inserted into it and turned, the locking device changes 

shape and becomes activated. Other gates change shape when certain conditions in 

their environment, such as electrical charge or temperature, change.  

2.1.1.3. Pumps  

In some cases, a membrane protein acts as a pump, a transporter molecule that 

requires energy to move substances across the membrane. For instance, there is a 
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protein that changes its shape to pump Na+ ions in one direction and K+ ions in the 

other direction. Many substances are transported by protein pumps. 

Channels, gates, and pumps play an important role in a neuron's ability to convey 

information.  

2.1.2 Synapse 

Synapses are shaped in the form of a junction between two successive neurons when 

the axon of afferent neuron is connected to the efferent one and provides a way to 

convey the information to other cell. Axons terminate at synapses where the voltage 

transient of the action potential opens ion channels producing an influx of Ca2+ that 

leads to the release of a neurotransmitter. The neurotransmitter binds to receptors at 

the signal receiving or postsynaptic side of the synapse causing ion-conducting 

channels to open. Depending on the nature of the ion flow, the synapses can have 

either an excitatory, depolarizing, or an inhibitory, typically hyperpolarizing, effect 

on the postsynaptic neuron (Dayan and Abbot 2002). 

Synapses are not randomly distributed over the dendritic surface. In general, 

inhibitory synapses are more proximal than excitatory synapses, although they are 

also present at distal dendritic regions and, when present, on some spines in 

conjunction with an excitatory input (Segev in Bower and Beeman 2003). In many 

systems (e.g., pyramidal hippocampal cells and cerebellar Purkinje cells), a given 

input source is preferentially mapped onto a given region of the dendritic tree 

(Shepherd 1990), rather being randomly distributed over the dendritic surface. 

Electron micrographic images of synapses in real neurons are shown in fig. 2.2. 
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A    B  

Figure 2.2: Examples of synapses. (A) Electron micrograph of excitatory spiny 

synapses (s) formed on the dendrites of a rodent hippocampal pyramidal cell. 

 (B) An electron micrographic image capture the synapse formed where the terminal 

button of one neuron meets a dendritic spine on a dendrite of another neuron (Kolb 

and Whishaw 2009).  

 

2.2 Membrane Potential and Neuron Electrical Activity 

Membrane potential is defined as difference in electrical potential between the 

interior of a neuron and the surrounding extracellular fluid. Under resting conditions, 

the potential inside the cell membrane of a neuron is about -70 mV relative to that of 

the surrounding bath. This voltage, however, is conventionally assumed to be 0 mV 

for convenience and the cell is said to be polarized in this state. This potential is an 

equilibrium point at which the flow of ions into the cell matches that out of the cell. 

This membrane potential difference is sustained by ion pumps located in the cell 

membrane by maintaining concentration gradients. For example, Na+ is much more 

concentrated outside a neuron than inside it, and the concentration of K+ is 

significantly higher inside the neuron than in the extracellular fluid. Therefore, ions 

flow into and out of a cell due to both voltage and concentration gradients throughout 

the state transition of cell. Current, in the form of positively charged ions flowing out 
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of the cell (or negatively charged ions flowing into the cell) through open channels 

makes the membrane potential more negative, a process called hyperpolarization. 

Current flowing into the cell changes the membrane potential to less negative or even 

positive values. This is called depolarization. When a neuron is depolarized 

sufficiently large to raise the membrane potential above a threshold level, a positive 

feedback process is started, and the neuron generates an action potential. An action 

potential is a roughly 100 mV fluctuation in the electrical potential across the cell 

membrane that lasts for about 1ms. Once an action potential takes place it may be 

impossible to initiate another spike right after the previous one and this is called the 

absolute refractory period. The importance of action potential is that unlike 

subthreshold fluctuations that attenuate over distance of at most 1 millimeter they 

can propagate over large distances without attenuation along axon processes (Dayan 

and Abbot 2002). Figure 2.3 depicts the voltage dynamic of a neuron during an 

action potential while it is synthesized by corresponding ion channel activities 

throughout an action potential. In this figure the resting potential is in its real value  

