Partial Complete Controllability of Semilinear Control Systems

EMU I-REP

Show simple item record

dc.contributor.advisor Bashirov, Agamirza
dc.contributor.author Jneid, Maher
dc.date.accessioned 2018-07-27T08:21:47Z
dc.date.available 2018-07-27T08:21:47Z
dc.date.issued 2014-07
dc.date.submitted 2014-07
dc.identifier.citation Jneid, Maher. (2014). Partial Complete Controllability of Semilinear Control Systems. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. en_US
dc.identifier.uri http://hdl.handle.net/11129/3899
dc.description Doctor of Philosophy in Mathematics. Thesis (Ph.D.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2014. Supervisor: Prof. Dr. Agamirza Bashirov. en_US
dc.description.abstract This work is devoted to examining the partially complete controllability for deterministic semilinear systems in Hilbert spaces. Besides reviewing briefly some existing results of controllability concepts, two main sets of sufficient conditions for partial controllability concepts are proved. The strategy in both results is based on the contraction mapping principle which has played an effective role as the cornerstone of studying controllability concepts for semilinear system, provided that the corresponding linear system is partially complete controllable. The first one is simply obtained by contraction mapping theorem. However, the second result uses the generalized contraction mapping theorem. In the first part, we study the partially complete controllability of deterministic semilinear systems for any positive time. The benefit of this result is demonstrated on some appropriate examples. In the second part, we deal with the same kind of deterministic semilinear systems but with additional condition on the nonlinear part. By this technique, we can defeat the improper integral which arises when we select a suitable control operator by which a generalized contraction mapping theorem can be applied. Keywords: Contraction mapping principle, complete controllability, partial controllability, semilinear system. en_US
dc.description.abstract Öz: Bu çalı¸sma, ayrılabilir Hilbert uzaylarında, deterministik yarı-lineer sistemler için, kısmen tam kontrol edilebilirligi inceler. Bu tür kontrol edilebilirlik için, iki temel set ˘ yeterlilik ko¸sulu ispatlanmı¸stır. Her iki sonuçtaki strateji, yarı-lineer sistemlerde kontrol edilebilirlik durumlarının incelenmesinde önemli rol oynayan büzülme dönü¸süm esasına dayanmaktadır. ˙Ilk sonuç sadece büzülme dönü¸süm teoremi ile elde edilmi¸stir. Ancak, ikinci sonuç genelle¸stirilmi¸s büzülme dönü¸süm teoremini kullanır. ˙Ilk kısımda, herhangi bir pozitif zaman dilimi için, deterministik yarı-lineer sistemlerin kısmen tam kontrol edilebilirligi incelenmi¸stir. Bu sonucun yararı, bazı uygun örnekler üzerinde ˘ gösterilmi¸stir. ˙Ikinci bölümde ise, deterministik yarı-lineer sistemlerin farklı bir türü, lineer olmayan terimleri, zamana baglı bir yardımcı terimle çarpılarak incelenmi¸stir. ˘ Bu teknik ile, 1’den küçük Lipschitz katsayısını elde edebilmek için, ardarda integral alımında ortaya çıkan, improper integral ortadan kaldırılmı¸s olur. Anahtar kelimeler: Daralma e¸sleme özelligi, tam kontrol edilebilirlik, kısmi kontrol ˘ edilebilirlik , yarı- lineer sistem. en_US
dc.language.iso eng en_US
dc.publisher Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Mathematics en_US
dc.subject Hilbert space en_US
dc.subject Contraction mapping principle en_US
dc.subject complete controllability en_US
dc.subject partial controllability en_US
dc.subject semilinear system en_US
dc.title Partial Complete Controllability of Semilinear Control Systems en_US
dc.type doctoralThesis en_US
dc.contributor.department Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record