| dc.contributor.advisor | Mahmudov, Nazım (Supervisor) | |
| dc.contributor.author | Emin, Sedef Sultan | |
| dc.date.accessioned | 2024-08-08T09:57:16Z | |
| dc.date.available | 2024-08-08T09:57:16Z | |
| dc.date.issued | 2019-06 | |
| dc.date.submitted | 2019-06 | |
| dc.identifier.citation | Emin, Sedef Sultan. (2019). Existence Results for Boundary Value Problems of Fractional Type Differential Equations. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. | en_US |
| dc.identifier.uri | http://hdl.handle.net/11129/6040 | |
| dc.description | Doctor of Philosophy in Mathematics. Institute of Graduate Studies and Research. Thesis (Ph.D.) - Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2019. Supervisor: Prof. Dr. Nazım Mahmudov | en_US |
| dc.description.abstract | The theme of this thesis is based on the solutions of fractional differential equations. We investigate the existence and uniqueness results of the fractional differential equations with boundary value conditions. Mostly, in this thesis, one of the fractional differential equation which is the Caputo type fractional differential equation is used and also, for the boundary conditions, different types of boundary conditions are used such as nonlocal Katugampola fractional integral conditions and nonlinear boundary conditions. The existence and uniqueness results of solutions are discussed by using standard fixed point theorems such as Banach fixed point theorem, Leray-Schauder nonlinear alternative and Krasnoselskii's fixed point theorem. Furthermore, Perov's fixed point theorem is investigated for multivariable operators. Moreover, Ulam Hyers stable is studied. In addition, for the nonlinear boundary conditions of Caputo type fractional differential equation, parametrization technique is used. So, numerical analytic scheme is established for finding the successive approximations. Theories which are studied in this thesis are illustrated with examples. | en_US |
| dc.description.abstract | ÖZ: Bu tezin konusu kesirli diferansiyel denklemlerin çözümüne dayanmaktadır. Tanımlanmış olan kesirli diferensiyel denklemlerin varlığı ve tek çözüm olma sonuçları araştırıldı. Bu tezde, çoğunlukla, kesirli diferansiyel denklemlerden biri olan Caputo tipi kesirli diferansiyel denklem kullanılmıştır. Ayrıca, sınır koşulları için, yerel olmayan Katugampola kesirli integral koşulları ve doğrusal olmayan sınır koşulları gibi farklı sınır koşulları uygulanmıştır. Çözümlerin varlığı ve tek olma sonuçları, Banach sabit nokta teoremi, Leray-Schauder'ın doğrusal olmayan alternatifi ve Krasnoselskii'nin sabit nokta teoremleri kullanılarak tartışılmıştır. Ayrıca, Perov'un sabit nokta teoremi çok değişkenli operatörler için incelenmiştir. Ek olarak, Caputo tipi kesirli diferensiyel denklemin doğrusal olmayan sınır koşulları için parametreleme tekniği kullanılmıştır. Böylece, ardışık yaklaşılanları bulmak için sayısal analitik şema kullanılmıştır. Ayrıca, bu tezde incelenen teoriler örneklerle gösterilmiştir. | en_US |
| dc.language.iso | eng | en_US |
| dc.publisher | Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Mathematics Department | en_US |
| dc.subject | Boundary Value Problems--Differential Equations | en_US |
| dc.subject | Fractional differential equations; Katugampola fractional integral; Caputo fractional derivative; Riemann-Liouville fractional integral; fixed point theorems; parametrization technique; successive approximations; multivariable operations | en_US |
| dc.title | Existence Results for Boundary Value Problems of Fractional Type Differential Equations | en_US |
| dc.type | doctoralThesis | en_US |
| dc.contributor.department | Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics | en_US |