Uninformed and Informed Search Techniques in Artificial Intelligence

EMU I-REP

Show simple item record

dc.contributor.advisor Aliyev, Rashad
dc.contributor.author Algasi, Khaled A. O.
dc.date.accessioned 2020-10-30T08:19:54Z
dc.date.available 2020-10-30T08:19:54Z
dc.date.issued 2017
dc.date.submitted 2017
dc.identifier.citation Algasi, Khaled A. O.. (2017). Uninformed and Informed Search Techniques in Artificial Intelligence. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. en_US
dc.identifier.uri http://hdl.handle.net/11129/4714
dc.description Master of Science in Applied Mathematics and Computer Science. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2017. Supervisor: Prof. Dr. Rashad Aliyev. en_US
dc.description.abstract In this master thesis the search techniques in Artificial Intelligence are analyzed. The search techniques are grouped into two main categories which are uninformed search techniques and informed search techniques. Such uninformed search techniques as breadth-first search, depth-first search, depth-limited search, iterative deepening search, uniform cost search, and bidirectional search are considered. The best-first search, greedy best-first search, A* search and hill climbing techniques as paradigms of informed search techniques are studied. The completeness, optimality, time complexity, and space complexity properties of all above mentioned search techniques are discussed. The Dijkstra’s algorithm is used to find the shortest paths from the initial node to all other nodes in a weighted digraph. en_US
dc.description.abstract ÖZ: Bu master tezinde yapay zekanın arama yöntemleri incelenir. Yapay zekada arama yöntemleri sezgisel olmayan ve sezgisel arama yöntemleri olarak iki esas kategoriye ayrılır. Önce genişliğine arama, önce derinliğine arama, derinlik sınırlandırmalı arama, yineli derinleştirmeli arama, düzenli maliyet arama ve çift yönlü arama yöntemleri sezgisel olmayan yöntemler olarak dikkate alınır. En iyi öncelikli arama, açgözlü en iyi öncelikli arama, A* arama ve tepe tırmanma yöntemleri sezgisel arama yöntemlerinin paradigmaları olarak incelenir. Yukarıda adı geçen tüm arama yöntemlerinin tamlık, optimallik, zaman karmaşıklığı ve bellek karmaşıklığı özellikleri tartışılır. Dijkstra algoritması kullanarak ağırlıklı yönlü grafikte başlangıç düğümünden diğer dügümlere gidilebilecek en kısa yol bulunur. en_US
dc.language.iso eng en_US
dc.publisher Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Mathematics en_US
dc.subject Applied Mathematics and Computer Science en_US
dc.subject Artificial Intelligence en_US
dc.subject Breadth-first search en_US
dc.subject Depth-first search en_US
dc.subject Depth-limited search en_US
dc.subject Iterative deepening search en_US
dc.subject Uniform cost search en_US
dc.subject Bidirectional search en_US
dc.subject Best-first search en_US
dc.subject Greedy best-first search en_US
dc.subject A* search en_US
dc.subject Hill climbing search en_US
dc.subject Dijkstra’s algorithm en_US
dc.title Uninformed and Informed Search Techniques in Artificial Intelligence en_US
dc.type masterThesis en_US
dc.contributor.department Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record