-70 mV.  
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Figure 2.3: Phases of an Action Potential Initiated by changes in voltage sensitive 

sodium and potassium channels, an action potential begins with a depolarization 

(gate 1 of the sodium channel opens and then gate 2 closes). The slower-opening 

potassium channel contributes on repolarization and hyperpolarization until the 

resting membrane potential is restored (Kolb and Whishaw 2009). 
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Chapter 3 

MODELING NEURAL EXCITABILITY 

3.1  Introduction 

Throughout the years, many neuronal models have been developed for different 

purposes. These models vary from structurally realistic biophysical models, like the 

Hodgkin-Huxley (HH) model, to simplified models, like Hindmarsh-Rose (HR) 

model that is mostly used in studying synchronization theories in large ensembles of 

neurons. In various studies, different models may be used depending on biological 

features of models, their complexity and the costs of implementation. Nevertheless, 

methods of modeling neural excitability have been significantly influenced by the 

landmark work of Hodgkin and Huxley (1952). 

In this chapter I present a brief overview of Hodgkin-Huxley and Hindmarsh-Rose 

model. Afterward, I turn your attention to a recent physically inspired dissipative 

stochastic mechanics based neuron model that yields the dynamics of Hindmarsh-

Rose model in deterministic state on which the study and experiment has been 

conducted. 
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3.2  The Hodgkin-Huxley Model 

Based on experimental investigation on giant squid axon using space clamp and 

voltage clamp techniques, Hodgkin and Huxley (1952) could demonstrate that the 

current flowing across the squid axon membrane had only two major ionic 

components, INa and IK (sodium channel and potassium channel equivalent 

components). These currents were strongly influenced by membrane potential Vm. 

They consequently developed a mathematical model of their observation to make a 

model which is still most significant one based on which many realistic neural 

models have been developed. 

In their model, the electrical properties of a segment of nerve membrane can be 

modeled by an equivalent circuit in which current flow across the membrane has two 

major components, one associated with charging the membrane capacitance and one 

associated with the movement of specific types of ions across the membrane. The 

ionic current is further subdivided into three distinct components, a sodium current 

INa, a potassium current IK, and a small leakage current IL that is primarily carried by 

chloride ions. 

The differential equation corresponding to the electrical circuit is as follows: 

  

   

  
            

where Cm is the membrane capacitance, Vm is the membrane potential, and Iext is an 

externally applied current. Iion is the ionic current flowing across the membrane and 

can be obtained from: 
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     ∑  
 

  

      (     )  

Ii here denotes each individual ionic component having an associated conductance gi 

and reversal potential Ei. 

In the squid giant axon model, there are three Ii terms: a sodium current INa, a 

potassium current IK, and a leakage current IL and results in the following equation: 

                  (      )     (     )     (     ) 

The macroscopic    (         ) conductances arise from the combined effects of a 

large number of microscopic ion channels in the membrane. Ion channel can be 

thought of as containing a small number of physical gates that regulate the flow of 

ions through the channel. In an ion channel when all of the gates are in the 

permissive state, ions can pass through the channel and the channel is open. 

 

3.2.1 The Ionic Conductances 

Ions can pass through the channel and the channel is open when all of the gates for a 

particular channel are in the permissive state. The formal assumptions used to 

describe the potassium and sodium conductances empirically achieved by voltage 

clamp experiments are: 

    ̅   , 

     ̅     , 

where n, m and h are ion channel gate variables dynamics of which will be presented 

later on.  ̅  is a constant with the dimensions of conductance per cm
2 

(recall that n is 
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between 0 and 1, therefore, we need the value of maximum conductance ( ̅ ) to 

normalize the result). 

The dynamics of n, m and h are as follows: 

 ̇  
  

  
    (   )                                                 (   ) 

 ̇  
  

  
    (   )      

 ̇  
  

  
    (   )      

where    and    are rate constants which vary with voltage but not with time, n is a 

dimensionless variable which can vary between 0 and 1  and represents the 

probability of an individual gate being in the permissive state. 

