Hybrid PSO Algorithm for the Solution of Learningbased Real-Parameter Single Objective Optimization Problems

EMU I-REP

Show simple item record

dc.contributor.advisor Ünveren, Ahmet
dc.contributor.author Holoubi, Batoul Abdulmoti
dc.date.accessioned 2020-10-23T07:18:28Z
dc.date.available 2020-10-23T07:18:28Z
dc.date.issued 2018
dc.date.submitted 2018
dc.identifier.citation Holoubi, Batoul Abdulmoti. (2018). Hybrid PSO Algorithm for the Solution of Learningbased Real-Parameter Single Objective Optimization Problems. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Computer Engineering, Famagusta: North Cyprus. en_US
dc.identifier.uri http://hdl.handle.net/11129/4676
dc.description Master of Science in Computer Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2018. Supervisor: Assist. Prof. Dr. Ahmet Ünveren. en_US
dc.description.abstract During the past 20 years, the community of science have become more interested in Evolutionary Algorithms which have been used in many applications. This thesis proposes hybridized Particle Swarm Optimization (PSO) algorithm that targets to combine the original PSO with a simple local search technique (HPSO-FminLS). FminLS, have been used as a simple local search with original PSO for solving Learning-based-Real-Parameter Single Objective Optimization Problems (LbRPSOOP). These problems are provided in CEC2015 Congress on Evolutionary Computation. Technically, we solved CEC15 in dimensions D10, D30, D50 with HPSO-FminLS then developed 4 different versions by using local search and PSO algorithms. HPSO-FminLS reached optimal solution in Unimodal problems, and the near optimal solution in other problems. en_US
dc.description.abstract ÖZ: Son 20 yılda, Bilim Topluluğu, birçok uygulamada kullanılan Metaheuristik yöntemler olarak kullanılan Evrim Algoritmalarına daha fazla ilgi duydu. Bu tez, orijinal Parçacık Sürüsü Optimizasyonu'nu (PSO) basit bir yerel arama tekniği ile birleştirmeyi hedefleyen melezleştirilmiş HPSO-FminLS algoritmasını öneriyor. FminLS, Öğrenme Tabanlı Gerçek Parametre Tek Hedefli Optimizasyon Problemlerini (LbRPSOOP) çözmek için orijinal PSO ile basit bir yerel arama olarak kullanılmıştır. Kullanılan problemler, CEC2015 Evrimsel Hesaplama Kongresi'nden sağlanmaktadır. Teknik olarak, HPSO-FminLS ile üç farklı boyutta, 10, 30 ve 50, CEC15'de verilen problemler, yerel arama ve PSO algoritmaları kullanarak 4 farklı versiyon ile çözülmüşlerdir. HPSO-FminLS, Unimodal problemlerde en iyi çözüme, diğer problemlerde ise en iyi çözüme kabuledilir bir yakınlıkta ulaşmıştır. en_US
dc.language.iso eng en_US
dc.publisher Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Computer Engineering en_US
dc.subject Evolutionary programming (Computer science)--Evolutionary computation en_US
dc.subject Evolutionary Algorithms en_US
dc.subject Local search en_US
dc.subject Single Objective Problems en_US
dc.title Hybrid PSO Algorithm for the Solution of Learningbased Real-Parameter Single Objective Optimization Problems en_US
dc.type masterThesis en_US
dc.contributor.department Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record