Error Estimation Methods for the Finite-Difference Solution for Poisson’s Equation

EMU I-REP

Show simple item record

dc.contributor.advisor Dosiyev, Adiguzel
dc.contributor.author Omar, Haji Omar
dc.date.accessioned 2016-07-18T08:34:41Z
dc.date.available 2016-07-18T08:34:41Z
dc.date.issued 2015-07
dc.date.submitted 2015
dc.identifier.citation Omar, Haji Omar. (2015). Error Estimation Methods for the Finite-Difference Solution for Poisson’s Equation. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. en_US
dc.identifier.uri http://hdl.handle.net/11129/2837
dc.description Master of Science in Mathematics. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2015. Supervisor: Prof. Dr. Adiguzel Dosiyev. en_US
dc.description.abstract The finite-difference method is universally used for the approximation of differential equations. In this thesis two different approaches are reviewed for the error estimation of the approximation of the Dirichlet problem for elliptic equations, specifically Poisson’s and Laplace’s equations using various finite-difference schemes. The first approach is based on the difference analogue of the maximum principle. Applying Gerschgorin’s majorant method to the analysis , also the order of accuracy of the proposed scheme is obtained. The second approach uses the difference analogue of Green’s function and Green’s third identity. In order to obtain an order of approximation, Gerschgorin’s majorant method is applied in this approach also. Both methods gave similar approximations. Keywords: Finite-difference, maximum principle, Gerschgorin’s majorant method, Green’s function, Green’s third identity. en_US
dc.description.abstract ÖZ: Sonlu-farklar metodu, yakınsak çözümlemeler için evrensel olarak kullanılan bir metoddur. Bu tezde, Poisson denklemi için Dirichlet probleminin sonlu-farklar analogu, iki farklı hata analizi yöntemi ile gözden geçirilmiştir. Birinci yöntem, maksimum ilkesine (maximum principle) bağlıdır. Gerschgorin’in majorant metodunun da uygulanması ile sonlu farklar metodu analiz edilmiştir. İkinci yöntemde ise, Green fonksiyonunun sonlu-farklar analogu, ve Green’in 3. denklemi analogu kullanılmıştır. Yakınsaklık derecesinin elde edilmesi için, Gerschgorin’in majorant metodu da kullanılmıştır. İki yöntem de benzer sonuçlar vermiştir. Anahtar kelimeler: sonlu farklar, maksimum ilkesi, Gerschgorin majorant metodu, Green fonksiyonu. en_US
dc.language.iso eng en_US
dc.publisher Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Mathematics en_US
dc.subject Finite differences - Difference equations en_US
dc.subject Differential equations - Numerical solutions en_US
dc.subject Finite-difference en_US
dc.subject maximum principle en_US
dc.subject Gerschgorin’s majorant method en_US
dc.subject Green’s function en_US
dc.subject Green’s third identity en_US
dc.title Error Estimation Methods for the Finite-Difference Solution for Poisson’s Equation en_US
dc.type masterThesis en_US
dc.contributor.department Eastern Mediterranean University, Faculty of Art and Sciences Department of Mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record