In voltage clamp experiment the membrane potential starts in the resting state (Vm = 

0) and is then instantaneously stepped to a new clamp voltage Vm = Vc.  The solution 

to Eq.s (2.1) is a simple exponential of the form  

 ( )    (  )  (  (  )    ( ))    (     ), 

  ( )    ( )   ( )    ( ), 

  (  )    (  )   (  )    (  ), 

  (  )     (  )    (  ) 
  , 

where   denotes time dependent gating variables n, m and h for simplicity of 

formulation,   ( ) and   (  ) are the value of gating variables at conventional 

resting state voltage 0 and clamped voltage   .    denotes the constant time course 

for approaching the steady state value of   (  ) when the voltage is clamped to   . 
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Hodgkin and Huxley measured constants       as functions of V in the following 

form: 

   
  ( )

  ( )
  

   
    ( )

  ( )
  

As mentioned earlier   is a representative for n, m, and h ion channel gate variables.   

Below are the expressions for the rate constants    and    that are empirically 

determined: 

  ( )  
    (    )

   (
    

  )   
  

  ( )          ( 
 

  
)  

 

  ( )  
   (    )

   (
    

  )   
  

  ( )      ( 
 

  
)  

 

  ( )         ( 
 

  
)  

  ( )  
 

   (
    

  )   
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3.3 The Hindmarsh Rose Model  

Although the Hodgkin-Huxley (HH) can describe neural dynamics of spiking neuron 

to a considerable extent, the bursting model of the HH can be complex in extensive 

models. Hodgkin-Huxley had studied the axon part of squid neuron containing Na 

and K conductance, whereas, more conductance types take part in the bursting model 

of the HH model which in part make the model more complicated. 

FitzHugh and Nagumo observed independently that in the Hodgkin-Huxley 

equations, the membrane potential V(t) as well as sodium activation m(t) evolve on 

similar time-scales during an action potential, while sodium inactivation h(t) and 

potassium activation n(t) change on similar, although slower time scales. As a result, 

a model simulating spiking behavior can now be represented by the following 

equations 

 ̇   (    ( )   )     (3.1) 

 ̇   (  ( )   ) 

where   denotes membrane potential and   is a recovery variable.   ( ) is a cubic 

function,   ( ) is a linear function, parameters a and b are time constants and I(t) is 

the external applied or clamping current as function of time t. 

Hindmarsh and Rose made use of the FitzHugh-Nagumo model to develop their own 

model, which was more or less a simplification of the Hodgkin-Huxley equations and 

did replace the linear function g(x) with a quadratic function to makes the model 

capable of rapid firing with a long interspace interval. Fig. 1.1 shows the nullcline 

diagram for the 1982 Hindmarsh-Rose model. 
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Figure 3.1: Phase plane analysis of the 1982 HR model. Nulclines x= 0, y= 0 (thin 

lines) and firing limit-cycle (thick line). The model has only one equilibrium point at 

this stage (Steur 2006). 

 

More than one equilibrium point was required for the HR model to yield burst firing 

behavior; essentially one point for the subthreshold stable resting state and one point 

within the firing limit cycle.  A slight deformation was required to make the 

nullclines to intersect and bring about additive equilibrium points. To meet the 

requirements the governing equations were changed to the following form: 

  ̇      ( )      

 ̇     ( )   , 

where  ( )          in the simple form of  ( ) in HR model,  ( )       . 

The phase plane analysis of the given equations is shown in Fig. 3.2. 
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Figure 3.2: Phase plane representation of Rose Hindmarsh Model. The equilibrium 

points A, B and C are a stable node, an unstable saddle, and an unstable spiral, 

respectively. A simple form of f(x) is used in this equation as is shown   ̇     

nullcline shows (Steur 2006). 

 

Point A in the diagram is a stable node which corresponds to the resting state of 

neuron. By applying a large enough depolarizing current pulse, the  ̇    nulcline 

will be lowered such that the saddle point B and point A meet and finally vanish. 

