The extended Mittag-Leffler function and its properties

EMU I-REP

Show simple item record

dc.contributor.author Özarslan, Mehmet Ali
dc.contributor.author Yılmaz, Banu
dc.date.accessioned 2017-10-23T08:26:45Z
dc.date.available 2017-10-23T08:26:45Z
dc.date.issued 2014
dc.identifier.issn 1029-242X(online)
dc.identifier.uri http://dx.doi.org/10.1186/1029-242X-2014-85
dc.identifier.uri http://hdl.handle.net/11129/3463
dc.description The file in this item is the publisher version (published version) of the article en_US
dc.description.abstract In this paper, we present the extended Mittag-Leffler functions by using the extended Beta functions (Chaudhry et al. in Appl. Math. Comput. 159:589-602, 2004) and obtain some integral representations of them. The Mellin transform of these functions is given in terms of generalized Wright hypergeometric functions. Furthermore, we show that the extended fractional derivative (Özarslan and Özergin in Math. Comput. Model. 52:1825-1833, 2010) of the usual Mittag-Leffler function gives the extended Mittag-Leffler function. Finally, we present some relationships between these functions and the Laguerre polynomials and Whittaker functions. en_US
dc.language.iso eng en_US
dc.publisher Springer International Publishing en_US
dc.relation.isversionof 10.1186/1029-242X-2014-85 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Mittag-Leffler extended Beta functions fractional derivative Mellin transform en_US
dc.subject Laguerre polynomials Whittaker functions Wright generalized hypergeometric functions en_US
dc.title The extended Mittag-Leffler function and its properties en_US
dc.type article en_US
dc.relation.journal Journal of Inequalities and Applications en_US
dc.contributor.department Eastern Mediterranean University, Faculty of Arts & Sciences, Department of Mathematics en_US
dc.identifier.volume 2014 en_US
dc.identifier.issue 1 en_US
dc.identifier.startpage 1 en_US
dc.identifier.endpage 10 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record