| dc.contributor.author | Öneren, Afet | |
| dc.date.accessioned | 2015-06-29T05:23:14Z | |
| dc.date.available | 2015-06-29T05:23:14Z | |
| dc.date.issued | 2014-10 | |
| dc.identifier.citation | Oneren, Afet. (2014). q-Polynomials and Location of Their Zeros. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. | en_US |
| dc.identifier.uri | http://hdl.handle.net/11129/1754 | |
| dc.description | Doctor of Philosophy in Applied Mathematics and Computer Science. Thesis (Ph.D.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2014. Supervisor: Prof. Dr. Nazim Mahmudov. | en_US |
| dc.description.abstract | ABSTRACT: In this thesis, we define the q-Bernoulli numbers and polynomials, q-Euler numbers and polynomials, q-Frobenius-Euler numbers and polynomials and q-Genocchi numbers and polynomials of higher order in two variables x and y, by using two q-exponential functions. We also prove some properties and relationships of these polynomials and q-analogue of the Srivastava and Pinter addition theorem. Furthermore, we represent the figures of the q-Bernoulli, q-Euler and q-Genocchi numbers and polynomials. We find the solutions of these q-polynomials, for n 2 N, x and q 2 C by using a computer package MathematicaR ⃝ software. Finally, we discuss the reflection symmetries of these q-polynomials. Keywords: q-analogues of Bernoulli - Euler - Genocchi - Frobenius-Euler numbers and Polynomials, Srivastava Pinter addition Theorems, shapes and roots of q-polynomials ………………………………………………………………………………………………………………………… ÖZ: Bu tezde, iki q-üstel fonksiyonlarını kullanarak q-Bernoulli, q-Euler, q-Frobenius-Euler ve q-Genocchisayıları ve polinomlari iki de˘gi¸sken x ve y yüksek düzenin polinomları tanımlanır ve bu polinomların bazı özellikleri, ili¸skileri ve Srivastava-Pinter ilave teoremin q-analogu kanıtlanır. Ayrıca bilgisayar kullanarak q-Bernoulli, q-Euler ve q- Genocchi numaralarının ¸sekilleri ke¸sfedilir ve indeks n de˘gerleri için q-Bernoulli, q- Euler ve q-Genocchi polinomların köklerinin yapısı tarif edilir. AnahtarKelimeler: Genelle¸stirilmi¸s Bernoulli-Euler- Genocchi -Frobenius-Euler sayıları ve Polinomları ve Srivastava - Pinter ilave teoremi, q-polinomlarının kökleri ve grafikleri. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) | en_US |
| dc.subject | Mathematics | en_US |
| dc.subject | Applied Mathematics and Computer Science | en_US |
| dc.subject | Bernoulli polynomials | en_US |
| dc.subject | Euler polynomials | en_US |
| dc.subject | Polynomials | en_US |
| dc.subject | q-analogues of Bernoulli - Euler - Genocchi - Frobenius-Euler numbers and Polynomials, Srivastava Pinter addition Theorems, shapes and roots of q-polynomials | en_US |
| dc.title | q-Polynomials and Location of Their Zeros | en_US |
| dc.type | Thesis | en_US |