From this point the state will rise up the narrow channel and enter a stable limit 

cycle. However, terminating of the firing is not possible by simply ending the 

stimulus and the state will only leave the limit cycle after a suitable hyperpolarizing 

pulse is applied. Consequently, the term z was added to the model so that it can 

terminate the model firing state. This additive variable represents a slowly varying 

current, changing the applied current I to the effective input I - z. The value of z 

needs to be raised when the neuron is in firing state. The general HR model’s set of 

equations after this modification is as follows: 



18 

  ̇                    

 ̇           , 

 ̇    ( ( )   )   

Note that the f(x) and g(x) have been replaced with their equivalents. In these 

equations x represents membrane potential, y is a recovery variable, and z represents 

the adaptation current with time constant r. variable z increases during the firing state 

and decreases during the non-firing state. Parameters h and r made the model capable 

of exhibiting bursting, chaotic bursting and post-inhibitory rebound. (Rose and 

Hindmarsh 1984; Steur 2006). Fig. 3.3 demonstrates the phase plane analysis of 

equation (3.2) using more complex form of f(x) as proposed in (Rose and Hindmarsh 

1984). 

 

Figure 3.3: Phase plane representation of Rose Hindmarsh Model using a more 

complex form of f(x). The equilibrium points A, B and C are a stable node, an 

unstable saddle, and an unstable spiral, respectively. Unstable limit cycle is specified 

here (Rose and Hindmarsh 1984). 
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3.4 The DSM Neuron Model 

The distinctive formulation of the Dissipative Stochastic Mechanics based (DSM) 

neuron stems from a viewpoint that conformational changes in ion channels are 

exposed to two different kinds of noise. These two kinds of noise were coined as the 

intrinsic noise and topological noise. The intrinsic noise arises from voltage 

dependent movement of gating particles between the inner and the outer faces of the 

membrane which is stochastic; therefore, gates open and close in a probabilistic 

fashion, that is, it is the average number, not the exact number, of open gates over the 

membrane is specified by the voltage.   

The topological noise, on the other hand, stems from the presence of a multiple 

number of gates in the channels and is attributed to the fluctuations in the topology of 

open gates, rather than the fluctuations in the number of open gates. 

Curiously, since gating particles, throughout the dynamics, do not follow a 

prescribed order in occupying the available closed gates, and in vacating the open 

gates, the membrane at two different times may have the same number of open gates 

but two different conductance values. The topological noise is attributed to the 

uncertainty in the number of open channels that takes place even if the number of 

open gates is exactly known. Hence, in determining the voltage dynamics, all the 

permissible topologies of open gates should be respected. Formalism of the DSM 

neuron was developed using the Rose–Hindmarsh model (Hindmarsh and Rose 

1984) and makes use of the Nelson’s stochastic mechanics (Nelson 1966 and 1967), 

in the presence of dissipation, for modeling the effects of ion channel noise on 

voltage dynamics of the membrane. The effect of the topological noise on the 
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dynamics of the neuron becomes more significant in smaller membrane sizes. 

Therefore in too large neurons the DSM neuron behaves as the Hindmarsh-Rose 

model does. 

The DSM neuron formalism yields the equations of motion for both first and second 

cumulants of the variables. The second cumulants, which describe the neuron's 

diffusive behavior, do not concern us in the current thesis. First cumulants evolve in 

accordance with the following dynamics: 

  ̇                     

 ̇   (
  

 
   

  

 
    ) (     )           

           ( )  

       (   ) * (  
  
 

 
)   (   ) (  

  
 

 
)  +   

 ̇                             (3.1) 

 ̇            (      )              (3.2) 

 (  )   (  )   (  )   ( (  ))
 
  ( (  ))

 
 (    ) (  )  (3.3) 

where X denotes the expectation value of the membrane voltage, and Π corresponds 

to the expectation value of a momentum-like operator. The auxiliary variables y and 

z represent the fast and the slower ion dynamics, respectively. I denotes the external 

current injected into the neuron, and m denotes the membrane capacitance. The 

parameters a, b, c, d, r, and h are some constants. k is a mixing coefficient given by k 

= 1/(1+r).   s are some constants as follows: 

       (   ) ,  

        * 
  
 

 
   (   ) 

  
 

 
+, 

      (  
  
 

 
) (   )  (   ) (  

  
 

 
) (    ), 

        
 

 (  –   )  
 , 
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 (   )

  
 

 
  

          , 

            , 

     (        )  . 

