dc.contributor.author |
Hussin, Zwha Abdulhamid |
|
dc.date.accessioned |
2019-10-23T11:53:05Z |
|
dc.date.available |
2019-10-23T11:53:05Z |
|
dc.date.issued |
2017-02 |
|
dc.identifier.citation |
Hussin, Zwha Abdulhamid. (2017).Palmprint Image Identification Using PCA, LBP and HOG Features . Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Computer Engineering, Famagusta: North Cyprus. |
en_US |
dc.identifier.uri |
http://hdl.handle.net/11129/4188 |
|
dc.description |
Master of Science in Computer Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2017. Supervisor: Assist. Prof. Dr. Adnan Acan. |
en_US |
dc.description.abstract |
Biometrics considered as the science which is playing an important role of person recognition. User identification mainly based on the physiological characteristics of an individual. Palmprint is an example of physiological characteristics of an individual which can be easily captured by using some types of sensors and cameras. The palmprint has many nature compositions which contain rich features that mainly used for distinguishing such as, wrinkles, ridges, principal lines, singular and minutiae points, these make a palmprint as one of a unique biometric and reliable for human recognition. In this work different features extraction algorithms were used such as a texture based method (LBP, HOG), and appearance based method (PCA). Also K-Cross Validation algorithm was implemented. The accuracy rates of recognition results of implemented algorithms were acquired and compared.
Keywords: Biometric, Palmprint, Accuracy rates and Recognition algorithms. |
en_US |
dc.description.abstract |
ÖZ:
Bir bilim dalı olarak Biyometri kişiyi tanımada önemli bir rol oynamaktadır. Biyometri, kişisel belirlemeler esas olarak bir bireyin fizyolojik özelliklerini esas almaktadır. Bireyin fizyolojik özelliklerine bir örnek olarak Palmprint (Avuç İçi ) bazı sensörler ve kameralar kullanılarak kolayca yakalanabilir. Palmprint’de birçok doğal özellik bileşenleri varolmakla birlikte, belirgin özellikler içeren kırışıklıklar, kabarıklar, ana hatlar ve tekil ayrıntı noktaları insan tanımlamasında eşsiz güvenilir biyometrik ölçütleri oluştururlar. Bu çalışmada farklı özellik çıkarma algoritmaları kullanılarak doku tabanlı (LBP,HOG) ve görünüşe dayalı (PCA) özelliklerin çıkarılması çalışılmıştır. Bunlarla birlikte k-çapraz doğrulama algoritması da öğrenme sürecinde uygulandı. Tanıma sonuçlarının doğruluk oranları kullanılarak uygulanmış algoritmalar karşılaştırldı.
Anahtar Kelimeler: Biyometri, palmprint, doğruluk oranları ve algoritmaları tanımlama. |
en_US |
dc.language.iso |
eng |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
Computer Engineering |
en_US |
dc.subject |
Biometric identification-Computer Visison |
en_US |
dc.subject |
Biometric Recognition-Palmprint |
en_US |
dc.subject |
Computer pattern recognition |
en_US |
dc.subject |
Image processing - Digital techniques |
en_US |
dc.subject |
Pattern recognition systems-Biometric identification |
en_US |
dc.subject |
Biometric |
en_US |
dc.subject |
Palmprint |
en_US |
dc.subject |
Accuracy rates and Recognition algorithms |
en_US |
dc.title |
Palmprint Image Identification Using PCA, LBP and HOG Features |
en_US |
dc.type |
masterThesis |
en_US |
dc.contributor.department |
Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering |
en_US |