The Wiener index of a graph, known as the “sum of distances” of a connected graph,
is the first topological index used in chemistry to sum the distances between all
unordered pairs of vertices of a graph. Wiener index, or sometimes called Wiener
number, of a molecular graph correlates physical and chemical characteristics of
graphs, and has been studied for various kinds of graphs. In this thesis, we derived
mathematical formulas to compute Wiener index and hyper-Wiener index for bodycentered
cubic grid and face-centered cubic grid. In the body-centered cubic graph,
the lines of unit cells of the body-centered cubic grid are used. These graphs contain
center points of the unit cells and other vertices, called border vertices. Closed
formulas are obtained to calculate the sum of shortest distances between pairs of
border vertices, between border vertices and centers and between pairs of centers.
Based on these formulas, their sum, the Wiener index and hyper-Wiener index of
body-centered cubic grid with unit cells connected in a row are computed. Some
relationships between formulas and integer sequences are also presented.
In face-centerd cubic grid, the graphs of lines of unit cells of the face-centered cubic
grid are investigated. The face-centered cubic unit cell is a cube (all sides have the
same length and all faces are perpendicular to each other) with an atom at each
corner of the unit cell called border points and an atom situated in the middle of each
face of the unit cell called face central points. Closed formulas are obtained to
calculate the sum of shortest distances between pairs of border points, between
border points and centrals and between pairs of centrals. Based on these formulas,
their sum, the Wiener index and hyper-Wiener index of face-centered cubic grid with
unit cells connected in a row graph is computed.
Keywords: Wiener index, body-centered cubic grid, face-centered cubic grid, hyper-
Wiener index, shortest paths, non-traditional grids, combinatorics.
ÖZ :
Bir grafın mesafeler toplamı olarak bilinen Wiener indeksi, kimdaya sırasız düğüm
çiftleri arasındaki mesafeler toplamını hesaplamak için kullanılan ilk topolojik
indekstir. Moleküler grafın bir çok graf türü için irdelenmiş olan ve Wiener sayısı
olarak da bilinen Wiener indeksi grafın fiziksel ve kimyasal özelliklerini
ilişkilendirir. Bu tezde gövde-merkezli grafın birim hücrelerinin kenarlarını
kullanarak gövde-merkezli ve yüzey-merkezli kübik grafın Wiener indeksi ve hiper-
Wiener indeksinin hesaplanması için formül geliştirilmiştir. Bunun yanı sıra yüzeymerkezli
kübik şebekelerde birim hücre dizileri biçiminde olan graflar irdelenmiştir.
Yüzey-merkezli kübik birim hücre, köşeleri sınır noktaları da denilen çekirdeklerden
oluşan bir küpdür. Sözkonusu graflar birim hücreleri merkez düğümlerini ve sınır
düğümlerini içermektedir. Bu bağlamda önerilen formüller uygulanarak sınır
düğümleri çiftleri, sinir ve merkez düğüm çiftleri ve merkez düğüm çiftleri
arasındaki en kısa yollar toplamı hesaplanabilmektedir. Sözkonusu formüller ve
tamsayı dizileri arasında bazı ilişkiler de bu tezde irdelenmiştir.
Anahtar Kelimeler: Wiener endeksi, gövde-merkezli kübik grid, yüzey-merkezli
kübik grid, hiper-Wiener endeksi, kısa yollar, Geleneksel olmayan grid,
kombinatoriks.