Eq. (3.3) specifies the value of   at the initial time    in terms of the initial values of 

the other dynamical variables X, y and z, and the current I. Xeq(I) obeys the equation 

    
  (   )   

   (      )        

where xs is a constant.   and    in Eqs. (3.1) and (3.2) are Gaussian white noises 

with zero means and mean squares given by 

   ( )  (  )       (    )  

and 

   ( )  (  )        (    ) 

were obtained by means of the classical fluctuation-dissipation theorem.   here is a 

temperature-like parameter. The terms with the correction coefficients   
 
   

 
   

  and 

  
  that take place in the above equations are the renormalization terms.  

When the noise terms ,y z   are ignored and all the correction coefficients are set to 

zero, the DSM dynamics becomes equivalent to the Rose-Hindmarsh dynamics. All 

the parameters of the model, including time, are in dimensionless units. The original 

membrane voltage time series for Hindmarsh-Rose original model is for some 

various constant input currents are shown in the Fig. 3.4. Dynamical states of the 

Rose–Hindmarsh model are quiescence, bursting (rhythmic with a high degree of 

periodicity, or chaotic), and tonic firing.  
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Güler (2008) showed that the role played by the intrinsic noise, becomes more 

significant in smaller size of the membranes (or, equivalently, fewer channels) in 

DSM Neuron. The intrinsic noise can cause spiking activity in otherwise quiet 

deterministic model and results in bursting in larger input current values. The 

dynamics of DSM Neuron in a relatively smaller size of membrane is displayed in 

fig. 3.5. Note that renormalization corrections have been set to zero so that the result 

is observed regardless of the topological noise effect. 

 

Figure 3.4: Membrane voltage time series of the deterministic Rose–Hindmarsh 

model using the parameter values m = 1, a = 1, b = 3, c = 1, d = 5, h = 4, r = 0.004 

and xs = −1.6; for various constant input current values I, indicated in parenthesis on 

the left of each plot (Güler 2008). 
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Figure 3.5: Time series of X when the DSM neuron is subjected to the intrinsic noise 

only using the Rose–Hindmarsh parameter values m = 0.25, a = 0.25, b = 0.75, c = 

0.25, d = 1.25, h = 1, r = 0.004 and xs = −1.6 with the temperature T = 2. Plots for 

various constant input current values 4I (scaled by the factor of four) (Güler 2008). 

 

The renormalization corrections are induced by the mutual interaction between the 

topological noise and the intrinsic noise. Presence of the correction terms also 

increment further the behavioral transitions from quiescence to spiking and from 

tonic firing to bursting to a considerable extent and, consequently, lead to the 

bursting activity to take place in a wider range of input currents. i.e., with the 

presence of the correction terms, the spiking activity starts to take place at smaller 

input current values, and the bursting activity is prolonged for higher input current 

values. The behavior of DSM neuron under the influence of corrections is 

demonstrated in fig 3.6. 
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Figure 3.6: Time series of X using the correction coefficients   
 

    ,   
 

    , 

  
        and   

         with the temperature T = 2. The Rose–Hindmarsh 

parameter values are m = 1, a = 1, b = 3, c = 1, d = 5, h = 4, r = 0.004 and xs = −1.6 

(Güler 2008). 
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Chapter 4 

NOISE AND STOCHASTIC RESONANCE 

4.1 Noise and Stochastic Resonance in Neuronal Information 

Processing 

Noise can improve the signal transmission properties of neuronal systems under 

certain circumstances. Subthreshold oscillations in neuron can have a significant 

impact on the coding of information in neurons when are amplified by noise (Braun 

et al. 1997, 1998). The presence of an optimum amount of noise in the neuron system 

can be in cooperation with the input signal to improve the detection of the signal. In 

most cases there is an optimum for the noise amplitude which has motivated the 

name stochastic resonance for this rather counterintuitive phenomenon (Gerstner and 

Kistler 2002). 

