dc.contributor.author |
Özarslan, Mehmet Ali |
|
dc.contributor.author |
Yılmaz, Banu |
|
dc.date.accessioned |
2017-10-23T08:26:45Z |
|
dc.date.available |
2017-10-23T08:26:45Z |
|
dc.date.issued |
2014 |
|
dc.identifier.issn |
1029-242X(online) |
|
dc.identifier.uri |
http://dx.doi.org/10.1186/1029-242X-2014-85 |
|
dc.identifier.uri |
http://hdl.handle.net/11129/3463 |
|
dc.description |
The file in this item is the publisher version (published version) of the article |
en_US |
dc.description.abstract |
In this paper, we present the extended Mittag-Leffler functions by using the extended Beta functions (Chaudhry et al. in Appl. Math. Comput. 159:589-602, 2004) and obtain some integral representations of them. The Mellin transform of these functions is given in terms of generalized Wright hypergeometric functions. Furthermore, we show that the extended fractional derivative (Özarslan and Özergin in Math. Comput. Model. 52:1825-1833, 2010) of the usual Mittag-Leffler function gives the extended Mittag-Leffler function. Finally, we present some relationships between these functions and the Laguerre polynomials and Whittaker functions. |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
Springer International Publishing |
en_US |
dc.relation.isversionof |
10.1186/1029-242X-2014-85 |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
Mittag-Leffler extended Beta functions fractional derivative Mellin transform |
en_US |
dc.subject |
Laguerre polynomials Whittaker functions Wright generalized hypergeometric functions |
en_US |
dc.title |
The extended Mittag-Leffler function and its properties |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
Journal of Inequalities and Applications |
en_US |
dc.contributor.department |
Eastern Mediterranean University, Faculty of Arts & Sciences, Department of Mathematics |
en_US |
dc.identifier.volume |
2014 |
en_US |
dc.identifier.issue |
1 |
en_US |
dc.identifier.startpage |
1 |
en_US |
dc.identifier.endpage |
10 |
en_US |