Abstract:
We give a general class of static, spherically symmetric, non-asymptotically flat and asymptotically non-(anti) de Sitter black hole solutions in Einstein-Maxwell-Dilaton (EMD) theory of gravity in 4-dimensions. In this general study we couple a magnetic Maxwell field with a general dilaton potential, while double Liouville-type potentials are coupled with the gravity. We show that the dilatonic parameters play the key role in switching between the Bertotti-Robinson and Reissner-Nordstr\"om spacetimes. We study the stability of such black holes under a linear radial perturbation, and in this sense we find exceptional cases that the EMD black holes are unstable. In continuation we give a detailed study of the spin-weighted harmonics in dilatonic Hawking radiation spectrum and compare our results with the previously known ones. Finally, we investigate the status of resulting naked singularities of our general solution when probed with quantum test particles.
Description:
The file in this item is the post-print version of the article (author’s copy; author’s final manuscript, accepted for publication after peer-review process). Due to copyright restrictions, the access to the publisher version (published version) of this article is only available via subscription. You may click URI (with DOI: 10.1088/0264-9381/27/10/105005) and have access to the Publisher Version of this article through the publisher web site or online databases, if your Library or institution has subscription to the related journal or publication.