The usual definitions of fractional derivatives and integrals are very well-suited for a
fractional generalisation of real analysis. But the basic building blocks of complex
analysis are different: although fractional derivatives of complex-valued functions and
to complex orders are well known, concepts such as the Cauchy–Riemann equations
and d-bar derivatives have no analogues in the standard fractional calculus. In the
current work, we propose a formulation of fractional calculus which is better suited
to complex analysis and to all the tools and methods associated with this field. We
consider some concrete examples and various fundamental properties of this fractional
version of complex analysis.
Keywords: fractional derivatives, complex analysis, d-bar derivatives, Leibniz rule
ÖZ:
Kesirli türevlerin ve integrallerin olagan tanımları, gerçek analizin kesirli bir ˘
genelle¸stirilmesi için çok uygundur. Ancak kompleks analizin temel yapı ta¸sları
farklıdır: kompleks degerli fonksiyonların kesirli türevleri ve kompleks emirler iyi ˘
bilinmesine ragmen, Cauchy-Riemann denklemleri ve d-bar türevleri gibi kavramların ˘
standart fraksiyonel kalkülüste analogları yoktur. Mevcut çalı¸smada, kompleks
analize ve bu alanla ili¸skili tüm araç ve yöntemlere daha uygun kesirli kalkülüsün
formülasyonunu öneriyoruz. kompleks analizin bu kesirli versiyonunun bazı somut
örneklerini ve çe¸sitli temel özelliklerini göz önünde bulunduruyoruz.
Anahtar Kelimeler: kesirli türevlerin, kompleks analiz, d-bar türevleri, Leibniz
kuralı.