Basic Iterative Methods for Solving Elliptic Partial Differential Equation

EMU I-REP

Show simple item record

dc.contributor.author Qahraman, Yousif Ahmed
dc.date.accessioned 2015-03-17T08:38:25Z
dc.date.available 2015-03-17T08:38:25Z
dc.date.issued 2014-07
dc.identifier.citation Qahraman, Yousif Ahmed. (2014). Basic Iterative Methods for Solving Elliptic Partial Differential Equation. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. en_US
dc.identifier.uri http://hdl.handle.net/11129/1651
dc.description Master of Science in Mathematics. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2014. Supervisor: Assoc. Prof. Dr. Derviş Subaşı. en_US
dc.description.abstract ABSTRACT: In this thesis, we studied the numerical techniques for the solution of two dimensional Elliptic partial differential equations such as Laplace's and Poisson's equations. These types of differential equations have specific applications in physical and engineering models. The discrete approximation of both equations is based on finite difference method. In this research, five points finite difference approximation is used for Laplace's and Poisson's equations. To solve the resulting finite difference approximation basic iterative methods; Jacobi, Gauss-Seidel and Successive Over Relaxation (SOR) have been used. Several model problems are solved by three different iterative methods and concluding remarks are presented. Keywords: Elliptic partial differential equation, point's finite difference scheme, basic iterative methods. ………………………………………………………………………………………………………………………… ӦZ: Yapılan bu çalışma iki boyutlu Eliptik parçalı diferansiyel denklem problemlerinin sayısal analiz teknikleri kullanılarak yaklaşık olarak çözülmesi ile ilgilidir. Eliptik parçalı diferansiyel denklemler beş noktalı sonlu farklar yöntemi kullanılarak Poisson's ve Laplace denklemlerine uygulanmış ve bu denklemler temel iteratif çözüm prosedürü olan Jacobi, Gauss Seidel ve SOR yineleme yöntemleri kullanılarak iki farklı problem üzerinde nümerik olarak çözülmüştür. Ayrıca temel iteratif çözüm prosedürü teorik olarak incelenmiştir. Anahtar kelimeler: Eliptik parçalı diferansiyel denklem, beş noktalı sonlu farklar şeması, temel iteratif yöntemler. en_US
dc.language.iso en en_US
dc.publisher Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) en_US
dc.subject Mathematics en_US
dc.subject Differential equations, Elliptic - Numerical solutions - Difference equations en_US
dc.subject Differential equations, Elliptic - Differential equations, Partial en_US
dc.subject Elliptic Partial Differential Equation, 5 Point's Finite Difference Scheme, Basic Iterative Methods en_US
dc.title Basic Iterative Methods for Solving Elliptic Partial Differential Equation en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record