Image restoration involves the reduction or complete removal of image degradation
in an effort to enhance an image and recover its original form. One of the main
methods of image restoration is Joint Statistical Modeling (JSM). This thesis
proposes method for image restoration based on JSM and the statistical
characterization of the nonlocal self-similarity and local smoothness of natural
images. In an effort to improve the image restoration results through JSM, the
proposed method involves the addition of a Switching Median Filter (SMF) to JSM
and a Median Filter (MF) at the end of every iteration in the restoration process.
Overall, the proposed image restoration method makes the following contributions: it
establishes JSM in a domain for hybrid space-transformation; using JSM, it develops
a new type of minimization function to be used in solving inverse problems in image
processing; and JSM is developing a new rule-based in the Split Bregman method,
which is intended to solve any prospective image problems related to a theoretical
proof of convergence.
The proposed method was experimentally tested for three kinds of image restoration:
image deblurring, image inpainting (text removal), and the removal of mixed
Gaussian and salt-and-pepper noise. The results of these experiments indicate that
image restoration using the proposed method is a significant improvement compared
to conventional JSM. Furthermore, the convergence of the proposed method was also
considerably improved relative to JSM.
ÖZ:
Resim onarma işlemi, resimdeki mevcut bozunumun azaltılması tamamen ortadan
kaldırılması amacıyla yapılan iyileştirme ve asıl haline dönüştürme işlemidir. En
başta gelen yöntemlerden bir taneside Ortak İstatiksel Model (OİM) yöntemidir. Bu
tezde, resimlerin yerel olmayan özbenzeşlik ve yerel pürüzsüzlük istatiksel
nitelendirilmesi ile OİM’e dayalı yeni bir resim onarma yöntemi sunulmuştur. Bu
yöntemde OİM’den alınan sonuçları iyileştiremek amacıyla, OİM yöntemine
anahtarlamalı ortancı süzgeci eklenerek onarma sürecinde ortancı süzgecin her bir
iterasyonda kullanılması öngörülmüştür.
Sonuç olarak, şu katkılar sağlanmıştır; OİM kullanarak resmi tersten işleme
problemini çözmede yeni bir azaltma fonksiyonu geliştirilmiştir. Geliştirilen kural
bazlı Split Bregman yöntemi ile OİM iyileştirilmiş her türlü olası tersten resim
işleme problemlerine kuramsal bir yakınsama kanıtı sunulmuştur.
Önerilen yöntem deneysel olarak üç ayrı resim onarma uygulamasında test
edilmiştir; Bunlar, resim netleştirme, resim iç boyama (metin giderme) ve karışık
Gauss ve tuz-ve-biber gürültüsünün kaldırılmasıdır. Yapılan deneylerin sonucuna
göre resim onarmada önerilen yöntem ile anlamlı bir gelişme sağlanmıştır. Buna ek
olarak önerilen yöntem ile yakınsama OİM’den daha iyi olmuştur.