In this thesis, we focus on numerical solutions of general linear multi-term fractional
differential equations (FDEs) with fractional derivatives defined in the Caputo sense.
Multi-term fractional order differential equations are involving both ordinary and
fractional derivative operators. Numerical methods plays very crucial role for solving
fractional differential equations, since analytical solutions are not always possible for
solving them. Memory trait of fractional calculus is one of the main reason for
difficulty of developing analytical techniques for such a equations. Therefore, there
has been considerable interest in solving FDEs numerically in recent years and many
powerful schemes have been developed. Essentially, most of the developed methods
are modified from original versions for classical differential equations and applied to
FDEs.
In this study, we introduce a numerical technique based on the fractional Taylor
vector and we construct fractional Taylor operational matrix of fractional integration
to solve multi-term FDEs. The main characteristic of this technique is to reduce the
given IVP of fractional order to a system of algebraic equations by employing the
fractional Taylor operational matrix of fractional integration. Finally, this set of
algebraic equations can be solved easily and efficiently for unknown coefficients by
using computer programming. Consequently, by using these coefficients, the
approximate solution of the given problem can be obtained. Some numerical
examples are presented to demonstrate the accuracy and applicability of given
method. The approximate solutions obtained by use of given technique are compared
with numerical results of some other methods in literature and exact solutions of
given problems. From these results, we can conclude that the presented technique is
efficient and applicable for solving high order multi-term fractional order differential
equations numerically.
Keywords: numerical solutions, fractional Taylor vector,fractional differential
equations, spectral method, Caputo fractional derivative, Riemann-Liouville
fractional integral, operational matrices.
OZ:
Bu tez c¸alıs¸masında, Caputo kesirli t¨urevlerine sahip, genel lineer c¸ok terimli kesirli
diferansiyel denklemlerin sayısal y¨ontem ile c¸ ¨oz¨umlerine odaklanılmıs¸tır. C¸ ok terimli
kesirli t¨urevlere sahip diferansiyel denklemler, hem klasik hem kesirli t¨urev
operat¨orleri ic¸eren denklemlerdir. Analitik metodlar ile kesirli t¨urevlere sahip
diferansiyel denklemlerin c¸ ¨oz¨umlerine ulas¸mak her zaman m¨umk¨un olmadı˘gından,
sayısal metodlar bu t¨ur denklemlerin c¸ ¨oz¨umlerinde c¸ok ¨onemli bir rol oynamaktadır.
Kesirli analizin uzun hafıza ¨ozelli˘gi, bu t¨ur diferansiyel denklemlerin c¸ ¨oz¨um¨u ic¸in
analitik y¨ontemler gelis¸tirmeyi zorlas¸tıran en ¨onemli sebeplerden biridir. Bu nedenle,
kesirli t¨urevli diferansiyel denklemlerin sayısal y¨ontemler kullanılarak c¸ ¨oz¨um¨u son
yıllarda b¨uy¨uk ilgi g¨ormektedir ve bunun sonucu olarak birc¸ok g¨uc¸l¨u teknik
gelis¸tirilmis¸tir. Aslında, gelis¸tirilen y¨ontemlerin c¸o˘gu, klasik diferansiyel
denklemlerin c¸ ¨oz¨um¨u ic¸in kullanılan orijinal versiyonlardan de˘gis¸tirilip
g¨uncellenerek kesirli diferansiyel denklemlere uygulanan y¨ontemlerdir.
Bu c¸alıs¸mada, c¸ok terimli kersirli diferansiyel denklemlerin sayısal c¸ ¨oz¨umleri ic¸in,
kesirli Taylor vekt¨or¨une dayanan bir y¨ontem sunulmaktadır. Sunulan y¨ontemin ana
amacı, kesirli Taylor vekt¨or¨unden yararlanarak kesirli integrasyonun operasyonel
matrisini olus¸turmak ve bu matrisi kullanarak, verilen c¸ok terimli kesirli diferansiyel
denklemin bir cebirsel denklem sistemine indirgenmesini sa˘glamaktır. Son olarak,
elde edilen bu cebirsel denklem sistemi, bilgisayar programlaması kullanılarak,
bilinmeyen katsayı ic¸in verimli bir bic¸imde c¸ ¨oz¨ulebilmektedir. Sonuc¸ olarak, elde
edilecek katsayılar kullanılarak, verilen problemin yaklas¸ık c¸ ¨oz¨um¨u elde
edilmektedir. Sunulan y¨ontemin verimlili˘gini ve uygulanabilirli˘gini test edebilmek
ic¸in bazı ¨ornekler verilmis¸tir. Sunulan y¨ontem kullanılarak elde edilen yaklas¸ık
c¸ ¨oz¨umler, verilen problemlerin kesin c¸ ¨oz¨umleri ve literat¨urde bulunan bazı di˘ger
sayısal y¨ontemler ile kars¸ılas¸tırılmıs¸tır. Elde edilen sonuc¸lar ve kars¸ılas¸tırmalar,
sunulan y¨ontemin, c¸ok terimli kesirli diferansiyel denklemlerin yaklas¸ık c¸ ¨oz¨umlerine
ulas¸makta c¸ok bas¸arılı ve verimli oldu˘gunu kanıtlamaktadır.
Anahtar Kelimeler: sayısal c¸ ¨oz¨umler, kesirli diferansiyel denklem, spektral metod,
Caputo kesirli t¨urevi, Riemann-Liouville kesirli integrali, kesirli Taylor vekt¨or¨u,
operasyonel matrix.