q-Bernstein-Schurer-Kantorovich Operators

EMU I-REP

Show simple item record

dc.contributor.author Özarslan, Mehmet Ali
dc.contributor.author Vedi, Tuba
dc.date.accessioned 2017-10-23T08:07:02Z
dc.date.available 2017-10-23T08:07:02Z
dc.date.issued 2013
dc.identifier.issn 1029-242X
dc.identifier.uri http://dx.doi.org/10.1186/1029-242X-2013-444
dc.identifier.uri http://hdl.handle.net/11129/3442
dc.description The file in this item is the publisher version (published version) of the article en_US
dc.description.abstract In the present paper, we introduce the q-Bernstein-Schurer-Kantorovich operators. We give the Korovkin-type approximation theorem and obtain the rate of convergence of this approximation by means of the first and the second modulus of continuity. Moreover, we compute the order of convergence of the operators in terms of the elements of Lipschitz class functions and the modulus of continuity of the derivative of the function. en_US
dc.language.iso eng en_US
dc.publisher Springer International Publishing en_US
dc.relation.isversionof 10.1186/1029-242X-2013-444 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject q-analysis; q-integral operator; positive linear operators en_US
dc.subject q-Bernstein operators; modulus of continuity en_US
dc.title q-Bernstein-Schurer-Kantorovich Operators en_US
dc.type article en_US
dc.relation.journal Journal of Inequalities and Applications en_US
dc.contributor.department Eastern Mediterranean University, Faculty of Arts & Sciences, Department of Mathematics en_US
dc.identifier.volume 2013 en_US
dc.identifier.startpage 1 en_US
dc.identifier.endpage 15 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record