Quantum Integral Inequalities on Finite Intervals

EMU I-REP

Show simple item record

dc.contributor.advisor Oğurlu, Sonuç Zorlu
dc.contributor.author Taher, Farhad Mustafa
dc.date.accessioned 2020-11-26T12:30:21Z
dc.date.available 2020-11-26T12:30:21Z
dc.date.issued 2018
dc.date.submitted 2018
dc.identifier.citation Taher, Farhad Mustafa. (2018). Quantum Integral Inequalities on Finite Intervals. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. en_US
dc.identifier.uri http://hdl.handle.net/11129/4761
dc.description Master of Science in Mathematics. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2018. Supervisor: Prof. Dr. Sonuç Zorlu Oğurlu. en_US
dc.description.abstract The Integral Inequalities can be used for the study of qualitative and quantitative properties of integrals and they perform an important role in the theory of differential equations. The study of the fractional q-integral inequalities is also of great importance. The purpose of this thesis is to study q-calculus analogs of some classical integral inequalities. In particular, some of the greatest significant integral inequalities of analysis are extended to Quantum calculus. We will work on the q-generalization of the Hölder, Hermite-Hadamard, Trapezoid, Ostrowski, Cauchy-BunyakovskySchwarz, Grüss, and Grüss-Chebysev integral inequalities. The analysis is based on the notions of q-derivative and q-integral on finite intervals presented recently by the author in [9]. Keywords: Quantum Integral Inequalities; Hölder’s inequality, Hermite-Hadamard’s inequality, Ostrowski's Inequality, Grüss-Chebysev integral inequality en_US
dc.description.abstract ÖZ: İntegral eşitsizlikleri, integrallerin nitel ve nicel özelliklerinin incelenmesi için kullanılabilir ve diferansiyel denklemler teorisinde temel bir rol oynar. Kesirli qintegral eşitsizliklerinin incelenmesi de büyük önem taşımaktadır. Bu çalışmanın amacı bazı klasik integral eşitsizliklerinin q-Kalkülüs analoglarını bulmaktır. Özellikle analizin en önemli integral eşitsizliklerinin bazılarının kuantum Kalkülüs’e genelleştirmelerini incelenecektir. Bunlar, Hölder, Hermite-Hadamard, Trapezoid, Ostrowski, Cauchy-Bunyakovsky-Schwarz, Grüss ve Grüss-Čebyšev integral eşitsizlikleri olacaktır. Yapılan çalışmalar ve analizler, son zamanlarda J. Tariboon ve S. Ntouyas v.s. araştırmacıların çalıştığı sınırlı aralıklarda q-türev ve qintegral kavramlarına dayanmaktadır. Anahtar Kelimeler: Quantum İntegral eşitsizlikleri, Hölder eşitsizliği, HermiteHadamard eşitsizliği, Ostrovski eşitsizliği, Grüss-Chebysev eşitsizliği, Konvekslik en_US
dc.language.iso eng en_US
dc.publisher Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Differential equations--Numerical solutions en_US
dc.subject Quantum Integral Inequalities en_US
dc.subject Hölder’s inequality en_US
dc.subject Hermite-Hadamard’s inequality en_US
dc.subject Ostrowski's Inequality en_US
dc.subject Grüss-Chebysev integral inequality en_US
dc.subject Mathematics en_US
dc.title Quantum Integral Inequalities on Finite Intervals en_US
dc.type masterThesis en_US
dc.contributor.department Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record