Experimental and theoretical investigations have confirmed the presence of the 

Stochastic Resonance (SR) phenomenon in a single neuron, network of neurons and 

even in the scope of brain (Kitajo et al 2003; Ward et al. 2002). 

Andreas T. Schaefer et al. (2006) using a combination of in vivo, in vitro, and 

theoretical approaches have shown that both synaptically and intrinsically generated 

membrane potential oscillations dramatically improve action potential (AP) precision 

by removing the membrane potential variance associated with jitter-accumulating 

trains of APs. 
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It has been shown that neuron ion channels which contribute to internal noise in 

neurons, can exhibit SR (Bezrukov and Vodyanov 1995). Synaptic noise in a 

stochastic network can amplify signal detection in CA1 neurons of hippocampus. It 

has been suggested that SR contributes in detection of tactile stimuli in the 

somatosensory system of cats, (Manjarrez et al. 2003). In addition, Jaramillo and 

Wiesenfeld (2000) stipulated that presence of optimal level of noise in the auditory 

system reveals that the system is tuned to take advantage of SR. 

SR was put forward by Longtin et al. (1991) theoretically in neuron models. 

Dependence of SR on the input signal shape was studied by Lee et al. (1999) in the 

Hodgkin-Huxley (HH) model. In other studies exhibition of SR in HH models of 

pyramidal neuron cells was shown (Rudolph and Destexhe 2001a, 2001b).  

SR also appears in simpler neuronal models such as Hindmarsh-Rose (HR) model of 

burst firing neurons the FitzHugh-Nagumo (FHN) model of tonic firing (Gong and 

Xu 2001; Lindner and Schimansky-Geier 1999, 2000). The role of on input signal 

and noise parameters was studied in the FHN model as we will do so with the DSM 

neuron model.  Wang et al. (2000) found that SR increases selectivity for particular 

signal frequencies in HR neuron model that can in turn contribute in special 

information processing purposes. 

4.2 Measuring Stochastic Resonance 

Various approaches have been employed in order for neuronal Stochastic Resonance 

(SR) to be measured. Diversity of neuron models under study on one hand and the 

various properties of the stimulation on the other hand make neuron SR 

measurements distinctive. Consequently, recent studies have been done for SNR 
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computation having diverse methodologies for SNR computation over different 

neuron models.  

The response of neuron to transient input subthreshold pulses has been studied over 

stochastic Hodgkin-Huxley neuron by Chen et al. (2008). They experimentally 

showed that channel noise enables one neuron to detect the subthreshold signals and 

an optimal membrane area exists for a single neuron to achieve optimal performance 

by computing the SNR. They made use of a proposed SNR formulation as the ratio 

of increased firing probability in response to input pulses to the probability for 

spontaneous firing in response to channel noise in order to find the range in the 

membrane area which is more sensitive to a pulse than the channel noise 

perturbation. 

In another study, how internal noise stemming from individual ion channels does 

affect collective properties of the whole ensemble is investigated. The SNR in the 

study above is given by the ratio of signal peak height to the background height 

(Schmid et al. 2001). 

Steafan Reinker et al. (2003) studied a stochastic Hindmarsh–Rose model using 

Monte-Carlo simulations. In this study the SNR has been computed upon stimulation 

of the neuron by a sinusoidal wave. They hold that extraneous action potentials 

appear in the spike train, implying that the neuron fires due to the noise level and not 

to the periodic sine wave stimulation. Therefore, the following is the general formula 

used for SNR computation as a measure of the correlation between the input signal 

and the output spike train (note that the input period here corresponds to the input 

sign wave period that results in spiking): 
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           [
                             

                 
]  

SNR computation and optimization in auditory neurons, also, has been put forward 

by (Svirskis et al. 2002). 

