In this thesis, the 2nd, 3rd and 4th order multiplicative Runge-Kutta Methods are developed
in analogy to the classical Runge-Kutta Method. The error analysis is only
carried out for the 4th order multiplicative Runge-Kutta method based on the convergence
and stability analysis. The convergence behaviour of the developed multiplicative
Runge-Kutta method is analysed by examining examples of initial value problems
with closed form solutions, as well as problems without closed form solutions. The
obtained results are also compared to the results obtained from the solutions of the
classical Runge-Kutta method for the same examples. The error analysis shows that
the solutions of the multiplicative Runge-Kutta methods give better results especially
when the solution has an exponential nature. The modified quadratic Lorenz attractor
is developed to examine the applicability of the proposed multiplicative Runge-Kutta
method on the chaotic systems. The chaotic system is analysed numerically for its
chaotic behaviour. Finally, the chaotic system is transformed into the corresponding
system in terms of multiplicative calculus and the analysis are also done based on the
rules of the multiplicative calculus. The results of the analysis show that the multiplicative
Runge-Kutta method is also applicable to multiplicative chaotic systems.
Keywords: Multiplicative calculus, complex multiplicative calculus, Runge-Kutta,
differential equations, numerical approximation, dynamical systems.
ÖZ:
Bu tezde, 2. ,3. ve 4. derece Runge-Kutta metodları temelinde çarpımsal analiz kuralları
kullanılarak 2. ,3. ve 4. dereceden çarpımsal Runge-Kutta yöntemleri bulunmu¸s
ve incelenmi¸stir. Bulunan yöntemlerin hata analizleri, yakınsaklık ve istikrarlılık analizleri
temel alınarak yapılmı¸stır. Bulunan metodların yakınsaklık özellikleri, çözümleri
bilinen ve bilinmeyen diferansiyel denklemler çözülerek gösterilmi¸stir. Çözümleri
bilinen adi diferansiyel denklemler, çarpımsal Runge-Kutta ve Runge-Kutta yöntemleri
kullanılarak çözülmü¸s ve hata analizleri yapılmı¸stır. Bu sonuçlara göre, özellikle
çözümü eksponensiyel olan denklemlerde, çarpımsal Runge-Kutta metodunun bilinen
Runge-Kutta metoduna göre daha iyi sonuçlar verdi˘gi görülmü¸stür. Son olarak da
çarpımsal Runge-Kutta metodlarının karma¸sık sistemler üzerinde uygulanabildi˘gini
göstermek için karma¸sık bir sistem bulunmu¸s ve numerik olarak incelenmi¸stir. Daha
sonra bulunan sistem çarpımsal analiz kurallarına göre düzenlenmi¸s ve çarpımsal Runge-
Kutta yöntemleri kullanılarak çözülmü¸stür. Elde edilen sonuçlar bulunan yöntemlerin
karma¸sık sistemler üzerinde de kullanılabilece˘gini göstermi¸stir.
AnahtarKelimeler: Çarpımsal analiz, kompleks çarpımsal analiz, Runge-Kutta, diferansiyel
denklemler, numerik yakınsama, dinamik sistemler.