Abstract:
We extend the application of the techniques developed within the framework of the pseudo-Hermitian quantum mechanics to study a unitary quantum system described by an imaginary PT-symmetric potential v(x) having a continuous real spectrum. For this potential that has recently been used, in the context of optical potentials, for modelling the propagation of electromagnetic waves travelling in a wave guide half and half filed with gain and absorbing media, we give a perturbative construction of the physical Hilbert space, observables, localized states, and the equivalent Hermitian Hamiltonian. Ignoring terms of order three or higher in the non-Hermiticity parameter zeta, we show that the equivalent Hermitian Hamiltonian has the form p22m+ζ22∑∞n=0{αn(x),p2n} with αn(x) vanishing outside an interval that is three times larger than the support of v(x), i.e., in 2/3 of the physical interaction region the potential v(x) vanishes identically. We provide a physical interpretation for this unusual behavior and comment on the classical limit of the system.