Abstract:
ABSTRACT: Financial forecasting is a difficult task due to the intrinsic complexity of the financial system, in this research the estimation of the stock exchange prices is targeted using the five-year time series data of prices. The objective of this work is to use an intelligence techniques and mathematical techniques to create a model, that has the ability to predict the future price of a stock market index, then decide throughout the k-means clustering with majority voting, which one of those prediction techniques is the best. It is a multi-decision making in order to find the best predictive method. The proposed method combines multiple methods to have higher prediction accuracy and higher profit/risk ratio. The forecasting techniques, namely, Radial Basis Function (RBF) combined with Self-organizing map, Nearest Neighbour (K-Nearest Neighbour) methods, and Autoregressive Fractionally Integrated Moving Average (ARFIMA) are implemented in forecasting the future price of a stock market index based on its historical price information, and the best forecast of these three methods is decided by majority voting after k-means clustering. The experimentation was performed on data obtained from the London Stock Exchange. The data used was a series of past closing prices of the Share Index. The results showed that the proposed decision method provides better prediction than forecasts of the three techniques.
Keywords: Forecasting, SOM-RBF, K-Nearest Neighbour, ARFIMA, Decision-making.
…………………………………………………………………………………………………………………………………………………………………………………………………………
ÖZ: Finansal sistemlerin iç karmaşası nedeniyle finansal tahmin zor bir iştir. Bu araştırmada beş yıllık zaman serisi verisini kullanarak hisse senedi fiyatlarının tahmini amaçlanmaktadır. Çalışmanın amacı hisse senetlerinin gelecekte fiyatını çeşitli matematiksel ve yapay ussal tahmin yöntemleri kullanarak bulup, ardından, k-ortalama öbekleme yöntemi ile hangi tahmin yönteminin daha başarılı olduğuna karar vermektir. Böylece oluşturulan çoklu karar verme mekanizması her durum için en iyi tahmin yöntemini bulur. Tahmin yöntemleri olarak Kendinden Düzenli Radyal Baz Fonksiyonu (RBF) en yakın komşu (K-Nearest Neighbour) metodu, ve Atoregressif Oranlı Tümlevsel Gezer Ortalama (ARFIMA) metodları kullanılarak beş yıllık zaman serisinden gelecekteki değer tahmin edilmiş ve üçü arasında en iyi tahmin eden metoda k-ortalama öbekleyici ve çoğunluk oyu kullanarak karar verilmiştir. Deneyler Londra Hisse Senetleri Borsasından alınan beş yıllık günluk kapanış veri üzerinde denenmiştir. Sonuçlar önerilen yöntemin seçtiği tahminin, kullanılan her üç yöntemin tahminden daha başarılı olduğunu.göstermektedir.
Description:
Master of Science in Computer Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2014. Supervisor: Assist. Prof. Dr. Mehmet Bodur.