dc.contributor.author |
Gaboury, Sebastien |
|
dc.contributor.author |
Özarslan, Mehmet Ali |
|
dc.date.accessioned |
2017-10-23T08:06:19Z |
|
dc.date.available |
2017-10-23T08:06:19Z |
|
dc.date.issued |
2014 |
|
dc.identifier.issn |
1687-1847, 1687-1839(print) |
|
dc.identifier.issn |
1687-1847(online) |
|
dc.identifier.uri |
http://dx.doi.org/10.1186/1687-1847-2014-252 |
|
dc.identifier.uri |
http://hdl.handle.net/11129/3440 |
|
dc.description |
The file in this item is the publisher version (published version) of the article. |
en_US |
dc.description.abstract |
Motivated by the recent work of the second author (Özarslan in Appl. Math. Comput. 229:350-358, 2014), we present, in this paper, some fractional calculus formulas for a mild generalization of the multivariable Mittag-Leffler function, a Schläfli's type contour integral representation, some multilinear and mixed multilateral generating functions; and, finally, we consider a singular integral equation with the function [InlineEquation not available: see fulltext.] in the kernel and we provide its solution. MSC: 26A33, 33E12. |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
Springer International Publishing |
en_US |
dc.relation.isversionof |
10.1186/1687-1847-2014-252 |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
Functional Analysis, fractional integrals and derivatives, Mathematics |
en_US |
dc.subject |
Difference and Functional Equations, Partial Differential Equations |
en_US |
dc.subject |
contour integral representation, singular integral equation |
en_US |
dc.subject |
Mittag-Leffler function, Analysis, Ordinary Differential Equations, |
en_US |
dc.subject |
Mathematics, general, APPLIED, LAGUERRE-POLYNOMIALS |
en_US |
dc.title |
Singular integral equation involving a multivariable analog of Mittag-Leffler function |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
Advances in Difference Equations |
en_US |
dc.contributor.department |
Eastern Mediterranean University, Faculty of Arts & Sciences, Department of Mathematics |
en_US |
dc.identifier.volume |
2014 |
en_US |
dc.identifier.issue |
1 |
en_US |
dc.identifier.startpage |
1 |
en_US |
dc.identifier.endpage |
10 |
en_US |