Significance of the Covariance Matrix in Principal Component Analysis

EMU I-REP

Show simple item record

dc.contributor.advisor Tandoğdu, Yücel
dc.contributor.author Noupoue, Yves Yannick Yameni
dc.date.accessioned 2016-03-01T13:59:26Z
dc.date.available 2016-03-01T13:59:26Z
dc.date.issued 2015-08
dc.date.submitted 2015
dc.identifier.citation Noupoue, Yves Yannick Yameni.(2015). Significance of the Covariance Matrix in Principal Component Analysis. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. en_US
dc.identifier.uri http://hdl.handle.net/11129/2166
dc.description Master of Science in Mathematics. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2015. Supervisor: Assist. Prof. Dr. Yücel Tandoğdu. en_US
dc.description.abstract In all the scientific fields, scientist usually deal with big data. Statistical Data Analysis is therefore used to manage data. Depending on the nature of the experiment, its output can be analyzed using univariate, bivariate or multivariate statistics. In the multivariate case when the number of variables is very large, it sometime wise to reduce the number of variable to optimize the analysis of the data. Dimension reduction is used to reduce the number of variables which is also the size of data. In this work, on method of dimension reduction called Principal Component Analysis (PCA) is discussed. The PCA is a method which is based mainly on two matrices , covariance-variance matrix and correlation coefficient matrix obtained from the data. From the mentioned matrices, using the eigenvalues and corresponding eigenvectors, linear combination of the variables called principal components (PC) are established. It is important to mentioned that for the same set of data, the PCs computed using the covariance-variance matrix are different from those computed using the correlation coefficient matrix. The core topic in this work is to studied the conditions under which it is better to use either covariance matrix or correlation coefficient matrix for the PCs computation.Öz:Bilmin hemen her dalında bilim insanları büyük verilerin analizi ile uğraşmak durumundadır. İstatistiki veri analizi verilerin değerlendirilmesinde kullanılır. Deneyin doasına bağlı olarak, elde edilen veriler, tek veya çok değişkenli istatistik yöntemlerle değerledirilebilir. Değişken sayısının çok fazla olduğu durumlarda, daha hızlı analiz imkanını elde etmek için boyut indirgemesi yapılabilir. Bu amaçla Temel Bileşenler Analizi (TBA) yöntemi kullanılır. TBA metodu verinin kovaryans veya korelasyon matrislerine bağımlı bir sistemdir. Bu matrislerin özdeğer ve özvektörlerinden yararlanarak, Temel Bileşenler (TB) denen değişkenlerin lineer kombinasyonları oluşturulur. Ancak kovaryans ve korelasyon matrisleri kullanılarak oluşturulan TB ler, bir birinden farklıdır. Bu çalışmanın temel amacı, hangi şartlar altında kovaryans veya korelasyon matrislerinin kullanılabileceğinin incelenmesidir. en_US
dc.language.iso eng en_US
dc.publisher Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Mathematics en_US
dc.subject Statistical Mathematics en_US
dc.subject Principal Component Analysis (PCA) en_US
dc.subject Principal Components (PCs) en_US
dc.subject Dimension Reduction en_US
dc.subject Variance - covariance matrix en_US
dc.subject Correlation Coefficient Matrix en_US
dc.title Significance of the Covariance Matrix in Principal Component Analysis en_US
dc.type masterThesis en_US
dc.contributor.department Eastern Mediterranean University,Faculty of Arts & Sciences, Department of Mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record