The theme of this thesis is based on the solutions of fractional differential equations.
We investigate the existence and uniqueness results of the fractional differential
equations with boundary value conditions. Mostly, in this thesis, one of the fractional
differential equation which is the Caputo type fractional differential equation is used
and also, for the boundary conditions, different types of boundary conditions are used
such as nonlocal Katugampola fractional integral conditions and nonlinear boundary
conditions. The existence and uniqueness results of solutions are discussed by using
standard fixed point theorems such as Banach fixed point theorem, Leray-Schauder
nonlinear alternative and Krasnoselskii's fixed point theorem. Furthermore, Perov's
fixed point theorem is investigated for multivariable operators. Moreover, Ulam Hyers
stable is studied. In addition, for the nonlinear boundary conditions of Caputo type
fractional differential equation, parametrization technique is used. So, numerical
analytic scheme is established for finding the successive approximations. Theories
which are studied in this thesis are illustrated with examples.
ÖZ:
Bu tezin konusu kesirli diferansiyel denklemlerin çözümüne dayanmaktadır.
Tanımlanmış olan kesirli diferensiyel denklemlerin varlığı ve tek çözüm olma
sonuçları araştırıldı. Bu tezde, çoğunlukla, kesirli diferansiyel denklemlerden biri olan
Caputo tipi kesirli diferansiyel denklem kullanılmıştır. Ayrıca, sınır koşulları için,
yerel olmayan Katugampola kesirli integral koşulları ve doğrusal olmayan sınır
koşulları gibi farklı sınır koşulları uygulanmıştır. Çözümlerin varlığı ve tek olma
sonuçları, Banach sabit nokta teoremi, Leray-Schauder'ın doğrusal olmayan alternatifi
ve Krasnoselskii'nin sabit nokta teoremleri kullanılarak tartışılmıştır. Ayrıca, Perov'un
sabit nokta teoremi çok değişkenli operatörler için incelenmiştir. Ek olarak, Caputo
tipi kesirli diferensiyel denklemin doğrusal olmayan sınır koşulları için parametreleme
tekniği kullanılmıştır. Böylece, ardışık yaklaşılanları bulmak için sayısal analitik şema
kullanılmıştır. Ayrıca, bu tezde incelenen teoriler örneklerle gösterilmiştir.