Prediction of prices in stock market is an important research topic to direct investments to items with high return rates. This thesis compares available time series prediction methods for predicting of stock market prices. The available methods that have been employed for time series forecasting are support vector regression, autoregressive moving average and k-nearest neighbours. They are applied on four years of stock market data obtained from London Stock Exchange to train each model and to test the performance of the proposed techniques to select the best forecasting method. The result of the tests show that support vector regression gives less forecasting error compared to other methods of forecasting.
Keywords: Stock Market Forecasting, Support Vector Regression, ARMA, k-Nearest Neighbours.
ÖZ:
Yatırımları yüksek getiri oranlarına sahip ürünlere yönlendirmek açısından bir borsada fiyatların tahmini, önemli bir araştırma konusudur. Bu tez borsa fiyatlarının tahmini için geliştirilmiş mevcut zaman serileri tahmin yöntemlerinden destek vektör regresyonu, otoregresif hareketli ortalama ve en yakın k komşu yöntemlerini karşılaştırarak en iyi tahmin tekniğini belirlemeyi hedeflemektedir. Her bir model Londra Menkul Kıymetler Borsası'ndan elde edilen dört yıllık borsa verilerinin birinci bölümüyle eğitilmiş ve en iyi tahmin yapabilen yöntemi seçmek için verinin ikinci bölümü önerilen tekniğin performansını test etmek için kullanılmıştır. Testlerin sonucu, SVR yönteminin diğer iki tahmin yöntemine kıyasla tahminde daha az hata verdiğini göstermektedir. Anahtar Kelimeler: Borsa Tahmini, Destek Vektör Regresyon, ARMA, En Yakın k-Komşu.