During the past 20 years, the community of science have become more interested in
Evolutionary Algorithms which have been used in many applications. This thesis
proposes hybridized Particle Swarm Optimization (PSO) algorithm that targets to
combine the original PSO with a simple local search technique (HPSO-FminLS).
FminLS, have been used as a simple local search with original PSO for solving
Learning-based-Real-Parameter Single Objective Optimization Problems
(LbRPSOOP). These problems are provided in CEC2015 Congress on Evolutionary
Computation. Technically, we solved CEC15 in dimensions D10, D30, D50 with
HPSO-FminLS then developed 4 different versions by using local search and PSO
algorithms. HPSO-FminLS reached optimal solution in Unimodal problems, and the
near optimal solution in other problems.
ÖZ: Son 20 yılda, Bilim Topluluğu, birçok uygulamada kullanılan Metaheuristik yöntemler
olarak kullanılan Evrim Algoritmalarına daha fazla ilgi duydu. Bu tez, orijinal
Parçacık Sürüsü Optimizasyonu'nu (PSO) basit bir yerel arama tekniği ile birleştirmeyi
hedefleyen melezleştirilmiş HPSO-FminLS algoritmasını öneriyor. FminLS, Öğrenme
Tabanlı Gerçek Parametre Tek Hedefli Optimizasyon Problemlerini (LbRPSOOP)
çözmek için orijinal PSO ile basit bir yerel arama olarak kullanılmıştır. Kullanılan
problemler, CEC2015 Evrimsel Hesaplama Kongresi'nden sağlanmaktadır. Teknik
olarak, HPSO-FminLS ile üç farklı boyutta, 10, 30 ve 50, CEC15'de verilen
problemler, yerel arama ve PSO algoritmaları kullanarak 4 farklı versiyon ile
çözülmüşlerdir. HPSO-FminLS, Unimodal problemlerde en iyi çözüme, diğer
problemlerde ise en iyi çözüme kabuledilir bir yakınlıkta ulaşmıştır.