dc.contributor.author |
Özarslan, Mehmet Ali |
|
dc.contributor.author |
Vedi, Tuba |
|
dc.date.accessioned |
2017-10-23T08:07:02Z |
|
dc.date.available |
2017-10-23T08:07:02Z |
|
dc.date.issued |
2013 |
|
dc.identifier.issn |
1029-242X |
|
dc.identifier.uri |
http://dx.doi.org/10.1186/1029-242X-2013-444 |
|
dc.identifier.uri |
http://hdl.handle.net/11129/3442 |
|
dc.description |
The file in this item is the publisher version (published version) of the article |
en_US |
dc.description.abstract |
In the present paper, we introduce the q-Bernstein-Schurer-Kantorovich operators.
We give the Korovkin-type approximation theorem and obtain the rate of
convergence of this approximation by means of the first and the second modulus of
continuity. Moreover, we compute the order of convergence of the operators in terms
of the elements of Lipschitz class functions and the modulus of continuity of the
derivative of the function. |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
Springer International Publishing |
en_US |
dc.relation.isversionof |
10.1186/1029-242X-2013-444 |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
q-analysis; q-integral operator; positive linear operators |
en_US |
dc.subject |
q-Bernstein operators; modulus of continuity |
en_US |
dc.title |
q-Bernstein-Schurer-Kantorovich Operators |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
Journal of Inequalities and Applications |
en_US |
dc.contributor.department |
Eastern Mediterranean University, Faculty of Arts & Sciences, Department of Mathematics |
en_US |
dc.identifier.volume |
2013 |
en_US |
dc.identifier.startpage |
1 |
en_US |
dc.identifier.endpage |
15 |
en_US |