Stochastic resonance (SR) can be envisioned as a particular problem of signal 

extraction from background noise (Gammaitoni et al. 1998). It describes the 

amplification of weak signals in nonlinear systems in a coherent manner. In neurons, 

we know that the presence of ion channel noise can give rise to stochastic resonance 

(Bezrukov and Vodyanoy 1995; Jung and Shuai 2001, Schmid et al. 2001). 

Typically, SR is measured by the ratio of signal peak height to the background 

height, referred to as the signal-to-noise ratio (SNR).   
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Chapter 5 

NUMERICAL EXPERIMENTS 

5.1 The Approach for Signal-to-Noise Ratio Computation 

In this study our aim is to examine the possible effect of the renormalization terms on 

SNR, using periodic input currents. As such, SNR is measured by the following 

formula:  

     
  

  ( )
 

where    is the amplitude of the input current,   () is the coefficient of variation; d 

is defined as either inter-bursting time interval (the distance between two sequential 

bursts) when the activity phase is bursting, or inter-spike time interval (the distance 

between spikes) when the activity phase is tonic firing. The coefficient of variation 

used in the formula is defined as   ( )   
   ( )

 
 , in which,    ( ) corresponds to 

the variance of   and   is the mean value of  . 

5.2 The Role Played by the Renormalization Correction in SNR 

Instead of examining the role of the correction coefficients individually, we take the 

typical values as follows (  
 

        
 

        
          

       ) and scale 

them by an overall coefficient        to obtain a benchmark of different sets of 

correction coefficients. For example, if          that means the correction 

coefficients have the values (  
 

        
 

        
          

      ). We 

apply the following periodic input current to the neuron: 
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              (     ) 

Here,       is the base current,    is the amplitude of the current oscillations, and    

is the frequency of the input signal.  

It is seen from figs. 5.1 and 5.2 that the presence of renormalization corrections 

makes the neuron become more excitable; the renormalization terms enhance spiking 

by increasing the number of spikes. The time course up to 1000 is not included in the 

figure to skip the transient activity. 

The model’s behavior is studied, in the context of SNR, within the following ranges 

of the parameters:        (    )     (            )        (  

   )     (        )     (            ). Confined to these ranges, average 

SNR values are computed using a set of 30000 samples over the parameter space 

(                    ) . The experiments involve not just a single value of SNR; but 

instead computations of various averages of SNR as a function of one of the five 

parameters, for instance   (                     ) denotes the average SNR value 

as a function of   while employing the parameter space averaging over the other 

parameters (                  ). In the experiments, the time course of stimulation 

was kept as large as 50000 to obtain a reliable accuracy in the results (In the figures, 

hoever, the time corse is set to 5000 in order for the voltage tiem series to be 

observable by the reader).  Figs. 5.3 and 5.4 display the computed SNR averages. 

The main observation is that SNR increases with the correction coefficients up to a 

saturation value. Thus the renormalization terms cause a profound rise in SNR. At 

the saturation state the SNR would not raise up further due to the model that does not 

yield spike any more by setting higher values to correction coefficients. 
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The optimum values of the concerned parameters that result in the highest and the 

lowest SNR are of concern. We have given the voltage time series in fig. 5.5 for 

those parameter sets that yield the worst and the best SNR.  

5.3 Technologies Used 

The DSM neuron model has been developed by Prof. Marifi Güler and I added some 

modifications to make the experiments possible. 

From technological point of view the model has been developed by C++ 

programming language. I have made use of GnuPlot for the results and voltage time 

series to be plotted. The experiments have been conducted concurrently over 50 

workstations. 
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Figure 5.1: Time series of   using        . The Rose-Hindmarsh parameter 

values are                                 and        . 

Time varying input current parameter values are                  ; respective 

      values are represented within parenthesis for each particular plot. Correction 

coefficients    
 

  ,   
 

  ,   
    and   

    (        ) 



33 

  

Figure 5.2: Time series of   using        . The Rose-Hindmarsh parameter 

values are                                 and        . 

