| dc.contributor.author | Kaffaoğlu, Havva | |
| dc.date.accessioned | 2012-12-14T11:08:21Z | |
| dc.date.available | 2012-12-14T11:08:21Z | |
| dc.date.issued | 2011 | |
| dc.identifier.citation | Kaffaoglu, Havva. (2011). Szasz and Phillips Operators Based on q-Integers. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. | en_US | 
| dc.identifier.uri | http://hdl.handle.net/11129/230 | |
| dc.description | Doctor of Philosophy in Applied Mathematics and Computer Science. Thesis (Ph.D.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2011. Supervisor: Prof. Dr. Nazım Mahmudov. | en_US | 
| dc.description.abstract | ABSTRACT: In this thesis, q-Szász-Durrmeyer (0 < q < 1) and q-Phillips (q > 0) operators are defined and some properties of these operators are studied. More precisely, local approximation results for continuous functions in terms of modulus of continuity are proved and Voronovskaja type asymptotic results are investigated. Keywords: q-Szász-Durrmeyer operators, k-functional, modulus of continuity, qcalculus, q-Phillips operators, q-integers, q-gamma functions, rate of convergence, qintegral. …………………………………………………………………………………………………………………………………………………………………………………………………………………… ÖZ: Bu tezde, q-Szász-Durrmeyer ( 0 < q < 1) ve q-Phillips ( q > 0 ) operatörleri tanımlanmış ve bu operatörlerin bazı özellikleri incelenmiştir. Daha açık olarak, süreklilik modülü cinsinden, sürekli fonksiyonlar için yerel yaklaşım sonuçları ispatlanmış ve Voronovskaja tipli asimtotik sonuçlar incelenmiştir. Anahtar kelimeler: q-Szazs-Durrmeyer operatörleri, k-fonksiyonel, süreklilik modülü, q-hesap, q-Phillips operatörleri, q-tamsayılar, q-gamma fonksiyonları, yakınsama hızı, q-integral. | en_US | 
| dc.language.iso | en | en_US | 
| dc.publisher | Eastern Mediterranean University (EMU) | en_US | 
| dc.subject | Applied Mathematics and Computer Science | en_US | 
| dc.subject | Q-Szasz - Durrmeyer Operators - K-Functional - Modulus of Continuity - Q-Calculus - Q-Phillips Operators | en_US | 
| dc.subject | Q-Integers - Q-Gamma Functions - Rate of Convergence - Q-Integral | en_US | 
| dc.title | Szasz and Phillips Operators Based on q-Integers | en_US | 
| dc.type | Thesis | en_US |