dc.contributor.author |
Mazharimousavi, S. Habib |
|
dc.contributor.author |
Halilsoy, Mustafa |
|
dc.date.accessioned |
2016-01-20T11:50:34Z |
|
dc.date.available |
2016-01-20T11:50:34Z |
|
dc.date.issued |
2009 |
|
dc.identifier.citation |
S. Habib Mazharimousavi and Mustafa Halilsoy, (2009): arXiv:0908.0308 "Lovelockblack holes with a power-Yang-Mills source". Physics Letters B 681 (2009) 190 -199. |
en_US |
dc.identifier.issn |
1873-2445 (online) |
|
dc.identifier.issn |
0370-2693 (print) |
|
dc.identifier.other |
DOI: 10.1016/j.physletb.2009.10.006 |
|
dc.identifier.uri |
http://hdl.handle.net/11129/2020 |
|
dc.description |
The file in this item is the publisher version (published version) of the article. |
en_US |
dc.description.abstract |
We consider the standard Yang-Mills (YM) invariant raised to the power q, i.e., (F(a)μνF(a)μν)q as the source of our geometry and investigate the possible black hole solutions. How does this parameter q modify the black holes in Einstein-Yang-Mills (EYM) and its extensions such as Gauss-Bonnet (GB) and the third order Lovelock theories? The advantage of such a power q (or a set of superposed members of the YM hierarchies) if any, may be tested even in a free YM theory in flat spacetime. Our choice of the YM field is purely magnetic in any higher dimensions so that duality makes no sense. In analogy with the Einstein-power-Maxwell theory, the conformal invariance provides further reduction, albeit in a spacetime for dimensions of multiples of 4. |
en_US |
dc.language.iso |
en_US |
en_US |
dc.publisher |
Physics Letters B, Elsevier |
en_US |
dc.relation.ispartofseries |
Elsevier;Phys.Lett.B681:190-199,2009 |
|
dc.subject |
gravity |
en_US |
dc.subject |
general relativity |
en_US |
dc.subject |
power-Yang-Mills source |
en_US |
dc.subject |
Lovelock black holes |
en_US |
dc.title |
Lovelock black holes with a power-Yang-Mills source |
en_US |
dc.type |
Article |
en_US |
dc.description.version |
Publisher Version (Published Version). |
|