dc.contributor.author |
Sakallı, İzzet |
|
dc.date.accessioned |
2016-01-11T12:38:44Z |
|
dc.date.available |
2016-01-11T12:38:44Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
"Quantization of Rotating Linear Dilaton Black Holes", Izzet Sakalli, Eur. Phys. J. C 75, 144 (2015). |
en_US |
dc.identifier.issn |
1434-6052 (online) |
|
dc.identifier.issn |
1434-6044 (print) |
|
dc.identifier.other |
DOI: 10.1140/epjc/s10052-015-3369-x |
|
dc.identifier.uri |
http://hdl.handle.net/11129/1961 |
|
dc.description |
The file in this item is the publisher version (published version) of the article. |
en_US |
dc.description.abstract |
In this paper, we focus on the quantization of 4−dimensional rotating linear dilaton black hole (RLDBH) spacetime describing an action, which emerges in the Einstein-Maxwell-Dilaton-Axion (EMDA) theory. RLDBH spacetime has a non-asymptotically flat (NAF) geometry. When the rotation parameter " a" vanishes, the spacetime reduces to its static form, the so-called linear dilaton black hole (LDBH) metric. Under scalar perturbations, we show that the radial equation reduces to a hypergeometric differential equation. Using the boundary conditions of the quasinormal modes (QNMs), we compute the associated complex frequencies of the QNMs. In a particular case, QNMs are applied in the rotational adiabatic invariant quantity, and we obtain the quantum entropy/area spectra of the RLDBH. Both spectra are found to be discrete and equidistant, and independent of a−parameter despite the modulation of QNMs by this parameter. |
en_US |
dc.language.iso |
en_US |
en_US |
dc.publisher |
European Physical Journal C, Springer |
en_US |
dc.relation.ispartofseries |
;Eur. Phys. J. C 75, 144 (2015) |
|
dc.subject |
Quantization |
en_US |
dc.subject |
rotating linear dilaton black holes |
en_US |
dc.subject |
general relativity |
en_US |
dc.subject |
black holes |
en_US |
dc.subject |
quasinormal mode |
en_US |
dc.title |
Quantization of rotating linear dilaton black holes |
en_US |
dc.type |
Article |
en_US |
dc.description.version |
Publisher Version (Published Version). |
|