Abstract:
ABSTRACT: In this thesis, we define the q-Bernoulli numbers and polynomials, q-Euler numbers and polynomials, q-Frobenius-Euler numbers and polynomials and q-Genocchi numbers and polynomials of higher order in two variables x and y, by using two q-exponential
functions. We also prove some properties and relationships of these polynomials and
q-analogue of the Srivastava and Pinter addition theorem. Furthermore, we represent
the figures of the q-Bernoulli, q-Euler and q-Genocchi numbers and polynomials. We
find the solutions of these q-polynomials, for n 2 N, x and q 2 C by using a computer
package MathematicaR ⃝ software. Finally, we discuss the reflection symmetries of these
q-polynomials.
Keywords: q-analogues of Bernoulli - Euler - Genocchi - Frobenius-Euler numbers and
Polynomials, Srivastava Pinter addition Theorems, shapes and roots of q-polynomials
…………………………………………………………………………………………………………………………
ÖZ: Bu tezde, iki q-üstel fonksiyonlarını kullanarak q-Bernoulli, q-Euler, q-Frobenius-Euler
ve q-Genocchisayıları ve polinomlari iki de˘gi¸sken x ve y yüksek düzenin polinomları
tanımlanır ve bu polinomların bazı özellikleri, ili¸skileri ve Srivastava-Pinter ilave teoremin
q-analogu kanıtlanır. Ayrıca bilgisayar kullanarak q-Bernoulli, q-Euler ve q-
Genocchi numaralarının ¸sekilleri ke¸sfedilir ve indeks n de˘gerleri için q-Bernoulli, q-
Euler ve q-Genocchi polinomların köklerinin yapısı tarif edilir.
AnahtarKelimeler: Genelle¸stirilmi¸s Bernoulli-Euler- Genocchi -Frobenius-Euler sayıları
ve Polinomları ve Srivastava - Pinter ilave teoremi, q-polinomlarının kökleri ve grafikleri.
Description:
Doctor of Philosophy in Applied Mathematics and Computer Science. Thesis (Ph.D.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2014. Supervisor: Prof. Dr. Nazim Mahmudov.