Properties of Block Matrices

EMU I-REP

Show simple item record

dc.contributor.advisor Saadetoğlu, Müge (Supervisor)
dc.contributor.author Dinsev, Şakir Mehmet
dc.date.accessioned 2025-07-30T08:22:27Z
dc.date.available 2025-07-30T08:22:27Z
dc.date.issued 2023-09
dc.date.submitted 2023-09
dc.identifier.citation Dinsev, Sakir Mehmet. (2023). Properties of Block Matrices. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. en_US
dc.identifier.uri http://hdl.handle.net/11129/6444
dc.description Master of Science in Mathematics. Institute of Graduate Studies and Research. Thesis (M.S.) - Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2023. Supervisor: Assist. Prof. Dr. Müge Saadetoğlu. en_US
dc.description.abstract In this master thesis, we study the block matrices and their properties. After giving a general overview on matrices, block matrices, different types of block matrices, and multiplication of two block matrices are discussed. In the inverse section, we first examine inverses of 2×2 block diagonal and block triangular matrices, ideas of proofs here can be extended to a general n × n block diagonal or a block triangular matrix. Then we give the inverse formula for 2 × 2 block matrix, in the case that one of the blocks is invertible. We then generalise this to any n×n block matrix by splitting it into 4 blocks (by producing a 2×2 block matrix). Determinant chapter is covered by two different methods, existing in the literature. First we revise a formulae for determinant of a block matrix where the blocks (matrices) belong to a commutative subring of Mn×n(F), where F is a field or a commutative ring. Then we give the general formula which would work for any block matrix, without any commutativity condition between the blocks. We also present formulas for the determinant of tensor product of two given matrices. Keywords: block matrix, inverses, determinants, tensor products en_US
dc.description.abstract ÖZ: Bu yüksek lisans tezinde, blok matrisler ve özellikleri incelenmi¸stir. Matrislere genel bir bakı¸s verildikten sonra, blok matrisler, farklı blok matris türleri ve iki blok matrisin çarpımı ele alınmı¸stır. Blok matrislerin tersleri bölümünde, önce 2×2 blok kö¸ segen ve blok üçgensel matrislerin tersi incelenmi¸stir. Buradaki ispat yöntemleri genel bir n×n blok kö¸segen veya blok üçgensel matrisine geni¸sletilebilir. Daha sonra bloklarin herhangi birinin tersinin olması ko¸suluna dayanarak 2 × 2 block matrislerinin terslerinin formülü verilmi¸stir. Ayrıca bu formül n×n blok matrisini 4 tane blo˘ ga bölerek genelle¸stirilebilir (2 × 2 blok matris üreterek). Determinant bölümü, literatürde var olan iki farklı yöntemle ele alınmı¸stır. ˙ Ilk olarak blokların(matrislerin), Mn×n(F)’ nin de˘ gi¸sme özelli˘ gi olan alt-halkasına ait olması durumunda (buradaki F bir cisim veya de˘ gi¸sme özelli˘ gi olan bir halkadır) blok matrisin determinant formülü revize edilmi¸stir. Bunun yanında bloklar arasında herhangi bir de˘ gi¸sme ko¸sulu olmaksızın determinant formülü incelenmi¸stir. Ayrıca verilen iki matrisin tensör çarpımının determinantı formülleri sunulmu¸stur. en_US
dc.language.iso eng en_US
dc.publisher Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Thesis Tez en_US
dc.subject Mathematics Department en_US
dc.subject Algebras, Linear--Matrices en_US
dc.subject Block matrix en_US
dc.subject inverses en_US
dc.subject determinants en_US
dc.subject tensor products en_US
dc.title Properties of Block Matrices en_US
dc.type masterThesis en_US
dc.contributor.department Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record