Time varying input current parameter values are                  ; respective 

      values are represented within parenthesis for each particular plot. Correction 

coefficients    
 

    ,   
 

    ,   
        and   

        (        ) 
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Figure 5.3: SNR mean values in terms of specific parameters       and  . The 

means were computed using a set of 30000 samples over the parameter space 

(                    ) SNR against model parameters        and  .  

   (                     ) and    (                     ) are plotted. 

Each SNR mean value corresponds to the result of the average obtained from 30000 

experiments. Stimulation time for each experiment is 50000. 
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Figure 5.4: SNR mean values in terms of specific parameters            and   . The 

means were computed using a set of 30000 samples over the parameter space 

(                    ) . SNR against input signal parameters      ,   , and   . 

   (                      ),    (                     ), and 

   (                     ) are plotted. Each SNR mean value corresponds to the 

result of the average obtained from 30000 experiments. Stimulation time for each 

experiment is 50000. 
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(a)  

(b)  

(c)  

(d)  

Figure 5.5: Input current I and the voltage x are plotted in time using: (a) Least 

efficient parameter values:   =0.02,        =0,      =0.2,   =0.3,   =0.008. (b) Mid 

efficient parameter values:   =0.016,        =3,      =1,   =0.6,   =0.005. (c) Most 

efficient parameter values:   =0.012,        =4,      =1.4,   =0.8,   =0.003. (d) 

Saturation state: the set of parameter values are the same with mid efficient values 

except that ε­coef =5. 



37 

Chapter 6 

CONCLUDING REMARKS 

In this Thesis, we studied the DSM neuron model numerically when subjected to a 

periodic input current. The role of the renormalization corrections was inspected in 

the context of signal-to-noise ratio. Correction coefficients were used as a magnitude 

for the efficiency of renormalization corrections in the model. Recall that these 

renormalization corrections stem from the uncertainty in the number of open ion-

cannels even if the number of permissible gates is exactly known. 

The DSM neuron model might seem to be more complicated than the counterparts. 

Exposing faster synchronization between two DSM neurons (Jibril and Güler, 2009), 

the model’s dynamics under constant input currents (Güler, 2008) and also its 

capability in signal detection under time varying periodic input currents which was 

investigated in this study are all the advantages of this model that worth bearing its 

complexity. Moreover, it should be taken into account that this model is highly 

capable of modeling the neurons in smaller membrane sizes. 

Based on the experiments’ results, the SNR raises up by incrementing the correction 

coefficients values up to the saturation state of the model in which the correction 

coefficients cannot be increased further. The amplitude of the input signal has 

expectedly profound effect on SNR. Having that in mind, interestingly, the 
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significance of the effect of renormalization corrections is comparable to that of 

amplitude of the input current. 

It was found that the renormalized equations of activity give a significantly higher 

SNR value and consequently the exhibition of the Stochastic Resonance 

phenomenon is observed. The superiority of the DSM model against the 

deterministic models has been demonstrated earlier [2]. In this study, however, we 

showed that the DSM model also yields higher SNR in comparison to the stochastic 

models which solely make use of stochastic differential equations obtained by 

introducing some white noise terms of vanishing means into the underlying 

deterministic equations. That is to say, it turns out from the numerical experiments 

that the mean value of SNR becomes higher in DSM neuron in which the interaction 

of topological noise and intrinsic noise is taken into account than the Rose-

Hindmarsh model having incorporated merely the intrinsic noise. The number of 

samples in the experiment is as large as 30000 and the time course of stimulation in 

each sample is set to 50000 to gain a reliable and accurate result.  

Since the model has been studied earlier under constant input currents, the time 

varying characteristic of the input current is of our concern. The input current is 

periodic having no noise applied on it. Perhaps, investigating the model in none 

periodic forms and/or having applied a kind of noise on the input current can shed 

more light on the behavior of the DSM neuron model under time varying and also 

noisy input currents in sense of signal-to-noise ratio and the ability of the model in 

signal detection.  



39 

The results indicate that the neurons are highly capable of making a sophisticated and 

beneficial use of the channel noise in processing signals. From the engineering point 

of view, the study reveals the potential appeal of the DSM model for signal 

detection.  
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