Palmprint Image Identification Using PCA, LBP and HOG Features

EMU I-REP

Show simple item record

dc.contributor.author Hussin, Zwha Abdulhamid
dc.date.accessioned 2019-10-23T11:53:05Z
dc.date.available 2019-10-23T11:53:05Z
dc.date.issued 2017-02
dc.identifier.citation Hussin, Zwha Abdulhamid. (2017).Palmprint Image Identification Using PCA, LBP and HOG Features . Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Computer Engineering, Famagusta: North Cyprus. en_US
dc.identifier.uri http://hdl.handle.net/11129/4188
dc.description Master of Science in Computer Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2017. Supervisor: Assist. Prof. Dr. Adnan Acan. en_US
dc.description.abstract Biometrics considered as the science which is playing an important role of person recognition. User identification mainly based on the physiological characteristics of an individual. Palmprint is an example of physiological characteristics of an individual which can be easily captured by using some types of sensors and cameras. The palmprint has many nature compositions which contain rich features that mainly used for distinguishing such as, wrinkles, ridges, principal lines, singular and minutiae points, these make a palmprint as one of a unique biometric and reliable for human recognition. In this work different features extraction algorithms were used such as a texture based method (LBP, HOG), and appearance based method (PCA). Also K-Cross Validation algorithm was implemented. The accuracy rates of recognition results of implemented algorithms were acquired and compared. Keywords: Biometric, Palmprint, Accuracy rates and Recognition algorithms. en_US
dc.description.abstract ÖZ: Bir bilim dalı olarak Biyometri kişiyi tanımada önemli bir rol oynamaktadır. Biyometri, kişisel belirlemeler esas olarak bir bireyin fizyolojik özelliklerini esas almaktadır. Bireyin fizyolojik özelliklerine bir örnek olarak Palmprint (Avuç İçi ) bazı sensörler ve kameralar kullanılarak kolayca yakalanabilir. Palmprint’de birçok doğal özellik bileşenleri varolmakla birlikte, belirgin özellikler içeren kırışıklıklar, kabarıklar, ana hatlar ve tekil ayrıntı noktaları insan tanımlamasında eşsiz güvenilir biyometrik ölçütleri oluştururlar. Bu çalışmada farklı özellik çıkarma algoritmaları kullanılarak doku tabanlı (LBP,HOG) ve görünüşe dayalı (PCA) özelliklerin çıkarılması çalışılmıştır. Bunlarla birlikte k-çapraz doğrulama algoritması da öğrenme sürecinde uygulandı. Tanıma sonuçlarının doğruluk oranları kullanılarak uygulanmış algoritmalar karşılaştırldı. Anahtar Kelimeler: Biyometri, palmprint, doğruluk oranları ve algoritmaları tanımlama. en_US
dc.language.iso eng en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Computer Engineering en_US
dc.subject Biometric identification-Computer Visison en_US
dc.subject Biometric Recognition-Palmprint en_US
dc.subject Computer pattern recognition en_US
dc.subject Image processing - Digital techniques en_US
dc.subject Pattern recognition systems-Biometric identification en_US
dc.subject Biometric en_US
dc.subject Palmprint en_US
dc.subject Accuracy rates and Recognition algorithms en_US
dc.title Palmprint Image Identification Using PCA, LBP and HOG Features en_US
dc.type masterThesis en_US
dc.contributor.department Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record